LTC2914IGN-1#PBF [Linear]

LTC2914 - Quad UV/OV Positive/Negative Voltage Monitor; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LTC2914IGN-1#PBF
型号: LTC2914IGN-1#PBF
厂家: Linear    Linear
描述:

LTC2914 - Quad UV/OV Positive/Negative Voltage Monitor; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C

电源电路 电源管理电路 光电二极管 监控
文件: 总16页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2914  
Quad UV/OV  
Positive/Negative  
Voltage Monitor  
U
DESCRIPTIO  
FEATURES  
TheLTC®2914isaquadinputvoltagemonitorintendedfor  
monitoring multiple voltages in a variety of applications.  
Dual inputs for each monitored voltage allow monitor-  
ing four separate undervoltage (UV) conditions and four  
separateovervoltage(OV)conditions.Allmonitorssharea  
common undervoltage output and a common overvoltage  
output. The LTC2914-1 has latching capability for the  
overvoltage output. The LTC2914-2 has functionality to  
disable both the overvoltage and undervoltage outputs.  
Monitors Four Voltages Simultaneously  
Adjustable UV and OV Trip Values  
Guaranteed Threshold Accuracy: ±±1.5 oꢀ  
Monitored Voltage over Temperature  
Input Glitch Rejection  
Monitors up to Two Negative Voltages  
Buffered 1V Reference Output  
Adjustable Reset Timeout with Timeout Disable  
70µA Quiescent Current  
Open-Drain OV and UV Outputs  
Polarityselectionandabufferedreferenceallowmonitoring  
uptotwoseparatenegativevoltages.Athree-stateinputpin  
allows setting the polarity of two inputs without requiring  
any external components. Glitch filtering ensures reliable  
reset operation without false or noisy triggering.  
Guaranteed OV and UV for V ≥ 1V  
CC  
Available in 16-Lead SSOP and 16-Lead  
(5mm × 3mm) DFN Packages  
U
APPLICATIO S  
The LTC2914 provides a precise, versatile, space-con-  
scious, micropower solution for voltage monitoring.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Desktop and Notebook Computers  
Network Servers  
Core, I/O Voltage Monitors  
U
TYPICAL APPLICATIO  
Quad UV/OV Supply Monitor,±05 Tolerance, .V, 313V, 21.V, ±18V  
5V  
3.3V  
2.5V  
1.8V  
P0WER  
SUPPLIES  
Input Threshold Voltage  
0.1µF  
vs Temperature  
0.505  
0.504  
0.503  
0.502  
44.2k  
V
CC  
VH1  
SEL  
OV  
1k  
27.4k  
VL1  
VH2  
SYSTEM  
0.501  
0.500  
0.499  
0.498  
0.497  
0.496  
0.495  
LTC2914-1  
4.53k 1k  
4.53k 19.6k  
UV  
VL2  
REF  
VH3  
LATCH  
1k  
12.4k  
VL3  
VH4  
–50 –25  
25  
50  
75  
100  
0
4.53k 1k  
TEMPERATURE (°C)  
VL4  
2914 G01  
GND TMR  
4.53k  
2914 TA01a  
C
TMR  
22nF  
TIMEOUT = 200ms  
2914f  
1
LTC2914  
W W U W  
ABSOLUTE AXI U RATI GS  
(Notes ±, 2)  
Terminal Voltages  
Operating Temperature Range  
V
(Note 3)............................................. –0.3V to 6V  
LTC2914C ................................................ 0°C to 70°C  
LTC2914I ............................................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
CC  
OV, UV ................................................... –0.3V to 16V  
TMR..........................................0.3V to (V + 0.3V)  
CC  
VLn, VHn, LATCH, DIS, SEL.................. –0.3V to 7.5V  
Terminal Currents  
SSOP ................................................................ 300°C  
I
....................................................................10mA  
VCC  
Reference Load Current (I ) ........................... 1mA  
REF  
I , I ...............................................................10mA  
UV OV  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
DHC PART  
MARKING*  
TOP VIEW  
TOP VIEW  
VH1  
VL1  
VH2  
VL2  
VH3  
VL3  
VH4  
VL4  
1
2
3
4
5
6
7
8
16 V  
CC  
VH1  
VL1  
VH2  
VL2  
VH3  
VL3  
VH4  
VL4  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
15 TMR  
14 SEL  
13 LATCH  
12 UV  
LTC2914CDHC-1  
LTC2914IDHC-1  
29141  
29141  
TMR  
SEL  
LATCH  
UV  
17  
11 OV  
OV  
10 REF  
ORDER PART  
NUMBER  
GN PART  
MARKING  
REF  
GND  
9
GND  
DHC PACKAGE  
LTC2914CGN-1  
LTC2914IGN-1  
29141  
2914I1  
GN PACKAGE  
16-LEAD (5mm 3mm) PLASTIC DFN  
16-LEAD PLASTIC SSOP  
T
JMAX  
= 150°C, θ = 43.5°C/W  
JA  
EXPOSED PAD (PIN 17)  
PCB GND CONNECTION OPTIONAL  
T
= 150°C, θ = 110°C/W  
JMAX  
JA  
ORDER PART  
NUMBER  
DHC PART  
MARKING*  
TOP VIEW  
TOP VIEW  
VH1  
VL1  
VH2  
VL2  
VH3  
VL3  
VH4  
VL4  
1
2
3
4
5
6
7
8
16 V  
CC  
VH1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
15 TMR  
14 SEL  
13 DIS  
12 UV  
11 OV  
10 REF  
LTC2914CDHC-2  
LTC2914IDHC-2  
29142  
29142  
VL1  
VH2  
VL2  
VH3  
VL3  
VH4  
VL4  
TMR  
SEL  
DIS  
UV  
17  
OV  
ORDER PART  
NUMBER  
GN PART  
MARKING  
REF  
GND  
9
GND  
DHC PACKAGE  
LTC2914CGN-2  
LTC2914IGN-2  
29142  
2914I2  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
16-LEAD (5mm 3mm) PLASTIC DFN  
T
JMAX  
= 150°C, θ = 43.5°C/W  
JA  
EXPOSED PAD (PIN 17)  
PCB GND CONNECTION OPTIONAL  
T
= 150°C, θ = 110°C/W  
JA  
JMAX  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.  
2914f  
2
LTC2914  
ELECTRICAL CHARACTERISTICS The  
DIS = Open unless otherwise noted1 (Note 2)  
denotes the specifications which apply over the ꢀull operating  
temperature range, otherwise specifications are at T = 2.°C1 V = 313V, VLn = 014.V, VHn = 01..V, LATCH = V , SEL = V  
,
A
CC  
CC  
CC  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
6.6  
MAX  
UNITS  
V
V
V
V
Shunt Regulator Voltage  
I
CC  
I
CC  
= 5mA  
6.2  
6.9  
SHUNT  
CC  
CC  
ΔV  
Shunt Regulator Load Regulation  
= 2mA to 10mA  
200  
300  
mV  
V
SHUNT  
V
V
V
Supply Voltage (Note 3)  
2.3  
V
SHUNT  
CC  
Minimum V Output Valid  
DIS = 0V  
Rising, DIS = 0V  
1
V
CCR(MIN)  
CC(UVLO)  
CC  
Supply Undervoltage Lockout  
Supply Undervoltage Lockout Hysteresis  
Supply Current  
V
CC  
1.9  
5
2
25  
70  
1
2.1  
50  
V
ΔV  
DIS = 0V  
mV  
µA  
V
CC(UVHYST)  
I
CC  
V
CC  
= 2.3V to 6V  
100  
V
V
Reference Output Voltage  
I
=
1mA  
0.985  
492  
50  
1.015  
508  
REF  
VREF  
Undervoltage/Overvoltage Voltage Threshold  
500  
125  
mV  
µs  
UOT  
UOD  
t
Undervoltage/Overvoltage Voltage Threshold VHn = V  
to Output Delay  
– 5mV or VLn = V  
+ 5mV  
500  
UOT  
UOT  
I
t
VHn, VLn Input Current  
15  
nA  
ms  
V
VHL  
UV/OV Time-Out Period  
OV Latch Clear Input High  
OV Latch Clear Threshold Input Low  
LATCH Input Current  
C
= 1nF  
TMR  
6
8.5  
12.5  
UOTO  
V
V
1.2  
LATCH(IH)  
LATCH(IL)  
LATCH  
0.8  
1
V
I
V
LATCH  
> 0.5V  
µA  
V
V
V
DIS Input High  
1.2  
DIS(IH)  
DIS(IL)  
DIS Input Low  
0.8  
3
V
I
I
I
DIS Input Current  
V
V
V
> 0.5V  
1
–1.3  
1.3  
–180  
1
2
µA  
µA  
µA  
mV  
V
DIS  
DIS  
TMR Pull-Up Current  
TMR Pull-Down Current  
Timer Disable Voltage  
Output Voltage High UV/OV  
Output Voltage Low UV/OV  
= 0V  
–2.1  
2.1  
–2.8  
2.8  
TMR(UP)  
TMR(DOWN)  
TMR  
TMR  
= 1.6V  
V
V
V
Referenced to V  
–270  
TMR(DIS)  
CC  
UV/OV  
UV/OV  
V
CC  
= 2.3V, I  
= –1µA  
OH  
V
CC  
V
CC  
= 2.3V, I  
= 2.5mA  
0.1  
0.01  
0.3  
0.15  
V
V
OL  
= 1V, I = 100µA  
UV  
Three-State Input SEL  
V
V
V
Low Level Input Voltage  
0.4  
V
V
IL  
High Level Input Voltage  
1.4  
0.7  
IH  
Pin Voltage when Left in Hi-Z State  
SEL High, Low Input Current  
Maximum SEL Input Current  
I
=
10µA  
0.9  
1.1  
25  
30  
V
Z
SEL  
I
I
µA  
µA  
SEL  
SEL Tied to Either V or GND  
SEL(MAX)  
CC  
Note ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: V maximum pin voltage is limited by input current. Since the  
CC  
V
CC  
pin has an internal 6.5V shunt regulator, a low impedance supply that  
exceeds 6V may exceed the rated terminal current. Operation from higher  
voltage supplies requires a series dropping resistor. See Applications  
Information.  
Note 2: All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
2914f  
3
LTC2914  
WU  
W
TI I G DIAGRA S  
VHn Monitor Timing  
VLn Monitor Timing  
V
V
UOT  
VHn  
UV  
VLn  
OV  
UOT  
t
t
t
t
UOTO  
UOD  
UOTO  
UOD  
1V  
1V  
2914 TD01  
2914 TD02  
VHn Monitor Timing (TMR Pin Strapped to V  
)
CC  
VLn Monitor Timing (TMR Pin Strapped to V )  
CC  
V
UOT  
V
UOT  
VHn  
VLn  
t
t
t
t
UOD  
UOD  
UOD  
UOD  
UV  
1V  
OV  
1V  
2914 TD03  
2914 TD04  
NOTE: WHEN AN INPUT IS CONFIGURED AS A NEGATIVE SUPPLY MONITOR, VHn WILL TRIGGER AN OV CONDITION AND VLn WILL TRIGGER A UV CONDITION  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Specifications are at T = 2.°C, V = 313V unless otherwise noted1  
A
CC  
Input Threshold Voltage  
vs Temperature  
V
Shunt Voltage  
CC  
Supply Current vs Temperature  
vs Temperature  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
0.505  
0.504  
0.503  
0.502  
0.501  
0.500  
0.499  
0.498  
0.497  
0.496  
0.495  
V
= 6V  
CC  
10mA  
V
= 3.3V  
CC  
CC  
5mA  
2mA  
1mA  
V
= 2.3V  
200µA  
–50  
–25  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
–50 –25  
25  
50  
75  
100  
–25  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2914 G02  
2914 G03  
2914 G01  
2914f  
4
LTC2914  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Specifications are at T = 2.°C, V = 313V unless otherwise noted1  
A
CC  
Buꢀꢀered Reꢀerence Voltage  
vs Temperature  
Transient Duration  
vs Comparator Overdrive  
V
Shunt Voltage vs I  
CC  
CC  
6.75  
6.65  
6.55  
6.45  
6.35  
6.25  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
700  
600  
500  
400  
300  
200  
100  
0
RESET OCCURS  
ABOVE CURVE  
25°C  
–40°C  
85°C  
V
= 6V  
CC  
V
= 2.3V  
CC  
–2  
0
2
4
6
8
10  
12  
–50 –25  
25  
50  
75  
100  
0
0.1  
1
10  
100  
I
(mA)  
TEMPERATURE (°C)  
CC  
COMPARATOR OVERDRIVE PAST THRESHOLD (%)  
2914 G06  
2914 G04  
2914 G05  
Reset Timeout Period  
vs Temperature  
UV Output Voltage vs V  
UV Output Voltage vs V  
CC  
CC  
12  
11  
10  
9
0.8  
0.6  
0.4  
0.2  
0
5
C
= 1nF  
VHn = 0.55V  
SEL = V  
TMR  
CC  
V
CC  
4
3
2
1
0
UV WITH  
10k PULL-UP  
8
UV WITHOUT  
10k PULL-UP  
7
6
–50  
0
25  
50  
75  
100  
–25  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
1
2
3
4
5
TEMPERATURE (°C)  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
CC  
CC  
2914 G07  
2914 G08  
2914 G09  
UV/OV Voltage Output Low  
vs Output Sink Current  
Reset Timeout Period  
vs Capacitance  
UV, I  
vs V  
CC  
SINK  
5
4
3
2
1
0
1.0  
0.8  
0.6  
0.4  
10000  
VHn = 0.45V  
SEL = V  
CC  
1000  
100  
125°C  
25°C  
UV AT 150mV  
–40°C  
UV AT 50mV  
10  
1
0.2  
0
0
1
2
3
4
5
0
10  
15  
(mA)  
20  
25  
30  
5
0.1  
1
10  
100  
(nF)  
1000  
I
TMR PIN CAPACITANCE, C  
SUPPLY VOLTAGE, V (V)  
UV/OV  
TMR  
CC  
2914 G12  
2914 G10  
2914 G11  
2914f  
5
LTC2914  
U
U
U
PI FU CTIO S  
UV(Pin±2):UndervoltageLogicOutput.Assertslowwhen  
any positive polarity input voltage is below threshold or  
any negative polarity input voltage is above threshold.  
Held low for an adjustable delay time after all voltage  
DIS (Pin ±3, LTC29±4-2): Output Disable Input. Disables  
the OV and UV output pins. When DIS is pulled high, the  
OV and UV pins are not asserted except during a UVLO  
condition.Pinhasaweak(2µA)internalpull-downtoGND.  
Leave pin open if unused.  
inputs are valid. Pin has a weak pull-up to V and may  
CC  
be pulled above V using an external pull-up. Leave pin  
CC  
Exposed Pad (Pin ±7, DFN Package): Exposed Pad may  
be left open or connected to device ground.  
open if unused.  
V
(Pin ±6): Supply Voltage. Bypass this pin to GND with  
CC  
GND (Pin 9): Device Ground  
a 0.1µF (or greater) capacitor. Operates as a direct supply  
inputforvoltagesupto6V.Operatesasashuntregulatorfor  
supplyvoltagesgreaterthan6Vandmusthavearesistance  
between the pin and the supply to limit input current to no  
greater than 10mA. When used without a current-limiting  
resistance, pin voltage must not exceed 6V.  
LATCH (Pin ±3, LTC29±4-±): OV Latch Clear/Bypass In-  
put. When pulled low, 0V is latched when asserted. When  
pulled high, OV latch is cleared. While held high, OV has  
the same delay and output characteristics as UV.  
OV (Pin ±±): Overvoltage Logic Output. Asserts low when  
any positive polarity input voltage is above threshold or  
any negative polarity input voltage is below threshold.  
Latched low (LTC2914-1). Held low for an adjustable  
delay time after all inputs are valid (LTC2914-2). Pin has  
VH±/VH2(Pin±/Pin3):VoltageHighInputs1and2.When  
the voltage on this pin is below 0.5V, an undervoltage  
condition is triggered. Tie pin to V if unused.  
CC  
VH3/VH4 (Pin ./Pin 7): Voltage High Inputs 3 and 4. The  
polarity of the input is selected by the state of the SEL pin  
(refer to Table 1). When the monitored input is configured  
as a positive voltage, an undervoltage condition is trig-  
gered when the pin is below 0.5V. When the monitored  
input is configured as a negative voltage, an overvoltage  
condition is triggered when the pin is below 0.5V. Tie pin  
a weak pull-up to V and may be pulled above V using  
CC  
CC  
an external pull-up. Leave pin open if unused.  
REF (Pin ±0): Buffered Reference Output. 1V reference  
used for the offset of negative-monitoring applications.  
The buffered reference sources and sinks up to 1mA.  
The reference drives capacitive loads up to 1nF. Larger  
capacitive loads may cause instability. Leave pin open if  
unused.  
to V if unused.  
CC  
VL±/VL2 (Pin 2/Pin 4): Voltage Low Inputs 1 and 2. When  
thevoltageonthispinisabove0.5V, anovervoltagecondi-  
tion is triggered. Tie pin to GND if unused.  
SEL (Pin ±4): Input Polarity Select Three-State Input.  
Connect to V , GND or leave unconnected in open state  
CC  
to select one of three possible input polarity combinations  
VL3/VL4 (Pin 6/Pin 8): Voltage Low Inputs 3 and 4. The  
polarity of the input is selected by the state of the SEL pin  
(refer to Table 1). When the monitored input is configured  
as a positive voltage, an overvoltage condition is triggered  
when the pin is above 0.5V. When the monitored input is  
configured as a negative voltage, an undervoltage condi-  
tion is triggered when the pin is above 0.5V. Tie pin to  
GND if unused.  
(refer to Table 1).  
T
MR (Pin ±.): Reset Delay Timer. Attach an external  
capacitor (C  
) of at least 10pF to GND to set a reset  
TMR  
delay time of 9ms/nF. A 1nF capacitor will generate an  
8.5ms reset delay time. Tie pin to V to bypass timer.  
CC  
2914f  
6
LTC2914  
W
BLOCK DIAGRA  
16  
15  
TMR  
V
CC  
V
CC  
VH1  
+
400k  
OSCILLATOR  
1
UV  
12  
+
UV PULSE  
GENERATOR  
VL1  
VH2  
2
3
+
V
UVLO  
UVLO  
CC  
+
2V  
V
400k  
+
CC  
OV PULSE  
VL2  
VH3  
GENERATOR  
OV  
4
5
11  
DISABLE  
+
OV LATCH  
CLEAR/BYPASS  
LATCH  
+
+
13  
13  
VL3  
VH4  
1V  
1V  
6
7
LTC2914-1  
LTC2914-2  
+
DIS  
+
2µA  
+
VL4  
8
GND  
9
0.5V  
REF  
THREE-STATE  
POLARITY  
DECODER  
10  
1V  
SEL  
14  
BUFFER  
2914 -1 BD  
2914f  
7
LTC2914  
U
W U U  
APPLICATIO S I FOR ATIO  
Voltage Monitoring  
The three-state input pin SEL is connected to GND, V or  
CC  
left unconnected during normal operation. When the pin  
is left unconnected, the maximum leakage allowed from  
the pin is 10µA to ensure it remains in the open state.  
Table 1 shows the three possible selections of polarity  
based on the SEL pin connection.  
The LTC2914 is a low power quad voltage monitoring cir-  
cuit with four undervoltage and four overvoltage inputs. A  
timeout period that holds OV or UV asserted after all faults  
have cleared is adjustable using an external capacitor and  
is externally disabled.  
Table ±1 Voltage Polarity Programming (V  
= 01.V Typical)  
V4 INPUT  
UOT  
Each voltage monitor has two inputs (VHn and VLn) for  
detectingundervoltageandovervoltageconditions. When  
SEL  
V3 INPUT  
V
Positive  
Positive  
CC  
configured to monitor a positive voltage V using the  
n
VH3 < V  
UV  
OV  
VH4 < V  
UV  
OV  
UOT  
UOT  
UOT  
UOT  
3-resistor circuit configuration shown in Figure 1, VHn is  
connected to the high-side tap of the resistive divider and  
VLnisconnectedtothelow-sidetapoftheresistivedivider.  
If an input is configured as a negative voltage monitor, the  
VL3 > V  
VL4 > V  
Open  
GND  
Positive  
Negative  
VH3 < V  
UV  
OV  
VH4 < V  
OV  
UV  
UOT  
UOT  
UOT  
UOT  
VL3 > V  
VL4 > V  
outputsUV andOV inFigure1areswappedinternally. V  
n
n
n
Negative  
Negative  
is then connected as shown in Figure 2. Note, VHn is still  
connected to the high-side tap and VLn is still connected  
to the low-side tap.  
VH3 < V  
OV  
VH4 < V  
OV  
UV  
UOT  
UOT  
UOT  
UOT  
VL3 > V  
UV  
VL4 > V  
3-Step Design Procedure  
Polarity Selection  
The following 3-step design procedure allows selecting  
appropriateresistancestoobtainthedesiredUVandOVtrip  
points for the positive voltage monitor circuit in Figure 1  
and the negative voltage monitor circuit in Figure 2.  
Thethree-statepolarity-selectpin(SEL)selectsoneofthree  
possible polarity combinations for the input thresholds,  
as described in Table 1. When an input is configured for  
negativesupplymonitoring,VHnisconfiguredtotriggeran  
overvoltage condition and VLn is configured to trigger an  
undervoltagecondition.Withthisconfiguration,anOVcon-  
ditionoccurswhenthesupplyvoltageismorenegativethan  
the configured threshold and a UV condition occurs when  
thevoltageislessnegativethantheconfiguredthreshold.  
LTC2914  
+
REF  
+
1V  
V
n
LTC2914  
VHn  
R
R
R
C
A
VHn  
+
+
OV  
UV  
UV  
OV  
n
n
n
+
+
0.5V  
R
0.5V  
B
B
+
+
n
VLn  
VLn  
R
R
A
C
2914 F01  
2914 F02  
V
n
Figure ±1 3-Resistor Positive UV/OV Monitoring Configuration  
Figure 21 3-Resistor Negative UV/OV Monitoring Configuration  
2914f  
8
LTC2914  
U
W U U  
APPLICATIO S I FOR ATIO  
For positive supply monitoring, V is the desired nominal  
1. Find R to set the OV trip point of the monitor.  
A
n
operatingvoltage,I isthedesirednominalcurrentthrough  
n
0.5V 5V  
the resistive divider, V is the desired overvoltage trip  
OV  
RA =  
45.3k  
10µA 5.5V  
point and V is the desired undervoltage trip point.  
UV  
2. Find R to set the UV trip point of the monitor.  
B
For negative supply monitoring, to compensate for the 1V  
reference, 1V must be subtracted from V , V and V  
n
OV  
UV  
0.5V 5V  
10µA 4.5V  
RB =  
– 45.3k 10.2k  
before using each in the following equations.  
±1 Choose R to obtain the desired OV trip point  
A
3. Determine R to complete the design.  
C
R is chosen to set the desired trip point for the  
A
5V  
10µA  
overvoltage monitor.  
RC =  
– 45.3k 10.2k 442k  
Vn  
VOV  
0.5V  
In  
RA =  
(1)  
Negative Voltage Monitor Example  
21 Choose R to obtain the desired UV trip point  
AnegativevoltagemonitorapplicationisshowninFigure 4.  
The monitored voltage is a –5V 10ꢀ supply. Nominal  
current in the resistive divider is 10µA. For the negative  
B
Once R is known, R is chosen to set the desired trip  
A
B
point for the undervoltage monitor.  
case, 1V is subtracted from V , V and V .  
n
OV  
UV  
Vn  
VUV  
0.5V  
In  
1. Find R to set the OV trip point of the monitor.  
(2)  
RB =  
RA  
A
0.5V –5V 1V  
10µA –5.5V 1V  
RA =  
46.4k  
31 Choose R to Complete the Design  
C
Once R and R are known, R is determined by:  
A
B
C
2. Find R to set the UV trip point of the monitor.  
B
Vn  
In  
(3)  
RC =  
RA RB  
0.5V 5V 1V  
10µA 4.5V 1V  
RB =  
46.4k 8.45k  
If any of the variables V , I , V or V change, then each  
step must be recalculated.  
n
n
UV  
OV  
3. Determine R to complete the design.  
C
–5V – 1V  
10µA  
RC =  
46.4k 8.45k 549k  
Positive Voltage Monitor Example  
ApositivevoltagemonitorapplicationisshowninFigure 3.  
The monitored voltage is a 5V 10ꢀ supply. Nominal cur-  
rent in the resistive divider is 10µA.  
V
CC  
5V  
V1  
5V 10%  
V
CC  
5V  
V
CC  
REF  
LTC2914  
VH3  
OV  
UV  
R
A
R
C
V
46.4k  
CC  
442k  
VH1  
LTC2914  
VL1  
OV  
R
8.45k  
B
R
10.2k  
B
VL3  
SEL  
UV  
R
549k  
C
R
45.3k  
A
GND  
SEL  
GND  
2914 F04  
V3  
–5V 10%  
2914 F03  
Figure 31 Positive Supply Monitor  
Figure 41 Negative Supply Monitor  
2914f  
9
LTC2914  
U
W U U  
APPLICATIO S I FOR ATIO  
Power-Up/Power-Down  
RC • 0.99  
VUV(MIN) = 0.5V • 0.985 • 1+  
AssoonasV reaches1Vduringpower-up,theUVoutput  
CC  
R +R 1.01  
(
)
A
B
asserts low and the OV output weakly pulls to V .  
CC  
and  
The LTC2914 is guaranteed to assert UV low and OV high  
underconditionsoflowV ,downtoV =1V.AboveV =  
CC  
CC  
CC  
RC 1.01  
R +R • 0.99  
2V (2.1V maximum) the VH and VL inputs take control.  
VUV(MAX) = 0.5V 1.015 • 1+  
(
)
A
B
Once all VH inputs and V become valid an internal timer  
CC  
is started. After an adjustable delay time, UV weakly pulls  
high.  
RC  
RA +RB  
For a desired trip point of 4.5V,  
= 8  
Threshold Accuracy  
Therefore,  
Resetthresholdaccuracyisimportantinasupply-sensitive  
system.Ideally,suchasystemresetsonlyifsupplyvoltages  
fall outside the exact thresholds for a specified margin.  
All LTC2914 inputs have a relative threshold accuracy of  
1.5ꢀ over the full operating temperature range.  
0.99  
1.01  
VUV(MIN) = 0.5V • 0.985 • 1+ 8  
= 4.354V  
= 4.650V  
and  
1.01  
0.99  
VUV(MAX) = 0.5V 1.015 • 1+ 8  
For example, when the LTC2914 is programmed to moni-  
tor a 5V input with a 10ꢀ tolerance, the desired UV trip  
point is 4.5V. Because of the 1.5ꢀ relative accuracy of  
the LTC2914, the UV trip point is between 4.433V and  
4.567V which is 4.5V 1.5ꢀ.  
Glitch Immunity  
In any supervisory application, noise riding on the moni-  
tored DC voltage causes spurious resets. To solve this  
problem without adding hysteresis, which causes a new  
error term in the trip voltage, the LTC2914 lowpass filters  
the output of the first stage comparator at each input. This  
filter integrates the output of the comparator before as-  
serting the UV or OV logic. A transient at the input of the  
comparator of sufficient magnitude and duration triggers  
the output logic. The Typical Performance Characteristics  
section shows a graph of the Transient Duration vs Com-  
parator Overdrive.  
Likewise, the accuracy of the resistances chosen for R ,  
A
R and R affect the UV and OV trip points as well. Us-  
B
C
ing the example just given, if the resistances used to set  
the UV trip point have 1ꢀ accuracy, the UV trip range is  
between 4.354V and 4.650V. This is illustrated in the fol-  
lowing calculations.  
The UV trip point is given as:  
RC  
RA +RB  
VUV = 0.5V 1+  
The two extreme conditions, with a relative accuracy of  
1.5ꢀ and resistance accuracy of 1ꢀ, result in:  
2914f  
10  
LTC2914  
U
W U U  
APPLICATIO S I FOR ATIO  
UV/OV Timing  
Undervoltage Lockout  
TheLTC2914hasanadjustabletimeoutperiod(t  
)that  
When V falls below 2V, the LTC2914 asserts an  
UOTO  
CC  
holds OV or UV asserted after all faults have cleared. This  
assures a minimum reset pulse width allowing a settling  
time delay for the monitored voltage after it has entered  
the valid region of operation.  
undervoltage lockout (UVLO) condition. During UVLO,  
UV is asserted and pulled low while OV is cleared and  
blocked from asserting. When V rises above 2V, UV  
CC  
follows the same timing procedure as an undervoltage  
condition on any input.  
When any VH input drops below its designed threshold,  
the UV pin asserts low. When all inputs recover above  
their designed thresholds, the UV output timer starts. If  
all inputs remain above their designed thresholds when  
the timer finishes, the UV pin weakly pulls high. However,  
if any input falls below its designed threshold during this  
time-outperiod,thetimerresetsandrestartswhenallinputs  
areabovethedesignedthresholds.TheOVoutputbehaves  
as the UV output when LATCH is high (LTC2914-1).  
Shunt Regulator  
The LTC2914 has an internal shunt regulator. The V pin  
CC  
operates as a direct supply input for voltages up to 6V.  
Under this condition, the quiescent current of the device  
remains below a maximum of 100µA. For V voltages  
CC  
higher than 6V, the device operates as a shunt regulator  
and must have a resistance R between the supply and the  
Z
V
CC  
pin to limit the current to no greater than 10mA.  
Selecting the UV/OV Timing Capacitor  
Whenchoosingthisresistancevalue,chooseanappropriate  
locationontheI-VcurveshownintheTypicalPerformance  
The UV and OV timeout period (t  
) for the LTC2914  
UOTO  
is adjustable to accommodate a variety of applications.  
Connecting a capacitor, C , between the TMR pin and  
Characteristics section to accommodate variations in V  
CC  
due to changes in current through R .  
TMR  
Z
ground sets the timeout period. The value of capacitor  
needed for a particular timeout period is:  
UV and OV Output Characteristics  
–9  
The DC characteristics of the UV and OV pull-up and  
pull-down strength are shown in the Typical Performance  
Characteristicssection.Eachpinhasaweakinternalpull-up  
C
= t  
• 115 • 10 (F/s)  
TMR  
UOTO  
The Reset Timeout Period vs Capacitance graph found in  
theTypicalPerformanceCharacteristicsshowsthedesired  
delay time as a function of the value of the timer capacitor  
that must be used. The TMR pin must have a minimum of  
toV andastrongpull-downtoground.Thisarrangement  
CC  
allows these pins to have open-drain behavior while pos-  
sessing several other beneficial characteristics. The weak  
pull-up eliminates the need for an external pull-up resistor  
when the rise time on the pin is not critical. On the other  
hand, the open-drain configuration allows for wired-OR  
connections and is useful when more than one signal  
10pF or be tied to V . For long timeout periods, the only  
CC  
limitation is the availability of a large value capacitor with  
low leakage. Capacitor leakage current must not exceed  
the minimum TMR charging current of 1.3µA. Tying the  
TMR pin to V bypasses the timeout period.  
CC  
needs to pull down on the output. V of 1V guarantees  
CC  
a maximum V = 0.15V at UV.  
OL  
2914f  
11  
LTC2914  
U
W U U  
APPLICATIO S I FOR ATIO  
AtV =1V,theweakpull-upcurrentonOVisbarelyturned  
OV Latch (LTC29±4-±)  
CC  
on. Therefore, an external pull-up resistor of no more than  
100kisrecommendedontheOVpinifthestateandpull-up  
With the LATCH pin held low, the OV pin latches low when  
an OV condition is detected. The latch is cleared by raising  
the LATCH pin high. If an OV condition clears while LATCH  
is held high, the latch is bypassed and the OV pin behaves  
the same as the UV pin with a similar timeout period at the  
output. If LATCH is pulled low while the timeout period is  
active, the OV pin latches as before.  
strength of the OV pin is crucial at very low V .  
CC  
Note however, by adding an external pull-up resistor, the  
pull-up strength on the OV pin is increased. Therefore, if  
it is connected in a wired-OR connection, the pull-down  
strength of any single device must accommodate this  
additional pull-up strength.  
Disable (LTC29±4-2)  
Output Rise and Fall Time Estimation  
The LTC2914-2 allows disabling the UV and OV outputs  
via the DIS pin. Pulling DIS high forces both outputs to  
remain weakly pulled high, regardless of any faults that  
occur on the inputs. However, if a UVLO condition oc-  
curs, UV asserts and pulls low, but the timeout function  
is bypassed. UV pulls high as soon as the UVLO condition  
is cleared.  
The UV and OV outputs have strong pull-down capabil-  
ity. The following formula estimates the output fall time  
(90ꢀ to 10ꢀ) for a particular external load capacitance  
(C  
):  
LOAD  
t
≈ 2.2 • R • C  
PD LOAD  
FALL  
where R is the on-resistance of the internal pull-down  
PD  
DIS has a weak 2µA (typical) internal pull-down current  
guaranteeing normal operation with the pin left open.  
transistor, typically 50Ω at V > 1V and at room tem-  
CC  
perature (25°C). C  
is the external load capacitance  
on the pin. Assuming a 150pF load capacitance, the fall  
LOAD  
time is 16.5ns.  
The rise time on the UV and OV pins is limited by a 400k  
pull-up resistance to V . A similar formula estimates the  
CC  
output rise time (10ꢀ to 90ꢀ) at the UV and OV pins:  
t
≈ 2.2 • R • C  
PU LOAD  
RISE  
where R is the pull-up resistance.  
PU  
2914f  
12  
LTC2914  
U
TYPICAL APPLICATIO S  
Quad UV/OV Supply Monitor, ±05 Tolerance, .V, 313V, 21.V, ±18V  
5V  
3.3V  
2.5V  
1.8V  
P0WER  
SUPPLIES  
C
0.1µF  
BYP  
1
16  
R
C1  
V
CC  
44.2k  
14  
11  
12  
VH1  
SEL  
R
R
C2  
B1  
LTC2914-1  
27.4k  
1k  
2
3
VL1  
OV  
SYSTEM  
VH2  
R
R
1k  
A1  
B2  
UV  
4.53k  
4
VL2  
REF  
VH3  
10  
5
R
R
4.53k  
C3  
A2  
19.6k  
13  
LATCH  
R
R
1k  
C4  
B3  
12.4k  
6
7
VL3  
VH4  
R
1k  
R
4.53k  
B4  
A3  
8
VL4  
GND TMR  
R
A4  
4.53k  
2914 TA02  
9
15  
C
TMR  
TIMEOUT = 200ms  
22nF  
Dual Positive and Dual Negative UV/OV Supply Monitor,  
±05 Tolerance, .V, 313V, –.V, –313V  
5V  
P0WER  
SUPPLIES  
3.3V  
C
0.1µF  
BYP  
16  
R
C1  
V
CC  
44.2k  
1
VH1  
R
1k  
R
B1  
C2  
27.4k  
2
3
VL1  
VH2  
11  
12  
OV  
R
1k  
R
B2  
A1  
LTC2914-1  
4.53k  
4
VL2  
UV  
LATCH  
SEL  
10  
REF  
VH3  
SYSTEM  
R
4.53k  
R
A2  
A3  
4.64k  
13  
14  
5
R
R
A4  
B3  
8454.64k  
6
7
VL3  
VH4  
R
C3  
54.9k  
R
B4  
768Ω  
8
VL4  
GND TMR  
R
C4  
37.4k  
9
15  
C
TMR  
2.2nF  
TIMEOUT = 20ms  
–3.3V  
–5V  
2914 TA03  
2914f  
13  
LTC2914  
Triple UV/OV Supply Monitor Powered ꢀrom 48V, ±05 Tolerance, 48V, .V, 21.V  
48V  
R
Z
P0WER  
SUPPLIES  
8.25k  
5V  
2.5V  
C
0.1µF  
BYP  
16  
R
C1  
V
475k  
CC  
1
14  
VH1  
SEL  
R
1k  
R
C2  
B1  
44.2k  
2
3
15  
11  
VL1  
VH2  
TMR  
OV  
SYSTEM  
R
R
B2  
A1  
LTC2914-1  
4.53k 1k  
12  
13  
4
10  
5
VL2  
REF  
VH3  
UV  
R
R
A2  
C3  
4.53k  
19.6k  
LATCH  
R
1k  
B3  
6
7
VL3  
VH4  
R
4.53k  
A3  
8
VL4  
GND  
2914 TA04  
9
2914f  
14  
LTC2914  
U
PACKAGE DESCRIPTIO  
DHC Package  
16-Lead Plastic DFN (5mm × 3mm)  
(Reference LTC DWG # 05-08-1706)  
R = 0.115  
0.40 0.10  
5.00 0.10  
(2 SIDES)  
TYP  
16  
9
R = 0.20  
TYP  
0.65 0.05  
3.50 0.05  
1.65 0.05  
3.00 0.10 1.65 0.10  
(2 SIDES) (2 SIDES)  
PIN 1  
2.20 0.05 (2 SIDES)  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
NOTCH  
PACKAGE  
OUTLINE  
(DHC16) DFN 1103  
8
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.00 – 0.05  
0.200 REF  
0.25 0.05  
0.50 BSC  
4.40 0.10  
(2 SIDES)  
4.40 0.05  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 .005  
.150 – .165  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
2914f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC2914  
U
TYPICAL APPLICATIO  
Quad UV/OV Supply Monitor with LED Undervoltage and Overvoltage Indicator  
and Manual Undervoltage Reset Button, ±05 Tolerance, ±2V, .V, 313V, 21.V  
12V  
5V  
3.3V  
P0WER  
SUPPLIES  
2.5V  
0.1µF  
510Ω  
510Ω  
44.2k  
1k  
V
CC  
VH1  
SEL  
OV  
LED  
LED  
27.4k  
VL1  
VH2  
SYSTEM  
4.53k 1k  
4.53k 19.6k  
LTC2914-1  
VL2  
UV  
REF  
VH3  
LATCH  
1k  
2.05M  
10k  
VL3  
VH4  
4.53k 100k  
VL4  
GND TMR  
2914 TA06  
C
TMR  
TIMEOUT = 200ms  
22nF  
MANUAL  
RESET BUTTON  
(NORMALLY OPEN)  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC1326/  
LTC1326-2.5  
LTC1726-2.5/  
LTC1726-5  
LTC1727-2.5/  
LTC1727-5  
LTC1728-1.8/  
LTC1728-3.3  
LTC1728-2.5/  
LTC1728-5  
Micropower Precision Triple Supply Monitor for 5V/2.5V,  
3.3V and ADJ  
Micropower Triple Supply Monitor for 2.5V/5V, 3.3V and  
ADJ  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Open-Drain Reset  
4.725V, 3.118V, 1V Threshold ( 0.75ꢀ)  
Adjustable RESET and Watchdog Time-Outs  
Individual Monitor Outputs in MSOP  
5-Lead SOT-23 Package  
5-Lead SOT-23 Package  
LTC1985-1.8  
LTC2900  
Micropower Triple Supply Monitor with Push-Pull Reset  
Programmable Quad Supply Monitor  
5-Lead SOT-23 Package  
Adjustable RESET, 10-Lead MSOP and 3mm x 3mm 10-Lead  
DFN Package  
LTC2901  
LTC2902  
Programmable Quad Supply Monitor  
Programmable Quad Supply Monitor  
Adjustable RESET and Watchdog Timer, 16-Lead SSOP Package  
Adjustable RESET and Tolerance, 16-Lead SSOP Package,  
Margining Functions  
LTC2903  
LTC2904  
LTC2905  
LTC2906  
LTC2907  
LTC2908  
LTC2909  
Precision Quad Supply Monitor  
Three-State Programmable Precision Dual Supply Monitor  
Three-State Programmable Precision Dual Supply Monitor  
Precision Dual Supply Monitor 1 Selectable and 1 Adjustable Separate VCC Pin, RST/RST Outputs  
Precision Dual Supply Monitor 1 Selectable and 1 Adjustable Separate VCC, Adjustable Reset Timer  
Precision Six Supply Monitor  
6-Lead SOT-23 Package, Ultralow Voltage Reset  
Adjustable Tolerance, 8-Lead SOT-23 Package  
Adjustable RESET and Tolerance, 8-Lead SOT-23 Package  
8-Lead TSOT-23 and 3mm × 2mm DFN Packages  
Separate VCC Pin, Adjustable Reset Timer, 8-Lead TSOT-23 and  
3mm × 2mm DFN Packages  
Precision Dual Input UV, OV and Negative Voltage Monitor  
2914f  
LT 0606 • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY