LTC2908IDDB-A1#TRMPBF [Linear]

暂无描述;
LTC2908IDDB-A1#TRMPBF
型号: LTC2908IDDB-A1#TRMPBF
厂家: Linear    Linear
描述:

暂无描述

监视器
文件: 总16页 (文件大小:195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2908  
Precision  
Six Input Supply Monitor  
FEATURES  
DESCRIPTION  
The LTC®2908 is a six input supply monitor for systems  
requiring a precise and compact monitoring solution for  
multiple supply voltages. The inputs can be shorted to-  
gether for monitoring systems with fewer than six supply  
voltages, and the open drain RST output of two or more  
LTC2908 can be wired-OR together for monitoring sys-  
tems with more than six supply voltages. The common  
reset output remains low until all six inputs have been in  
compliance for 200ms.  
n
Ultralow Voltage Reset: V = 0.5V Guaranteed*  
CC  
n
Monitors Six Inputs Simultaneously:  
5V, 3.3V, 2.5V, 1.8V, ADJ1, ADJ2 (LTC2908-A1)  
3.3V, 2.5V, 1.8V, 1.5V, ADJ1, ADJ2 (LTC2908-B1)  
2.5V, ADJ1, ADJ2, ADJ3, ADJ4, ADJ5  
(LTC2908-C1)  
n
Guaranteed Threshold Accuracy: 1.5% of  
Monitored Voltage Over Temperature  
n
n
n
n
n
Internal V Auto Select  
CC  
Power Supply Glitch Immunity  
The LTC2908 features a tight 1.5% threshold accuracy  
over the entire operating temperature range and glitch  
immunity to ensure reliable reset operation without false  
triggering. Theopen-drainRSToutput state is guaranteed  
to be in the correct state as long as V1 and/or V2 is 0.5V  
or greater.  
200ms Reset Time Delay  
Active Low Open-Drain RST Output  
Low Profile (1mm) 8-Lead SOT-23 (ThinSOT™) and  
Plastic (3mm × 2mm) DFN Packages  
APPLICATIONS  
TheLTC2908alsofeaturesadjustableinputswithanominal  
threshold level at 0.5V. This product provides a precise,  
space-conscious, micropower and general purpose solu-  
tion for any kind of system requiring supply monitors.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. ThinSOT  
is a trademark of Linear Technology Corporation. All other trademarks are the property of  
their respective owners. *Patent pending.  
n
Network Servers  
n
Wireless Base Stations  
n
Optical Networking Systems  
Multivoltage Systems  
Desktop and Notebook Computers  
n
n
TYPICAL APPLICATION  
Six Supply Monitor with 5% Tolerance  
(12V, 3.3V, 2.5V, 1.8V, 1.5V, 1.2V)  
12V  
RST Output Voltage vs V1  
with 10k Pull-Up Resistor to V1  
3.3V  
2.5V  
1.8V  
DC/DC  
DC/DC  
DC/DC  
DC/DC  
DC/DC  
0.4  
V3 = V4 = V  
=
ADJ1  
=
V
ADJ2  
V
ADJ4  
= V  
ADJ3  
= V  
ADJ5  
= GND  
0.3  
0.2  
0.1  
0
SYSTEM  
V1 INPUT  
1.5V  
1.2V  
V2 = GND  
0.1μF 0.1μF  
2.15M  
V
LTC2908-B1  
GND  
124k  
V
100k  
100k  
V2 = V1 (A1/B1)  
V1  
V2 V3 V4  
ADJ1  
ADJ2  
0.4  
0
0.2  
0.6  
0.8  
V1 (V)  
RST  
2908 TA01a  
2908 TA01b  
2908fc  
1
LTC2908  
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)  
Storage Temperature Range  
Terminal Voltages  
DFN Package......................................–65°C to 125°C  
TSOT-23 Package...............................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
V1, V2, V3, V4 .........................................0.3V to 7V  
V
, V  
, V  
,..................0.3V to (V + 0.6V)  
ADJ1 ADJ2 ADJ3 CC  
V
, V  
.............................0.3V to (V + 0.6V)  
ADJ4 ADJ5 CC  
RST.......................................................... –0.3V to 7V  
Operating Temperature Range  
LTC2908C ................................................ 0°C to 70°C  
LTC2908I..............................................–40°C to 85°C  
PIN CONFIGURATION  
LTC2908CDDB-A1  
LTC2908IDDB-A1  
LTC2908CDDB-B1  
LTC2908IDDB-B1  
LTC2908CDDB-C1  
LTC2908IDDB-C1  
LTC2908CTS8-A1  
LTC2908ITS8-A1  
LTC2908CTS8-B1  
LTC2908ITS8-B1  
LTC2908CTS8-C1  
LTC2908ITS8-C1  
TOP VIEW  
TOP VIEW  
GND  
RST  
V4  
1
2
3
4
8
7
6
5
V
GND  
1
2
3
4
8
7
6
5
V
ADJ4  
V
ADJ3  
V
ADJ2  
V
ADJ1  
ADJ2  
TOP VIEW  
V2 1  
TOP VIEW  
V1 1  
V3  
V
RST  
8 V1  
7 V  
8 V  
7 V  
ADJ1  
ADJ2  
9
9
V
ADJ1  
ADJ5  
V1  
ADJ1  
V4 2  
RST 3  
GND 4  
V
2
ADJ5  
V2  
V1  
6 V3  
5 V  
RST 3  
GND 4  
6 V  
5 V  
ADJ3  
ADJ4  
ADJ2  
DDB8 PACKAGE  
8-LEAD (3mm × 2mm) PLASTIC DFN  
= 125°C, θ = 76°C/W  
DDB8 PACKAGE  
8-LEAD (3mm × 2mm) PLASTIC DFN  
= 125°C, θ = 76°C/W  
TS8 PACKAGE  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
8-LEAD PLASTIC TSOT-23  
T
JMAX  
T
JMAX  
T
= 125°C, θ = 250°C/W  
T
= 125°C, θ = 250°C/W  
JA  
JA  
JMAX  
JA  
JMAX  
JA  
EXPOSED PAD (PIN 9)  
(PCB CONNECTION OPTIONAL)  
EXPOSED PAD (PIN 9)  
(PCB CONNECTION OPTIONAL)  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
TAPE AND REEL  
PART MARKING* PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
LTC2908CDDB-A1#TRMPBF  
LTC2908IDDB-A1#TRMPBF  
LTC2908CDDB-B1#TRMPBF  
LTC2908IDDB-B1#TRMPBF  
LTC2908CDDB-C1#TRMPBF  
LTC2908IDDB-C1#TRMPBF  
LTC2908CTS8-A1#TRMPBF  
LTC2908ITS8-A1#TRMPBF  
LTC2908CTS8-B1#TRMPBF  
LTC2908ITS8-B1#TRMPBF  
LTC2908CTS8-C1#TRMPBF  
LTC2908ITS8-C1#TRMPBF  
LTC2908CDDB-A1#TRMPBF  
LTC2908IDDB-A1#TRMPBF  
LTC2908CDDB-B1#TRMPBF  
LTC2908IDDB-B1#TRMPBF  
LTC2908CDDB-C1#TRMPBF  
LTC2908IDDB-C1#TRMPBF  
LTC2908CTS8-A1#TRMPBF  
LTC2908ITS8-A1#TRMPBF  
LTC2908CTS8-B1#TRMPBF  
LTC2908ITS8-B1#TRMPBF  
LTC2908CTS8-C1#TRMPBF  
LTC2908ITS8-C1#TRMPBF  
LBFD  
LBFF  
LBFG  
LBFH  
LCFV  
8-LEAD (3mm × 2mm) PLASTIC DFN  
8-LEAD (3mm × 2mm) PLASTIC DFN  
8-LEAD (3mm × 2mm) PLASTIC DFN  
8-LEAD (3mm × 2mm) PLASTIC DFN  
8-LEAD (3mm × 2mm) PLASTIC DFN  
8-LEAD (3mm × 2mm) PLASTIC DFN  
8-LEAD PLASTIC TSOT-23  
LCFV  
LTBFJ  
LTBFK  
LTBFM  
LTBFN  
LTCFT  
LTCFT  
8-LEAD PLASTIC TSOT-23  
8-LEAD PLASTIC TSOT-23  
8-LEAD PLASTIC TSOT-23  
8-LEAD PLASTIC TSOT-23  
8-LEAD PLASTIC TSOT-23  
–40°C to 85°C  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2908fc  
2
LTC2908  
ELECTRICAL CHARACTERISTICS (LTC2908-A1) The denotes specifications which apply over the full  
operating temperature range, otherwise specifications are TA = 25°C, VCC = 5V unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
4.750  
3.135  
2.375  
1.710  
0.508  
UNITS  
l
l
l
l
l
V
RT50  
V
RT33  
V
RT25  
V
RT18  
V
RTADJ  
5V, 5% Reset Threshold  
3.3V, 5% Reset Threshold  
2.5V, 5% Reset Threshold  
1.8V, 5% Reset Threshold  
ADJ, 5% Reset Threshold  
V1 Input Threshold  
V2 Input Threshold  
V3 Input Threshold  
V4 Input Threshold  
4.600  
3.036  
2.300  
1.656  
0.492  
4.675  
3.086  
2.338  
1.683  
0.500  
V
V
V
V
V
V
, V  
Input Threshold  
ADJ1 ADJ2  
(LTC2908-B1) The denotes specifications which apply over the full operating temperature range, otherwise specifications are  
TA = 25°C, VCC = 3.3V unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
3.135  
2.375  
1.720  
1.425  
0.508  
UNITS  
l
l
l
l
l
V
RT33  
V
RT25  
V
RT18  
V
RT15  
V
RTADJ  
3.3V, 5% Reset Threshold  
2.5V, 5% Reset Threshold  
1.8V, 5% Reset Threshold  
1.5V, 5% Reset Threshold  
ADJ, 5% Reset Threshold  
V1 Input Threshold  
V2 Input Threshold  
V3 Input Threshold  
V4 Input Threshold  
3.036  
2.300  
1.656  
1.380  
0.492  
3.086  
2.338  
1.683  
1.403  
0.500  
V
V
V
V
V
V
, V  
Input Threshold  
ADJ1 ADJ2  
(LTC2908-C1) The denotes specifications which apply over the full operating temperature range, otherwise specifications are  
TA = 25°C, VCC = 2.5V unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
2.5V, 5% Reset Threshold  
ADJ, 5% Reset Threshold  
V1 Input Threshold  
2.300  
2.338  
2.375  
V
RT25  
V
V
, V  
, V  
, V  
, V  
,
RTADJ  
ADJ1 ADJ2 ADJ3 ADJ4 ADJ5  
Input Threshold  
0.492  
0.500  
0.508  
V
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. VCC = 5V  
for the LT2908-A1, VCC = 3.3V for the LTC2908-B1or VCC = 2.5V for the LTC2908-C1, unless otherwise noted. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
Internal Supply Voltage  
V1 Input Current (Note 4)  
RST in Correct Logic State  
0.5  
6
V
CC  
l
l
l
I
V1  
V1 = 5.0V (LTC2908-A1)  
V1 = 3.3V (LTC2908-B1)  
V1 = 2.5V (LTC2908-C1)  
26  
24  
22  
70  
70  
70  
μA  
μA  
μA  
l
l
I
I
I
I
V2 Input Current (Note 4)  
V3 Input Current  
V2 = 3.3V (LTC2908-A1)  
V2 = 2.5V (LTC2908-B1)  
10  
8
30  
30  
μA  
μA  
V2  
l
l
V3 = 2.5V (LTC2908-A1)  
V3 = 1.8V (LTC2908-B1)  
2
2
5
5
μA  
μA  
V3  
l
l
V4 Input Current  
V4 = 1.8V (LTC2908-A1)  
V4 = 1.5V (LTC2908-B1)  
2
2
5
5
μA  
μA  
V4  
l
V
, V  
V
V
V
V
= V  
= V  
= V  
= V =  
ADJ5  
15  
nA  
VADJ  
ADJ1 ADJ2, ADJ3, ADJ4, ADJ5  
ADJ1  
ADJ2  
ADJ3  
ADJ4  
Input Current  
0.55V  
2908fc  
3
LTC2908  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. VCC = 5V  
for the LT2908-A1, VCC = 3.3V for the LTC2908-B1 or VCC = 2.5V for the LTC2908-C1, unless otherwise noted. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
200  
250  
MAX  
UNITS  
ms  
l
t
t
Reset Time-Out Period  
160  
260  
RST  
V Undervoltage Detect to RST  
X
V Less Than Reset Threshold V  
by  
μs  
UV  
X
RTX  
More Than 1%  
l
l
l
V
V
Output Voltage High RST (Note 5)  
Output Voltage Low RST  
I
I
I
= –1μA, V = 5V (LTC2908-A1)  
V
CC  
V
CC  
V
CC  
– 1.5  
– 1.0  
– 1.0  
V
V
V
OH  
OL  
RST  
RST  
RST  
CC  
= –1μA, V = 3.3V (LTC2908-B1)  
CC  
= –1μA, V = 2.5V (LTC2908-C1)  
CC  
l
l
l
V
V
V
= 0.5V, I  
= 1.0V, I  
= 3.0V, I  
= 5μA  
= 100μA  
= 2500μA  
0.01  
0.01  
0.10  
0.15  
0.15  
0.30  
V
V
V
CC  
CC  
CC  
RST  
RST  
RST  
Note 3: All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
Note 4: Under typical operating conditions, most of the quiescent cur-  
rent is drawn from the V1 input. When V2 exceeds V1, V2 supplies most  
of the quiescent current.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliabilty and lifetime.  
Note 2: The greater of V1, V2 is the internal supply voltage (V ) for the  
CC  
LTC2908-A1 and the LTC2908-B1. V1 is the internal supply voltage (V  
for the LTC2908-C1.  
)
Note 5: The output pin RST has an internal pull-up to V of typically  
6μA. However, an external pull-up resistor may be used when a faster  
CC  
CC  
rise time is required or for V voltages greater than V  
.
OH  
CC  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
5V Threshold Voltage  
vs Temperature  
3.3V Threshold Voltage  
vs Temperature  
2.5V Threshold Voltage  
vs Temperature  
3.135  
3.115  
3.095  
3.075  
3.055  
3.035  
4.750  
4.725  
4.700  
4.675  
4.650  
4.625  
4.600  
2.375  
2.360  
2.345  
2.330  
2.315  
2.300  
50  
TEMPERATURE (°C)  
100  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100  
50  
TEMPERATURE (°C)  
100  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
2908 G02  
2908 G01  
2908 G03  
2908fc  
4
LTC2908  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
1.8V Threshold Voltage  
vs Temperature  
1.5V Threshold Voltage  
vs Temperature  
ADJ Threshold Voltage  
vs Temperature  
1.710  
1.700  
1.690  
1.680  
1.670  
1.660  
1.425  
1.420  
1.415  
1.410  
1.405  
1.400  
1.395  
1.390  
1.385  
1.380  
0.5080  
0.5060  
0.5040  
0.5020  
0.5000  
0.4980  
0.4960  
0.4940  
0.4920  
50  
TEMPERATURE (°C)  
100  
–50 –25  
0
25  
75  
–25  
0
50  
–50  
75  
100  
25  
–50  
–25  
0
25  
100  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2908 G04  
2908 G06  
2908 G05  
IV1 vs Temperature  
IV2 vs Temperature  
IV3 vs Temperature  
33  
31  
29  
27  
25  
23  
21  
19  
17  
14  
2.2  
2.1  
2.0  
1.9  
V1 = 5.0V (A1)/V1 = 3.3V (B1)/V1 = 2.5V (C1)  
V2 = 3.3V (A1)/V2 = 2.5V (B1)  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
V4 = 1.8V (A1)/V1 = 1.5V (B1)  
V1 = 5.0V (A1)/V1 = 3.3V (B1)  
V1 = 5.0V (A1)/V1 = 3.3V (B1)  
V2 = 3.3V (A1)/V2 = 2.5V (B1)  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
V4 = 1.8V (A1)/V4 = 1.5V (B1)  
13 V2 = 3.3V (A1)/V2 = 2.5V (B1)  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
12  
V4 = 1.8V (A1)/V4 = 1.5V (B1)  
V
V
= V  
= V  
=
V
= V  
= 0.55V  
V
= V  
= 0.55V  
ADJ1  
ADJ4  
ADJ2  
ADJ5  
ADJ3  
ADJ1  
ADJ2  
ADJ1  
ADJ2  
11  
10  
9
=V  
= 0.55V  
A1  
B1  
A1  
B1  
1.8  
1.7  
8
C1  
7
1.6  
1.5  
1.4  
6
5
4
–50  
0
25  
50  
75  
100  
–25  
–25  
0
50  
–25  
0
50  
–50  
75  
100  
–50  
75  
100  
25  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2908 G07  
2908 G08  
2908 G09  
Typical Transient Duration  
vs Comparator Overdrive  
Reset Time-Out Period (tRST  
)
IV4 vs Temperature  
vs Temperature  
700  
600  
500  
400  
300  
200  
100  
0
2.2  
2.1  
2.0  
1.9  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
T
= 25°C  
A
V1 = 5.0V (A1)/V1 = 3.3V (B1)  
V2 = 3.3V (A1)/V2 = 2.5V (B1)  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
V4 = 1.8V (A1)/V4 = 1.5V (B1)  
RESET OCCURS  
ABOVE CURVE  
V
= V  
= 0.55V  
ADJ1  
ADJ2  
1.8  
1.7  
1.6  
1.5  
1.4  
0.1  
1
10  
100  
–25  
0
50  
–25  
0
50  
–50  
75  
100  
–50  
75  
100  
25  
25  
COMPARATOR OVERDRIVE VOLTAGE (% OF V  
)
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RTX  
2908 G11  
2908 G10  
2908 G12  
2908fc  
5
LTC2908  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
RST Pull-Down Current vs  
Supply Voltage  
LTC2908-A1/LTC2908-B1  
RST Output Voltage vs V1 with  
RST Output Voltage vs V1 with  
10k Pull-Up Resistor to V1  
10k Pull-Up Resistor to V1  
5.0  
4.0  
3.0  
2.0  
1.0  
0
0.4  
0.3  
0.2  
0.1  
0
6
5
4
3
2
1
0
V3 = V4 = V  
=
V1 = V2 (A1/B1)  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
V4 = 1.8V (A1)/V4 = 1.5V (B1)  
V
= V1 = V2  
ADJ1  
CC  
V
ADJ1  
ADJ4  
= GND (A1/B1)  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
V4 = 1.8V (A1)/V4 = 1.5V (B1)  
ADJ2  
= V  
V
= V  
=
ADJ2  
ADJ3  
V
= V  
= GND (C1)  
ADJ5  
V
V
= V  
= V  
= V  
= 0.55V  
=
V
ADJ1  
= V  
ADJ2  
= 0.55V  
ADJ1  
ADJ4  
ADJ2  
ADJ5  
ADJ3  
RST AT  
V1 = INPUT  
150mV  
V
RT33  
LTC2908-B1  
V2 = GND  
RST AT  
50mV  
V
RT50  
V2 = V1  
V
V
RT50  
RT25  
V
RT33  
LTC2908-C1  
LTC2908-A1  
LTC2908-B1 LTC2908-A1  
0.4  
V1 (V)  
0
0.2  
0.6  
0.8  
0
1
2
3
4
5
0
1
2
3
4
5
V1 (V)  
SUPPLY VOLTAGE, V (V)  
CC  
2908 G14  
2908 G13  
2908 G15  
RST Pull-Down Current vs  
Supply Voltage  
LTC2908-C1  
RST Pull-Down Current vs  
Supply Voltage with 2 Inputs  
LTC2908-A1/LTC29089-B1  
RST Pull-Down Current vs  
Supply Voltage with 1 Input  
10  
1
10  
1
4.0  
3.5  
3.0  
2.5  
V
= V1 = V2  
V
= V1  
CC  
V
V
V
= V1  
= V  
CC  
CC  
ADJ1  
ADJ4  
RST AT 150mV  
V3 = V4 = V  
= V  
= GND  
V2 = V3 = V4 = V  
= V  
=
ADJ2  
= V =  
ADJ3  
= 0.55V  
ADJ1  
ADJ2  
ADJ1  
ADJ2  
ADJ5  
V
= V  
= V  
= GND  
ADJ5  
= V  
ADJ3  
ADJ4  
RST AT 150mV  
RST AT 150mV  
0.1  
0.01  
0.1  
0.01  
2.0  
1.5  
RST AT 50mV  
RST AT 50mV  
RST AT 50mV  
1.0  
0.5  
0
V
RT25  
LTC2908-C1  
0.001  
0.001  
0.5  
1.0  
2.0  
0
2.5  
1.5  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
SUPPLY VOLTAGE V (V)  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
CC  
CC  
CC  
2908 G16  
2908 G17  
2928 G25  
RST Output Voltage Low vs  
RST Pull-Down Current  
LTC2908-A1  
RST Output Voltage Low vs  
RST Pull-Down Current  
LTC2908-B1  
RST Output Voltage Low vs  
RST Pull-Down Current  
LTC2908-C1  
0.8  
0.8  
1.20  
1.0  
V1 = 5.0V  
V2 = 3.3V  
V3 = 2.5V  
V4 = 1.8V  
V1 = 3.3V  
V2 = 2.5V  
V3 = 1.8V  
V4 = 1.5V  
V1 = 2.5V  
85°C  
25°C  
V
V
= V  
= V  
= V  
=
ADJ3  
ADJ1  
ADJ4  
ADJ2  
ADJ5  
0.7  
0.6  
0.7  
0.6  
= 0.4V  
V
= V  
ADJ2  
= 0.4V  
V
= V  
= 0.4V  
ADJ2  
ADJ1  
ADJ1  
0.80  
0.60  
0.5  
0.4  
0.3  
0.2  
0.1  
0.5  
0.4  
0.3  
0.2  
0.1  
85°C  
–40°C  
25°C  
85°C  
–40°C  
25°C  
–40°C  
0.40  
0.20  
0.00  
0
0
5
10  
20  
25  
30  
35  
5
10  
20  
(mA)  
25  
0
15  
0
15  
0.0  
5.0 20.0  
RST PULL-DOWN CURRENT, I (mA)  
RST  
10.0  
15.0  
25.0  
RST PULL-DOWN CURRENT, I  
(mA)  
RST PULL-DOWN CURRENT, I  
RST  
RST  
2908 G23  
2908 G18  
2908 G19  
2908fc  
6
LTC2908  
TYPICAL PERFORMANCE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
RST Output Voltage High vs  
RST Output Source Current  
LTC2908-A1  
RST Pull-Up Current vs  
Supply Voltage  
–30  
5
4
3
2
1
V
= V1 = V2 (A1/B1), V = V1(C1)  
CC  
CC  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
V4 = 1.8V (A1)/V4 = 1.5V (B1)  
–25  
–20  
–15  
V
V
V
= V  
= V  
= 0.55V (A1/B1)  
ADJ3  
ADJ1  
ADJ1  
ADJ5  
ADJ2  
ADJ2  
= V  
= V  
=
ADJ4  
= 0.55V(C1)  
RST HELD AT 0V  
V
RT25  
LTC2908-C1  
25°C  
V
–10  
–5  
0
RT33  
LTC2908-B1  
–40°C  
85°C  
V1 = 5.0V  
V2 = 3.3V  
V3 = 2.5V  
V4 = 1.8V  
V
RT50  
LTC2908-A1  
V
= V  
= 0.55V  
ADJ2  
ADJ1  
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
–4  
–8  
–12  
–16  
(μA)  
–20  
SUPPLY VOLTAGE, V (V)  
OUTPUT SOURCE CURRENT, I  
RST  
CC  
2908 G20  
2908 G21  
RST Output Voltage High vs  
RST Output Source Current  
LTC2908-B1  
RST Output Voltage High vs  
RST Output Source Current  
LTC2908-C1  
3.0  
2.5  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
85°C  
25°C  
85°C  
V1 = 3.3V  
V2 = 2.5V  
V3 = 1.8V  
V4 = 1.5V  
–40°C  
1.0  
0.5  
–40°C  
V1 = 2.5V  
V
V
= V  
= V  
= V  
ADJ3  
= 0.55V  
=
ADJ1  
ADJ4  
ADJ2  
ADJ5  
V
= V  
= 0.55V  
ADJ1  
ADJ2  
–4  
OUTPUT SOURCE CURRENT, I  
25°C  
0
–6  
–8  
–10  
(μA)  
–12  
–2  
0
–1 –2 –3 –4 –5 –6 –7 –8  
OUTPUT SOURCE CURRENT, I (μA)  
RST  
RST  
2908 G22  
2908 G24  
(TS8 Package/DDB8 Package) LTC2908-A1/LTC2908-B1  
PIN FUNCTIONS  
V2 (Pin 1/Pin 4): Voltage Input 2. The greater of V1, V2 is  
V
(Pin5/Pin8):AdjustableVoltageInput2.SeeTable 1  
ADJ2  
also the internal V . The operating voltage on this pin shall  
for recommended ADJ resistors values.  
CC  
notexceed6V. Wheninnormaloperation(V1>V2), thispin  
draws approximately 8μA. When this pin is acting as the  
CC  
V3 (Pin 6/Pin 7): Voltage Input 3.  
V
ADJ1  
(Pin7/Pin6):AdjustableVoltageInput1.SeeTable 1  
V
(V2 > V1), this pin draws an additional 16μA. Bypass  
for recommended ADJ resistors values.  
this pin to ground with a 0.1μF (or greater) capacitor.  
V1 (Pin 8/Pin 5): Voltage Input 1. The greater of V1, V2 is  
V4 (Pin 2/Pin 3): Voltage Input 4.  
also the internal V . The operating voltage on this pin shall  
CC  
RST (Pin 3/Pin 2): Reset Logic Output. Pulls low when  
any voltage input is below the reset threshold and is held  
low for 200ms after all voltage inputs are above threshold.  
not exceed 6V. When in normal operation (V1 > V2), this pin  
draws approximately 26 μA. When this pin is not acting as  
theV (V2>V1),thispindrawsapproximately8μA.Bypass  
CC  
Thispinhasaweakpull-uptoV andmaybepulledabove  
CC  
this pin to ground with a 0.1μF (or greater) capacitor.  
V
CC  
using an external pull-up.  
Exposed Pad (Pin 9, DDB8 Only): Exposed Pad may be  
GND (Pin 4/Pin 1): Device Ground.  
left open or connected to device ground.  
2908fc  
7
LTC2908  
(TS8 Package/DDB8 Package) LTC2908-C1  
PIN FUNCTIONS  
GND (Pin 4/Pin 1): Device Ground.  
(Pin 5/Pin 8): Adjustable Voltage Input 4.  
V1 (Pin 1/Pin 4): Voltage Input 1. V1 is the internal V .  
CC  
The operating voltage on this pin shall not exceed 6V.  
When in normal operation, this pin draws approximately  
22μA. Bypass this pin to ground with a 0.1μF (or greater)  
capacitor.  
V
ADJ4  
See Table 1 for recommended ADJ resistors values.  
V
(Pin 6/Pin 7): Adjustable Voltage Input 3.  
ADJ3  
See Table 1 for recommended ADJ resistors values.  
V
(Pin 2/Pin 3): Adjustable Voltage Input 5. See Table 1  
ADJ5  
V
(Pin 7/Pin 6): Adjustable Voltage Input 2.  
for recommended ADJ resistors values.  
ADJ2  
See Table 1 for recommended ADJ resistors values.  
RST (Pin 3/Pin 4): Reset Logic Output. Pulls low when  
any voltage input is below the reset threshold and is held  
low for 200ms after all voltage inputs are above threshold.  
Thispinhasaweakpull-uptoVccandmaybepulledabove  
Vcc using an external pull-up.  
V
(Pin 8/Pin 5): Adjustable Voltage Input 1.  
ADJ1  
See Table 1 for recommended ADJ resistors values.  
Exposed Pad (Pin 9, DDB8 Only): Exposed Pad may be  
left open or connected to device ground.  
BLOCK DIAGRAMS  
LTC2908-A1/LTC2908-B1  
V1  
V2  
V3  
+
C1  
C2  
C3  
C4  
C5  
POWER  
DETECT  
V
CC  
+
V
CC  
+
6μA  
RST  
200ms  
RESET PULSE  
GENERATOR  
+
V4  
V
+
ADJ1  
V
+
ADJ2  
C6  
GND  
BANDGAP  
REFERENCE  
2908 BD  
2908fc  
8
LTC2908  
BLOCK DIAGRAMS  
LTC2908-C1  
V1  
+
C1  
C2  
C3  
C4  
C5  
V
+
ADJ1  
V1  
V
+
ADJ2  
6μA  
RST  
200ms  
RESET PULSE  
GENERATOR  
V
+
ADJ3  
V
+
ADJ4  
V
+
ADJ5  
C6  
GND  
BANDGAP  
REFERENCE  
2908 BDa  
TIMING DIAGRAM  
VX Monitor Timing  
V
RTX  
V
X
t
t
RST  
UV  
1V  
RST  
2908 TD  
2908fc  
9
LTC2908  
APPLICATIONS INFORMATION  
Such an indeterminate voltage may trigger external logic  
causing erroneous reset operation(s). Furthermore, a  
mid-scale voltage level could cause external circuits to  
operate in the middle of their voltage transfer character-  
istic, consuming more quiescent current than normal.  
These conditions could cause serious system reliability  
problems.  
Supply Monitoring  
The LTC2908 is a low power, high accuracy, six input  
supply monitoring circuit with two adjustable inputs. The  
reset delay is set to a nominal of 200ms with an internal  
capacitor, eliminating the need for an external timing  
capacitor.  
Allinputvoltagesmustbeabovepredeterminedthresholds  
for the reset not to be invoked. The LTC2908 asserts the  
reset output during power-up, power-down and brownout  
conditions on any one of the voltage inputs.  
Power-Up  
During power-up, RST starts asserting low as soon as  
there is at least 200mV on V1 and/or V2. The RST pull-  
down capability is a function of V1 and V2 as shown in  
the Typical Performance Characteristics.  
Ultralow Voltage Pull-Down on RST  
The LTC2908 issues a logic low on the RST output when  
any one of the inputs falls below its threshold. Ideally, the  
RST logic output would remain low with the input supply  
voltage down to zero volts. Most supervisors lack pull-  
down capability below 1V.  
The greater of V1, V2 is the internal supply voltage (V )  
CC  
that powers the other internal circuitry. Once all the V  
X
inputs rise above their thresholds, an internal timer is  
started. After the internal timer counts a 200ms delay  
time, RST weakly pulls high to V .  
CC  
The LTC2908 power supply supervisor incorporates a  
novel low voltage pull-down circuit that can hold the RST  
line low with as little as 200mV of input supply voltage on  
V1 and/or V2 (see Figures 1 and 2). The pull-down circuit  
helps maintain a low impedance path to ground, reducing  
the risk of the RST node from floating to an indeterminate  
voltage.  
Power-Down  
On power-down, once any of the V inputs drop below  
X
their threshold, RST asserts logic low. V of at least 0.5V  
CC  
guarantees a logic low of 0.15V at RST.  
10  
10  
V
= V1 = V2  
V
= V1  
CC  
CC  
V3 = V4 = V  
= V  
ADJ2  
= GND  
V2 = V3 = V4 = V  
= V  
ADJ5  
=
ADJ1  
ADJ1  
ADJ2  
V
= V  
= V  
= GND  
ADJ3  
ADJ4  
1
0.1  
1
0.1  
RST AT 150mV  
RST AT 150mV  
RST AT 50mV  
RST AT 50mV  
0.01  
0.001  
0.01  
0.001  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
CC  
CC  
2908 G16  
2908 G17  
Figure 1.RST Pull-Down Current vs  
Supply Voltage with 2 Inputs LTC2908-A1/  
LTC2908-B1  
Figure 2.RST Pull-Down Current vs  
Supply Voltage with 1 Input  
2908fc  
10  
LTC2908  
APPLICATIONS INFORMATION  
Adjustable Input  
In an application with less than six supply voltages, the  
unused supervisor inputs should be tied to the closest  
higher supply voltage available.  
The noninverting input on the V  
comparator is set to  
ADJ  
0.5V. And the high impedance inverting input directly ties  
to the V pin.  
ADJ  
Threshold Accuracy  
In a typical application, this pin connects to a tap point  
on an external resistive divider between the positive  
voltage being monitored and ground (see Figure 3). The  
following formula derives the value of the R1 resistor in  
the divider from a particular value of R2 and the desired  
trip voltage:  
Specifyingsystemvoltagemarginforworst-caseoperation  
requires the consideration of three factors: power supply  
tolerance,ICsupplyvoltagetoleranceandsupervisorreset  
threshold accuracy. Highly accurate supervisors ease the  
design challenge by decreasing the overall voltage margin  
required for reliable system operation. Consider a 5V  
system with a 5% power supply tolerance band.  
VTRIP  
0.5V  
R1=  
–1 R2  
System ICs powered by this supply must operate reliably  
within this band (and a little more, as explained below).  
The bottom of the supply tolerance band, at 4.75V (5%  
below 5V), is the exact voltage at which a perfectly ac-  
curate supervisor generates a reset (see Figure 4). Such  
a perfectly accurate supervisor does not exist—the  
actual reset threshold may vary over a specified band  
( 1.5% for the LTC2908 supervisors). Figure 5 shows  
the typical relative threshold accuracy for all six inputs  
over temperature.  
R2 = 100k is recommended. Table 1 shows suggested  
1% resistor values for various adjustable applications and  
their corresponding trip thresholds.  
Table 1. Suggested 1% Resistor Values for the VADJ Inputs  
V
(V)  
V
(V)  
R1 (kΩ)  
2150  
1780  
1400  
1300  
1020  
845  
511  
464  
365  
237  
R2 (kΩ)  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
SUPPLY  
TRIP  
12  
11.25  
9.4  
10  
8
7.5  
6
5
3.3  
3
2.5  
1.8  
1.5  
1.2  
1.0  
0.9  
0.8  
0.7  
0.6  
7.5  
7
5.6  
NOMINAL  
SUPPLY  
VOLTAGE  
5.000V  
4.725  
3.055  
2.82  
MINIMUM  
SUPPLY  
IDEAL  
RELIABLE TOLERANCE SUPERVISOR  
SYSTEM  
VOLTAGE  
THRESHOLD  
4.750V  
4.675V  
4.600V  
–5.0%  
–6.5%  
1.5%  
THRESHOLD  
BAND  
2.325  
1.685  
1.410  
1.120  
0.933  
0.840  
0.750  
0.655  
0.561  
2.5%  
THRESHOLD  
BAND  
–8.0%  
REGION OF POTENTIAL MALFUNCTION  
WITH 2.5% MONITOR  
182  
124  
4.500V  
–10%  
2908 F04  
86.6  
68.1  
49.9  
30.9  
12.1  
Figure 4. Threshold Band Diagram  
1.5  
1.0  
V
0.5  
TRIP  
LTC2908-A1/LTC2908-B1/LTC2908-C1  
R1  
1%  
0
V
ADJ  
R2  
1%  
–0.5  
–1.0  
–1.5  
+
+
0.5V  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
2908 F05  
2908 F03  
Figure 3. Setting the Adjustable Trip Point  
Figure 5. Typical Threshold Accuracy vs Temperature  
2908fc  
11  
LTC2908  
APPLICATIONS INFORMATION  
With this variation of reset threshold in mind, the nomi-  
nal reset threshold of the supervisor resides below the  
minimum supply voltage; just enough so that the reset  
threshold band and the power supply tolerance bands  
do not overlap. If the two bands overlap, the supervisor  
could generate a false or nuisance reset when the power  
supply remains within its specified tolerance band (for  
example at 4.8V).  
Therefore,theLTC2908takesadifferentapproachtosolv-  
ing this problem of supply noise causing spurious reset.  
The first line of defense against this spurious reset is a  
first order lowpass filter at the output of the comparators.  
Therefore, each comparator output is integrated over time  
before triggering the output logic. Therefore, any kind of  
transient at the input of the comparator needs to be of  
sufficient magnitude and duration before it can trigger a  
change in the output logic.  
Adding half of the reset threshold accuracy spread (1.5%)  
to the ideal 5% thresholds puts the LTC2908 thresholds at  
6.5% (typ) below the nominal input voltage. For example,  
the 5V typical threshold is 4.675V, or 75mV below the  
ideal threshold of 4.750V. The guaranteed threshold lies  
in the band between 4.600V (8% below 5V) and 4.750V  
(5% below 5V) over temperature.  
The second line of defense is the 200ms delay time t  
.
RST  
Thisdelayeliminatestheeffectofanysupplynoise,whose  
frequency is above 1/200ms = 5Hz, on the RST output.  
When any one of the supply voltages drops below its  
threshold, the RST pin asserts low. When the supply  
recovers above its threshold, the reset-pulse-generator  
timer starts counting.  
Thepoweredsystemmustworkreliablydowntothelowest  
voltage in the threshold band or risk malfunction before  
the reset line falls. In the 5V example, using the 1.5%  
accurate supervisor, the system ICs must work down to  
4.60V (8% below 5V). System ICs working with a 2.5%  
accurate supervisor must operate down to 4.50V (10%  
below 5V), increasing the required system voltage margin  
and the probability of system malfunction.  
Ifallthesuppliesremainabovetheircorrespondingthresh-  
old when the timer finishes counting, the RST pin weakly  
pulls high. However, if any of the supplies falls below its  
threshold any time during the period when the timer is still  
counting, the timer resets and it starts fresh when all the  
supplies rise above their corresponding threshold.  
Note that this second line of defense is only effective  
for a rising supply and does not affect the sensitivity of  
the system to a falling supply. Therefore, the first line of  
defense that works for both cases of rising and falling is  
necessary. These two approaches prevent spurious reset  
caused by supply noise without sacrificing the threshold  
accuracy.  
In any supervisory application, supply noise riding on  
the monitored DC voltage can cause spurious resets,  
particularly when the monitored voltage is near the reset  
threshold. A less desirable but common solution to this  
problem is to introduce hysteresis around the nominal  
threshold. Notice however, this hysteresis introduces an  
error term in the threshold accuracy. Therefore, a 2.5%  
accurate monitor with 1% hysteresis is equivalent to a  
3.5% monitor with no hysteresis.  
Although all six comparators for the six inputs have built-  
in glitch filtering, use bypass capacitors on the V1 and  
V2 inputs because the greater of V1 or V2 supplies the  
V
for the part (a 0.1μF ceramic capacitor satisfies most  
CC  
applications). Apply filter capacitors on the V3, V4, V  
,
ADJ1  
V
, V  
, V  
and V  
inputs in extremely noisy  
ADJ2 ADJ3 ADJ4  
ADJ5  
situations.  
2908fc  
12  
LTC2908  
APPLICATIONS INFORMATION  
RST Output Characteristics  
transistor estimated to be typically 40Ω at room tempera-  
ture (25°C) and C  
is the external load capacitance on  
LOAD  
The DC characteristics of the RST pull-up and pull-down  
strength are shown in the Typical Performance Character-  
istics section. The RST output has a weak internal pull-up  
the pin. Assuming a 150pF load capacitance, the fall time  
is about 13ns.  
to V = Max(V1, V2) and a strong pull-down to ground.  
The rise time on the RST pin is limited by a weak internal  
CC  
pull-up current source to V . The following formula esti-  
CC  
The weak pull-up and strong pull-down arrangement al-  
lowsthispintohaveopen-drainbehaviorwhilepossessing  
several other beneficial characteristics.  
mates the output rise time (10% to 90%) at the RST pin:  
t
≈ 2.2 • R • C  
PU LOAD  
RISE  
The weak pull-up eliminates the need for external pull-up where R is the on-resistance of the pull-up transis-  
PU  
resistors when the rise time on these pins is not critical. tor. Notice that this pull-up transistor is modeled as a  
On the other hand, the open-drain RST behavior allows for 6μA current source in the Block Diagram as a typical  
wired-OR connections and can be useful when more than representation.  
one signal needs to pull down on the RST line.  
The on-resistance as a function of the V = Max(V1, V2)  
CC  
As noted in the discussion of power-up and power-down, voltage (for V > 1V) at room temperature is estimated  
CC  
thecircuitsthatdriveRSTarepoweredbyVCC.Duringfault as follows:  
6 105  
condition, VCC of at least 0.5V guarantees a maximum  
RPU =  
Ω
VOL = 0.15V at RST  
.
MAX V1,V2 1V  
(
)
At V = 3.3V, R is about 260k. Using 150pF for load  
Output Rise and Fall Time Estimation  
CC  
PU  
capacitance, the rise time is 86μs. A smaller external  
pull-up resistor may be used if the output needs to pull  
up faster and/or to a higher voltage. For example, the rise  
time reduces to 3.3μs for a 150pF load capacitance when  
using a 10k pull-up resistor.  
Thefollowingformulaestimatestheoutputfalltime(90%to  
10%) for a particular external load capacitance (C  
):  
LOAD  
t
≈ 2.2 • R • C  
PD LOAD  
FALL  
where R is the on-resistance of the internal pull-down  
PD  
TYPICAL APPLICATIONS  
Six Supply Monitor, 5% Tolerance, 12V, 5V, 3.3V, 2.5V, 1.8V, 1V  
12V  
5V  
DC/DC  
DC/DC  
DC/DC  
DC/DC  
DC/DC  
3.3V  
2.5V  
SYSTEM  
1.8V  
1.0V  
C1  
C2  
0.1μF 0.1μF  
R1  
2.15M  
R3  
86.6k  
R2  
100k  
R4  
100k  
V1  
V2 V3 V4  
V
V
ADJ2  
ADJ1  
LTC2908-A1  
GND  
RST  
2908 TA02  
2908fc  
13  
LTC2908  
TYPICAL APPLICATIONS  
Quad Supply Monitor with One Adjustable Input, 5% Tolerance, 3.3V, 2.5V, 1.8V, 1.2V  
3.3V  
2.5V  
1.8V  
1.2V  
DC/DC  
DC/DC  
DC/DC  
SYSTEM  
C1  
C2  
0.1μF 0.1μF  
R3  
124k  
R4  
100k  
V1  
V2  
V3 V4  
LTC2908-B1  
GND  
V
V
ADJ1  
ADJ2  
RST  
2908 TA03  
Pin Programmable Dual Supply Monitor with Possible Future Expansion up to Six Supplies, 5% Tolerance, 3.3V and 2.5V  
3.3V  
SYSTEM  
2.5V  
DC/DC  
C1  
0.1μF  
C2  
0.1μF  
V1  
V2 V3 V4  
LTC2908-B1  
GND  
V
V
ADJ1 ADJ2  
RST  
2908 TA05  
Six Supply Monitor, 5% Tolerance 12V, 2.5V, 1.8V, 1.5V, 1.2V, 1.0V  
12V  
2.5V  
DC/DC  
1.8V  
1.5V  
DC/DC  
DC/DC  
DC/DC  
DC/DC  
SYSTEM  
1.2V  
1.0V  
C1  
0.1μF  
R1  
2.15M  
R3  
237k  
R5  
182k  
R7  
124k  
R9  
86.6k  
R2  
100k  
R4  
100k  
R6  
100k  
R8  
100k  
R10  
100k  
V1  
V
ADJ1  
V
V
ADJ3  
V
V
ADJ5  
ADJ2  
ADJ4  
LTC2908-C1  
GND  
RST  
2908 TA06  
2908fc  
14  
LTC2908  
PACKAGE DESCRIPTION  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702 Rev B)  
0.61 ±0.05  
(2 SIDES)  
R = 0.115  
0.40 ± 0.10  
3.00 ±0.10  
(2 SIDES)  
TYP  
5
R = 0.05  
TYP  
8
0.70 ±0.05  
2.55 ±0.05  
1.15 ±0.05  
2.00 ±0.10  
PIN 1 BAR  
TOP MARK  
PIN 1  
(2 SIDES)  
R = 0.20 OR  
0.25 × 45°  
CHAMFER  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
0.56 ± 0.05  
(2 SIDES)  
4
1
(DDB8) DFN 0905 REV  
B
0.25 ± 0.05  
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.20 ±0.05  
(2 SIDES)  
0.50 BSC  
2.15 ±0.05  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
2908fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
t ion t h a t t he in ter c onne c t ion o f i t s cir cui t s a s de s cr ib e d her ein w ill no t in fr inge on ex is t ing p a ten t r igh t s.  
15  
LTC2908  
TYPICAL APPLICATION  
Six Supply Monitor with Manual Reset Button, 5% Tolerance, 12V, 5V, 3.3V, 2.5V, 1.8V, 1.5V  
12V (V  
TRIP  
= 11.25V)  
5V (V  
TRIP  
= 4.675V)  
DC/DC  
3.3V (V  
2.5V (V  
= 3.086V)  
= 2.338V)  
TRIP  
DC/DC  
DC/DC  
DC/DC  
DC/DC  
SYSTEM  
TRIP  
1.8V (V  
1.5V (V  
= 1.685V)  
= 1.410V)  
TRIP  
TRIP  
C1  
C2  
R1  
182k  
R3  
R2  
100k  
MANUAL  
0.1μF 0.1μF  
2.15M  
RESET BUTTON  
(NORMALLY OPEN)  
R5*  
10k  
R4  
100k  
V1  
V2 V3 V4  
V
V
ADJ1  
ADJ2  
RST  
LTC2908-A1  
GND  
*OPTIONAL RESISTOR RECOMMENDED  
TO EXTEND ESD TOLERANCE  
2908 TA04  
RELATED PARTS  
PART NUMBER  
LTC690  
DESCRIPTION  
COMMENTS  
5V Supply Monitor, Watchdog Timer and Battery Backup  
3.3V Supply Monitor, Watchdog Timer and Battery Backup  
5V Supply Monitor and Watchdog Timer  
4.65 Threshold  
2.9V Threshold  
4.65 Threshold  
4.37V/4.62V Threshold  
LTC694-3.3  
LTC699  
LTC1232  
5V Supply Monitor, Watchdog Timer and Pushbutton Reset  
LTC1326/LTC1326-2.5  
LTC1536  
Micropower Precision Triple Supply Monitor for 5V/2.5V, 3.3V and ADJ 4.725V, 3.118V, 1V Threshold ( 0.75%)and ADJ  
Precision Triple Supply Monitor for PCI Applications Meets PCI t Timing Specifications  
FAIL  
LTC1726-2.5/LTC1726-5 Micropower Triple Supply Monitor for 2.5V/5V, 3.3V and ADJ  
LTC1727-2.5/LTC1727-5 Micropower Triple Supply Monitor with Open-Drain Reset  
LTC1728-1.8/LTC1728-3.3 Micropower Triple Supply Monitor with Open-Drain Reset  
LTC1728-2.5/LTC1728-5 Micropower Triple Supply Monitor with Open-Drain Reset  
Adjustable Reset and Watchdog Time-Outs  
Individual Monitor Outputs in MSOP  
5-Lead SOT-23 Package  
5-Lead SOT-23 Package  
LTC1985-1.8  
LTC2900  
Micropower Triple Supply Monitor with Push-Pull Reset Output  
Programmable Quad Supply Monitor  
5-Lead SOT-23 Package  
Adjustable Reset, 10-Lead MSOP and DFN Packages  
LTC2901  
Programmable Quad Supply Monitor  
Adjustable Reset and Watchdog Timer,  
16-Lead SSOP Package  
LTC2902  
Programmable Quad Supply Monitor  
Adjustable Reset and Tolerance,  
16-Lead SSOP Package  
LTC2903  
LTC2904  
LTC2905  
Precision Quad Supply Monitor  
6-Lead SOT-23 Package  
Three-State Programmable Precision Dual Supply Monitor  
Three-State Programmable Precision Dual Supply Monitor  
Adjustable Tolerance, 8-Lead SOT-23 and DFN Packages  
Adjustable Reset and Tolerance, 8-Lead SOT-23 and  
DFN Packages  
LTC2906  
LTC2907  
LTC2909  
Dual Supply Monitor with One Pin Selectable Threshold and  
One Adjustable Input  
0.5V Adjustable Threshold and Three Supply  
Tolerances, 8-Lead SOT-23 and DFN Packages  
Dual Supply Monitor with One Pin Selectable Threshold and  
One Adjustable Input  
0.5V Adjustable Threshold, Reset and Three Supply  
Tolerances, 8-Lead SOT-23 and DFN Packages  
Precision Triple/Dual Input UV, OV and Negative Voltage Monitor  
Shunt Regulated V Pin, Adjustable Threshold and  
CC  
Reset, 8-Lead SOT-23 and DFN Packages  
2908fc  
LT 0708 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY