LTC2908IDDB8-A1#PBF [Linear]

IC 6-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, 3 X 2 MM, PLASTIC, M0-229WECD-1, DFN-8, Power Management Circuit;
LTC2908IDDB8-A1#PBF
型号: LTC2908IDDB8-A1#PBF
厂家: Linear    Linear
描述:

IC 6-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO8, 3 X 2 MM, PLASTIC, M0-229WECD-1, DFN-8, Power Management Circuit

CD 光电二极管
文件: 总16页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2908  
Precision  
Six Supply Monitor  
U
FEATURES  
DESCRIPTIO  
The LTC®2908 is a six supply monitor for systems with a  
large number of supply voltages that require a precise and  
compact solution. The common reset output remains low  
until all six inputs have been in compliance for 200ms.  
Ultralow Voltage Reset: VCC = 0.5V Guaranteed*  
Monitors Six Inputs Simultaneously:  
5V, 3.3V, 2.5V, 1.8V, ADJ1, ADJ2 (LTC2908-A1)  
3.3V, 2.5V, 1.8V, 1.5V, ADJ1, ADJ2 (LTC2908-B1)  
Guaranteed Threshold Accuracy: ±1.5% of  
The LTC2908 features a tight 1.5% threshold accuracy  
over the entire operating temperature range (40°C to  
85°C) and glitch immunity to ensure reliable reset opera-  
tion without false triggering. The open-drain RST output  
state is guaranteed to be in the correct state as long as V1  
and/or V2 is 0.5V or greater.  
Monitored Voltage Over Temperature  
Internal VCC Auto Select  
Power Supply Glitch Immunity  
200ms Reset Time Delay  
Active Low Open-Drain RST Output  
Low Profile (1mm) SOT-23 (ThinSOTTM) and Plastic  
The LTC2908 also features two adjustable inputs with a  
nominal threshold level at 0.5V. This product provides a  
precise, space-conscious, micropower and general pur-  
pose solution for any kind of system requiring supply  
monitors.  
(2mm × 3mm) DUFN Packages  
APPLICATIO S  
Network Servers  
Wireless Base Stations  
Optical Networking Systems  
Mulitvoltage Systems  
Desktop and Notebook Computers  
Handheld Devices  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
*Patent pending.  
U
TYPICAL APPLICATIO  
Six Supply Monitor with 5% Tolerance  
(12V, 3.3V, 2.5V, 1.8V, 1.5V, 1.2V)  
RST Output Voltage vs V1  
with 10k Pull-Up Resistor to V1  
12V  
3.3V  
2.5V  
1.8V  
0.4  
DC/DC  
DC/DC  
DC/DC  
DC/DC  
DC/DC  
V3 = V4 = V  
ADJ2  
=
ADJ1  
V
= GND  
0.3  
0.2  
0.1  
0
SYSTEM  
1.5V  
1.2V  
V2 = GND  
0.1µF 0.1µF  
2.15M  
V
LTC2908-B1  
GND  
124k  
V
100k  
100k  
V2 = V1  
0.4  
V1 (V)  
0
0.2  
0.6  
0.8  
V1  
V2 V3 V4  
ADJ1  
ADJ2  
RST  
2908 TA01b  
2908 TA01a  
2908f  
1
LTC2908  
W W U W  
(Notes 1, 2)  
ABSOLUTE AXI U RATI GS  
Terminal Voltages  
Storage Temperature Range  
V1, V2, V3, V4 ........................................ 0.3V to 7V  
ADJ1, VADJ2 ........................... 0.3V to (VCC + 0.3V)  
DFN Package .....................................–65°C to 125°C  
TSOT-23 Package ..............................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
V
RST ........................................................ 0.3V to 7V  
Operating Temperature Range  
LTC2908C-A1/LTC2908C-B1 .................. 0°C to 70°C  
LTC2908I-A1/LTC2908I-B1 ................ –40°C to 85°C  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
LTC2908CDDB8-A1  
LTC2908IDDB8-A1  
LTC2908CDDB8-B1  
LTC2908IDDB8-B1  
LTC2908CTS8-A1  
TOP VIEW  
LTC2908ITS8-A1  
GND  
RST  
V4  
1
2
3
4
8
7
6
5
V
ADJ2  
V2 1  
V4 2  
RST 3  
GND 4  
8 V1  
7 V  
V3  
V
LTC2908CTS8-B1  
LTC2908ITS8-B1  
ADJ1  
9
ADJ1  
6 V3  
5 V  
V2  
V1  
ADJ2  
TS8 PART  
MARKING  
DDB8 PART  
MARKING  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
TJMAX = 125°C, θJA = 250°C/ W  
DDB8 PACKAGE  
8-LEAD (3mm × 2mm) PLASTIC DFN  
LTBFJ  
LTBFK  
LTBFM  
LTBFN  
LBFD  
LBFF  
LBFG  
LBFH  
TJMAX = 125°C, θJA = 76°C/ W  
EXPOSED PAD (PIN 9)  
(PCB CONNECTION OPTIONAL)  
Consult factory for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
(LTC2908-A1) The denotes specifications which apply over the full  
operating temperature range, otherwise specifications are TA = 25°C. VCC = 5V, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
4.750  
3.135  
2.375  
1.710  
0.508  
UNITS  
V
V
V
V
V
5V, 5% Reset Threshold  
3.3V, 5% Reset Threshold  
2.5V, 5% Reset Threshold  
1.8V, 5% Reset Threshold  
ADJ, 5% Reset Threshold  
V1 Input Threshold  
V2 Input Threshold  
V3 Input Threshold  
V4 Input Threshold  
4.600  
3.036  
2.300  
1.656  
0.492  
4.675  
3.086  
2.338  
1.683  
0.500  
V
V
V
V
V
RT50  
RT33  
RT25  
RT18  
RTADJ  
V
, V  
Input Threshold  
ADJ1 ADJ2  
(LTC2908-B1) The denotes specifications which apply over the full operating temperature range, otherwise specifications are  
TA = 25°C. VCC = 3.3V, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
3.135  
2.375  
1.710  
1.425  
0.508  
UNITS  
V
RT33  
V
RT25  
V
RT18  
V
RT15  
V
RTADJ  
3.3V, 5% Reset Threshold  
2.5V, 5% Reset Threshold  
1.8V, 5% Reset Threshold  
1.5V, 5% Reset Threshold  
ADJ, 5% Reset Threshold  
V1 Input Threshold  
V2 Input Threshold  
V3 Input Threshold  
V4 Input Threshold  
3.036  
2.300  
1.656  
1.380  
0.492  
3.086  
2.338  
1.683  
1.403  
0.500  
V
V
V
V
V
, V  
Input Threshold  
V
ADJ1 ADJ2  
2908f  
2
LTC2908  
ELECTRICAL CHARACTERISTICS  
otherwise noted. (Notes 2, 3)  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VCC = 5V for the LT2908-A1 and VCC = 3.3V for the LTC2908-B1, unless  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Internal Operating Voltage  
V1 Input Current  
RST in Correct Logic State  
0.5  
6
V
CC  
I
I
I
I
V1 = 5.0V (LTC2908-A1) (Note 4)  
V1 = 3.3V (LTC2908-B1)  
26  
24  
50  
50  
µA  
µA  
V1  
V2 Input Current  
V3 Input Current  
V4 Input Current  
V2 = 3.3V (LTC2908-A1) (Note 4)  
V2 = 2.5V (LTC2908-B1)  
10  
8
20  
20  
µA  
µA  
V2  
V3  
V4  
V3 = 2.5V (LTC2908-A1)  
V3 = 1.8V (LTC2908-B1)  
2
2
5
5
µA  
µA  
V4 = 1.8V (LTC2908-A1)  
V4 = 1.5V (LTC2908-B1)  
2
2
5
5
µA  
µA  
I
t
t
V
, V  
Input Current  
V
= V = 0.55V  
ADJ2  
±15  
nA  
ms  
µs  
VADJ  
RST  
UV  
ADJ1 ADJ2  
ADJ1  
Reset Time-Out Period  
160  
200  
250  
260  
V Undervoltage Detect to RST or RST  
V Less Than Reset Threshold V  
More Than 1%  
by  
RTX  
X
X
V
V
Output Voltage High RST (Note 5)  
Output Voltage Low RST  
I
I
= –1µA, V = 5V (LTC2908-A1)  
V
V
– 1.5  
– 1.0  
V
V
OH  
OL  
RST  
RST  
CC  
CC  
CC  
= –1µA, V = 3.3V (LTC2908-B1)  
CC  
V
V
V
= 0.5V, I  
= 1.0V, I  
= 3.0V, I  
= 5µA  
= 100µA  
= 2500µA  
0.01  
0.01  
0.10  
0.15  
0.15  
0.30  
V
V
V
CC  
CC  
CC  
RST  
RST  
RST  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Under typical operating conditions, most of the quiescent current  
is drawn from the V1 input. When V2 exceeds V1, V2 supplies most of the  
quiescent current.  
Note 2: The greater of V1, V2 is the internal supply voltage (V ).  
CC  
Note 5: The output pin RST has an internal pull-up to V of typically 6µA.  
However, an external pull-up resistor may be used when a faster rise time  
CC  
Note 3: All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
is required or for V voltages greater than V  
.
CC  
OH  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
5V Threshold Voltage  
vs Temperature  
3.3V Threshold Voltage  
vs Temperature  
2.5V Threshold Voltage  
vs Temperature  
4.750  
4.725  
4.700  
4.675  
4.650  
4.625  
4.600  
3.135  
3.115  
3.095  
3.075  
3.055  
3.035  
2.375  
2.360  
2.345  
2.330  
2.315  
2.300  
50  
TEMPERATURE (°C)  
100  
50  
TEMPERATURE (°C)  
100  
50  
TEMPERATURE (°C)  
100  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
2908 G01  
2908 G02  
2908 G03  
2908f  
3
LTC2908  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Specifications are at TA = 25°C unless otherwise noted.  
1.8V Threshold Voltage  
vs Temperature  
1.5V Threshold Voltage  
vs Temperature  
ADJ Threshold Voltage  
vs Temperature  
1.425  
1.420  
1.415  
1.410  
1.405  
1.400  
1.395  
1.390  
1.385  
1.380  
1.710  
1.700  
1.690  
1.680  
1.670  
1.660  
0.5080  
0.5060  
0.5040  
0.5020  
0.5000  
0.4980  
0.4960  
0.4940  
0.4920  
50  
TEMPERATURE (°C)  
100  
–50  
–25  
0
25  
100  
–25  
0
50  
–50 –25  
0
25  
75  
–50  
75  
100  
50  
75  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2908 G04  
2908 G05  
2908 G06  
IV1 vs Temperature  
IV2 vs Temperature  
IV3 vs Temperature  
33  
31  
29  
27  
25  
23  
21  
19  
17  
2.2  
2.1  
2.0  
1.9  
14  
V1 = 5.0V (A1)/V1 = 3.3V (B1)  
V2 = 3.3V (A1)/V2 = 2.5V (B1)  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
V4 = 1.8V (A1)/V4 = 1.5V (B1)  
V1 = 5.0V (A1)/V1 = 3.3V (B1)  
V2 = 3.3V (A1)/V2 = 2.5V (B1)  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
V4 = 1.8V (A1)/V4 = 1.5V (B1)  
V1 = 5.0V (A1)/V1 = 3.3V (B1)  
13 V2 = 3.3V (A1)/V2 = 2.5V (B1)  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
12  
V4 = 1.8V (A1)/V4 = 1.5V (B1)  
V
= V  
= 0.55V  
V
= V  
= 0.55V  
V
ADJ1  
= V  
ADJ2  
= 0.55V  
ADJ1  
ADJ2  
ADJ1  
ADJ2  
11  
10  
9
A1  
B1  
A1  
B1  
1.8  
1.7  
8
7
1.6  
1.5  
1.4  
6
5
4
–50  
0
25  
50  
75  
100  
–50  
–25  
0
50  
75  
100  
–25  
–25  
0
50  
25  
–50  
75  
100  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2908 G07  
2908 G09  
2908 G08  
Typical Transient Duration  
vs Comparator Overdrive  
Reset Time-Out Period (tRST  
vs Temperature  
)
IV4 vs Temperature  
700  
600  
500  
400  
300  
200  
100  
0
2.2  
2.1  
2.0  
1.9  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
T
= 25°C  
A
V1 = 5.0V (A1)/V1 = 3.3V (B1)  
V2 = 3.3V (A1)/V2 = 2.5V (B1)  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
V4 = 1.8V (A1)/V4 = 1.5V (B1)  
RESET OCCURS  
ABOVE CURVE  
V
= V  
= 0.55V  
ADJ1  
ADJ2  
1.8  
1.7  
1.6  
1.5  
1.4  
–25  
0
50  
0.1  
1
10  
100  
–25  
0
50  
–50  
75  
100  
–50  
75  
100  
25  
25  
TEMPERATURE (°C)  
COMPARATOR OVERDRIVE VOLTAGE (% OF V  
)
TEMPERATURE (°C)  
RTX  
2908 G11  
2908 G10  
2908 G12  
2908f  
4
LTC2908  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Specifications are at TA = 25°C unless otherwise noted.  
RST Output Voltage vs V1 with  
10k Pull-Up Resistor to V1  
RST Output Voltage vs V1 with  
10k Pull-Up Resistor to V1  
RST Pull-Down Current (IRST  
vs Supply Voltage (VCC  
)
)
6
5
4
3
2
1
0
5.0  
4.0  
3.0  
2.0  
1.0  
0
0.4  
0.3  
0.2  
0.1  
0
V
= V1 = V2  
V1 = V2  
V3 = V4 = V  
ADJ2  
=
CC  
V3 = V4 = V  
ADJ1  
= V  
ADJ2  
= GND  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
V4 = 1.8V (A1)/V4 = 1.5V (B1)  
V
= GND  
ADJ1  
V
= V  
= 0.55V  
ADJ1  
ADJ2  
RST AT  
150mV  
V2 = GND  
RST AT  
50mV  
V2 = V1  
V
V
RT50  
RT33  
V
V
RT50  
RT33  
LTC2908-B1 LTC2908-A1  
LTC2908-B1 LTC2908-A1  
0
1
2
3
4
5
0.4  
V1 (V)  
0
1
2
3
4
5
0
0.2  
0.6  
0.8  
SUPPLY VOLTAGE, V (V)  
V1 (V)  
CC  
2908 G13  
2908 G15  
2908 G14  
RST Pull-Down Current (IRST) vs  
Supply Voltage (VCC) with Dual  
Channel Supply  
RST Pull-Down Current (IRST) vs  
Supply Voltage (VCC) with Single  
Channel Supply  
RST Output Voltage Low (VOL  
)
vs RST Pull-Down Current (IRST  
LTC2908-A1  
)
0.8  
10  
1
10  
1
V1 = 5.0V  
V2 = 3.3V  
V3 = 2.5V  
V4 = 1.8V  
V
= V1 = V2  
V
= V1  
CC  
V3 = V4 = V  
CC  
V2 = V3 = V4 = V  
= V  
= GND  
= V  
= GND  
ADJ2  
ADJ1  
ADJ2  
ADJ1  
0.7  
0.6  
V
ADJ1  
= V  
ADJ2  
= 0.4V  
RST AT 150mV  
0.5  
0.4  
0.3  
0.2  
0.1  
85°C  
–40°C  
25°C  
RST AT 150mV  
0.1  
0.01  
0.1  
0.01  
RST AT 50mV  
RST AT 50mV  
0
0.001  
0.001  
5
10  
20  
25  
30  
(mA)  
35  
0
15  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
RST PULL-DOWN CURRENT, I  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
RST  
CC  
CC  
2908 G16  
2908 G17  
2908 G18  
RST Output Voltage Low (VOL  
)
vs RST Pull-Down Current (IRST  
)
RST Pull-Up Current (IRST  
vs Supply Voltage (VCC  
)
LTC2908-B1  
)
0.8  
–30  
V1 = 3.3V  
V2 = 2.5V  
V3 = 1.8V  
V4 = 1.5V  
V
= V1 = V2  
CC  
V3 = 2.5V (A1)/V3 = 1.8V (B1)  
–25 V4 = 1.8V (A1)/V4 = 1.5V (B1)  
= V = 0.55V  
0.7  
0.6  
V
ADJ1  
ADJ2  
V
= V  
= 0.4V  
RST HELD AT 0V  
ADJ1  
ADJ2  
–20  
–15  
–10  
–5  
0.5  
0.4  
0.3  
0.2  
0.1  
85°C  
–40°C  
25°C  
V
V
RT50  
RT33  
LTC2908-B1  
LTC2908-A1  
0
0
5
10  
20  
(mA)  
25  
0
15  
2
3
3.5  
4
4.5  
5
2.5  
SUPPLY VOLTAGE, V (V)  
RST PULL-DOWN CURRENT, I  
CC  
RST  
2908 G19  
2908 G20  
2908f  
5
LTC2908  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
RST Output Voltage High (VOH) vs  
RST Output Voltage High (VOH) vs  
RST Output Source Current (IRST  
LTC2908-A1  
)
RST Output Source Current (IRST  
)
LTC2908-B1  
5
4
3
2
1
3.0  
2.5  
2.0  
1.5  
25°C  
25°C  
85°C  
–40°C  
85°C  
V1 = 5.0V  
V2 = 3.3V  
V3 = 2.5V  
V4 = 1.8V  
V1 = 3.3V  
V2 = 2.5V  
V3 = 1.8V  
V4 = 1.5V  
–40°C  
1.0  
0.5  
V
= V  
= 0.55V  
V
= V  
= 0.55V  
ADJ2  
ADJ1  
ADJ2  
ADJ1  
0
–4  
–8  
–12  
–16  
(µA)  
–20  
0
–4  
–6  
–8  
–10  
(µA)  
–12  
–2  
OUTPUT SOURCE CURRENT, I  
OUTPUT SOURCE CURRENT, I  
RST  
RST  
2908 G21  
2908 G22  
U
U
U
(TS8 Package/DDB8 Package)  
PI FU CTIO S  
V2 (Pin 1/Pin 4): Voltage Input 2. The greater of V1, V2 is  
also the internal VCC. The operating voltage on this pin  
shall not exceed 6V. When in normal operation (V1 > V2),  
this pin draws approximately 8µA. When this pin is acting  
as the VCC (V2 > V1), this pin draws an additional 15µA.  
Bypass this pin to ground with a 0.1µF (or greater)  
capacitor.  
VADJ2 (Pin 5/Pin 8): Adjustable Voltage Input 2. See  
Table 1 for recommended ADJ resistors values.  
V3 (Pin 6/Pin 7): Voltage Input 3.  
VADJ1 (Pin 7/Pin 6): Adjustable Voltage Input 1. See  
Table 1 for recommended ADJ resistors values.  
V1 (Pin 8/Pin 5): Voltage Input 1. The greater of V1, V2 is  
also the internal VCC. The operating voltage on this pin  
shall not exceed 6V. When in normal operation (V1 > V2),  
this pin draws approximately 21µA. When this pin is not  
acting as the VCC (V2 > V1), this pin draws approximately  
8µA. Bypass this pin to ground with a 0.1µF (or greater)  
capacitor.  
V4 (Pin 2/Pin 3): Voltage Input 4.  
RST(Pin3/Pin2):ResetLogicOutput. Pullslowwhenany  
voltage input is below the reset threshold and is held low  
for200msafterallvoltageinputsareabovethreshold.This  
pin has a weak pull-up to VCC and may be pulled above VCC  
using an external pull-up.  
ExposedPad(Pin9,DDB8Only):ExposedPadmaybeleft  
open or connected to device ground.  
GND (Pin 4/Pin 1): Device Ground.  
2908f  
6
LTC2908  
W
BLOCK DIAGRA  
LTC2908-A1/LTC2908-B1  
V1  
+
C1  
C2  
C3  
C4  
C5  
POWER  
DETECT  
V
CC  
+
V2  
V3  
V4  
V
CC  
+
6µA  
RST  
200ms  
RESET PULSE  
GENERATOR  
+
V
ADJ1  
+
V
ADJ2  
+
C6  
GND  
BANDGAP  
REFERENCE  
2908 BD  
W U  
W
TI I G DIAGRA  
VX Monitor Timing  
V
RTX  
V
X
t
UV  
t
RST  
1V  
RST  
2908 TD  
2908f  
7
LTC2908  
W U U  
U
APPLICATIO S I FOR ATIO  
Supply Monitoring  
Such an indeterminate voltage may trigger external logic  
causing erroneous reset operation(s). Furthermore, a  
mid-scale voltage level could cause external circuits to  
operate in the middle of their voltage transfer character-  
istic, consuming more quiescent current than normal.  
These conditions could cause serious system reliability  
problems.  
The LTC2908 is a low power, high accuracy, six input  
supply monitoring circuit with two adjustable inputs. The  
reset delay is set to a nominal of 200ms with an internal  
capacitor, eliminating the need for an external timing  
capacitor.  
All input voltages must be above predetermined thresh-  
olds for the reset not to be invoked. The LTC2908 asserts  
theresetoutputduringpower-up,power-downandbrown-  
out conditions on any one of the voltage inputs.  
Power-Up  
During power-up, RST starts asserting low as soon as  
there is at least 200mV on V1 and/or V2. The RST pull-  
down capability is a function of V1 and V2 as shown in the  
Typical Performance Characteristics.  
Ultralow Voltage Pull-Down on RST  
The LTC2908 issues a logic low on the RST output when  
any one of the inputs falls below its threshold. Ideally, the  
RST logic output would remain low with the input supply  
voltage down to zero volts. Most supervisors lack pull-  
down capability below 1V.  
The greater of V1, V2 is the internal supply voltage (VCC)  
that powers the other internal circuitry. Once all the VX  
inputs rise above their thresholds, an internal timer is  
started.Aftertheinternaltimercountsa200msdelaytime,  
RST weakly pulls high to VCC.  
The LTC2908 power supply supervisor incorporates a  
novel low voltage pull-down circuit that can hold the RST  
line low with as little as 200mV of input supply voltage on  
V1 and/or V2 (see Figures 1 and 2). The pull-down circuit  
helps maintain a low impedance path to ground, reducing  
the risk of the RST node from floating to an indeterminate  
voltage.  
Power-Down  
On power-down, once any of the VX inputs drop below  
their threshold, RST asserts logic low. VCC of at least 0.5V  
guarantees a logic low of 0.15V at RST.  
10  
10  
V
= V1 = V2  
V
= V1  
CC  
V3 = V4 = V  
CC  
V2 = V3 = V4 = V  
= V  
= GND  
= V  
= GND  
ADJ2  
ADJ1  
ADJ2  
ADJ1  
1
0.1  
1
0.1  
RST AT 150mV  
RST AT 150mV  
RST AT 50mV  
RST AT 50mV  
0.01  
0.001  
0.01  
0.001  
0
0.2  
0.4  
0.6  
0.8  
1
0
0.2  
0.4  
0.6  
0.8  
1
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
CC  
CC  
2908 G16  
2908 G17  
Figure 1. RST Pull-Down Current (IRST) vs  
Supply Voltage (VCC) with Dual Channel Supply  
Figure 2. RST Pull-Down Current (IRST) vs  
Supply Voltage (VCC) with Single Channel Supply  
2908f  
8
LTC2908  
W U U  
APPLICATIO S I FOR ATIO  
Adjustable Input  
U
V
TRIP  
LTC2908-A1/LTC2908-B1  
R1  
The noninverting input on the VADJ comparator is set to  
0.5V. And the high impedance inverting input directly ties  
to the VADJ pin.  
1%  
V
ADJ  
R2  
1%  
+
In a typical application, this pin connects to a tap point on  
an external resistive divider between the positive voltage  
being monitored and ground. The following formula de-  
rives the value of the R1 resistor in the divider from a  
particular value of R2 and the desired trip voltage:  
+
0.5V  
2908 F03  
Figure 3. Setting the Adjustable Trip Point  
VTRIP  
0.5V  
R1=  
– 1 R2  
Threshold Accuracy  
Specifyingsystemvoltagemarginforworst-caseoperation  
requires the consideration of three factors: power supply  
tolerance, IC supply voltage tolerance and supervisor re-  
set threshold accuracy. Highly accurate supervisors ease  
the design challenge by decreasing the overall voltage  
margin required for reliable system operation. Consider a  
5V system with a ±5% power supply tolerance band.  
R2 = 100k is recommended. Table 1 shows suggested 1%  
resistor values for various adjustable applications and  
their corresponding trip thresholds.  
Table 1. Suggested 1% Resistor Values for the V  
Inputs  
ADJ  
V
(V)  
V
(V)  
TRIP  
R1 (k)  
R2 (k)  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
SUPPLY  
12  
11.25  
9.4  
2150  
1780  
1400  
1300  
1020  
845  
10  
8
System ICs powered by this supply must operate reliably  
within this band (and a little more, as explained below).  
The bottom of the supply tolerance band, at 4.75V (5%  
below 5V), is the exact voltage at which a perfectly  
accurate supervisor generates a reset (see Figure 4).  
Such a perfectly accurate supervisor does not exist—the  
actual reset threshold may vary over a specified band  
(±1.5%fortheLTC2908supervisors). Figure5showsthe  
typical relative threshold accuracy for all six inputs over  
temperature.  
7.5  
7.5  
6
7
5.6  
5
4.725  
3.055  
2.82  
3.3  
3
511  
464  
2.5  
1.8  
1.5  
1.2  
1.0  
0.9  
0.8  
0.7  
0.6  
2.325  
1.685  
1.410  
1.120  
0.933  
0.840  
0.750  
0.655  
0.561  
365  
237  
182  
124  
86.6  
68.1  
49.9  
30.9  
12.1  
NOMINAL  
SUPPLY  
VOLTAGE  
5.000V  
MINIMUM  
SUPPLY  
IDEAL  
RELIABLE TOLERANCE SUPERVISOR  
SYSTEM  
VOLTAGE  
THRESHOLD  
4.750V  
4.675V  
4.600V  
–5.0%  
±1.5%  
THRESHOLD  
BAND  
–6.5%  
–8.0%  
±2.5%  
THRESHOLD  
BAND  
REGION OF POTENTIAL MALFUNCTION  
WITH 2.5% MONITOR  
If an application has less than six supply voltages, the  
unused supervisor inputs should be tied to the closest  
higher supply voltage available.  
4.500V  
–10%  
2908 F04  
Figure 4. Threshold Band Diagram  
2908f  
9
LTC2908  
W U U  
U
APPLICATIO S I FOR ATIO  
1.5  
is to introduce hysteresis around the nominal threshold.  
Notice however, this hysteresis introduces an error term  
in the threshold accuracy. Therefore, a ±2.5% accurate  
monitor with ±1% hysteresis is equivalent to a ±3.5%  
monitor with no hysteresis.  
1.0  
0.5  
0
Therefore, the LTC2908 takes a different approach to  
solving this problem of supply noise causing spurious  
reset. The first line of defense against this spurious reset  
is a first order lowpass filter at the output of the compara-  
tors. Therefore, eachcomparatoroutputisintegratedover  
timebeforetriggeringtheoutputlogic.Therefore,anykind  
of transient at the input of the comparator needs to be of  
sufficient magnitude and duration before it can trigger a  
change in the output logic.  
–0.5  
–1.0  
–1.5  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
2908 F05  
Figure 5. Typical Threshold Accuracy vs Temperature  
Withthisvariationofresetthresholdinmind,thenominal  
reset threshold of the supervisor resides below the  
minimum supply voltage; just enough so that the reset  
threshold band and the power supply tolerance bands do  
not overlap. If the two bands overlap, the supervisor  
could generate a false or nuisance reset when the power  
supply remains within its specified tolerance band (for  
example at 4.8V).  
The second line of defense is the 200ms delay time tRST  
.
Thisdelayeliminatestheeffectofanysupplynoise, whose  
frequency is above 1/200ms = 5Hz, on the RST output.  
When any one of the supply voltages drops below its  
threshold, the RST pin asserts low. When the supply  
recovers above its threshold, the reset-pulse-generator  
timer starts counting.  
Ifallthesuppliesremainabovetheircorrespondingthresh-  
old when the timer finishes counting, the RST pin weakly  
pulls high. However, if any of the supplies falls below its  
threshold any time during the period when the timer is still  
counting, the timer resets and it starts fresh when all the  
supplies rise above their corresponding threshold.  
Adding half of the reset threshold accuracy spread (1.5%)  
to the ideal 5% thresholds puts the LTC2908 thresholds at  
6.5% (typ) below the nominal input voltage. For example,  
the5Vtypicalthresholdis4.675V,or75mVbelowtheideal  
threshold of 4.750V. The guaranteed threshold lies in the  
band between 4.600V (8% below 5V) and 4.750V (5%  
below 5V) over temperature.  
Note that this second line of defense is only effective for a  
rising supply and does not affect the sensitivity of the  
system to a falling supply. Therefore, the first line of  
defense that works for both cases of rising and falling is  
necessary. These two approaches prevent spurious reset  
caused by supply noise without sacrificing the threshold  
accuracy.  
The powered system must work reliably down to the  
lowest voltage in the threshold band or risk malfunction  
before the reset line falls. In the 5V example, using the  
1.5% accurate supervisor, the system ICs must work  
down to 4.60V (8% below 5V). System ICs working with  
a ±2.5% accurate supervisor must operate down to 4.50V  
(10% below 5V), increasing the required system voltage  
margin and the probability of system malfunction.  
Although all six comparators for the six inputs have built-  
in glitch filtering, use bypass capacitors on the V1 and V2  
inputs because the greater of V1 or V2 supplies the VCC for  
the part (a 0.1µF ceramic capacitor satisfies most applica-  
tions). Apply filter capacitors on the V3, V4, VADJ1 and  
VADJ2 inputs in extremely noisy situations.  
In any supervisory application, supply noise riding on the  
monitored DC voltage can cause spurious resets, particu-  
larly when the monitored voltage is near the reset thresh-  
old. A less desirable but common solution to this problem  
2908f  
10  
LTC2908  
W U U  
APPLICATIO S I FOR ATIO  
U
RST Output Characteristics  
The rise time on the RST pin is limited by a weak internal  
pull-up current source to VCC. The following formula esti-  
mates the output rise time (10% to 90%) at the RST pin:  
The DC characteristics of the RST pull-up and pull-down  
strength are shown in the Typical Performance Character-  
istics section. The RST output has a weak internal pull-up  
to VCC = Max(V1, V2) and a strong pull-down to ground.  
tRISE 2.2 • RPU • CLOAD  
where RPU is the on-resistance of the pull-up transistor.  
Notice that this pull-up transistor is modeled as a 6µA  
current source in the Block Diagram as a typical  
representation.  
The weak pull-up and strong pull-down arrangement  
allowsthispintohaveopen-drainbehaviorwhilepossess-  
ing several other beneficial characteristics.  
The weak pull-up eliminates the need for external pull-up  
resistorswhentherisetimeonthesepinsisnotcritical.On  
the other hand, the open-drain RST configuration allows  
for wired-OR connections and can be useful when more  
than one signal needs to pull down on the RST line.  
The on-resistance as a function of the VCC = Max(V1, V2)  
voltage (for VCC > 1V) at room temperature is estimated as  
follows:  
6 105  
RPU  
=
MAX V1,V2 – 1V  
(
)
As noted in the discussion of power-up and power-down,  
the circuits that drive RST are powered by VCC. During  
fault condition, VCC of at least 0.5V guarantees a maxi-  
mum VOL = 0.15V at RST.  
At VCC = 3.3V, RPU is about 260k. Using 150pF for load  
capacitance, the rise time is 86µs. A smaller external pull-  
upresistormaybeusediftheoutputneedstopullupfaster  
and/or to a higher voltage. For example, the rise time  
reduces to 3.3µs for a 150pF load capacitance when using  
a 10k pull-up resistor.  
Output Rise and Fall Time Estimation  
The following formula estimates the output fall time (90%  
to 10%) for a particular external load capacitance (CLOAD):  
tFALL 2.2 • RPD • CLOAD  
where RPD is the on-resistance of the internal pull-down  
transistor estimated to be typically 40at room tempera-  
ture (25°C) and CLOAD is the external load capacitance on  
the pin. Assuming a 150pF load capacitance, the fall time  
is about 13ns.  
2908f  
11  
LTC2908  
TYPICAL APPLICATIO S  
U
Six Supply Monitor, 5% Tolerance, 12V, 5V, 3.3V, 2.5V, 1.8V, 1V  
12V  
5V  
DC/DC  
DC/DC  
DC/DC  
DC/DC  
DC/DC  
3.3V  
2.5V  
SYSTEM  
1.8V  
1.0V  
C1  
C2  
0.1µF 0.1µF  
R1  
2.15M  
R3  
86.6k  
R2  
100k  
R4  
100k  
V1  
V2 V3 V4  
V
V
ADJ1  
ADJ2  
LTC2908-A1  
GND  
RST  
2908 TA02  
2908f  
12  
LTC2908  
U
TYPICAL APPLICATIO S  
Quad Supply Monitor with One Adjustable Input, 5% Tolerance, 3.3V, 2.5V, 1.8V, 1.2V  
3.3V  
2.5V  
DC/DC  
SYSTEM  
1.8V  
DC/DC  
1.2V  
DC/DC  
C1  
C2  
0.1µF 0.1µF  
R3  
124k  
R4  
100k  
V1  
V2  
V3 V4  
LTC2908-B1  
GND  
V
V
ADJ1  
ADJ2  
RST  
2908 TA03  
2908f  
13  
LTC2908  
U
PACKAGE DESCRIPTIO  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702)  
0.61 ±0.05  
(2 SIDES)  
0.675 ±0.05  
2.50 ±0.05  
1.15 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50 BSC  
2.20 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
3.00 ±0.10  
(2 SIDES)  
TYP  
5
8
0.56 ± 0.05  
(2 SIDES)  
2.00 ±0.10  
PIN 1 BAR  
(2 SIDES)  
TOP MARK  
PIN 1  
(SEE NOTE 6)  
CHAMFER OF  
EXPOSED PAD  
4
1
(DDB8) DFN 1103  
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.15 ±0.05  
(2 SIDES)  
0 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
2908f  
14  
LTC2908  
U
PACKAGE DESCRIPTIO  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637)  
2.90 BSC  
(NOTE 4)  
0.52  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
0.09 – 0.20  
(NOTE 3)  
TS8 TSOT-23 0802  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
2908f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC2908  
U
TYPICAL APPLICATIO  
Six Supply Monitor with Manual Reset Button, 5% Tolerance, 12V, 5V, 3.3V, 2.5V, 1.8V, 1.5V  
12V  
5V  
DC/DC  
3.3V  
DC/DC  
SYSTEM  
2.5V  
DC/DC  
1.8V  
DC/DC  
1.5V  
DC/DC  
C1  
C2  
R1  
182k  
R3  
R2  
100k  
MANUAL  
RESET BUTTON  
(NORMALLY OPEN)  
0.1µF 0.1µF  
2.15M  
R5  
10k  
R4  
100k  
V1  
V2 V3 V4  
V
V
ADJ1  
ADJ2  
RST  
LTC2908-A1  
GND  
2908 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC690  
5V Supply Monitor, Watchdog Timer and Battery Backup  
3.3V Supply Monitor, Watchdog Timer and Battery Backup  
5V Supply Monitor and Watchdog Timer  
4.65 Threshold  
LTC694-3.3  
LTC699  
2.9V Threshold  
4.65 Threshold  
LTC1232  
5V Supply Monitor, Watchdog Timer and Pushbutton Reset  
4.37V/4.62V Threshold  
4.725V, 3.118V, 1V Threshold (±0.75%)  
LTC1326/LTC1326-2.5  
Micropower Precision Triple Supply Monitor for 5V/2.5V, 3.3V  
and ADJ  
LTC1536  
Precision Triple Supply Monitor for PCI Applications  
Micropower Triple Supply Monitor for 2.5V/5V, 3.3V and ADJ  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Open-Drain Reset  
Meets PCI t  
Timing Specifications  
FAIL  
LTC1726-2.5/LTC1726-5  
LTC1727-2.5/LTC1727-5  
LTC1728-1.8/LTC1728-3.3  
LTC1728-2.5/LTC1728-5  
LTC1985-1.8  
Adjustable RESET and Watchdog Time-Outs  
Individual Monitor Outputs in MSOP  
5-Lead SOT-23 Package  
5-Lead SOT-23 Package  
Micropower Triple Supply Monitor with Push-Pull Reset Output  
Programmable Quad Supply Monitor  
5-Lead SOT-23 Package  
LTC2900  
Adjustable RESET, 10-Lead MSOP and DFN  
Packages  
LTC2901  
LTC2902  
Programmable Quad Supply Monitor  
Programmable Quad Supply Monitor  
Adjustable RESET and Watchdog Timer,  
16-Lead SSOP Package  
Adjustable RESET and Tolerance,  
16-Lead SSOP Package  
LTC2903  
LTC2904  
Precision Quad Supply Monitor  
6-Lead SOT-23 Package  
Three-State Programmable Precision Dual Supply Monitor  
Adjustable Tolerance, 8-Lead SOT-23 and DFN  
Packages  
LTC2905  
LTC2906  
LTC2907  
Three-State Programmable Precision Dual Supply Monitor  
Adjustable RESET and Tolerance,  
8-Lead SOT-23 and DFN Packages  
Dual Supply Monitor with One Pin Selectable Threshold and  
One Adjustable Input  
0.5V Adjustable Threshold and Three Supply  
Tolerances, 8-Lead SOT-23 and DFN Packages  
Dual Supply Monitor with One Pin Selectable Threshold and  
One Adjustable Input  
0.5V Adjustable Threshold, RESET and Three Supply  
Tolerances, 8-Lead SOT-23 and DFN Packages  
2908f  
LT/TP 0504 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY