LTC2914IGN-2#PBF [Linear]

LTC2914 - Quad UV/OV Positive/Negative Voltage Monitor; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LTC2914IGN-2#PBF
型号: LTC2914IGN-2#PBF
厂家: Linear    Linear
描述:

LTC2914 - Quad UV/OV Positive/Negative Voltage Monitor; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C

文件: 总18页 (文件大小:253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2914  
Quad UV/OV  
Positive/Negative  
Voltage Monitor  
FeaTures  
DescripTion  
TheLTC®2914isaquadinputvoltagemonitorintendedfor  
monitoring multiple voltages in a variety of applications.  
Dual inputs for each monitored voltage allow monitor-  
ing four separate undervoltage (UV) conditions and four  
separate overvoltage (OV) conditions. All monitors share  
a common undervoltage output and a common overvolt-  
age output. The LTC2914-1 has latching capability for the  
overvoltage output. The LTC2914-2 has functionality to  
disable both the overvoltage and undervoltage outputs.  
n
Monitors Four Voltages Simultaneously  
n
Adjustable UV and OV Trip Values  
n
Guaranteed Threshold Accuracy: ±±1.5 oꢀ  
Monitored Voltage over Temperature  
n
Input Glitch Rejection  
n
Monitors up to Two Negative Voltages  
n
Buffered 1V Reference Output  
n
Adjustable Reset Timeout with Timeout Disable  
n
62µA Quiescent Current  
n
Open-Drain OV and UV Outputs  
Polarity selection and a buffered reference allow monitor-  
ing up to two separate negative voltages. A three-state  
input pin allows setting the polarity of two inputs without  
requiringanyexternalcomponents.Glitchfilteringensures  
reliable reset operation without false or noisy triggering.  
n
Guaranteed OV and UV for V ≥ 1V  
CC  
n
Available in 16-Lead SSOP and 16-Lead  
(5mm × 3mm) DFN Packages  
applicaTions  
The LTC2914 provides a precise, versatile, space-con-  
scious, micropower solution for voltage monitoring.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Desktop and Notebook Computers  
n
Network Servers  
n
Core, I/O Voltage Monitors  
Typical applicaTion  
Quad UV/OV Supply Monitor,±05 Tolerance, .V, 313V, 21.V, ±18V  
5V  
3.3V  
2.5V  
1.8V  
P0WER  
SUPPLIES  
Input Threshold Voltage  
0.1μF  
vs Temperature  
0.505  
0.504  
0.503  
0.502  
44.2k  
V
CC  
VH1  
SEL  
1k  
27.4k  
VL1  
VH2  
OV  
SYSTEM  
0.501  
0.500  
0.499  
0.498  
0.497  
0.496  
0.495  
LTC2914-1  
4.53k 1k  
4.53k 19.6k  
UV  
VL2  
REF  
VH3  
LATCH  
1k  
12.4k  
VL3  
VH4  
–50  
–25  
25  
50  
75  
100  
0
4.53k 1k  
TEMPERATURE (°C)  
VL4  
2914 TA01b  
GND TMR  
4.53k  
2914 TA01a  
C
TMR  
22nF  
TIMEOUT = 200ms  
2914fc  
1
For more information www.linear.com/LTC2914  
LTC2914  
absoluTe MaxiMuM raTings (Notes ±, 2)  
Terminal Voltages  
Operating Temperature Range  
V
(Note 3)............................................. –0.3V to 6V  
LTC2914C ................................................ 0°C to 70°C  
LTC2914I .............................................–40°C to 85°C  
LTC2914H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
CC  
OV, UV ................................................... –0.3V to 16V  
TMR..........................................–0.3V to (V + 0.3V)  
CC  
VLn, VHn, LATCH, DIS, SEL ...................–0.3V to 7.5V  
Terminal Currents  
I
....................................................................10mA  
SSOP ................................................................300°C  
VCC  
Reference Load Current (I ) ........................... 1mA  
REF  
I , I ...............................................................10mA  
UV OV  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
VH1  
VL1  
VH2  
VL2  
VH3  
VL3  
VH4  
VL4  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
CC  
VH1  
VL1  
VH2  
VL2  
VH3  
VL3  
VH4  
VL4  
1
2
3
4
5
6
7
8
16 V  
CC  
TMR  
SEL  
15 TMR  
14 SEL  
LATCH/DIS  
UV  
13 LATCH/DIS  
12 UV  
17  
OV  
11 OV  
REF  
10 REF  
GND  
9
GND  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
= 150°C, θ = 110°C/W  
DHC PACKAGE  
16-LEAD (5mm × 3mm) PLASTIC DFN  
T
JMAX  
JA  
T
= 150°C, θ = 43.5°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 17)  
PCB GND CONNECTION OPTIONAL  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
29141  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2914CDHC-1#PBF  
LTC2914IDHC-1#PBF  
LTC2914HDHC-1#PBF  
LTC2914CDHC-2#PBF  
LTC2914IDHC-2#PBF  
LTC2914HDHC-2#PBF  
LTC2914CGN-1#PBF  
LTC2914IGN-1#PBF  
LTC2914HGN-1#PBF  
LTC2914CDHC-1#TRPBF  
LTC2914IDHC-1#TRPBF  
LTC2914HDHC-1#TRPBF  
LTC2914CDHC-2#TRPBF  
LTC2914IDHC-2#TRPBF  
LTC2914HDHC-2#TRPBF  
LTC2914CGN-1#TRPBF  
LTC2914IGN-1#TRPBF  
LTC2914HGN-1#TRPBF  
16-Lead Plastic (5mm × 3mm) DFN  
16-Lead Plastic (5mm × 3mm) DFN  
16-Lead Plastic (5mm × 3mm) DFN  
16-Lead Plastic (5mm × 3mm) DFN  
16-Lead Plastic (5mm × 3mm) DFN  
16-Lead Plastic (5mm × 3mm) DFN  
16-Lead Plastic SSOP  
29141  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
29141  
29142  
29142  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
29142  
29141  
2914I1  
2914H1  
16-Lead Plastic SSOP  
–40°C to 85°C  
–40°C to 125°C  
16-Lead Plastic SSOP  
2914fc  
2
For more information www.linear.com/LTC2914  
LTC2914  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2914CGN-2#PBF  
LTC2914IGN-2#PBF  
LTC2914HGN-2#PBF  
TAPE AND REEL  
PART MARKING*  
29142  
PACKAGE DESCRIPTION  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
16-Lead Plastic SSOP  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2914CGN-2#TRPBF  
LTC2914IGN-2#TRPBF  
LTC2914HGN-2#TRPBF  
2914I2  
–40°C to 85°C  
2914H2  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.*The temperature grade is identified by a label on the shipping container  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the speciꢀications which apply over the ꢀull operating  
elecTrical characTerisTics  
DIS = Open unless otherwise noted1 (Note 2)  
temperature range, otherwise speciꢀications are at TA = 2.°C1 VCC = 313V, VLn = 014.V, VHn = 01..V, LATCH = VCC, SEL = VCC  
,
SYMBOL  
PARAMETER  
CONDITIONS  
I = 5mA  
CC  
MIN  
6.2  
TYP  
6.6  
MAX  
6.9  
UNITS  
V
l
l
l
l
l
l
l
l
l
l
l
l
V
V
Shunt Regulator Voltage  
SHUNT  
CC  
CC  
–40ºC < T < 125ºC  
6.2  
6.6  
7.0  
V
A
V
Shunt Regulator Load Regulation  
I
CC  
= 2mA to 10mA  
200  
300  
mV  
V
ΔV  
SHUNT  
V
V
V
Supply Voltage (Note 3)  
2.3  
V
SHUNT  
CC  
Minimum V Output Valid  
DIS = 0V  
Rising, DIS = 0V  
1
V
CCR(MIN)  
CC(UVLO)  
CC  
Supply Undervoltage Lockout  
Supply Undervoltage Lockout Hysteresis  
Supply Current  
V
CC  
1.9  
5
2
25  
62  
1
2.1  
50  
V
DIS = 0V  
mV  
µA  
V
ΔV  
CC(UVHYST)  
I
CC  
V
CC  
= 2.3V to 6V  
100  
V
REF  
Reference Output Voltage  
I
= 1mA  
0.985  
0.985  
492  
1.015  
1.020  
508  
VREF  
–40ºC < T < 125ºC  
1
V
A
V
Undervoltage/Overvoltage Voltage Threshold  
500  
125  
mV  
µs  
UOT  
UOD  
t
I
Undervoltage/Overvoltage Voltage Threshold VHn = V  
to Output Delay  
– 5mV or VLn = V  
+ 5mV  
50  
500  
UOT  
UOT  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
VHn, VLn Input Current  
15  
30  
nA  
nA  
ms  
ms  
V
VHL  
–40ºC < T < 125ºC  
A
t
UV/OV Time-Out Period  
C
TMR  
= 1nF  
6
6
8.5  
8.5  
12.5  
14  
UOTO  
–40ºC < T < 125ºC  
A
V
V
OV Latch Clear Input High  
OV Latch Clear Threshold Input Low  
LATCH Input Current  
DIS Input High  
1.2  
LATCH(IH)  
LATCH(IL)  
LATCH  
0.8  
1
V
I
V
LATCH  
> 0.5V  
µA  
V
V
V
1.2  
DIS(IH)  
DIS(IL)  
DIS  
DIS Input Low  
0.8  
3
V
I
I
DIS Input Current  
V
V
> 0.5V  
1
2
µA  
µA  
µA  
µA  
µA  
DIS  
TMR Pull-Up Current  
= 0V  
–1.3  
–1.2  
1.3  
–2.1  
–2.1  
2.1  
–2.8  
–2.8  
2.8  
2.8  
TMR(UP)  
TMR  
–40ºC < T < 125ºC  
A
I
TMR Pull-Down Current  
V
TMR  
= 1.6V  
TMR(DOWN)  
–40ºC < T < 125ºC  
1.2  
2.1  
A
2914fc  
3
For more information www.linear.com/LTC2914  
LTC2914  
The l denotes the speciꢀications which apply over the ꢀull operating  
elecTrical characTerisTics  
DIS = Open unless otherwise noted1 (Note 2)  
temperature range, otherwise speciꢀications are at TA = 2.°C1 VCC = 313V, VLn = 014.V, VHn = 01..V, LATCH = VCC, SEL = VCC  
,
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
–180  
1
TYP  
MAX  
UNITS  
mV  
l
l
V
V
V
Timer Disable Voltage  
Output Voltage High UV/OV  
Output Voltage Low UV/OV  
Referenced to V  
–270  
TMR(DIS)  
OH  
CC  
UV/OV  
UV/OV  
V
= 2.3V, I  
= –1µA  
V
CC  
l
l
V
CC  
V
CC  
= 2.3V, I  
= 2.5mA  
0.1  
0.01  
0.3  
0.15  
V
V
OL  
= 1V, I = 100µA  
UV  
Three-State Input SEL  
l
l
l
l
l
l
l
V
V
V
Low Level Input Voltage  
0.4  
V
V
IL  
IH  
Z
High Level Input Voltage  
1.4  
0.7  
0.6  
Pin Voltage when Left in Hi-Z State  
I
= 10µA  
0.9  
0.9  
1.1  
1.2  
25  
V
SEL  
–40ºC < T < 125ºC  
V
A
I
I
t
SEL High, Low Input Current  
Maximum SEL Input Current  
Latch Clear Pulse Width  
µA  
µA  
µs  
SEL  
SEL Tied to Either V or GND  
30  
SEL(MAX)  
PW  
CC  
(Note 4)  
2
Note ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: V maximum pin voltage is limited by input current. Since the  
CC  
V
pin has an internal 6.5V shunt regulator, a low impedance supply that  
CC  
exceeds 6V may exceed the rated terminal current. Operation from higher  
voltage supplies requires a series dropping resistor. See Applications  
Information.  
Note 2: All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
Note 4: Guaranteed by design, not subject to test.  
2914fc  
4
For more information www.linear.com/LTC2914  
LTC2914  
TiMing DiagraMs  
VHn Monitor Timing  
VLn Monitor Timing  
V
V
UOT  
VHn  
VLn  
UOT  
t
t
t
t
UOTO  
UOD  
UOTO  
UOD  
UV  
1V  
OV  
1V  
2914 TD01  
2914 TD02  
VHn Monitor Timing (TMR Pin Strapped to VCC  
)
VLn Monitor Timing (TMR Pin Strapped to VCC  
)
V
V
UOT  
VHn  
VLn  
UOT  
t
t
t
t
UOD  
UOD  
UOD  
UOD  
UV  
1V  
OV  
1V  
2914 TD03  
2914 TD04  
NOTE: WHEN AN INPUT IS CONFIGURED AS A NEGATIVE SUPPLY MONITOR, VHn WILL TRIGGER AN OV CONDITION AND VLn WILL TRIGGER A UV CONDITION  
Typical perForMance characTerisTics  
Speciꢀications are at TA = 2.°C, VCC = 313V unless otherwise noted1  
Input Threshold Voltage  
vs Temperature  
VCC Shunt Voltage  
vs Temperature  
Supply Current vs Temperature  
75  
70  
65  
60  
55  
50  
45  
40  
6.8  
6.7  
6.6  
6.5  
6.4  
6.3  
6.2  
0.505  
0.504  
0.503  
0.502  
0.501  
0.500  
0.499  
0.498  
0.497  
0.496  
0.495  
V
= 5V  
CC  
CC  
10mA  
5mA  
V
= 3.3V  
2mA  
1mA  
V
= 2.3V  
CC  
200μA  
–50  
–25  
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
0
–50  
–25  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2914 G01  
2914 G03  
2914 G02  
2914fc  
5
For more information www.linear.com/LTC2914  
LTC2914  
Typical perForMance characTerisTics  
Speciꢀications are at TA = 2.°C, VCC = 313V unless otherwise noted1  
Buꢀꢀered Reꢀerence Voltage  
vs Temperature  
Transient Duration  
vs Comparator Overdrive  
VCC Shunt Voltage vs ICC  
6.75  
6.65  
6.55  
6.45  
6.35  
6.25  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
700  
600  
500  
400  
300  
200  
100  
0
RESET OCCURS  
ABOVE CURVE  
25°C  
–40°C  
85°C  
V
= 6V  
CC  
V
= 2.3V  
CC  
–50  
–25  
25  
50  
75  
100  
–2  
0
2
4
6
8
10  
12  
0
0.1  
1
10  
100  
TEMPERATURE (°C)  
I
(mA)  
COMPARATOR OVERDRIVE PAST THRESHOLD (%)  
CC  
2914 G06  
2914 G05  
2914 G04  
Reset Timeout Period  
vs Temperature  
UV Output Voltage vs VCC  
UV Output Voltage vs VCC  
12  
11  
10  
9
0.8  
0.6  
0.4  
0.2  
0
5
C
= 1nF  
VHn = 0.55V  
SEL = V  
TMR  
CC  
V
CC  
4
3
2
1
0
UV WITH  
10k PULL-UP  
8
UV WITHOUT  
10k PULL-UP  
7
6
–50  
0
25  
50  
75  
100  
–25  
0
0.2  
0.4  
0.6  
0.8  
1.0  
0
1
2
3
4
5
TEMPERATURE (°C)  
SUPPLY VOLTAGE, V (V)  
SUPPLY VOLTAGE, V (V)  
CC  
CC  
2914 G07  
2914 G08  
2914 G09  
UV/OV Voltage Output Low  
Reset Timeout Period  
vs Capacitance  
UV, ISINK vs VCC  
vs Output Sink Current  
1.0  
0.8  
0.6  
0.4  
10000  
1000  
100  
5
4
3
2
1
0
VHn = 0.45V  
SEL = V  
CC  
85°C  
25°C  
UV AT 150mV  
–40°C  
UV AT 50mV  
10  
1
0.2  
0
0
10  
15  
(mA)  
20  
25  
30  
5
0.1  
1
10  
100  
(nF)  
1000  
0
1
2
3
4
5
I
TMR PIN CAPACITANCE, C  
SUPPLY VOLTAGE, V (V)  
TMR  
UV/OV  
CC  
2914 G12  
2914 G11  
2914 G10  
2914fc  
6
For more information www.linear.com/LTC2914  
LTC2914  
pin FuncTions  
UV(Pin±2):UndervoltageLogicOutput.Assertslowwhen  
any positive polarity input voltage is below threshold or  
any negative polarity input voltage is above threshold.  
Held low for an adjustable delay time after all voltage  
DIS (Pin ±3, LTC29±4-2): Output Disable Input. Disables  
the OV and UV output pins. When DIS is pulled high, the  
OV and UV pins are not asserted except during a UVLO  
condition.Pinhasaweak(2µA)internalpull-downtoGND.  
Leave pin open if unused.  
inputs are valid. Pin has a weak pull-up to V and may  
CC  
be pulled above V using an external pull-up. Leave pin  
CC  
Exposed Pad (Pin ±7, DFN Package): Exposed Pad may  
be left open or connected to device ground.  
open if unused.  
V
CC  
(Pin ±6): Supply Voltage. Bypass this pin to GND with  
GND (Pin 9): Device Ground  
a 0.1µF (or greater) capacitor. Operates as a direct supply  
input for voltages up to 6V. Operates as a shunt regula-  
tor for supply voltages greater than 6V and must have a  
resistance between the pin and the supply to limit input  
current to no greater than 10mA. When used without a  
current-limitingresistance,pinvoltagemustnotexceed6V.  
LATCH(Pin±3,LTC29±4-±):OVLatchClear/BypassInput.  
When pulled low, OV is latched when asserted. When  
pulled high, OV latch is cleared. While held high, OV has  
the same delay and output characteristics as UV.  
OV (Pin ±±): Overvoltage Logic Output. Asserts low when  
any positive polarity input voltage is above threshold or  
any negative polarity input voltage is below threshold.  
Latched low (LTC2914-1). Held low for an adjustable  
delay time after all inputs are valid (LTC2914-2). Pin has  
VH±/VH2(Pin±/Pin3):VoltageHighInputs1and2.When  
the voltage on this pin is below 0.5V, an undervoltage  
condition is triggered. Tie pin to V if unused.  
CC  
VH3/VH4 (Pin ./Pin 7): Voltage High Inputs 3 and 4. The  
polarity of the input is selected by the state of the SEL pin  
(refer to Table 1). When the monitored input is configured  
as a positive voltage, an undervoltage condition is trig-  
gered when the pin is below 0.5V. When the monitored  
input is configured as a negative voltage, an overvoltage  
condition is triggered when the pin is below 0.5V. Tie pin  
a weak pull-up to V and may be pulled above V using  
CC  
CC  
an external pull-up. Leave pin open if unused.  
REF (Pin ±0): Buffered Reference Output. 1V reference  
used for the offset of negative-monitoring applications.  
The buffered reference sources and sinks up to 1mA. The  
referencedrivescapacitiveloadsup to 1nF. Largercapaci-  
tive loads may cause instability. Leave pin open if unused.  
to V if unused.  
CC  
SEL (Pin ±4): Input Polarity Select Three-State Input.  
VL±/VL2 (Pin 2/Pin 4): Voltage Low Inputs 1 and 2. When  
thevoltageonthispinisabove0.5V,anovervoltagecondi-  
tion is triggered. Tie pin to GND if unused.  
Connect to V , GND or leave unconnected in open state  
CC  
to select one of three possible input polarity combinations  
(refer to Table 1).  
VL3/VL4 (Pin 6/Pin 8): Voltage Low Inputs 3 and 4. The  
polarity of the input is selected by the state of the SEL pin  
(refer to Table 1). When the monitored input is configured  
as a positive voltage, anovervoltage condition is triggered  
when the pin is above 0.5V. When the monitored input is  
configured as a negative voltage, an undervoltage condi-  
tion is triggered when the pin is above 0.5V. Tie pin to  
GND if unused.  
T
MR (Pin ±.): Reset Delay Timer. Attach an external  
capacitor (C  
) of at least 10pF to GND to set a reset  
TMR  
delay time of 9ms/nF. A 1nF capacitor will generate an  
8.5ms reset delay time. Tie pin to V to bypass timer.  
CC  
2914fc  
7
For more information www.linear.com/LTC2914  
LTC2914  
block DiagraM  
16  
15  
TMR  
V
CC  
V
CC  
VH1  
+
400k  
OSCILLATOR  
1
UV  
12  
+
UV PULSE  
GENERATOR  
VL1  
VH2  
2
3
+
V
UVLO  
CC  
+
2V  
V
400k  
+
CC  
OV PULSE  
VL2  
VH3  
UVLO  
GENERATOR  
OV  
4
5
11  
DISABLE  
+
OV LATCH  
CLEAR/BYPASS  
LATCH  
+
+
13  
13  
VL3  
VH4  
1V  
1V  
6
7
LTC2914-1  
LTC2914-2  
+
DIS  
+
2μA  
+
VL4  
8
GND  
9
0.5V  
REF  
THREE-STATE  
POLARITY  
DECODER  
10  
1V  
SEL  
14  
BUFFER  
2914 -1 BD  
2914fc  
8
For more information www.linear.com/LTC2914  
LTC2914  
applicaTions inForMaTion  
Voltage Monitoring  
The three-state input pin SEL is connected to GND, V or  
CC  
left unconnected during normal operation. When the pin  
is left unconnected, the maximum leakage allowed from  
the pin is 10µA to ensure it remains in the open state.  
Table 1 shows the three possible selections of polarity  
based on the SEL pin connection.  
The LTC2914 is a low power quad voltage monitoring cir-  
cuit with four undervoltage and four overvoltage inputs. A  
timeout period that holds OV or UV asserted after all faults  
have cleared is adjustable using an external capacitor and  
is externally disabled.  
Table ±1 Voltage Polarity Programming (VUOT = 01.V Typical)  
Each voltage monitor has two inputs (VHn and VLn) for  
detectingundervoltageandovervoltageconditions.When  
SEL  
V3 INPUT  
V4 INPUT  
V
Positive  
Positive  
CC  
configured to monitor a positive voltage V using the  
n
VH3 < V  
UV  
OV  
VH4 < V  
UV  
OV  
UOT  
UOT  
UOT  
UOT  
3-resistor circuit configuration shown in Figure 1, VHn is  
connected to the high-side tap of the resistive divider and  
VLnisconnectedtothelow-sidetapoftheresistivedivider.  
If an input is configured as a negative voltage monitor, the  
VL3 > V  
VL4 > V  
Open  
GND  
Positive  
Negative  
VH3 < V  
UV  
OV  
VH4 < V  
OV  
UV  
UOT  
UOT  
UOT  
UOT  
VL3 > V  
VL4 > V  
outputsUV andOV inFigure1areswappedinternally.V  
n
n
n
Negative  
Negative  
is then connected as shown in Figure 2. Note, VHn is still  
connected to the high-side tap and VLn is still connected  
to the low-side tap.  
VH3 < V  
OV  
VH4 < V  
OV  
UV  
UOT  
UOT  
UOT  
UOT  
VL3 > V  
UV  
VL4 > V  
3-Step Design Procedure  
Polarity Selection  
The following 3-step design procedure allows selecting  
appropriateresistancestoobtainthedesiredUVandOVtrip  
points for the positive voltage monitor circuit in Figure 1  
and the negative voltage monitor circuit in Figure 2. 1%  
resistor tolerances are suggested to maintain the 1.5%  
threshold accuracy.  
Thethree-statepolarity-selectpin(SEL)selectsoneofthree  
possible polarity combinations for the input thresholds,  
as described in Table 1. When an input is configured for  
negativesupplymonitoring,VHnisconfiguredtotriggeran  
overvoltage condition and VLn is configured to trigger an  
undervoltagecondition.Withthisconfiguration,anOVcon-  
ditionoccurswhenthesupplyvoltageismorenegativethan  
the configured threshold and a UV condition occurs when  
thevoltageislessnegativethantheconfiguredthreshold.  
LTC2914  
+
REF  
+
1V  
V
n
LTC2914  
VHn  
R
C
+
R
R
A
VHn  
+
UV  
OV  
n
OV  
UV  
n
+
R
0.5V  
B
+
0.5V  
B
+
+
n
VLn  
n
VLn  
R
A
R
C
2914 F01  
2914 F02  
V
n
Figure ±1 3-Resistor Positive UV/OV Monitoring Conꢀiguration  
Figure 21 3-Resistor Negative UV/OV Monitoring Conꢀiguration  
2914fc  
9
For more information www.linear.com/LTC2914  
LTC2914  
applicaTions inForMaTion  
V1  
V
CC  
5V  
For positive supply monitoring, V is the desired nomi-  
n
5V ±10%  
nal operating voltage, I is the desired nominal current  
nd  
R
C
through the resistive divider, I is the resistive divider  
V
CC  
na  
442k  
VH1  
OV  
current calculated using the 1% resistor R . V is the  
A
OV  
R
B
LTC2914  
10k  
desired overvoltage trip point and V is the desired  
UV  
VL1  
UV  
undervoltage trip point.  
R
A
45.3k  
SEL  
GND  
For negative supply monitoring, to compensate for the 1V  
2914 F03  
reference, 1V must be subtracted from V , V and V  
n
OV  
UV  
before using each in the following equations.  
Figure 31 Positive Supply Monitor  
1A.Find R to set the OV trip point of the monitor.  
±A1Choose R to obtain the desired OV trip point  
A
A
R is chosen to set the desired trip point for the over-  
0.5V 5V  
10µA 5.5V  
A
RA =  
45.3k  
voltage monitor.  
0.5V Vn  
1B.Calculate I  
na  
RA =  
(1)  
In VOV  
±B1Calculate I  
0.5V 5V  
Ina =  
=10.034µA  
na  
45.3k 5.5V  
2. Find R to set the UV trip point of the monitor.  
0.5V Vn  
B
Ina =  
RA VOV  
0.5V  
5V  
RB =  
45.3k 10k  
10.034µA 4.5V  
21 Choose R to obtain the desired UV trip point  
B
3. Determine R to complete the design.  
Once R is known, R is chosen to set the desired trip  
C
A
B
point for the undervoltage monitor.  
5V  
10.034µA  
RC =  
45.3k10k 442k  
0.5V Vn  
RB =  
–RA  
(2)  
Ina VUV  
31 Choose R to Complete the Design  
Negative Voltage Monitor Example ±  
C
AnegativevoltagemonitorapplicationisshowninFigure 4.  
The monitored voltage is a –5V 10% supply. Nominal  
current in the resistive divider is 10µA. For the negative  
Once R and R are known, R is determined by:  
A
B
C
Vn  
Ina  
RC =  
–RA RB  
(3)  
case, 1V is subtracted from V , V and V .  
n
OV  
UV  
1A. Find R to set the OV trip point of the monitor.  
A
If any of the variables V , I , I , V or V change, then  
n
na nd UV  
OV  
each step must be recalculated.  
0.5V –5V 1V  
RA =  
46.4k  
10µA –5.5V 1V  
1B. Calculate I  
Positive Voltage Monitor Example  
na  
ApositivevoltagemonitorapplicationisshowninFigure 3.  
The monitored voltage is a 5V 10% supply. Nominal  
current in the resistive divider is 10µA.  
0.5V –5V 1V  
46.4k –5.5V 1V  
Ino  
= 9.947µA  
2. Find R to set the UV trip point of the monitor.  
B
0.5V  
–5V 1V  
RB =  
46.4k 8.45k  
9.947µA –4.5V 1V  
2914fc  
10  
For more information www.linear.com/LTC2914  
LTC2914  
applicaTions inForMaTion  
3. Determine R to complete the design.  
2. Calculate R  
based on the desired undervoltage trip  
VUV  
C
CUV  
point of –6V.  
–5V 1V  
9.947µA  
RC =  
46.4k8.45k 549k  
RCUV =(RAUV +RBUV )•  
=
V
VREF  
CC  
5V  
–6V –1V  
(49.9k+49.9k)•  
3. Calculate R and I  
698k  
V
CC  
1V  
REF  
OV  
UV  
R
A
LTC2914  
46.4k  
AOV  
na  
VH3  
VL3  
R
B
8.45k  
V
REF 0.5V 1V 0.5V  
SEL  
RAOV  
=
=
49.9k  
R
C
Ind  
10µA  
GND  
549k  
2914 F04  
V3  
–5V ±10%  
Ina 10.020µA  
4. Calculate R  
for a desired overvoltage trip point of  
Figure 41 Negative Supply Monitor  
BOV  
–30V.  
Negative Voltage Monitoring Example 2  
0.5V – VOV 0.5V 30–1  
RBOV  
=
=
3.01M  
Ina  
10.020µA  
Negativevoltagemonitoringapplicationswithwideoperat-  
ing voltage ranges such that:  
V
CC  
5V  
2•VUV < VOV  
V
CC  
create situations where the VH or VL pins exceeds the  
–0.3V absolute maximum voltage ratings. To ensure that  
the LTC2914 operates within its design specifications,  
utilize the equations shown below to determine proper  
resistor sizing for the circuit in Figure 5. In the following  
example, the undervoltage trip point is –6V. The overvolt-  
age trip point is –30V.  
REF  
VH3  
VL3  
OV  
UV  
R
AOV  
LTC2914  
49.9k  
R
AUV  
49.9k  
R
BOV  
3.01M  
SEL  
R
BUV  
GND  
D1  
49.9k  
A
2914 F05  
R
CUV  
698k  
1A. Find R  
and R  
and let node A be a virtual ground,  
AUV  
BUV  
V3  
which ensures that the diode current will not affect the  
voltage monitor threshold accuracy. Let the resistive  
Figure .1 Negative Supply Monitor ꢀor Wide Operating Range  
divider current I = 10µA.  
nd  
Power-Up/Power-Down  
V
REF 0.5V 1V 0.5V  
RAUV  
=
=
49.9k  
AssoonasV reaches1Vduringpower-up,theUVoutput  
Ind  
RAUV =RBUV  
1B. Calculate I using the resistor values chosen above.  
10µA  
CC  
asserts low and the OV output weakly pulls to V .  
CC  
The LTC2914 is guaranteed to assert UV low and OV high  
under conditions of low V , down to V = 1V. Above V  
na  
CC  
CC  
CC  
= 2V (2.1V maximum) the VH and VL inputs take control.  
V
REF 0.5V 1V 0.5V  
RAUV  
Ina =  
=
10.020µA  
Once all VH inputs and V become valid an internal timer  
CC  
RAUV  
is started. After an adjustable delay time, UV weakly pulls  
high.  
2914fc  
11  
For more information www.linear.com/LTC2914  
LTC2914  
applicaTions inForMaTion  
Threshold Accuracy  
Glitch Immunity  
Resetthresholdaccuracyisimportantinasupply-sensitive  
system.Ideally,suchasystemresetsonlyifsupplyvoltages  
fall outside the exact thresholds for a specified margin.  
All LTC2914 inputs have a relative threshold accuracy of  
1.5% over the full operating temperature range.  
In any supervisory application, noise riding on the moni-  
tored DC voltage causes spurious resets. To solve this  
problem without adding hysteresis, which causes a new  
error term in the trip voltage, the LTC2914 lowpass filters  
the output of the first stage comparator at each input. This  
filter integrates the output of the comparator before as-  
serting the UV or OV logic. A transient at the input of the  
comparator of sufficient magnitude and duration triggers  
the output logic. The Typical Performance Characteristics  
section shows a graph of the Transient Duration vs Com-  
parator Overdrive.  
For example, when the LTC2914 is programmed to moni-  
tor a 5V input with a 10% tolerance, the desired UV trip  
point is 4.5V. Because of the 1.5% relative accuracy of  
the LTC2914, the UV trip point is between 4.433V and  
4.567V which is 4.5V 1.5%.  
Likewise, the accuracy of the resistances chosen for R ,  
A
R and R affect the UV and OV trip points as well. Us-  
UV/OV Timing  
B
C
ing the example just given, if the resistances used to set  
the UV trip point have 1% accuracy, the UV trip range  
is between 4.354V and 4.650V. This is illustrated in the  
following calculations.  
TheLTC2914hasanadjustabletimeoutperiod(t  
)that  
UOTO  
holds OV or UV asserted after all faults have cleared. This  
assures a minimum reset pulse width allowing a settling  
time delay for the monitored voltage after it has entered  
the valid region of operation.  
The UV trip point is given as:  
When any VH input drops below its designed threshold,  
the UV pin asserts low. When all inputs recover above  
their designed thresholds, the UV output timer starts. If  
all inputs remain above their designed thresholds when  
the timer finishes, the UV pin weakly pulls high. However,  
if any input falls below its designed threshold during this  
time-out period, the timer resets and restarts when all  
inputs are above the designed thresholds. The OV output  
behavesastheUVoutputwhenLATCHishigh(LTC2914-1).  
B   
RC  
RA +R  
VUV = 0.5V 1+  
The two extreme conditions, with a relative accuracy of  
1.5% and resistance accuracy of 1%, result in:  
RC 0.99  
VUV(MIN) = 0.5V 0.985 1+  
R +R •1.01  
(
)
A
B
and  
Selecting the UV/OV Timing Capacitor  
RC •1.01  
VUV(MAX) = 0.5V •1.015 1+  
The UV and OV timeout period (t ) for the LTC2914  
UOTO  
R +R 0.99  
(
)
A
B
is adjustable to accommodate a variety of applications.  
Connecting a capacitor, C , between the TMR pin and  
RC  
RA +RB  
For a desired trip point of 4.5V,  
= 8  
TMR  
ground sets the timeout period. The value of capacitor  
needed for a particular timeout period is:  
Therefore,  
–9  
C
TMR  
= t  
• 115 • 10 (F/s)  
UOTO  
0.99  
1.01  
VUV(MIN) = 0.5V 0.985 1+8•  
= 4.354V  
= 4.650V  
The Reset Timeout Period vs Capacitance graph found in  
theTypicalPerformanceCharacteristicsshowsthedesired  
delay time as a function of the value of the timer capacitor  
that must be used. The TMR pin must have a minimum of  
and  
VUV(MAX) = 0.5V •1.015 1+8•  
1.01  
0.99  
10pF or be tied to V . For long timeout periods, the only  
CC  
limitation is the availability of a large value capacitor with  
2914fc  
12  
For more information www.linear.com/LTC2914  
LTC2914  
applicaTions inForMaTion  
low leakage. Capacitor leakage current must not exceed  
Note however, by adding an external pull-up resistor, the  
pull-up strength on the OV pin is increased. Therefore, if  
it is connected in a wired-OR connection, the pull-down  
strength of any single device must accommodate this  
additional pull-up strength.  
the minimum TMR charging current of 1.3µA. Tying the  
TMR pin to V bypasses the timeout period.  
CC  
Undervoltage Lockout  
When V falls below 2V, the LTC2914 asserts an under-  
CC  
Output Rise and Fall Time Estimation  
voltage lockout (UVLO) condition. During UVLO, UV is  
asserted and pulled low while OV is cleared and blocked  
The UV and OV outputs have strong pull-down capability.  
from asserting. When V rises above 2V, UV follows the  
The following formula estimates the output fall time (90%  
CC  
same timing procedure as an undervoltage condition on  
to 10%) for a particular external load capacitance (C  
):  
LOAD  
any input.  
t
≈ 2.2 • R • C  
PD LOAD  
FALL  
Shunt Regulator  
where R is the on-resistance of the internal pull-down  
PD  
transistor, typically 50Ω at V > 1V and at room tem-  
CC  
The LTC2914 has an internal shunt regulator. The V pin  
CC  
perature (25°C). C  
is the external load capacitance  
on the pin. Assuming a 150pF load capacitance, the fall  
LOAD  
operates as a direct supply input for voltages up to 6V.  
Under this condition, the quiescent current of the device  
time is 16.5ns.  
remains below a maximum of 100µA. For V voltages  
CC  
higher than 6V, the device operates as a shunt regulator  
The rise time on the UV and OV pins is limited by a 400k  
and must have a resistance R between the supply and  
pull-up resistance to V . A similar formula estimates the  
Z
CC  
the V pin to limit the current to no greater than 10mA.  
output rise time (10% to 90%) at the UV and OV pins:  
CC  
Whenchoosingthisresistancevalue,chooseanappropriate  
locationontheI-VcurveshownintheTypicalPerformance  
t
≈ 2.2 • R • C  
RISE PU LOAD  
where R is the pull-up resistance.  
PU  
Characteristics section to accommodate variations in V  
CC  
OV Latch (LTC29±4-±)  
due to changes in current through R .  
Z
With the LATCH pin held low, the OV pin latches low  
when an OV condition is detected. The latch is cleared by  
raising the LATCH pin high. If an OV condition changes  
while LATCH is held high, the latch is bypassed and the  
OV pin behaves the same as the UV pin with a similar  
timeout period at the output. If LATCH is pulled low while  
the timeout period is active, the OV pin latches as before.  
UV and OV Output Characteristics  
The DC characteristics of the UV and OV pull-up and  
pull-down strength are shown in the Typical Performance  
Characteristics section. Each pin has a weak internal  
pull-up to V and a strong pull-down to ground. This ar-  
CC  
rangement allows these pins to have open-drain behavior  
while possessing several other beneficial characteristics.  
The weak pull-up eliminates the need for an external pull-  
up resistor when the rise time on the pin is not critical.  
On the other hand, the open-drain configuration allows  
for wired-OR connections and is useful when more than  
Disable (LTC29±4-2)  
TheLTC2914-2allowsdisablingtheUVandOVoutputsvia  
theDISpin. PullingDIShighforcesbothoutputstoremain  
weakly pulled high, regardless of any faults that occur on  
the inputs. However, if a UVLO condition occurs, UV as-  
serts and pulls low, but the timeout function is bypassed.  
UV pulls high as soon as the UVLO condition is cleared.  
one signal needs to pull down on the output. V of 1V  
CC  
guarantees a maximum V = 0.15V at UV.  
OL  
AtV =1V,theweakpull-upcurrentonOVisbarelyturned  
CC  
on. Therefore, an external pull-up resistor of no more  
DIS has a weak 2µA (typical) internal pull-down current  
guaranteeing normal operation with the pin left open.  
than 100k is recommended on the OV pin if the state and  
pull-up strength of the OV pin is crucial at very low V .  
CC  
2914fc  
13  
For more information www.linear.com/LTC2914  
LTC2914  
Typical applicaTions  
Quad UV/OV Supply Monitor, ±05 Tolerance, .V, 313V, 21.V, ±18V  
5V  
3.3V  
2.5V  
1.8V  
P0WER  
SUPPLIES  
C
0.1μF  
BYP  
1
16  
R
C1  
V
CC  
44.2k  
14  
11  
12  
VH1  
SEL  
R
R
C2  
B1  
LTC2914-1  
27.4k  
1k  
2
3
VL1  
OV  
SYSTEM  
VH2  
R
A1  
R
B2  
UV  
4.53k  
1k  
4
VL2  
REF  
VH3  
10  
5
R
R
C3  
A2  
19.6k  
4.53k  
13  
LATCH  
R
R
C4  
12.4k  
B3  
1k  
6
7
VL3  
VH4  
R
R
B4  
1k  
A3  
4.53k  
8
VL4  
GND TMR  
R
A4  
4.53k  
2914 TA02  
9
15  
C
TMR  
TIMEOUT = 200ms  
22nF  
Dual Positive and Dual Negative UV/OV Supply Monitor,  
±05 Tolerance, .V, 313V, –.V, –313V  
5V  
P0WER  
SUPPLIES  
3.3V  
C
BYP  
0.1μF  
16  
R
C1  
V
CC  
44.2k  
1
VH1  
R
R
B1  
C2  
1k  
27.4k  
2
3
VL1  
VH2  
11  
12  
OV  
R
R
B2  
A1  
LTC2914-1  
1k  
4.53k  
4
VL2  
UV  
LATCH  
SEL  
10  
REF  
VH3  
SYSTEM  
R
4.53k  
R
A2  
A3  
4.64k  
13  
14  
5
R
R
A4  
B3  
845Ω 4.64k  
6
7
VL3  
VH4  
R
C3  
54.9k  
R
B4  
768Ω  
8
VL4  
GND TMR  
R
C4  
37.4k  
9
15  
C
TMR  
2.2nF  
TIMEOUT = 20ms  
–3.3V  
–5V  
2914 TA03  
2914fc  
14  
For more information www.linear.com/LTC2914  
LTC2914  
Typical applicaTions  
Triple UV/OV Supply Monitor Powered ꢀrom 48V, ±05 Tolerance, 48V, .V, 21.V  
48V  
R
Z
P0WER  
SUPPLIES  
8.25k  
5V  
2.5V  
C
0.1μF  
BYP  
16  
R
C1  
V
475k  
CC  
1
14  
VH1  
SEL  
R
R
C2  
B1  
1k  
44.2k  
2
3
15  
11  
VL1  
VH2  
TMR  
SYSTEM  
OV  
R
A1  
R
B2  
LTC2914-1  
4.53k 1k  
12  
13  
4
10  
5
VL2  
REF  
VH3  
UV  
R
R
A2  
C3  
4.53k  
19.6k  
LATCH  
R
B3  
1k  
6
7
VL3  
VH4  
R
4.53k  
A3  
8
VL4  
GND  
2914 TA04  
9
2914fc  
15  
For more information www.linear.com/LTC2914  
LTC2914  
package DescripTion  
Please reꢀer to http://www1linear1com/designtools/packaging/ ꢀor the most recent package drawings1  
DHC Package  
16-Lead Plastic DFN (5mm × 3mm)  
(Reference LTC DWG # 05-08-1706 Rev Ø)  
R = 0.115  
TYP  
0.40 0.10  
5.00 0.10  
(2 SIDES)  
9
16  
R = 0.20  
TYP  
0.65 0.05  
3.50 0.05  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
1.65 0.05  
3.00 0.10 1.65 0.10  
2.20 0.05 (2 SIDES)  
(2 SIDES)  
(2 SIDES)  
PIN 1  
NOTCH  
PACKAGE  
OUTLINE  
(DHC16) DFN 1103  
8
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50 BSC  
4.40 0.10  
(2 SIDES)  
4.40 0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC  
PACKAGE OUTLINE MO-229  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641 Rev B)  
.189 – .196*  
(4.801 – 4.978)  
.045 .005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 REV B 0212  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
2914fc  
16  
For more information www.linear.com/LTC2914  
LTC2914  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
10/10 Added t and Note 4 to Electrical Characteristics section  
4
9-13  
2
PW  
Updated equations and added Negative Voltage Monitoring Example 2 to Applications Information section  
12/13 Corrected LATCH/DIS label in Pin Configuration section  
C
2914fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LTC2914  
Typical applicaTion  
Quad UV/OV Supply Monitor with LED Undervoltage and Overvoltage Indicator  
and Manual Undervoltage Reset Button, ±05 Tolerance, ±2V, .V, 313V, 21.V  
12V  
5V  
3.3V  
2.5V  
P0WER  
SUPPLIES  
0.1μF  
510Ω  
510Ω  
44.2k  
1k  
V
CC  
VH1  
SEL  
LED  
LED  
27.4k  
VL1  
VH2  
SYSTEM  
OV  
4.53k 1k  
4.53k 19.6k  
LTC2914-1  
VL2  
UV  
REF  
VH3  
LATCH  
1k  
2.05M  
10k  
VL3  
VH4  
4.53k 100k  
VL4  
GND TMR  
2914 TA06  
C
TMR  
TIMEOUT = 200ms  
22nF  
MANUAL  
RESET BUTTON  
(NORMALLY OPEN)  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1326/  
Micropower Precision Triple Supply Monitor for 5V/2.5V, 3.3V  
and ADJ  
4.725V, 3.118V, 1V Threshold ( 0.75%)  
Adjustable RESET and Watchdog Time-Outs  
Individual Monitor Outputs in MSOP  
5-Lead SOT-23 Package  
LTC1326-2.5  
LTC1726-2.5/  
LTC1726-5  
LTC1727-2.5/  
LTC1727-5  
LTC1728-1.8/  
LTC1728-3.3  
LTC1728-2.5/  
LTC1728-5  
Micropower Triple Supply Monitor for 2.5V/5V, 3.3V and ADJ  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Open-Drain Reset  
5-Lead SOT-23 Package  
LTC1985-1.8  
LTC2900  
Micropower Triple Supply Monitor with Push-Pull Reset  
Programmable Quad Supply Monitor  
5-Lead SOT-23 Package  
Adjustable RESET, 10-Lead MSOP and 3mm × 3mm 10-Lead DFN  
Package  
LTC2901  
LTC2902  
Programmable Quad Supply Monitor  
Programmable Quad Supply Monitor  
Adjustable RESET and Watchdog Timer, 16-Lead SSOP Package  
Adjustable RESET and Tolerance, 16-Lead SSOP Package,  
Margining Functions  
LTC2903  
LTC2904  
LTC2905  
LTC2906  
LTC2907  
LTC2908  
LTC2909  
Precision Quad Supply Monitor  
6-Lead SOT-23 Package, Ultralow Voltage Reset  
Adjustable Tolerance, 8-Lead SOT-23 Package  
Adjustable RESET and Tolerance, 8-Lead SOT-23 Package  
Three-State Programmable Precision Dual Supply Monitor  
Three-State Programmable Precision Dual Supply Monitor  
Precision Dual Supply Monitor 1 Selectable and 1 Adjustable  
Precision Dual Supply Monitor 1 Selectable and 1 Adjustable  
Precision Six Supply Monitor  
Separate V Pin, RST/RST Outputs  
CC  
Separate V , Adjustable Reset Timer  
CC  
8-Lead TSOT-23 and 3mm × 2mm DFN Packages  
Precision Dual Input UV, OV and Negative Voltage Monitor  
Separate V Pin, Adjustable Reset Timer, 8-Lead TSOT-23 and  
CC  
3mm × 2mm DFN Packages  
2914fc  
LT 1213 REV C • PRINTED IN USA  
18 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2006  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2914  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY