LTC2933CGN#TRPBF [Linear]

LTC2933 - Programmable Hex Voltage Supervisor with EEPROM; Package: SSOP; Pins: 16; Temperature Range: 0°C to 70°C;
LTC2933CGN#TRPBF
型号: LTC2933CGN#TRPBF
厂家: Linear    Linear
描述:

LTC2933 - Programmable Hex Voltage Supervisor with EEPROM; Package: SSOP; Pins: 16; Temperature Range: 0°C to 70°C

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 光电二极管
文件: 总34页 (文件大小:284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2933  
Programmable Hex Voltage  
Supervisor with EEPROM  
FeaTures  
DescripTion  
The LTC®2933 is an EEPROM configurable voltage super-  
visor which can simultaneously monitor up to six power  
supply voltage inputs. Each voltage detector offers I C  
programmable over/undervoltage thresholds in various  
ranges and increments.  
n
Supervises 6 Power Supplies  
2
n
I C Adjustable UV and OV Trip Points  
2
n
Guaranteed Threshold Accuracy: ±±1  
2
n
I C/SMBus Interface  
n
Internal EEPROM  
n
256 Programmable Thresholds per Channel  
Two general purpose inputs (GPI) can be configured as  
programmable manual reset (MR), UV disable (UVDIS),  
margin (MARG) or auxiliary comparator (AUXC) inputs.  
Three general purpose pins (GPIO) can be configured for  
input or output operation. When configured as an input, a  
GPIO pin can be mapped to any other GPIO configured as  
output. The GPIO pins can also be configured as ALERT  
or fault outputs. Faults can be configured with program-  
mable delay-on-release times. Output type and polarity  
are also configurable.  
n
Up to Three Range Settings per Channel  
n
Two General Purpose Inputs  
n
Three General Purpose Inputs/Outputs  
n
Programmable Output Delays  
n
Supply Voltage Range: 3.4V to 13.9V  
n
Supply Voltage Power Sharing from V1 to V4  
n
16-Pin 5mm × 4mm DFN and SSOP Packages  
applicaTions  
n
High Availability Computer Systems  
Status and history registers log faults and can be polled  
n
Network Servers  
2
via the I C interface. A fault snapshot is also backed up  
n
Telecom Equipment  
Data Storage Systems  
in internal EEPROM. All parameters are programmable  
n
2
via the I C interface. Configuration EEPROM supports  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
autonomous operation without additional software.  
Typical applicaTion  
Precision Multiple Power Supply Supervisor  
V± to V6 Threshold Error  
vs Temperature  
1
0.5  
0
12V  
5V  
3.3V  
2.5V  
1.8V  
DC/DC  
CONVERTERS  
1.5V  
100nF  
SYSTEM  
V1 V2 V3 V4 V5 V6  
GPIO1  
RST  
OV  
220nF  
V
–0.5  
DD33  
GPIO2  
LTC2933  
MR  
ALERT  
GPI1  
GPI2  
GPIO3  
SDA  
–1  
–50  
–25  
0
25  
50  
75  
100  
GND  
ASEL  
SCL  
TEMPERATURE (°C)  
2933 TA01b  
2933 TA01a  
2933fa  
1
For more information www.linear.com/LTC2933  
LTC2933  
absoluTe MaxiMuM raTings (Notes ±, 2)  
Supply Voltages:  
Operating Temperature Range:  
V1.......................................................... –0.3V to 14V  
V2, V3, V4................................................ –0.3V to 6V  
Input/Output Voltages:  
LTC2933C................................................ 0°C to 70°C  
LTC2933I.............................................–40°C to 85°C  
Storage Temperature Range ................ –65°C to 150°C*  
Maximum Junction Temperature ........................ 125°C*  
Lead Temperature Range (Soldering, 10 sec):  
SDA, SCL, GPI1, GPI2, V5, V6.................. –0.3V to 6V  
GPIO1, GPIO2, GPIO3 ............................ –0.3V to 14V  
V
.................................................... –0.3V to 3.6V  
SSOP Package..................................................300°C  
DD33  
ASEL...................................................0.3V to V  
DD33  
* See Applications Information section for detailed EEPROM derating  
information for junction temperatures in excess of 85°C.  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
V4  
V3  
V2  
V1  
1
2
3
4
5
6
7
8
16 V5  
1
2
3
4
5
6
7
8
V4  
V3  
V2  
V1  
16 V5  
15 V6  
15 V6  
14 GPI1  
13 GPI2  
12 SCL  
11 SDA  
10 GPIO1  
14 GPI1  
13 GPI2  
12 SCL  
11 SDA  
10 GPIO1  
17  
V
DD33  
GND  
V
DD33  
GND  
GPIO3  
ASEL  
GPIO3  
ASEL  
9
GPIO2  
9
GPIO2  
DHD16 PACKAGE  
16-LEAD (5mm × 4mm) PLASTIC DFN  
GN PACKAGE  
16-LEAD PLASTIC SSOP NARROW  
T
= 125°C, θ = 41.7°C/W, θ  
= 4.3°C/W  
JMAX  
JA  
JCbottom  
T
= 125°C, θ = 110°C/W, θ = 40°C/W  
JCtop  
JMAX  
JA  
EXPOSED PAD (PIN 17) PCB GND CONNECTION OPTIONAL  
http://www.linear.com/product/LTC2933#orderinfo  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2933CDHD#PBF  
LTC2933IDHD#PBF  
LTC2933CGN#PBF  
LTC2933IGN#PBF  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2933CDHD#TRPBF  
LTC2933IDHD#TRPBF  
LTC2933CGN#TRPBF  
LTC2933IGN#TRPBF  
2933  
2933  
2933  
2933  
16-Lead (5mm × 4mm) Plastic DFN  
16-Lead (5mm × 4mm) Plastic DFN  
16-Lead Plastic SSOP  
–40°C to 85°C  
0°C to 70°C  
16-Lead Plastic SSOP  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2933fa  
2
For more information www.linear.com/LTC2933  
LTC2933  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C and V± = ±2V. (Note 2)  
SYMBOL  
Power Supply Characteristics  
Vn Supply Voltage Range  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
l
l
V1  
3.4  
3.4  
13.9  
5.8  
V
V
V2 to V4  
V
V
V
Regulator Output Voltage  
Regulator Current Limit  
I
= –1mA  
= 0V  
DD33  
3.22  
–5.5  
3.3  
3.37  
V
DD33  
DD33  
DD33  
VDD33  
I
DD  
V
mA  
In  
V1 to V4 Supply Current  
Highest Voltage Supplies Current  
Writing to EEPROM  
0.7  
1.5  
mA  
mA  
SUP  
Voltage Supervisor Characteristics  
l
l
l
l
l
V1  
V1 Monitoring Range  
Medium Range  
High Range  
1
5.8  
13.9  
1.2  
3
V
V
RANGE  
2.5  
0.2  
0.5  
1
V2  
RANGE  
V6  
RANGE  
to  
V2 to V6 Monitoring Range  
Precision Range  
Low Range  
V
V
Medium Range  
5.8  
V
V1  
V1 Threshold Programming Step (LSB) Medium Range  
High Range  
20  
50  
4
mV  
mV  
mV  
mV  
mV  
STEP  
V2  
V6  
to  
V2 to V6 Threshold Programming Step  
(LSB)  
Precision Range  
Low Range  
STEP  
STEP  
10  
20  
Medium Range  
l
l
V1  
V1 Threshold Accuracy  
Medium Range, 3V < V1 < 5.8V  
Medium Range, 1V < V1 < 3V  
1.5  
45  
%
mV  
ERR  
l
l
High Range, 7.5V < V1 < 13.9V  
High Range, 2.5V < V1 < 7.5V  
1.5  
112.5  
%
mV  
l
l
V2  
ERR  
V6  
ERR  
to  
V2 to V6 Threshold Accuracy  
Precision Range, 0.6V < Vn < 1.2V  
Precision Range, 0.2V < Vn < 0.6V  
1
6
%
mV  
l
l
Low Range, 1.5V < Vn < 3 V  
Low Range, 0.5V < Vn < 1.5V  
1
15  
%
mV  
l
l
Medium Range, 3V < Vn < 5.8V  
Medium Range, 1V < Vn < 3V  
1
30  
%
mV  
l
R
Vn Input Impedance  
Vn Input Current  
Low, Medium and High Range  
200  
kΩ  
IN  
l
l
I
IN  
Precision Range, V2 to V4 = 1.2V  
Precision Range, V5 to V6 = 1.2V  
2
10  
µA  
nA  
t
Vn Comparator Response Time  
2LSB of Overdrive  
20LSB of Overdrive  
100  
25  
µs  
µs  
RT  
l
l
40  
Manual Reset Characteristics  
t
t
Input Pulse Width  
Glitch Rejection  
Active Low  
5
µs  
µs  
MRI  
1
1
MRR  
GPIn Characteristics  
l
l
l
V
Input Threshold Voltage  
Leakage Current  
0.6  
–5  
1.4  
2
V
µA  
µA  
ITH  
LEAK  
PU  
I
I
V
V
= 6V  
= 2V  
GPI  
GPI  
Internal Pull-Up Current  
–15  
–30  
2933fa  
3
For more information www.linear.com/LTC2933  
LTC2933  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C and V± = ±2V. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.5  
9
MAX  
UNITS  
Auxiliary Comparator Characteristics  
l
l
V
Input Threshold Voltage  
Input Current  
0.49  
0.51  
20  
V
nA  
µs  
ACIN  
ACIN  
ACRT  
I
t
Input Voltage = 0.5V  
40mV Overdrive  
Response Time  
GPIOn Characteristics  
l
l
l
l
V
V
Output Low Voltage  
Input Threshold Voltage  
Leakage Current  
I
= 3mA  
SINK  
0.4  
1.4  
2
V
V
OL  
ITH  
0.6  
–5  
1
I
I
t
V
V
= 13.9V  
= 2V  
µA  
µA  
LEAK  
PU  
GPIO  
GPIO  
Internal Pull-Up Current  
–15  
–30  
l
l
l
l
l
l
l
l
Programmable Output Delay-on-Release 000b  
0.001  
1.6  
0.050  
2.2  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
DRO  
001b  
1.1  
4.5  
17  
35  
143  
286  
1140  
GPIO1_DELAY_ON_RELEASE,  
010b  
6.4  
8.7  
GPIO2_DELAY_ON_RELEASE and  
011b  
26  
34  
GPIO3_DELAY_ON_RELEASE  
100b  
101b  
110b  
111b  
51  
69  
205  
410  
1640  
275  
550  
2200  
EEPROM Characteristics  
l
l
Retention  
Retention (Notes 5, 6)  
Endurance (Notes 5, 6)  
Fault Storage Time (Note 4)  
Programming Time  
Restore Time  
10  
Years  
Cycles  
ms  
Endurance  
10,000  
t
t
t
Backup Fault Storage Operation  
10  
100  
1
EEFS  
EEPR  
EERU  
2
I C NACK’s During STORE_USER Operation  
ms  
RESTORE_USER Command  
ms  
Digital Inputs SCL, SDA  
l
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Hysteresis (Note 4)  
Input Leakage Current  
2
V
V
IH  
0.8  
1
IL  
40  
mV  
µA  
HYST  
LEAK  
l
l
l
I
SCL, SDA = GND to 5.5V  
–1  
Digital Output SDA  
Digital Output Low Voltage  
Digital Input ASEL  
V
OL  
I
= 3mA  
SINK  
0.4  
V
V
V
IH  
Input High Threshold Voltage  
V
DD33  
0.4  
l
l
l
V
Input Low Threshold Voltage  
High, Low Input Current  
Hi-Z Input Current  
0.4  
–20  
–10  
V
µA  
µA  
IL  
I
I
ASEL = 0, V  
20  
10  
IH,IL  
FLOAT  
DD33  
0.5V < ASEL < V  
– 0.5V  
DD33  
Serial Bus Timing Characteristics (Note 3)  
l
l
l
l
l
f
t
t
t
t
Serial Clock Frequency  
10  
1.3  
0.6  
1.3  
600  
400  
kHz  
µs  
SCL  
Serial Clock LOW Period  
LOW  
HIGH  
BUF  
Serial Clock HIGH Period  
µs  
Bus Free Time Between STOP and START  
START Condition Hold Time  
µs  
ns  
HD:STA  
2933fa  
4
For more information www.linear.com/LTC2933  
LTC2933  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C and V± = ±2V. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
600  
600  
0
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
t
t
t
START Condition Setup Time  
STOP Condition Setup Time  
Data Hold Time  
SU:STA  
SU:STO  
HD:DAT  
ns  
LTC2933 Receiving Data  
ns  
LTC2933 Transmitting Data  
300  
100  
900  
ns  
t
t
t
Data Setup Time  
ns  
SU:DAT  
Pulse Width of Spike Suppressed  
100  
32  
ns  
SP  
Time Allowed to Complete Any Command  
After Which Time SDA Will Be Released  
and Command Terminated  
ms  
TIMEOUT_BUS  
Note ±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to GND unless otherwise  
specified.  
Note 4: Guaranteed by design, not directly tested.  
Note 5: EEPROM endurance and retention are guaranteed by design,  
characterization and correlation with statistical process controls. The  
minimum retention specification applies for devices whose EEPROM has  
been cycled less than the minimum endurance specification.  
Note 6: EEPROM endurance and retention will be degraded when T > 85°C.  
J
Note 3: Maximum capacitive load, C , for SCL and SDA is 400pF. Data and  
B
clock rise time (t ) and fall time (t ) are:  
r
f
(20 + 0.1 C )(ns) < t < 300ns, and  
B
r
(20 + 0.1 C )(ns) < t < 300ns  
B
f
C = capacitance of one bus line in pF. SCL and SDA external pull-up  
B
voltage, V , is 3V < V < 5.5V.  
IO  
IO  
2933fa  
5
For more information www.linear.com/LTC2933  
LTC2933  
TiMing DiagraMs  
Vn Supervisor Timing  
Vn  
Vn_THR  
t
RT  
t
DRO  
GPIOn  
2933 TD01  
I2C Timing  
SDA  
t
f
t
r
t
t
t
BUF  
t
t
r
LOW  
HD:STA  
SU:DAT  
t
SP  
t
f
SCL  
t
t
t
SU:STO  
HD:STA  
SU:STA  
t
S
Sr  
P
S
HD:DAT  
t
2933 TD02  
HIGH  
2933fa  
6
For more information www.linear.com/LTC2933  
LTC2933  
Typical perForMance characTerisTics  
V± to V4 Supply Current  
vs Supply Voltage  
VDD33 vs Supply Voltage  
VDD33 vs Temperature  
3.290  
3.285  
3.280  
3.275  
3.270  
400  
380  
360  
340  
320  
300  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
V1  
V1 = 13.9V  
V1 = 10V  
V1 = 5V  
V2-V4  
V1 = 3.4V  
0
3
6
9
12  
15  
0
3
6
9
12  
15  
–50  
–25  
0
25  
50  
75  
100  
3
100  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
2933 G02  
2933 G03  
2933 G01  
Aux Comp Response Time  
vs Overdrive  
V± Comp Response Time  
vs Overdrive  
V2 to V6 Comp Response Time  
vs Overdrive  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
50  
40  
30  
20  
10  
0
V1 = 1V  
V2-V6 = 0.2V  
V1 = 6V  
V2-V6 = 1.2V  
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
0
20  
40  
60  
80  
120  
OVERDRIVE (LSB)  
OVERDRIVE (LSB)  
OVERDRIVE (mV)  
2933 G04  
2933 G05  
2933 G06  
Normalized GPIO Delay  
vs Temperature  
GPIO Voltage  
GPIO Pins During Power-Up  
vs Output Sink Current  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
200  
150  
100  
50  
6
5
4
3
2
1
0
10k PULL-UP FROM GPIOn TO V1  
OD = 20LSB  
25°C  
OD = 2LSB  
0.85  
0.80  
0
1.5  
2
0
6
–50  
–25  
0
25  
50  
75 100 125  
0
0.5  
1
2.5  
3.5  
2
4
V1 (V)  
TEMPERATURE (°C)  
CURRENT (mA)  
2933 G07  
2933 G08  
2933 G09  
2933fa  
7
For more information www.linear.com/LTC2933  
LTC2933  
pin FuncTions  
ASEL: Ternary I C Bus Address Select. Can be connected  
2
V2 to V4: Low Voltage Supervisor Input. Programmable  
thresholds from 0.2V to 1.2V in 4mV increments (preci-  
sion range), from 0.5V to 3V in 10mV increments (low  
range) or from 1V to 5.8V in 20mV increments (medium  
range). Bypass this pin to ground with a 0.1µF (or greater)  
capacitor and apply 3.4V minimum through a low imped-  
ance, if used to power the part. The highest voltage on  
V1 to V4 is automatically selected as supply voltage. See  
the Applications Information section for information on  
unused channels.  
to ground, V  
, or left unconnected to select one of  
DD33  
three addresses.  
Exposed Pad (DFN Package Only): Ground. The exposed  
pad may be left open or connected to device ground.  
GND: Ground.  
GPIO±, GPIO2, GPIO3: General Purpose Input/Output.  
Each GPIO is configurable as either input, open-drain  
output, or weak pull-up output. Output polarity is pro-  
grammable. When configured as outputs, these pins  
respond to selectable UV conditions, OV conditions, MR,  
auxiliary comparator output, or other input-configured  
GPIOn with programmable delay-on-release. These pins  
can also be configured as ALERT per SMBus standard.  
When configured as inputs, each pin can be mapped to  
any other output. These pins have an optional 15µA pull-  
V5 to V6: Low Voltage Supervisor Input. Programmable  
thresholdsfrom0.2Vto1.2Vin4mVincrements(precision  
range), from 0.5V to 3V in 10mV increments (low range)  
or from 1V to 5.8V in 20mV increments (medium range).  
If unused, tie to ground. See the Applications Information  
section for information on unused channels.  
V
: 3.3V Internal Regulator Output. A 220nF capacitor  
DD33  
up to V  
. Unused GPIO pins should be tied to V  
DD33  
DD33  
to ground is required.  
or have their pull-up enabled.  
GPI±, GPI2: General Purpose Inputs. Configurable as one  
PIN NAME  
PIN TYPE  
PIN (DFN)  
PIN (SSOP)  
of four possibilities (no duplication):  
V4  
V3  
V2  
V1  
In  
In  
1
2
1
2
Manual reset (MR) input, active low, 15µA pull-up to  
DD33  
In  
3
3
V
In  
4
4
UVdisable(UVDIS),activelow,1Apull-uptoV  
.
.
DD33  
V
DD33  
Out  
Ground  
In/Out  
In  
5
5
Outputs ignore UV faults.  
GND  
GPIO3  
ASEL  
GPIO2  
GPIO1  
SDA  
6
6
Margin (MARG), active low, 15µA pull-up to V  
Outputs ignore both UV and OV faults.  
7
7
DD33  
8
8
In/Out  
In/Out  
In/Out  
In  
9
9
Hi-Z Auxiliary Comparator (AUXC) Input. Program-  
mable Polarity.  
10  
11  
12  
13  
14  
15  
16  
17  
10  
11  
12  
13  
14  
15  
16  
N/A  
2
SCL: I C Serial Clock (400kHz maximum). Needs external  
SCL  
pull-up resistor.  
GPI2  
In  
2
SDA: I C Serial Data. Needs external pull-up resistor.  
GPI1  
In  
V6  
In  
:HighVoltageSupervisorInput.Programmablethresh-  
olds,from1Vto5.8Vin20mVincrements(mediumrange)  
or from 2.5V to 13.9V in 50mV increments (high range).  
Bypass this pin to ground with a 0.1µF (or greater) capaci-  
tor and apply 3.4V minimum through a low impedance, if  
used to power the part. The highest voltage on V1 to V4  
is automatically selected as supply voltage. If unused, tie  
to ground. See the Applications Information section for  
information on unused channels.  
V5  
In  
Exposed Pad  
2933fa  
8
For more information www.linear.com/LTC2933  
LTC2933  
block DiagraM  
V
DD33  
I/O CELL 1  
EEPROM  
15µA  
POLARITY  
SELECT  
TIMING  
REGISTERS  
SCL  
SELECT  
GPIO1  
2
SDA  
I C  
INTERFACE  
DELAY-ON-  
RELEASE  
POLARITY  
ASEL  
GPIO2  
GPIO3  
CHANNEL 1  
V1_THR_HI  
I/O CELL 2  
I/O CELL 3  
V1_POL_HI  
REF  
8-BIT DAC  
COMP1_HI  
V1  
+
REFERENCE  
REF  
MUX  
V1_THR_LO  
8-BIT DAC  
+
INPUT CELL 1  
V
DD33  
COMP1_LO  
REF  
GND  
15µA  
V1_RANGE  
V1_POL_LO  
V2  
V3  
V4  
V5  
V6  
+
0.5V  
CHANNEL 2  
CHANNEL 3  
CHANNEL 4  
CHANNEL 5  
CHANNEL 6  
GPI1  
GPI2  
AUX  
COMP  
+
INPUT CELL 2  
REGULATOR  
V
DD33  
2933 BD  
2933fa  
9
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
The LTC2933 can perform the following operations:  
Threshold Accuracy  
2
The LTC2933 1% threshold accuracy specification  
improves the reliability of the system over supervisors  
with wider threshold tolerances. A less accurate voltage  
supervisor increases the required system voltage margin.  
Thisinturnincreasestheprobabilityofsystemmalfunction.  
Accept I C bus programming commands.  
Simultaneously monitor up to six inputs with respect  
to programmed fault limits.  
Configure and monitor for OV/UV faults using two  
independent comparators per channel.  
Consider a 5V 10% supply: it may vary between 4.5V and  
5.5V and the circuitry powered by it must operate reliably  
within this band. An ideal, perfectly accurate supervisor  
would generate a reset at exactly 4.5V. The LTC2933  
threshold varies 1% around the nominal threshold volt-  
age, in the medium range, if the selected value is greater  
than 3V. The reset threshold band and the power supply  
tolerance bands should not overlap, in order to prevent  
false alarms when the power supply actually meets its  
specified tolerance band (see Figure 1).  
Configuretwogeneralpurposeinputsasmanualreset  
(MR), undervoltage disable (UVDIS), margin (MARG)  
or auxiliary comparator (AUXC) inputs.  
Configure three general purpose inputs/outputs  
(GPIOn) to output faults, inputs from GPIn or from  
other GPIOn.  
Independently select each general purpose output  
polarity and type (open-drain or weak pull-up).  
A 10% threshold is usually set to 11% below the nominal  
input voltage, or 4.45V in this example. The threshold is  
guaranteed to be within the 4.4V to 4.5V band over tem-  
perature. To prevent malfunction, the powered system  
must operate reliably down to 4.4V.  
Independently select each general purpose output  
response delay-on-release (with respect to the mo-  
ment its condition is internally cleared).  
Generate interrupt (ALERT) signals in response to any  
voltage faults, as well as the logic state of the inputs.  
Store register contents to EEPROM.  
NOMINAL SUPPLY VOLTAGE  
5V  
Store voltage and timing fault history to EEPROM.  
SUPPLY TOLERANCE  
MINIMUM RELIABLE  
SYSTEM VOLTAGE  
IDEAL SUPERVISOR  
THRESHOLD  
RestoreEEPROMcontentsintotheoperatingmemory,  
2
by I C command and at power-up.  
4.5V  
4.45V  
4.4V  
–10%  
–11%  
–12%  
Report voltage fault status and history.  
Software write-protect the operating memory.  
REGION OF POTENTIAL MALFUNCTION  
2933 F01  
Figure ±. ±1 Threshold Accuracy Improves System Reliability  
2933fa  
10  
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
I C Serial Digital Interface  
2
generating SCL to allow the transfer. In the event of an  
OV/UV fault, the LTC2933 can be configured to assert the  
ALERT output low in order to notify the host.  
The LTC2933 communicates with a host (master) using  
2
the I C serial bus interface. The Timing Diagram shows  
the timing relationship of the signals on the bus. The two  
bus lines, SDA and SCL, must be high when the bus is  
not in use. External pull-up resistors or current sources  
are required on these lines.  
Slave Address  
The LTC2933 can respond to one of three addresses. By  
connecting the address ASEL input to V  
floating it, the slave address is determined as shown in  
the following table. The LTC2933 always responds to the  
special addresses.  
, GND, or by  
DD33  
The LTC2933 is a transmit/receive slave-only device. The  
master device must initiate data transfer on the bus by  
LTC2933 Slave Address Table  
ASEL  
0
HI-Z  
0x1D  
0x3A  
±
7-Bit Address  
8-Bit Address  
0x1C  
0x38  
0x1E  
0x3C  
LTC2933 Special Slave Addresses  
7-Bit  
Address  
8-Bit  
Address Description  
0x0C  
0x1B  
0x19  
0x36  
Alert Response Address. Independent of the ASEL pin.  
Global address to which all LTC2933’s will respond. Independent of the ASEL pin.  
Communication Protocols  
S
Sr  
START CONDITION  
REPEATED START CONDITION  
Rd READ (BIT VALUE OF 1)  
Wr WRITE (BIT VALUE OF 0)  
A
ACKNOWLEDGE (THIS BIT POSITION MAY BE 0  
FOR AN ACK OR 1 FOR A NACK)  
P
STOP CONDITION  
MASTER TO SLAVE  
SLAVE TO MASTER  
Send Byte Format  
1
7
1
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
P
Write Word Format  
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
P
Read Word Format  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
A
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr SLAVE ADDRESS Rd  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
P
2933 F00  
2933fa  
11  
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
Register Command Set  
COMMAND  
R/W/S  
DATA LENGTH COMMAND  
FUNCTION  
DESCRIPTION  
(See Note)  
(BITS)  
16  
BYTE  
0x00  
0x01  
DEFAULT VALUE  
1010_1010_1010_1000b  
X001_0000_X000_0000b  
WRITE_PROTECT Contains lock key code and write lock.  
R/W  
R/W  
GPI_CONFIG  
Configure GPI2 and GPI1 assignment, GPIOn mapping  
and MR internal response.  
16  
GPIO1_CONFIG  
Configure GPIO1 type, delay-on-release and mapping to  
GPIO2, GPIO3.  
R/W  
R/W  
16  
16  
0x02  
0x03  
X000_0000_0010_1011b  
0010_1011_0010_1011b  
GPIO2_3_CONFIG Configure GPIO3 type, delay-on-release and mapping  
to GPIO1 and GPIO2. Configure GPIO2 type, delay-on-  
release and mapping to GPIO1 and GPIO3.  
V1_THR  
Encode high and low voltage thresholds on channel V1.  
Encode high and low voltage thresholds on channel V2.  
Encode high and low voltage thresholds on channel V3.  
Encode high and low voltage thresholds on channel V4.  
Encode high and low voltage thresholds on channel V5  
Encode high and low voltage thresholds on channel V6.  
Encode comparator range, polarity and GPIOn mapping.  
Encode comparator range, polarity and GPIOn mapping.  
Encode comparator range, polarity and GPIOn mapping.  
Encode comparator range, polarity and GPIOn mapping.  
Encode comparator range, polarity and GPIOn mapping.  
Encode comparator range, polarity and GPIOn mapping.  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
1101_1110_1010_1000b  
1110_1001_1011_0001b  
1000_1011_0110_0101b  
1110_1001_1011_0001b  
1001_1011_0111_0011b  
0111_1010_0101_1000b  
XXXX_XX00_1000_1001b  
XXXX_XX00_1000_1001b  
XXXX_XX00_1000_1001b  
XXXX_XX01_1000_1001b  
XXXX_XX01_1000_1001b  
V2_THR  
V3_THR  
V4_THR  
V5_THR  
V6_THR  
V1_CONFIG  
V2_CONFIG  
V3_CONFIG  
V4_CONFIG  
V5_CONFIG  
V6_CONFIG  
R/W  
R
S
S
S
16  
16  
0
0
0
0x0F  
0x11  
0x1B  
0x1C  
0x1D  
XXXX_XX01_1000_1001b  
HISTORY_WORD Read the fault history. Read only.  
CLEAR_HISTORY Clear volatile memory history register. Write only.  
STORE_USER  
RESTORE_USER  
NA  
NA  
NA  
NA  
Store volatile memory to EEPROM. Write only.  
Restore volatile memory from EEPROM. Write only.  
BACKUP_WORD  
R
16  
0x1E  
NA  
Read the EEPROM backup of the first fault history.  
Read only.  
STATUS_WORD  
R
16  
0x1F  
NA  
Read the fault status. Read only.  
Note: R = read, W = write, S = send byte  
2933fa  
12  
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
DETAILED COMMAND REGISTER DESCRIPTIONS  
When locked, WRITE_LOCK can only be written to 0 if  
KEY matches the existing value in memory. For effective  
protection against false writes, KEY should contain at  
least one bit set to 1.  
WRITE_PROTECT (Command Byte 0x00)  
The WRITE_PROTECT command provides the ability to  
prevent any write operations into the volatile memory, if  
WRITE_LOCK=1.KEYmaybechangedwhenWRITE_LOCK  
= 0, or in the same command that sets WRITE_LOCK = 1.  
Writes to supported commands are ignored when  
WRITE_LOCK = 1. All commands may be read regardless  
of the WRITE_LOCK bit setting.  
WRITE_PROTECT Data Contents  
BIT(S)  
SYMBOL  
PURPOSE  
b[15:2]  
KEY  
Must match against programmed combination in order to deactivate write lock.  
Factory default 10_1010_1010_1010b (0x2AAA).  
b[1]  
b[0]  
Reserved  
Ignore  
WRITE_LOCK  
0: Unlocked. Writes to volatile memory are permitted.  
1: Locked. Writing to volatile memory is not permitted. To unlock, set WRITE_LOCK = 0 with the  
appropriate key.  
Factory default 0.  
2933fa  
13  
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
GPI_CONFIG (Command Byte 0x0±)  
The GPI_CONFIG command configures internal response  
to a manual reset, sets each GPI function, and option-  
ally maps GPI pins configured as Manual Reset (MR) or  
Auxiliary Comparator (AUXC) to one or more GPIO pins.  
GPI_CONFIG Data Contents  
BIT(S)  
b[15]  
b[14]  
SYMBOL  
OPERATION  
Reserved  
Ignore  
GPI2_MR_RESPONSE  
Effective only if the input GPI2 is MR configured.  
0: Disable CLEAR_HISTORY response.  
1: Enable CLEAR_HISTORY response on falling edge of GPI2.  
Factory default 0.  
b[13:11]  
GPI2_CONFIG  
000b: Manual Reset (MR) active low, 15µA pull-up.  
001b: Reserved.  
010b: Margin (MARG) active low, 15µA pull-up. Overvoltage and undervoltage faults are inhibited.  
011b: UV Disable (UVDIS) active low, 15µA pull-up. Undervoltage faults are inhibited.  
100b: and 101b: Auxiliary Comparator (AUXC) positive input on GPI2.  
110b: and 111b: Auxiliary Comparator (AUXC) negative input on GPI2.  
Factory default 010b.  
b[10]  
b[9]  
MAP_GPI2_TO_GPIO3  
MAP_GPI2_TO_GPIO2  
MAP_GPI2_TO_GPIO1  
0: GPI2 input is not mapped to GPIO3.  
1: GPI2 input is mapped to GPIO3 if configured as MR or AUXC.  
Factory default 0.  
0: GPI2 input is not mapped to GPIO2.  
1: GPI2 input is mapped to GPIO2 if configured as MR or AUXC.  
Factory default 0.  
b[8]  
0: GPI2 input is not mapped to GPIO1.  
1: GPI2 input is mapped to GPIO1 if configured as MR or AUXC.  
Factory default 0.  
b[7]  
b[6]  
Reserved  
Ignore  
GPI1_MR_RESPONSE  
Effective only if the input GPI1 is MR configured.  
0: Disable CLEAR_HISTORY response.  
1: Enable CLEAR_HISTORY response on falling edge of GPI1.  
Factory default 0.  
b[5:3]  
GPI1_CONFIG  
000b: Manual Reset (MR) active low, 15µA pull-up.  
001b: Reserved.  
010b: Margin (MARG) active low, 15µA pull-up. Overvoltage and undervoltage faults are inhibited.  
011b: UV Disable (UVDIS) active low, 15µA pull-up. Undervoltage faults are inhibited.  
100b: and 101b: Auxiliary Comparator (AUXC) positive input on GPI1.  
110b: and 111b: Auxiliary Comparator (AUXC) negative input on GPI1.  
Factory default 000b.  
b[2]  
b[1]  
b[0]  
MAP_GPI1_TO_GPIO3  
MAP_GPI1_TO_GPIO2  
MAP_GPI1_TO_GPIO1  
0: GPI1 input is not mapped to GPIO3.  
1: GPI1 input is mapped to GPIO3 if configured as MR or AUXC.  
Factory default 0.  
0: GPI1 input is not mapped to GPIO2.  
1: GPI1 input is mapped to GPIO2 if configured as MR or AUXC.  
Factory default 0.  
0: GPI1 input is not mapped to GPIO1.  
1: GPI1 input is mapped to GPIO1 if configured as MR or AUXC.  
Factory default 0.  
2933fa  
14  
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
GPIO±_CONFIG (Command Byte 0x02)  
LTC2933 acknowledges the alert response address (see  
SMBus protocol), HISTORY_WORD is read, or a CLEAR_  
HISTORYcommandisreceived. OnlyoneGPIOnpinshould  
be configured as ALERT. GPIOn_DELAY_ON_RELEASE  
does not apply to a GPIOn pin configured as ALERT.  
The GPIO1_CONFIG command configures the GPIO1  
mapping, delay-on-releasetime, outputtype, andpolarity.  
If GPIO1_TYPE_AND_POLARITY is configured as ALERT  
(100b or 111b), the output is latched and cleared after the  
GPIO±_CONFIG Data Contents  
BIT(S)  
b[15:8]  
b[7]  
SYMBOL  
OPERATION  
Reserved  
Ignore  
MAP_GPIO1_TO_GPIO3  
0: GPIO1 input is not mapped to GPIO3.  
1: GPIO1 input is mapped to GPIO3.  
Factory default 0.  
MAP_GPIO1_TO_GPIO2  
b[6]  
0: GPIO1 input is not mapped to GPIO2.  
1: GPIO1 input is mapped to GPIO2.  
Factory default 0.  
b[5:3]  
GPIO1_DELAY_ON_RELEASE  
000b: Delay selected is 0.  
001b: Delay selected is 1.6ms.  
010b: Delay selected is 6.4ms.  
011b: Delay selected is 26ms.  
100b: Delay selected is 51ms.  
101b: Delay selected is 205ms.  
110b: Delay selected is 410ms.  
111b: Delay selected is 1.64s.  
Factory default 101b (205ms).  
b[2:0]  
GPIO1_TYPE_AND_POLARITY  
000b: Active H input.  
001b: Active L input.  
010b: Active H open-drain output.  
011b: Active L open-drain output.  
100b: Active L open-drain ALERT output.  
101b: Active H, weak pull-up output.  
110b: Active L, weak pull-up output.  
111b: Active L, weak pull-up ALERT output.  
Factory default 011b (Active L open-drain output).  
2933fa  
15  
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
GPIO2_3_CONFIG (Command Byte 0x03)  
and is cleared after the LTC2933 acknowledges the alert  
responseaddress(seeSMBusprotocol),HISTORY_WORD  
is read, or a CLEAR_HISTORY command is received.  
Only one GPIOn pin should be configured as ALERT.  
GPIOn_DELAY_ON_RELEASE does not apply to a GPIOn  
pin configured as ALERT.  
The GPIO2_3_CONFIG command configures GPIO2 and  
GPIO3 mapping, delay-on-release time, output type, and  
polarity.IfGPIO2_TYPE_AND_POLARITYisconfiguredas  
ALERT(100bor111b),orGPIO3_TYPE_AND_POLARITYis  
configuredasALERT(100bor111b),theoutputislatched,  
GPIO2_3_CONFIG Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
b[15]  
MAP_GPIO3_TO_GPIO2  
0: GPIO3 is not mapped into GPIO2.  
1: GPIO3 is mapped into GPIO2.  
Factory default 0.  
b[14]  
MAP_GPIO3_TO_GPIO1  
0: GPIO3 is not mapped into GPIO1.  
1: GPIO3 is mapped into GPIO1.  
Factory default 0.  
b[13:11]  
GPIO3_DELAY_ON_RELEASE  
000b: Delay selected is 0.  
001b: Delay selected is 1.6ms.  
010b: Delay selected is 6.4ms.  
011b: Delay selected is 26ms.  
100b: Delay selected is 51ms.  
101b: Delay selected is 205ms.  
110b: Delay selected is 410ms.  
111b: Delay selected is 1.64s.  
Factory default 101b (205ms).  
b[10:8]  
GPIO3_TYPE_AND_POLARITY  
000b: Active H input.  
001b: Active L input.  
010b: Active H open-drain output.  
011b: Active L open-drain output.  
100b: Active L open-drain ALERT output.  
101b: Active H, weak pull-up output.  
110b: Active L, weak pull-up output.  
111b: Active L, weak pull-up ALERT output.  
Factory default 011b (Active L open-drain output).  
b[7]  
b[6]  
MAP_GPIO2_TO_GPIO3  
MAP_GPIO2_TO_GPIO1  
GPIO2_DELAY_ON_RELEASE  
0: GPIO2 is not mapped into GPIO3.  
1: GPIO2 is mapped into GPIO3.  
Factory default 0.  
0: GPIO2 is not mapped into GPIO1.  
1: GPIO2 is mapped into GPIO1.  
Factory default 0.  
b[5:3]  
000b: Delay selected is 0.  
001b: Delay selected is 1.6ms.  
010b: Delay selected is 6.4ms.  
011b: Delay selected is 26ms.  
100b: Delay selected is 51ms.  
101b: Delay selected is 205ms.  
110b: Delay selected is 410ms.  
111b: Delay selected is 1.64s.  
Factory default 101b (205ms).  
b[2:0]  
GPIO2_TYPE_AND_POLARITY  
000b: Active H input.  
001b: Active L input.  
010b: Active H open-drain output.  
011b: Active L open-drain output.  
100b: Active L open-drain ALERT output.  
101b: Active H, weak pull-up output.  
110b: Active L, weak pull-up output.  
111b: Active L, weak pull-up ALERT output.  
Factory default 011b (Active L open-drain output).  
2933fa  
16  
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
V±_THR (Command Byte 0x04), V2_THR (0x05),  
V3_THR (0x06), V4_THR (0x07),V5_THR (0x08),  
V6_THR (0x09)  
The Vn_THR command allows the user to specify the high  
and low threshold monitoring voltages on each channel.  
Vn_THR Data Contents Channels V± to V6  
BIT(S)  
SYMBOL  
OPERATION  
b[15:8]  
Vn_THR_HI  
The COMPn_HI threshold. See the Applications Information section. Factory default settings of 0xDE, 0xE9, 0x8B, 0xE9,  
0x9B, 0x7A correspond to 13.35V, 5.56V, 3.68V, 2.78V, 2.00V and 1.67V for channels V1 to V6, respectively.  
b[7:0]  
Vn_THR_LO  
The COMPn_LO threshold. See the Applications Information section. Factory default settings of 0xA8, 0xB1, 0x65, 0xB1,  
0x73, 0x58 correspond to 10.65V, 4.44V, 2.92V, 2.22V, 1.60V and 1.33V for channels V1 to V6, respectively.  
V±_CONFIG (Command Byte 0x0A), V2_CONFIG (0x0B),  
V3_CONFIG (0x0C), V4_CONFIG (0x0D),  
V5_CONFIG (0x0E), V6_CONFIG (0x0F)  
The Vn_CONFIG command programs V1 through V6  
comparator range, polarity and mapping to GPIOn.  
Vn_CONFIG Data Contents Channel V± to V6  
BIT(S)  
b[15:10]  
b[9:8]  
SYMBOL  
Reserved  
Vn_RANGE  
OPERATION  
Ignore  
Channel V1:  
00b: High Range.  
01b: Medium Range.  
10b and 11b: Reserved.  
Factory default 00b.  
Channels V2, V3, V4, V5 and V6:  
00b: Medium Range.  
01b: Low Range.  
10b and 11b: Precision Range.  
Factory defaults are 00b on V2 to V3 and 01b on V4, V5 and V6.  
b[7]  
b[6]  
Vn_POL_HI  
Vn_POL_LO  
Controls polarity of COMPn_HI output reported by STATUS_WORD. See STATUS_WORD  
description for details.  
0: Undervoltage. Indicates a fault when the input voltage is below Vn_THR_HI.  
1: Overvoltage. Indicates a fault when the input voltage is above Vn_THR_HI.  
Factory default 1.  
Controls polarity of COMPn_LO output reported by STATUS_WORD. See STATUS_WORD  
description for details.  
0: Undervoltage. Indicates a fault when the input voltage is below Vn_THR_LO.  
1: Overvoltage. Indicates a fault when the input voltage is above Vn_THR_LO.  
Factory default 0.  
b[5]  
b[4]  
b[3]  
MAP_COMPn_HI_TO_GPIO3  
MAP_COMPn_HI_TO_GPIO2  
MAP_COMPn_HI_TO_GPIO1  
0: High comparator not mapped to GPIO3.  
1: High comparator mapped to GPIO3.  
Factory default 0.  
0: High comparator not mapped to GPIO2.  
1: High comparator mapped to GPIO2.  
Factory default 0.  
0: High comparator not mapped to GPIO1.  
1: High comparator mapped to GPIO1.  
Factory default 1.  
2933fa  
17  
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
Vn_CONFIG Data Contents Channel V± to V6  
BIT(S)  
SYMBOL  
OPERATION  
b[2]  
MAP_COMPn_LO_TO_GPIO3  
0: Low comparator not mapped to GPIO3.  
1: Low comparator mapped to GPIO3.  
Factory default 0.  
b[1]  
b[0]  
MAP_COMPn_LO_TO_GPIO2  
MAP_COMPn_LO_TO_GPIO1  
0: Low comparator not mapped to GPIO2.  
1: Low comparator mapped to GPIO2.  
Factory default 0.  
0: Low comparator not mapped to GPIO1.  
1: Low comparator mapped to GPIO1.  
Factory default 1.  
HISTORY_WORD (Command Byte 0x±±)  
CLEAR_HISTORY (Command Byte 0x±B)  
The HISTORY_WORD command returns two bytes of  
information with a summary of the faults since power was  
applied or HISTORY_WORD was last cleared. HISTORY_  
WORD is located in volatile memory and is automatically  
updated each time a fault occurs. HISTORY_WORD is  
cleared using the CLEAR_HISTORY command.  
TheCLEAR_HISTORYcommandclearsallthefaultslogged  
in the volatile HISTORY_WORD register. A manual reset  
performsthesameoperationifGPIn_MR_RESPONSE=1.  
Clearing HISTORY_WORD does not affect the STATUS_  
WORD content. Processing of the CLEAR_HISTORY  
command typically takes less than 10ms, and the part will  
2
not acknowledge other I C operations during that time.  
HISTORY_WORD Data Contents  
BIT(S)  
b[15:13]  
b[12]  
SYMBOL  
OPERATION  
Reserved  
Ignore  
V6_HI_LATCHED_FAULT  
1: Latched V6_HI_FAULT.  
0: No fault.  
b[11]  
b[10]  
b[9]  
b[8]  
b[7]  
b[6]  
b[5]  
b[4]  
b[3]  
b[2]  
b[1]  
b[0]  
V6_LO_LATCHED_FAULT  
V5_HI_LATCHED_FAULT  
V5_LO_LATCHED_FAULT  
V4_HI_LATCHED_FAULT  
V4_LO_LATCHED_FAULT  
V3_HI_LATCHED_FAULT  
V3_LO_LATCHED_FAULT  
V2_HI_LATCHED_FAULT  
V2_LO_LATCHED_FAULT  
V1_HI_LATCHED_FAULT  
V1_LO_LATCHED_FAULT  
Reserved  
1: Latched V6_LO_FAULT.  
0: No fault.  
1: Latched V5_HI_FAULT.  
0: No fault.  
1: Latched V5_LO_FAULT.  
0: No fault.  
1: Latched V4_HI_FAULT.  
0: No fault.  
1: Latched V4_LO_FAULT.  
0: No fault.  
1: Latched V3_HI_FAULT.  
0: No fault.  
1: Latched V3_LO_FAULT.  
0: No fault.  
1: Latched V2_HI_FAULT.  
0: No fault.  
1: Latched V2_LO_FAULT.  
0: No fault.  
1: Latched V1_HI_FAULT.  
0: No fault.  
1: Latched V1_LO_FAULT.  
0: No fault.  
Ignore  
2933fa  
18  
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
STORE_USER (Command Byte 0x±C)  
RESTORE_USER (Command Byte 0x±D)  
BACKUP_WORD (Command Byte 0x±E)  
After the first fault occurs, HISTORY_WORD is written to  
EEPROM for backup. Any subsequent BACKUP_WORD  
writefollowingafaultisinhibiteduntiltheCLEAR_HISTORY  
command is issued. BACKUP_WORD can be retrieved  
by sending a RESTORE_USER command followed by a  
BACKUP_WORD read. BACKUP_WORD can be cleared  
in EEPROM by sending a CLEAR_HISTORY command  
followed by a STORE_USER command.  
The STORE_USER and RESTORE_USER commands  
access nonvolatile EEPROM memory. Once a command  
is stored in EEPROM using STORE_USER, it will  
be restored to volatile operating memory with the  
RESTORE_USER command or when the part powers up.  
BACKUP_WORD Data Contents  
BIT(S)  
b[15:13]  
b[12]  
SYMBOL  
OPERATION  
Reserved  
Ignore  
V6_HI_STORED_FAULT  
1: Stored V6_HI_FAULT.  
0: No fault.  
b[11]  
b[10]  
b[9]  
b[8]  
b[7]  
b[6]  
b[5]  
b[4]  
b[3]  
b[2]  
b[1]  
b[0]  
V6_LO_STORED_FAULT  
V5_HI_STORED_FAULT  
V5_LO_STORED_FAULT  
V4_HI_STORED_FAULT  
V4_LO_STORED_FAULT  
V3_HI_STORED_FAULT  
V3_LO_STORED_FAULT  
V2_HI_STORED_FAULT  
V2_LO_STORED_FAULT  
V1_HI_STORED_FAULT  
V1_LO_STORED_FAULT  
Reserved  
1: Stored V6_LO_FAULT.  
0: No fault.  
1: Stored V5_HI_FAULT.  
0: No fault.  
1: Stored V5_LO_FAULT.  
0: No fault.  
1: Stored V4_HI_FAULT.  
0: No fault.  
1: Stored V4_LO_FAULT.  
0: No fault.  
1: Stored V3_HI_FAULT.  
0: No fault.  
1: Stored V3_LO_FAULT.  
0: No fault.  
1: Stored V2_HI_FAULT.  
0: No fault.  
1: Stored V2_LO_FAULT.  
0: No fault.  
1: Stored V1_HI_FAULT.  
0: No fault.  
1: Stored V1_LO_FAULT.  
0: No fault.  
Ignore  
2933fa  
19  
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
STATUS_WORD (Command Byte 0x±F)  
STATUS_WORD faults may be disabled by setting GPI1_  
CONFIG = 010b (MARG), GPI1_CONFIG = 011b (UVDIS),  
GPI2_CONFIG = 010b (MARG) or GPI2_CONFIG = 011b  
(UVDIS) and asserting the appropriate GPIn pin.  
The STATUS_WORD command returns two bytes  
of information with a summary of the current faults.  
The STATUS_WORD content is read directly from the  
comparators and is a snapshot of the current state.  
STATUS_WORD Data Contents  
BIT(S)  
b[15:13]  
b[12]  
SYMBOL  
OPERATION  
Reserved  
Ignore  
V6_HI_FAULT  
V6_POL_HI = 1 (default).  
1: Fault (V6 greater than V6_THR_HI).  
0: No fault (V6 less than V6_THR_HI).  
V6_POL_HI = 0.  
1: Fault (V6 less than V6_THR_HI).  
0: No fault (V6 greater than V6_THR_HI).  
b[11]  
b[10]  
b[9]  
V6_LO_FAULT  
V5_HI_FAULT  
V5_LO_FAULT  
V4_HI_FAULT  
V4_LO_FAULT  
V3_HI_FAULT  
V6_POL_LO = 1.  
1: Fault (V6 greater than V6_THR_LO).  
0: No fault (V6 less than V6_THR_LO).  
V6_POL_LO = 0 (default).  
1: Fault (V6 less than V6_THR_LO).  
0: No fault (V6 greater than V6_THR_LO).  
V5_POL_HI = 1 (default).  
1: Fault (V5 greater than V5_THR_HI).  
0: No fault (V5 less than V5_THR_HI).  
V5_POL_HI = 0.  
1: Fault (V5 less than V5_THR_HI).  
0: No fault (V5 greater than V5_THR_HI).  
V5_POL_LO = 1.  
1: Fault (V5 greater than V5_THR_LO).  
0: No fault (V5 less than V5_THR_LO).  
V5_POL_LO = 0 (default).  
1: Fault (V5 less than V5_THR_LO).  
0: No fault (V5 greater than V5_THR_LO).  
b[8]  
V4_POL_HI = 1 (default).  
1: Fault (V4 greater than V4_THR_HI).  
0: No fault (V4 less than V4_THR_HI).  
V4_POL_HI = 0.  
1: Fault (V4 less than V4_THR_HI).  
0: No fault (V4 greater than V4_THR_HI).  
b[7]  
V4_POL_LO = 1.  
1: Fault (V4 greater than V4_THR_LO).  
0: No fault (V4 less than V4_THR_LO).  
V4_POL_LO = 0 (default).  
1: Fault (V4 less than V4_THR_LO).  
0: No fault (V4 greater than V4_THR_LO).  
b[6]  
V3_POL_HI = 1 (default).  
1: Fault (V3 greater than V3_THR_HI).  
0: No fault (V3 less than V3_THR_HI).  
V3_POL_HI = 0.  
1: Fault (V3 less than V3_THR_HI).  
0: No fault (V3 greater than V3_THR_HI).  
2933fa  
20  
For more information www.linear.com/LTC2933  
LTC2933  
operaTion  
STATUS_WORD Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
b[5]  
V3_LO_FAULT  
V3_POL_LO = 1.  
1: Fault (V3 greater than V3_THR_LO).  
0: No fault (V3 less than V3_THR_LO).  
V3_POL_LO = 0 (default).  
1: Fault (V3 less than V3_THR_LO).  
0: No fault (V3 greater than V3_THR_LO).  
b[4]  
b[3]  
b[2]  
b[1]  
b[0]  
V2_HI_FAULT  
V2_LO_FAULT  
V1_HI_FAULT  
V1_LO_FAULT  
Reserved  
V2_POL_HI = 1 (default).  
1: Fault (V2 greater than V2_THR_HI).  
0: No fault (V2 less than V2_THR_HI).  
V2_POL_HI = 0.  
1: Fault (V2 less than V2_THR_HI).  
0: No fault (V2 greater than V2_THR_HI).  
V2_POL_LO = 1.  
1: Fault (V2 greater than V2_THR_LO).  
0: No fault (V2 less than V2_THR_LO).  
V2_POL_LO = 0 (default).  
1: Fault (V2 less than V2_THR_LO).  
0: No fault (V2 greater than V2_THR_LO).  
V1_POL_HI = 1 (default).  
1: Fault (V1 greater than V1_THR_HI).  
0: No fault (V1 less than V1_THR_HI).  
V1_POL_HI = 0.  
1: Fault (V1 less than V1_THR_HI).  
0: No fault (V1 greater than V1_THR_HI).  
V1_POL_LO = 1.  
1: Fault (V1 greater than V1_THR_LO).  
0: No fault (V1 less than V1_THR_LO).  
V1_POL_LO = 0 (default).  
1: Fault (V1 less than V1_THR_LO).  
0: No fault (V1 greater than V1_THR_LO).  
Ignore  
2933fa  
21  
For more information www.linear.com/LTC2933  
LTC2933  
applicaTions inForMaTion  
Power Supply  
The command byte for the voltage threshold can be cal-  
culated for the V1 to V6 medium range with the following  
equation:  
The LTC2933 is powered from any one of the voltage  
monitoring inputs V1 to V4. A virtual diode-OR scheme  
selects the highest supply voltage. V1 to V4 should be  
driven by a low impedance source for proper operation of  
the diode-OR circuit. The LTC2933 generates a regulated  
Command Byte = ROUND [50 (V – 0.9)]  
TH  
Inputs from V2 through V6 have a low range that is based  
on a full scale of 0.45V to 3V. The 8-bit programming step  
size is 10mV. On the low range, threshold accuracy below  
0.5V is not specified, but the thresholds are reachable.  
3.3V supply on the V  
pin. A 100nF external capacitor  
DD33  
from the highest supply voltage pin (V1 to V4) to GND is  
required in order to decouple any supply noise. A 220nF  
externalcapacitorfromV  
toGNDisrequiredtoproperly  
The command byte for the voltage threshold can be  
calculated for the V2 to V6 low range with the following  
equation:  
DD33  
compensate the internal voltage regulator.  
Power-Up Condition  
Command Byte = ROUND [100 (V – 0.45)]  
TH  
When power is applied such that at least one of the supply  
inputs V1 to V4 exceeds 3.4V, the part turns on and the  
EEPROM contents are loaded into the volatile operating  
memory. This operation typically takes less than 200µs.  
Inputs from V2 through V6 have a precision range that  
is based on a full scale of 0.18V to 1.2V. The 8-bit pro-  
gramming step size is 4mV. On the low range, threshold  
accuracy below 0.2V is not specified, but the thresholds  
are reachable.  
Power-Down Condition  
The command byte for the voltage threshold can be  
calculated for the V2 to V6 precision range with the fol-  
lowing equation:  
If all of the supply inputs, V1 to V4, drop below 3.4V, the  
internal regulator will start to fall out of regulation. Once  
DD33  
theGPIOoutputswillpulllow.SeetheTypicalPerformance  
Characteristics section.  
V
fallsbelowtheinternalundervoltagelockoutvoltage,  
Command Byte = ROUND [250 (V – 0.18)]  
TH  
Although all six channels have built-in glitch immunity,  
100nF bypass capacitors on the V1 to V4 inputs are rec-  
ommended because the largest V1 to V4 voltage is also  
the power supply for the device.  
Voltage Threshold Programming  
The V1 input has a high range that is based on a full scale  
of2.25Vto15V.The8-bitprogrammingstepsizeis50mV.  
Some of these thresholds are outside of the 14V abs max  
voltageratingoftheV1input. Onthehighrange, threshold  
accuracy below 2.5V and above 13.9V is not specified, but  
the thresholds are reachable.  
Unused Channels  
The user must connect all unused channel inputs to  
ground,programtheirconfigurationwords(Vn_CONFIG)  
to 0x01C0, and program their thresholds (Vn_THR) to  
0x0000 in order to avoid false faults.  
The command byte for the voltage threshold can be cal-  
culated for the V1 high range with the following equation:  
Command Byte = ROUND [20 (V – 2.25)]  
TH  
Auxiliary Comparators  
Inputs from V1 through V6 have a medium range that is  
based on a full scale of 0.9V to 6V. The 8-bit program-  
ming step size is 20mV. On the medium range, threshold  
accuracy below 1V and above 5.8V is not specified, but  
the thresholds are reachable.  
Two additional auxiliary comparators can be connected  
to the general purpose inputs with either their inverting  
or their noninverting input while the other input internally  
connectstoa0.5Vreferencevoltage.Theselowoffset,low  
drift comparators can be used for additional monitoring  
purposes.  
2933fa  
22  
For more information www.linear.com/LTC2933  
LTC2933  
applicaTions inForMaTion  
If the tap point on an external resistive divider from an  
not respond to UV type faults. This feature is useful when  
power cycling the monitored supply. An internal 15µA  
external voltage, V  
, to GND (see Figure 2) connects to  
TRIP  
current source pulls UVDIS to V  
.
the auxiliary comparator input, the trip voltage is:  
DD33  
R1  
R2  
Margin  
VTRIP = 0.5V 1+  
When a GPIn pin is configured as MARG, the input is  
active low. When MARG is grounded, the LTC2933 does  
not respond to any OV or UV faults. This feature is useful  
when margining the monitored supply. An internal 15µA  
In a negative voltage application (also shown in Figure 2)  
the resistive divider is connected between the negative  
voltage being sensed and V  
, and the trip voltage is:  
DD33  
current source pulls MARG to V  
.
R3  
R4  
DD33  
VTRIP = 0.5V 2.8V •  
Outputs  
The minimum value for R4 is limited by the V  
sourcing capability at:  
current  
DD33  
TheGPIOnoutputsareopen-drain,withanoptionalinternal  
15µA current source pulling to V  
pull-up voltage up to 14V.  
and can tolerate a  
DD33  
3.3V0.5V  
=2.8kΩ  
1mA  
All faults, GPIn, or other GPIOn inputs mapped to a GPIOn  
output are combined with a logical OR function.  
Manual Reset  
The GPIOn pins have programmable delay-on-release  
timing. The GPIOn pin asserts its active state immediately  
andde-assertsafterthedelay-on-releasetimehaselapsed.  
Any fault causing a GPIOn pin to assert while its delay-on-  
releasetimerisactivewillresetthedelay-on-releasetimer.  
When a GPIn pin is configured as MR, the input is ac-  
tive low. If GPIn_MR_RESPONSE = 1, the HISTORY_  
WORD register is cleared when MR is pulled low.  
An internal 15µA current source pulls MR to V  
.
DD33  
The MR input can also be mapped to a GPIO pin and com-  
bined with COMPn_HI and COMPn_LO faults to generate  
a system reset signal.  
When a GPIOn indicates an alert, the alert may be cleared  
using the standard SMBus Alert Response Address (ARA)  
protocol. Alerts may also be cleared by reading (or clear-  
ing) HISTORY_WORD unless the condition causing the  
alert persists.  
UV Disable  
When a GPIn pin is configured as UVDIS, the input is  
active low. When UVDIS is grounded, the LTC2933 does  
V
TRIP  
LTC2933  
LTC2933  
V
= 3.3V  
DD33  
R1  
R4  
R3  
+
+
R2  
+
+
0.5V  
0.5V  
V
TRIP  
2933 F02  
Figure 2. Auxiliary Comparator Usage  
2933fa  
23  
For more information www.linear.com/LTC2933  
LTC2933  
applicaTions inForMaTion  
Write Protect Features  
where:  
2
When the WRITE_LOCK lock bit is set high, all I C write  
AF = acceleration factor  
wordcommandsareignored.Thisfeatureprotectsagainst  
accidental writing. The lock bit may still be written when  
the device is write-protected if the provided value for KEY  
matches the value in memory.  
E = activation energy = 1.5eV  
a
–5  
k = 8.617 10 eV/°k  
T
T
= 85°C maximum specified operating temperature  
USE  
EEPROM  
= actual temperature °C  
STRESS  
The user may save and restore configuration data to the  
operatingmemoryregistersatanytimewithSTORE_USER  
and RESTORE_USER commands. Upon power-up, user-  
stored data is automatically loaded into the operating  
memory.ThepartignoresI Ccommandswhileperforming  
EEPROM transactions.  
Example: Calculate effect on retention when operating at  
a temperature of 95°C for 10 hours.  
T
= 95°C, T  
= 85°C, AF = 3.74  
STRESS  
USE  
2
So, the overall retention of the EEPROM was degraded  
by 37.4 hours as a result of operation at a junction tem-  
perature of 95°C for 10 hours. Note that the effect of this  
overstress is negligible when compared to the overall  
EEPROM retention rating of 10 years (87,600 hours) at a  
temperature of 85°C.  
Nondestructive operation above T = 85°C is possible,  
A
but may result in a slight degradation of the retention  
characteristics. The degradation in EEPROM retention  
for temperatures exceeding 85°C can be approximated  
by calculating the acceleration factor:  
Negative Supply Power Monitor  
Ea  
k
1
1
⎟ ⎜  
Figure 3 illustrates how to configure the LTC2933 to  
monitor a negative supply rail. Assume the need to moni-  
tor the following supply rails: 1.5V within a 5% system  
specification, 3.3V, 5V and –5V, within a 10% system  
specification. In this example V1 and V2 are not used.  
AF = e⎣⎝  
T
USE +273  
TSTRESS +273  
5V  
5V  
3.3V  
1.5V  
–5V  
3.3V  
1.5V  
–5V  
DC/DC  
0.1µF  
R1  
249k  
SYSTEM  
4.7k  
4.7k  
R2  
100k  
0.22µF  
V
V1 V2 V3  
V4  
V5  
V6  
DD33  
RST  
GPIO1  
GPIO2  
GPIO3  
SDA  
OV  
GPI1  
ALERT  
LTC2933  
MR  
SCL  
MARG  
GPI2  
GND  
ASEL  
2933 F03  
NOTE: INTERNAL GPI01-3 PULL-UP ENABLED  
Figure 3. Negative Power Supply Monitor  
2933fa  
24  
For more information www.linear.com/LTC2933  
LTC2933  
applicaTions inForMaTion  
Channel V6 is set to medium range, channels V3 and V4  
are set to high range, channel V5 is set to precision range,  
and channels V1 and V2 are not used.  
The normal polarities of the OV and UV comparators need  
to be swapped, since a drop of the negative supply below  
its specified absolute value increases V5  
beyond its  
MAX  
encoded threshold. An increase of the negative supply  
Select low range for V6 (0.5V to 3V):  
above its specified absolute value decreases V5  
its encoded threshold.  
below  
MIN  
V6_THR_HI = ROUND [100 (1.5 1.06 –0.45)] = 114  
V6_THR_LO = ROUND [100 (1.5 0.94 –0.45)] = 96  
The GPIOn outputs are programmed as RST (active low  
system reset), OV (active low system OV) and ALERT  
(active low ALERT, see SMBus specification). The UV  
comparators are mapped to GPIO1 and GPIO3. The OV  
comparators are mapped to GPIO2 and GPIO3. The GPI1  
input is configured as MR (manual reset) and is mapped  
to GPIO1. The GPI2 input is configured as MARG (margin  
testing) allowing the system to disable OV and UV faults  
during margin testing.  
Select medium range for V3 and V4 (1V to 6V):  
V3_THR_HI = ROUND [50 (3.3 1.11 – 0.9)] = 139  
V3_THR_LO = ROUND [50 (3.3 0.89 – 0.9)] = 101  
V4_THR_HI = ROUND [50 (5 1.11 – 0.9)] = 233  
V4_THR_LO = ROUND [50 (5 0.89 – 0.9)] = 177  
Tomonitor5V,useanexternalresistivedividerconnected  
between V  
and the negative rail. The voltage at V  
DD33  
DD33  
is 3.3V. In order to minimize the error introduced by the  
leakage current into the V5 input pin, the output of this  
divider is targeted to lie within the precision voltage range  
(0.2V to 1.2V). The OV and UV thresholds for the –5V rail  
are calculated as follows:  
(3.3 R1)1.1(5 R2)  
V5MIN  
V5MAX  
=
> 0.2V  
R1+R2  
(3.3 R1)0.9 (5 R2)  
R1+R2  
=
< 1.2V  
R1 = 249k 0.1% and R2 = 100k 0.1% satisfy the  
previous relationships. The programming codes can be  
calculated as shown in the following equations:  
(3.3 0.98) (249 0.999)(1.15) (100 1.001)  
V5MIN  
V5MAX  
=
= 0.728V  
(249 0.999)+(100 1.001)  
(3.3 1.02) (249 1.001)(0.9 5) (100 0.999)  
(249 1.001)+(100 0.999)  
=
= 1.115V  
V5_THR_HI=ROUND 250 0.728 0.990.18 = 135  
(
)
V5_THR_LO =ROUND 250 1.115 1.010.18 = 237  
(
)
2933fa  
25  
For more information www.linear.com/LTC2933  
LTC2933  
applicaTions inForMaTion  
Eleven-Channel Supply Power Monitor  
faults. The GPI1 input is connected to the first supervisor  
RST1 output and is mapped to the second supervisor  
GPIO1 pin to generate the system RST signal. The GPI2  
input is connected to the first supervisor OV1 output and  
is mapped to the second supervisor GPIO2 pin to gener-  
ate the system OV signal. Thus, if any of the supervised  
rails faults or if there is a valid MR signal, an appropriate  
global RST or OV is generated.  
Figure 4 illustrates how to use multiple LTC2933 super-  
visors to monitor power rails. The system consists of  
two cascaded LTC2933 supervisors, both of them being  
powered from a common 12V dedicated rail connected to  
V1 to supervise ten supplies, plus the 12V rail.  
ThefirstsupervisormonitorssixrailsandgeneratesRST1  
and OV1 signals if a rail faults. The MR signal on GPI1 is  
also mapped into RST1.  
Both GPIO3 outputs of the LTC2933 supervisors are  
wired together and configured as ALERT signals, per the  
SMBus protocol.  
The second supervisor monitors the remaining five chan-  
nels and generates RST and OV signals in response to any  
12V  
5V  
3.3V  
2.5V  
1.8V  
1.5V  
1.25V  
1.0V  
1.0V  
0.9V  
0.9V  
DC/DC  
MR  
V1  
GPI1  
GPI2  
V2  
V3  
V4  
V
DD33  
0.22µF  
SYSTEM  
LTC2933  
V5  
ASEL  
GND  
V6  
SCL  
GPIO1  
GPIO2  
GPIO3  
SDA  
RST1  
OV1  
V1  
GPI1  
GPI2  
V2  
V3  
V
DD33  
V4  
0.22µF  
LTC2933  
V5  
ASEL  
GND  
0.1µF  
V6  
SCL  
SDA  
GPIO1  
GPIO2  
GPIO3  
ALERT  
RST  
OV  
NOTE: INTERNAL GPI01-3 PULL-UP ENABLED  
2933 F04  
Figure 4. ±±-Channel Supply Power Monitor  
2933fa  
26  
For more information www.linear.com/LTC2933  
LTC2933  
Typical applicaTions  
Two-Channel Voltage Monitoring with EEPROM Fault  
Storage Power Backup  
Low Cost Multipoint Temperature Control System  
Figure 6 in the Typical Applications section illustrates a  
low cost, 4-point temperature control system, which is  
suited for such commercial applications as electric ovens  
and dryers.  
Figure 5 in the Typical Applications section illustrates an  
EEPROMfaultstoragepowerbackupcircuit.TheLTC2933  
is supplied by the 12V rail, which is also monitored on V1.  
The other monitored rail, 1.8V on V3, is too low to provide  
adequate supply voltage, in case the 12V line collapses  
to ground. In case such a fault occurs, the LTC2933 still  
needs adequate power for EEPROM backup fault storage,  
which takes less than 10ms. This is provided by the 22µF  
capacitorconnectedbetweentheV2pinandground,which  
is charged from the 12V rail through R1. Since the V2  
voltage may not exceed 6V, a 4.7V voltage-limiting Zener  
diode connected between V2 and ground is necessary. In  
this example, V4 through V6 are not used.  
Thetemperaturesensorsarefour2N3904diode-connected  
BJTs, strategically placed inside the oven/dryer, which are  
forward-biased at constant current through 10k resistors  
connected to the regulated 3.3V pin. The diode voltages,  
which exhibit a negative 2.2mV/°C temperature coef-  
ficient, are monitored on the V2 to V5 inputs, set to the  
precision range.  
The OV faults, corresponding to under-the-limit tempera-  
tures, are mapped into GPIO1, which controls the electric  
heater through a power MOSFET switch and a relay.  
The minimum value of the charge-storage capacitor is  
calculated as:  
The UV faults, corresponding to over-the-limit tempera-  
tures, are mapped into GPIO2, which controls the cooling  
fan through a power MOSFET switch.  
I2SUP(MAX) tEEFS  
CMIN  
=
A microprocessor is used to program the appropriate  
V2V2MIN  
2
temperature limits into the LTC2933, via the I C interface.  
1.5mA 10ms  
4.7V 3.4V  
All faults are also mapped into GPIO3, which alerts the  
microprocessor on system status.  
=
= 11.5µF  
The diode connected in series with the fan 12V supply  
protects the LTC2933 against inductive voltage spikes  
which can propagate on its V1 supply pin through the  
common 12V line.  
R1hastolimittheZenerdiodereversecurrenttoavaluebe-  
low its maximum rating. This determines R1’s minimum  
value.  
V1V2 12V 4.7V  
RMIN  
=
=
= 73kΩ  
Suchalowcostsystemcancontroloven/dryertemperature  
within 10°C accuracy, over a 50°C to 150°C range, after  
proper calibration.  
IZ(MAX)  
0.1mA  
The maximum value of R1 is determined by the V2 pin  
input current and the Zener diode reverse leakage current:  
V1V2  
RMAX  
=
IZ(MIN) + V2 /RIN(MIN)  
12V 4.7V  
0.01mA+4.7V / 400k  
=
= 336kΩ  
2933fa  
27  
For more information www.linear.com/LTC2933  
LTC2933  
Typical applicaTions  
Seven-Power Supply Monitor  
The GPI1 comparator monitors the UV limit and is pro-  
grammedfornegativepolarity.TheGPI2comparatormoni-  
tors the OV limit and is programmed for positive polarity.  
Figure 7 in the Typical Applications section illustrates  
how to use the LTC2933 auxiliary comparators to expand  
powersupplymonitoringtosevenchannels.Thesystemis  
poweredbya12Vsource, whichisalsomonitored. The9V  
rail can be monitored, in addition to the six input channels  
(12V, 5V, 3.3V, 2.5V, 1.8V and 24V), using an external  
resistive divider which feeds the OV and UV tap voltages  
to the auxiliary comparators on inputs GPI1 and GPI2.  
A second resistive divider is used to divide the 24V rail  
voltage down to 1.08V, in order to use the low leakage,  
low range of the V5 channel.  
Since the auxiliary comparators’ thresholds are fixed at  
0.5V 10mV, to monitor a 9V 10% power supply, the  
following equations apply:  
R2+R3  
R1+R2+R3 0.9 9V  
0.51V  
=
R3  
0.49V  
=
R1+R2+R3 1.19V  
For R3 = 8.87k, the equations yield: R2 = 2.4k and R1 =  
168k.  
2933fa  
28  
For more information www.linear.com/LTC2933  
LTC2933  
Typical applicaTions  
12V  
1.8V  
12V  
DC/DC  
1.8V  
R1  
220k  
100nF  
22µF  
SYSTEM  
MMSZ4688  
4.7V  
220nF  
V1 V2  
V3 V4 V5 V6  
RST  
OV  
V
DD33  
GPIO1  
GPIO2  
GPIO3  
SDA  
LTC2933  
ALERT  
GPI1  
SCL  
MR  
GPI2  
GND  
ASEL  
2933 F05  
NOTE: INTERNAL GPI01-3 PULL-UP ENABLED  
Figure 5. 2-Channel Voltage Monitoring with EEPROM Fault Storage Power Backup  
2933fa  
29  
For more information www.linear.com/LTC2933  
LTC2933  
Typical applicaTions  
TELEDYNE  
712D  
12V  
2N3904  
× 4  
10nF 10nF 10nF 10nF  
110VAC  
12V  
HEATER  
12V  
1N4001  
FAN  
12V DC/5.4W  
PMB1212PLB3-A  
12V  
V1  
100nF  
10k  
× 4  
Si4420DY  
10k  
× 2  
220nF  
V
V2  
V3  
V4  
V5  
V6  
GPIO1  
GPIO2  
GPIO3  
DD33  
Si4420DY  
GPI1  
ALERT  
LTC2933  
MR  
SDA  
SCL  
SYSTEM  
GPI2  
GND  
ASEL  
2933 F06  
NOTE: INTERNAL GPIO3 PULL-UP ENABLED  
Figure 6. Low Cost Multipoint Temperature Control System  
2933fa  
30  
For more information www.linear.com/LTC2933  
LTC2933  
package DescripTion  
Please refer to http://www.linear.com/product/LTC2933#packaging for the most recent package drawings.  
DHD Package  
16-Lead Plastic DFN (5mm × 4mm)  
(Reference LTC DWG # 05-08-ꢀ707 Rev A)  
0.70 0.05  
4.50 0.05  
3.ꢀ0 0.05  
2.44 0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
4.34 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.ꢀꢀ5  
0.40 0.ꢀ0  
5.00 0.ꢀ0  
(2 SIDES)  
TYP  
9
ꢀ6  
4.00 0.ꢀ0  
(2 SIDES)  
2.44 0.ꢀ0  
(2 SIDES)  
PIN ꢀ  
TOP MARK  
(SEE NOTE 6)  
PIN ꢀ  
NOTCH  
(DHDꢀ6) DFN REV A ꢀꢀꢀ3  
8
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
4.34 0.ꢀ0  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJGD-2) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2933fa  
31  
For more information www.linear.com/LTC2933  
LTC2933  
package DescripTion  
Please refer to http://www.linear.com/product/LTC2933#packaging for the most recent package drawings.  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641 Rev B)  
.189 – .196*  
.045 .005  
(4.801 – 4.978)  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 .0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 .004  
(0.38 0.10)  
× 45°  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 REV B 0212  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
2933fa  
32  
For more information www.linear.com/LTC2933  
LTC2933  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
01/17 Raised storage temperature; clarified maximum junction temperature.  
Added Notes 5 and 6.  
2
5
Updated V2 to V4 pin function.  
8
12  
Changed to binary representation for the Default Value column.  
Updated factory default threshold voltages in Vn_THR register.  
Updated sections: Power Supply, Manual Reset, Outputs, Write Protect Features.  
Added 4.7k pull-ups in Figure 3.  
17  
22, 23, 24  
24  
2933fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
33  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC2933  
Typical applicaTion  
24V  
12V  
9V  
24V  
12V  
9V  
5V  
5V  
DC/DC  
3.3V  
2.5V  
1.8V  
3.3V  
2.5V  
1.8V  
100k  
4.7k  
R1  
168k  
4.7k  
4.7k  
SYSTEM  
0.1µF  
R2  
V1 V2 V3 V4 V5 V6  
RST  
OV  
2.4k  
GPIO1  
GPIO2  
GPIO3  
SDA  
GPI1  
GPI2  
V
LTC2933  
ALERT  
R3  
8.87k  
DD33  
0.22µF  
GND  
ASEL  
SCL  
2933 F07  
NOTE: INTERNAL GPI01-3 PULL-UP ENABLED  
Figure 7. 7-Power Supply Monitor  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
Reset: V = 0.5V, 1.5% Accuracy Over Temperature, Internal V Auto  
LTC2908  
LTC2910  
LTC2930  
LTC2931  
LTC2932  
LTC2937  
LTC2939  
LTC2936  
Precision 6-Input Supply Monitor  
CC  
CC  
Select  
Octal Positive/Negative Voltage Monitor  
8 Adjustable Inputs (0.5V), 1.5% Accuracy, Input Glitch Rejection,  
Pin-Selectable Input Polarity  
Configurable 6-Supply Monitor with Adjustable Reset  
Timer, Manual Reset  
16 Selectable Thresholds  
Configurable 6-Supply Monitor with Adjustable Reset  
and Watchdog Timers  
16 Selectable Thresholds, Reset Timer, Separate Voltage Monitor Outputs  
Configurable 6-Supply Monitor with Adjustable Reset  
Timer and Supply Tolerance  
16 Selectable Thresholds, Threshold Tolerance, Separate Voltage Monitor  
Outputs  
Programmable Six Channel Sequencer and Voltage  
Supervisor with EEPROM  
Time and Event Based Sequencing, 0.75% Accurate UV/OV Supervision,  
2
I C Interface  
Configurable 6-Supply Monitor with Processor  
Supervisory Functions  
16 Selectable Thresholds, Adjustable Reset Timer, Watchdog Timeout,  
Watchdog Status Output  
Programmable Hex Voltage Supervisor with EEPROM and 256 Programmable Thresholds, Comparator Outputs, EEPROM,  
Comparator Outputs  
2
I C Interface  
LTC2977  
LTC2974  
8-Channel PMBus Power System Manager  
4-Channel PMBus Power System Manager  
0.25% TUE 16-Bit ADC, Voltage/Temperature Monitoring and Supervision  
0.25% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and  
Supervision  
LTC2975  
4-Channel PMBus Power System Manager  
0.25% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and  
Supervision, Input Current and Power, Input Energy Accumulator  
LTC2980  
LTC2970  
16-Channel PMBus Power System Manager  
Dual LTC2977  
2
Dual I C Power Supply Monitor and Margining Controller Monitors Voltage and Current on Two Power Supplies. Margins to 0.5%  
Accuracy  
2933fa  
LT 0117 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
34  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2933  
LINEAR TECHNOLOGY CORPORATION 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY