LTC2966HUD#PBF [Linear]

LTC2966 - 100V Micropower Dual Voltage Monitor; Package: QFN; Pins: 16; Temperature Range: -40°C to 125°C;
LTC2966HUD#PBF
型号: LTC2966HUD#PBF
厂家: Linear    Linear
描述:

LTC2966 - 100V Micropower Dual Voltage Monitor; Package: QFN; Pins: 16; Temperature Range: -40°C to 125°C

文件: 总20页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2966  
100V Micropower Dual  
Voltage Monitor  
FEATURES  
DESCRIPTION  
The LTC®2966 is a low current, high voltage dual channel  
voltage monitor. Internal high value resistors sense the  
input monitor pins providing a compact and low power  
solution for voltage monitoring. Each channel includes  
two comparator reference inputs (INH/INL) to allow con-  
figuration of a high and low threshold using an external  
resistive divider biased from the on-chip reference. Range  
selection pins are provided for each channel to set the  
internal resistive dividers for 5x, 10x, 20x and 40x scaling.  
Thethresholdsarescaledaccordingtotherangeselection  
settings. Additionally, either INH or INL can be grounded  
to enable built-in hysteresis. Polarity selection pins allow  
each output to be inverted. The outputs are 100V capable  
and include a 500k pull-up resistor to an internal supply.  
n
Wide Operating Range: 3.5V to 100V  
n
Wide Monitoring Range: 1.75V to 98V  
n
Quiescent Current: 7µA  
Adjustable Threshold Range  
Internal High Value Resistive Dividers  
n
n
n
1.4ꢀ (ꢁax) Threshold Accuracy ꢂver Temperature  
n
Polarity Selection  
100V Rated ꢂutputs  
Selectable Built-In Hysteresis  
20-Lead SW and 16-Lead 3mm × 3mm QFN  
Packages  
n
n
n
APPLICATIONS  
n
Portable Equipment  
L, LT, LTC, LTꢁ, Linear Technology and the Linear logo are registered trademarks of Analog  
Devices, Inc. All other trademarks are the property of their respective owners.  
n
Battery-Powered Equipment  
n
Telecom Systems  
Automotive/Industrial Electronics  
n
TYPICAL APPLICATION  
Dual Undervoltage Monitor  
RANGE  
V
IN  
MONITOR RANGE SELECTION  
48V  
24V  
5V  
1.75V* to 12.25V  
5x  
3.5V to 24.5V  
7V to 49V  
10x  
20x  
40x  
V
INA  
V
INB  
REF  
100k  
100k  
200k  
91k  
48V UNDERVOLTAGE  
INHA  
OUTA  
OUTB  
14V to 98V  
THRESHOLD  
CONFIGURATION  
5V  
SYS  
LTC2966  
*Requires either V or V > 3.5V  
INA  
INB  
INLA  
INHB  
24V UNDERVOLTAGE  
909k  
Supply Current vs VINA(B)  
INLB  
12  
10  
PSA RS1A RS2A PSB RS1B RS2B GND  
8
6
POLARITY AND RANGE SELECTION  
CHANNEL  
4
2
0
A
B
RANGE = 40x  
–45°C  
40.03V 20.0V  
36.4V 18.2V  
3.6V  
20x  
RISING THRESHOLD  
FALLING THRESHOLD  
HYSTERESIS  
OUTA(B) = LOW  
25°C  
90°C  
125°C  
1.8V  
10x  
V
I
= GND  
INB(A)  
= 0µA  
RANGE  
2966 TA01a  
REF  
0
20  
40  
V
60  
(V)  
80  
100  
INA  
2966 TA01b  
2966fc  
1
For more information www.linear.com/LTC2966  
LTC2966  
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)  
Input Voltages  
ꢂperating Ambient Temperature Range  
V
, V ............................................ –0.3V to 140V  
LTC2966C................................................ 0°C to 70°C  
LTC2966I.............................................–40°C to 85°C  
LTC2966H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
INA INB  
PSA, PSB, RS1A, RS1B, RS2A, RS2B...... –0.3V to 6V  
INHA, INHB, INLA, INLB .......................... –0.3V to 6V  
ꢂutput Voltages  
ꢂUTA, ꢂUTB ........................................ –0.3V to 140V  
Average Currents  
V
, V ........................................................–20mA  
INA INB  
ꢂUTA, ꢂUTB ...................................................... 5mA  
REF .................................................................... 5mA  
INHA, INHB, INLA, INLB ....................................1mA  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
V
1
2
3
4
5
6
7
8
9
20  
V
INB  
INA  
NC  
19 NC  
16 15 14 13  
OUTA  
NC  
18 OUTB  
17 NC  
REF  
INHA  
INLA  
RS1A  
1
2
3
4
12 GND  
11 INHB  
17  
GND  
REF  
16 GND  
15 INHB  
14 INLB  
13 RS1B  
12 RS2B  
11 PSB  
INLB  
10  
9
INHA  
INLA  
RS1A  
RS2A  
RS1B  
5
6
7
8
UD PACKAGE  
16-LEAD (3mm × 3mm) PLASTIC QFN  
PSA 10  
SW PACKAGE  
20-LEAD PLASTIC SO  
T
= 150°C, θ = 68°C/W  
JA  
JꢁAX  
EXPꢂSED PAD (PIN 17) PCB GND CꢂNNECTIꢂN ꢂPTIꢂNAL  
T
JꢁAX  
= 150°C, θ = 35°C/W  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
http://www.linear.com/product/LTC2966#orderinfo  
TUBE  
TAPE AND REEL  
PART MARKING*  
LGꢁG  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2966CUD#PBF  
LTC2966IUD#PBF  
LTC2966HUD#PBF  
LTC2966CSW#PBF  
LTC2966ISW#PBF  
LTC2966HSW#PBF  
LTC2966CUD#TRPBF  
LTC2966IUD#TRPBF  
LTC2966HUD#TRPBF  
LTC2966CSW#TRPBF  
LTC2966ISW#TRPBF  
LTC2966HSW#TRPBF  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
16-Lead (3mm × 3mm) Plastic QFN  
LGꢁG  
–40°C to 85°C  
LGꢁG  
–40°C to 125°C  
LTC2966SW  
LTC2966SW  
LTC2966SW  
20-Lead Plastic Small ꢂutline (Wide .300 Inch) 0°C to 70°C  
20-Lead Plastic Small ꢂutline (Wide .300 Inch) –40°C to 85°C  
20-Lead Plastic Small ꢂutline (Wide .300 Inch) –40°C to 125°C  
Consult LTC ꢁarketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC ꢁarketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRꢁPBF suffix.  
2966fc  
2
For more information www.linear.com/LTC2966  
LTC2966  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VINA = VINB = 12V, RS1/RS2 = GND, PS = GND,  
INH = 1.2V, INL = GND (Notes 1, 2).  
SYMBOL  
PARAMETER  
CONDITIONS  
or V  
MIN  
3.5  
1.75  
3
TYP  
MAX  
100  
98  
UNITS  
l
l
V
V
Input Supply ꢂperating Range  
V
V
V
IN  
INA  
INB  
V
V
ꢁonitor Range  
(Note 3)  
ꢁꢂN  
IN  
l
l
I
VA  
Input Supply Current  
V
V
= 100V, V = GND, 40x  
= GND, V = 100V, 40x  
7
15  
50  
µA  
nA  
INA  
INA  
INA  
INB  
INB  
l
l
l
I
VB  
V
Input Supply Current  
V
V
V
= 100V, V = GND, 40x  
3
7
2
15  
50  
4
µA  
nA  
µA  
INB  
INB  
INB  
INB  
INA  
= GND, V = 100V, 40x  
INA  
= 100V, V = 5V, 40x  
INA  
l
V
UVLꢂ  
Undervoltage Lockout  
V
V
or V Rising  
3
V
INA  
INA  
INB  
Undervoltage Lockout Hysteresis  
and V Falling  
70  
mV  
INB  
Comparator Reference Input: INHA, INHB, INLA, INLB  
l
V
V
Comparator Common ꢁode Voltage  
0.35  
2.45  
V
Cꢁ  
l
l
V
V
V
V
Error Voltage at 96V  
Error Voltage at 48V  
Error Voltage at 24V  
Error Voltage at 12V  
INH = V , 40x  
250  
250  
1360  
400  
mV  
mV  
ERR  
IN  
IN  
IN  
IN  
REF  
0.35V ≤ INH ≤ 2.4V, 40x  
l
l
INH = V , 20x  
100  
100  
630  
150  
mV  
mV  
REF  
0.35V ≤ INH ≤ 2.4V, 20x  
l
l
INH = V , 10x  
35  
35  
315  
75  
mV  
mV  
REF  
0.35V ≤ INH ≤ 2.4V, 10x  
l
l
INH = V , 5x  
15  
15  
155  
35  
mV  
mV  
REF  
0.35V ≤ INH ≤ 2.4V, 5x  
l
l
V
Comparator ꢂffset Voltage  
INH = 0.35V, 10x  
1.9  
3
mV  
ꢂS  
AV  
Internal Resistive Divider Range Error  
Comparator Built-in Hysteresis  
INH = 2.4V, Range = 5x, 10x, 20x, 40x  
0.4  
ERR  
l
l
V
INH = GND, INL Rising  
INL = GND, INH Falling  
14  
–30  
22  
–22  
30  
–14  
mV  
mV  
HYS  
l
l
V
Built-in Hysteresis Enable Threshold  
100  
175  
80  
mV  
µs  
HYTH  
t
I
V
to ꢂUT Comparator Propagation Delay  
IN  
ꢂverdrive = 10ꢀ, ꢂUT Falling, 10x  
INH = GND, INL = 1.2V  
40  
PD  
l
l
Input Leakage Current (INH, INL)  
V = 1.2V, I-Grade  
V = 1.2V, H-Grade  
0.1  
0.1  
1
10  
nA  
nA  
IN(LKG)  
Reference: REF  
l
V
Reference ꢂutput Voltage  
Reference ꢂutput Noise  
I
≤ 100µA, V ≥ 3.5V  
2.378 2.402 2.426  
140  
V
REF  
REF  
IN  
Noise  
100Hz to 100kHz  
µV  
RꢁS  
Control Inputs: RS1A, RS2A, RS1B, RS2B, PSA, PSB  
l
l
V
Select Input Threshold  
Input Leakage Current  
0.4  
1.4  
V
TH  
I
V = 2.4V  
100  
nA  
LKG  
Status Outputs: OUTA, OUTB  
l
l
V
ꢂL  
Voltage ꢂutput Low  
V
IN  
V
IN  
= 1.25V, I = 10µA  
= 3.5V, I = 500µA  
100  
400  
mV  
mV  
l
l
V
ꢂH  
Voltage ꢂutput High  
V
IN  
V
IN  
= 3.5V, I = –1µA  
≥ 4.5V, I = –1µA  
2
2.5  
2.375  
3
2.75  
4
V
V
l
l
I
I
ꢂutput Current High  
V = GND, V = 3.5V  
–15  
–7.5  
–5  
µA  
nA  
ꢂH  
ꢂ(LKG)  
IN  
Leakage Current, ꢂutput High  
V = 100V, V = 6V  
250  
IN  
Note 1: Stresses beyond those listed under Absolute ꢁaximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
ꢁaximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
Note 3: Requires either V or V >3.5V.  
INA  
INB  
2966fc  
3
For more information www.linear.com/LTC2966  
LTC2966  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs VINA(B)  
VINB Pin Current vs VINB  
VREF vs Temperature  
12  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.412  
2.408  
2.404  
2.400  
2.396  
2.392  
2.388  
RANGE = 40x  
OUTA(B) = LOW  
I = –10µA  
V
= 5V  
= 0µA  
INA  
REF  
I
8
6
4
2
0
RANGE = 40x  
OUTA(B) = LOW  
–45°C  
25°C  
–45°C  
25°C  
V
REF  
= GND  
90°C  
90°C  
INB(A)  
I
= 0µA  
125°C  
125°C  
0
20  
40  
V
60  
(V)  
80  
100  
0
20  
60  
(V)  
80  
100  
–50 –25  
40  
V
0
25  
50 75 100 125 150  
TEMPERATURE (°C)  
INA  
INB  
2966 G01  
2966 G02  
2966 G03  
% Range Error vs Temperature  
VREF vs Load Current  
VREF vs VINA(B)  
2.450  
2.425  
2.400  
2.375  
2.350  
2.450  
2.425  
2.400  
2.375  
2.350  
0.4  
0.2  
0
V
= 3.5V  
25°C  
IN  
–0.2  
–45°C  
25°C  
90°C  
125°C  
5x  
1µA  
100µA  
1mA  
10x  
20x  
40x  
–0.4  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
0
0.4  
0.8  
1.2  
1.6  
2.0  
2.7  
3.0  
3.2  
3.5  
(V)  
3.7  
4.0  
LOAD CURRENT (mA)  
V
INA  
2966 G06  
2966 G04  
2966 G05  
VIN Falling Propagation Delay  
vs % Overdrive  
Built-In Hysteresis  
vs Temperature  
Comparator VOS vs Temperature  
125  
100  
75  
50  
25  
0
28  
26  
24  
22  
20  
18  
16  
1500  
1000  
500  
V
V
V
= 1.2V  
= GND  
V
= 1.2V  
V
= 1.2V  
INL  
INH  
IN  
INH(L)  
INH(L)  
= 12V  
0
–500  
–1000  
–1500  
–45°C  
25°C  
90°C  
125°C  
0.1  
1
10  
100  
–50  
0
50  
100  
150  
75 100  
–50 –25  
0
25 50  
125 150  
% OVERDRIVE (%)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2966 G08  
2966 G09  
2966 G07  
2966fc  
4
For more information www.linear.com/LTC2966  
LTC2966  
TYPICAL PERFORMANCE CHARACTERISTICS  
Voltage Output High vs Pull-Down  
Current (OUTA/OUTB)  
Voltage Output Low vs Pull-Up  
Current (OUTA/OUTB)  
Voltage Output High  
vs Input Voltage  
4
3
2
1
0
3.5  
3.2  
1.50  
1.25  
V
IN  
= 12V  
V
= 12V  
I = –1µA  
IN  
2.9  
2.6  
1.00  
0.75  
2.3  
2.0  
1.7  
0.50  
0.25  
0
–45°C  
25°C  
90°C  
125°C  
–45°C  
25°C  
90°C  
125°C  
–6  
–9  
0
–12  
–3  
3
4
5
6
7
8
0
1
2
3
4
5
V
(V)  
PULL-DOWN CURRENT (µA)  
PULL-UP CURRENT (mA)  
IN  
2966 G10  
2966 G12  
2966 G11  
PIN FUNCTIONS  
Exposed Pad (UD16 Only): Exposed pad may be left float-  
scaled according to the RS pin configuration. ꢂtherwise,  
INHA-INLA sets the hysteresis of the Channel A compara-  
tor. ꢂscillation will occur if INLA > INHA unless built-in  
hysteresis is enabled.  
ing or connected to device ground.  
GND: Device Ground.  
INHA:ChannelAHighComparatorReferenceInput.Voltage  
INLB:ChannelBLowComparatorReferenceInput.Voltage  
on this pin is multiplied by the configured range setting  
on this pin is multiplied by the configured range setting  
to set the V high or rising threshold. Keep within valid  
INA  
to set the V low or falling threshold. Keep within valid  
INB  
voltage range, V , or tie to GND to configure built-in  
Cꢁ  
voltage range, V , or tie to GND to configure built-in  
Cꢁ  
hysteresis where high threshold for V becomes INLA  
INA  
hysteresis where low threshold becomes INHB – V  
HYS  
+ V  
scaled according to the RS pin configuration.  
HYS  
scaled according to the RS pin configuration. ꢂtherwise,  
INHB-INLB sets the hysteresis of the Channel B compara-  
tor. ꢂscillation will occur if INLB > INHB unless built-in  
hysteresis is enabled.  
INHB:ChannelBHighComparatorReferenceInput.Voltage  
on this pin is multiplied by the configured range setting  
to set the V high or rising threshold. Keep within valid  
INB  
voltage range, V , or tie to GND to configure built-in  
Cꢁ  
OUTA: Channel A Comparator ꢂutput. ꢂUTA consists  
of a high voltage active pull-down and a gated, resistive  
(500kΩ)pull-uptoaninternallygeneratedsupplybetween  
3.5V and 5V depending on input supply voltage. Blocking  
circuitry at the pin allows the pin to be resistively pulled  
up to voltages as high as 100V without back conducting  
onto the internal supply of the part. Polarity with respect  
hysteresis where high threshold for V becomes INLB  
INB  
+ V  
scaled according to the RS pin configuration.  
HYS  
INLA:ChannelALowComparatorReferenceInput.Voltage  
on this pin is multiplied by the configured range setting  
to set the V low or falling threshold. Keep within valid  
INA  
voltage range, V , or tie to GND to configure built-in  
Cꢁ  
hysteresis where low threshold becomes INHA – V  
to the V pin is configured using the polarity select pin,  
HYS  
INA  
PSA. ꢂUTA pulls low when the part is in UVLꢂ.  
2966fc  
5
For more information www.linear.com/LTC2966  
LTC2966  
PIN FUNCTIONS  
OUTB: Channel B Comparator ꢂutput. ꢂUTB consists  
of a high voltage active pull-down and a gated, resistive  
(500kΩ)pull-uptoaninternallygeneratedsupplybetween  
3.5V and 5V depending on input supply voltage. Blocking  
circuitry at the pin allows the pin to be resistively pulled  
up to voltages as high as 100V without back conducting  
onto the internal supply of the part. Polarity with respect  
REF: Reference ꢂutput. V with respect to GND. Use a  
REF  
maximumof1nFtobypassunlessdampingresistorisused.  
RS1A-RS2A: Channel A Range Select Input. RS1A-RS2A  
select 5x, 10x, 20x or 40x range for Channel A. Connect  
to REF or GND to configure the pin. (See Table 1)  
RS1B-RS2B: Channel B Range Select Input. RS1B-RS2B  
select 5x, 10x, 20x or 40x range for Channel B. Connect  
to REF or GND to configure the pin. (See Table 1)  
to the V pin is configured using the polarity select pin,  
INB  
PSB. ꢂUTB pulls low when the part is in UVLꢂ.  
V
, V :VoltageonitorandSupplyInputs. Aninternal  
PSA: Channel A Polarity Selection. Connect to REF or a  
INA INB  
high value resistive divider is connected to the pin. The  
voltage >V to configure comparator output to be invert-  
TH  
greater of V and V is used to generate an internal  
ing with respect to V . ꢂtherwise connect pin to GND  
INA  
INB  
INA  
voltage rail with priority given to V . If both V and  
to configure comparator output to be noninverting with  
INA  
INA  
V
fall below the UVLꢂ threshold minus hysteresis, the  
respect to V  
.
INB  
INA  
outputs are pulled low. If V < V < 1.2V, the logic  
INB  
INA  
PSB: Channel B Polarity Selection. Connect to REF or a  
state of the outputs cannot be guaranteed.  
voltage >V to configure comparator output to be invert-  
TH  
ing with respect to V . ꢂtherwise connect pin to GND  
INB  
to configure comparator output to be noninverting with  
respect to V  
.
INB  
2966fc  
6
For more information www.linear.com/LTC2966  
LTC2966  
BLOCK DIAGRAM  
V
INA  
V
INB  
V
REF  
REF  
1X  
V
IN  
PRIORITIZER  
GND  
70M  
70M  
V
INT  
V
+
HYTH  
INHA  
INHB  
– +  
HYS  
+
500k  
V
V
INT  
V
HYS  
+–  
OUTA  
OUTB  
INLA  
INLB  
+
V
PSA  
HYTH  
RS1A  
5x/10x/20x/40x  
RS2A  
PSB  
RS1B  
RS2B  
CHANNEL A  
CHANNEL B  
2966 BD  
2966fc  
7
For more information www.linear.com/LTC2966  
LTC2966  
OPERATION  
TheLTC2966isamicropowerdualchannelvoltagemonitor  
with a 100V maximum operating voltage. Each channel is  
comprised of an internal high value resistive divider and a  
comparatorwithahighvoltageoutput.Areferencevoltage  
is provided to allow the thresholds of each channel to be  
set independently. This configuration has the advantage  
of being able to monitor very high voltages with very little  
current draw while threshold configuration is done using  
low value resistors at low voltages.  
Table 1.  
V
MONITOR  
RANGE  
RANGE  
RS1  
RS2  
IN  
SELECTION  
1.75V* to 12.25V  
3.5V to 24.5V  
7V to 49V  
5x  
L
H
L
L
L
H
H
10x  
20x  
40x  
14V to 98V  
H
*Requires either V or V > 3.5V.  
INA  
INB  
The INH pin determines the high or rising edge threshold  
forV ineachchannel.Ifthemonitoredvoltageconnected  
IN  
The two channels of the LTC2966 provide independent  
monitoring capabilities for multiple voltages or work in  
conjunctiontosetupanundervoltage/overvoltagemonitor.  
Integration of a resistive divider for high voltage sensing  
makes the LTC2966 a compact and low power solution for  
generating voltage status signals to a monitoring system.  
to V rises to the scaled INHA voltage then the ꢂUT pin  
INA  
is pulled high assuming PSA is ground. Likewise, the INL  
pin determines the low or falling edge threshold for V in  
IN  
each channel. If V falls to the scaled INLA voltage then  
INA  
the ꢂUT pin is pulled low assuming PSA is ground. The  
amount of hysteresis referred to V is the difference in  
IN  
A built-in buffered reference gives the monitor flexibility to  
operate independently from a high voltage supply without  
therequirementofadditionallowvoltagebiasing.Therefer-  
ence provides an accurate voltage from which a resistive  
divider to ground configures the threshold voltage for the  
internal comparators. In addition, the REF pin can be used  
asalogichighvoltagefortherangeandpolarityselectpins.  
voltage between INH and INL scaled according to the RS  
pin configuration. INH and INL have an allowable voltage  
range, V . Figure 1 shows the allowable monitor voltage  
Cꢁ  
atV foreachrangeasafunctionofcomparatorreference  
IN  
input voltage (INL, INH).  
Typically, an external resistive divider biased from REF is  
used to generate the INH and INL pin voltages. A built-in  
hysteresis feature requiring only two resistors can be  
The input voltage threshold at V is determined by the  
IN  
voltage on the INH and INL pins which are scaled by the  
attenuation internal resistive divider. In the LTC2966 the  
attenuation of the internal divider is configured using two  
range select pins, RS1 and RS2 to select 5x, 10x, 20x or  
40x for each channel. Use Table 1 to determine the correct  
configurationforadesiredrangesetting.Thepolarityselect  
pins, (PSA/PSB), configure the corresponding ꢂUT pin to  
enabled on either the V rising edge by grounding INH  
IN  
or on the falling edge by grounding INL. For example, it  
is appropriate to ground INH to activate rising edge hys-  
teresis if an accurate falling voltage threshold is required  
for undervoltage detection. Conversely, it is appropriate  
to ground INL for falling edge built-in hysteresis if an ac-  
curate overvoltage threshold is required. Do not ground  
be inverting or noninverting with respect to V allowing  
IN  
both INH and INL. ꢂscillation occurs if V > V unless  
INH built-in hysteresis is enabled.  
INL  
INH  
the part to be configured for monitoring overvoltage and  
undervoltage conditions with either polarity output.  
2966fc  
8
For more information www.linear.com/LTC2966  
LTC2966  
OPERATION  
100  
10  
1
The high voltage ꢂUT pins have the capability to be pulled  
up to a user defined voltage as high as 100V with an  
external resistor. The LTC2966 also includes an internal  
500k pull-up resistor to an internal voltage between 3.5V  
40x  
20x  
10x  
5x  
and 5V depending on input supply voltage. (See V in  
ꢂH  
Electrical Characteristics) Wire-ꢂR functionality is imple-  
mented by connecting ꢂUTA and ꢂUTB with appropriate  
monitor configuration.  
Supply current is drawn from the higher of V or V  
INA  
INB  
with priority given to V . If both V pins fall below the  
INA  
IN  
0.5  
1
1.5  
2
2.5  
UVLthresholdthenbothUTpinsarepulledlowregard-  
COMPARATOR REFERENCE INPUT (INL, INH) (V)  
2966 F01  
less of the PS pin state.  
Figure 1. Monitor Threshold Threshold vs  
Comparator Reference Inputs  
2966fc  
9
For more information www.linear.com/LTC2966  
LTC2966  
APPLICATIONS INFORMATION  
Threshold Configuration  
Theclosest1valueis909kΩ. R2canbedeterminedfrom:  
Each LTC2966 channel (A/B) monitors the voltage applied  
V
INH •RSUꢁ  
(
(
)
R1  
R2=  
to the corresponding V input. A comparator senses the  
IN  
VREF  
V pin on one of its inputs through the internal resistive  
IN  
2V •1.2Ω  
)
divider. The other input is connected to INH/INL that is  
=
909kΩ = 90.2kΩ  
in turn biased with external resistive dividers off of the  
2.402V  
REF pin as shown in Figure 2a and 2b. The V rising and  
IN  
The closest 1ꢀ value is 90.9kΩ. R3 can be determined  
falling thresholds are determined by:  
from R  
:
SUꢁ  
V
V
= RANGE • V  
= RANGE • V  
IN(RISE)  
IN(FALL)  
INH  
INL  
R3 = R  
– R1 – R2 = 1.2ꢁΩ – 909kΩ – 90.9kΩ  
SUꢁ  
= 200.1kΩ  
Where RANGE is the configured range of the internal  
resistive divider. In order to set the threshold for the  
LTC2966, choose an appropriate range setting for the  
The closest 1ꢀ value is 200kΩ. Plugging the standard  
values back into the equations yields the design values  
for the V and V voltages:  
INH  
INL  
desired V voltage threshold such that the INH and INL  
IN  
V
INH  
= 2.001V, V = 1.819V  
INL  
voltages are within the specified common mode range,  
V
. For example, if a falling threshold of 18V is desired  
The corresponding threshold voltages are:  
= 20.01V, V = 18.19V  
Cꢁ  
for monitoring a 24V power supply then a range greater  
than 10x is allowed. However, to maximize the accuracy  
V
IN(RISE)  
IN(FALL)  
Another possible way to configure the thresholds is with  
independent dividers using two resistors per threshold to  
set thevoltages on INHand INL. See Figure 2b. Care must  
be taken such that the thresholds are not set too close to  
each other, otherwise the mismatch of the resistors may  
cause the voltage at INL to be greater than the voltage at  
INH which may cause the comparator to oscillate.  
of the V threshold the smallest acceptable range is used,  
IN  
10x in this case. To implement 2V of hysteresis referred  
to V this means:  
IN  
V
INH  
= 2V, V = 1.8V  
INL  
With 10x range the V thresholds are:  
IN  
V
= 20V, V  
= 18V  
IN(RISE)  
IN(FALL)  
As in the previous example, if R  
= 1.2ꢁΩ is chosen  
SUꢁ  
ꢂne possible way to configure the thresholds is by us-  
ing three resistors to set the voltages on INH and INL.  
See Figure 2a. The solution for R1, R2 and R3 provides  
three equations and three unknowns. ꢁaximum resistor  
size is governed by maximum input leakage current. The  
maximum input leakage current below 85°C is 1nA. For  
a maximum error of 1ꢀ due to both input currents, the  
resistive divider current should be at least 100 times the  
sum of the leakage currents, or 0.2µA.  
and the target for V is 1.8V:  
INL  
RSUꢁ =R1+R2  
V
INL •RSUꢁ  
(
)
1.8V •1.2ꢁΩ  
(
)
= 899.5kΩ  
R1=  
=
VREF  
2.402V  
The closest 1ꢀ value is 909kΩ. R2 can be determined by:  
R1  
R2= V – V  
(
)
REF  
INL  
V
Ifinthisexample,aleakagecurrenterrorof0.1isdesired  
then the total divider resistance is 1.2ꢁΩ which results in  
INL  
909kΩ  
1.8V  
(
)
= 304kΩ  
= 2.402V 1.8V •  
(
)
a current of 2µA through this network. For R  
= 1.2ꢁΩ  
SUꢁ  
RSUꢁ =R1+R2+R3  
V
INL •RSUꢁ  
(
)
1.8V •1.2ꢁΩ  
(
)
= 899.5kΩ  
R1=  
=
VREF  
2.402V  
2966fc  
10  
For more information www.linear.com/LTC2966  
LTC2966  
APPLICATIONS INFORMATION  
The closest 1ꢀ value is 301kΩ. Plugging the standard  
Using built-in hysteresis, the V thresholds are:  
IN  
values back into the equation for V yields the design  
INL  
V
V
= RANGE • (INL + V  
)
IN(RISE)  
IN(FALL)  
HYS  
voltage for V  
:
INL  
= RANGE • INL  
R1V  
909k2.402V  
301k+909kΩ  
(
) (  
=
)
)
REF  
V
=
=1.804V  
INL  
Figure 3b introduces built-in hysteresis on the falling edge  
because INL is pulled to ground. Similarly, a two-resistor  
network,R3andR4,isusedtosetthevoltageonINHusing:  
R1+R2  
(
)
(
At this point in the independent divider example only the  
values required to set the voltage at INL have been found.  
Repeat the process for the INH input by substituting the  
R4 V  
R3 V  
REF  
=
–1  
INH  
above equations with V for V , R3 for R1, R4 for R2  
INH  
INL  
and V = 2.0V.  
Using built-in hysteresis the V thresholds are:  
INH  
IN  
V
V
IN  
IN  
V
V
= RANGE • INH  
IN(RISE)  
IN(FALL)  
V
V
INA  
INA  
= RANGE • (INH – V  
)
HYS  
REF  
1/2 LTC2966  
RS1A  
OUTA  
REF  
1/2 LTC2966  
RS1A  
OUTA  
R3  
R2  
R1  
R2  
R4  
R3  
Consider V = 2V with built-in hysteresis activated on  
INH  
INHA  
INHA  
the falling edge. For 10x range, 1.1ꢀ falling hysteresis is  
RS2A  
PSA  
RS2A  
PSA  
obtained. If a larger percentage of hysteresis is desired  
INLA  
INLA  
thenV isalternativelysetto1Vandtherangeisselected  
INH  
GND  
GND  
R1  
to be 20x to obtain the same V threshold but with 2.2ꢀ  
IN  
falling hysteresis. The amount of built-in hysteresis is  
scaled according to Table 2. If more hysteresis is needed  
then it is implemented in the external resistive divider as  
described in the Threshold Configuration section.  
2966 F02ab  
Figure 2a. Three-Resistor  
Threshold Configuration  
Figure 2b. Two-Resistor  
Threshold Configuration  
V
V
IN  
IN  
Using Built-In Hysteresis  
V
V
INA  
INA  
TheLTC2966hasthecapabilityofsimplifyingthethreshold  
configuration such that only two resistors per channel are  
required. The device pins can be configured to select a  
REF  
1/2 LTC2966  
RS1A  
OUTA  
REF  
1/2 LTC2966  
RS1A  
OUTA  
R4  
R3  
R2  
R1  
RS2A  
PSA  
RS2A  
PSA  
built-in hysteresis voltage, V , which can be applied to  
HYS  
INHA  
INLA  
INH  
INL  
either the rising or falling threshold depending on whether  
the INH or INL pin is grounded. Note that the hysteresis  
voltage at each range setting remains at a fixed value.  
Figure 3 introduces examples of each configuration. For  
example, if INH is biased from an external divider and the  
INL pin is grounded, then hysteresis is enabled on the  
GND  
GND  
2966 F03ab  
Figure 3a. Rising Edge  
Built-In Hysteresis by  
Grounding INH  
Figure 3b. Falling Edge  
Built-In Hysteresis by  
Grounding INL  
low or falling threshold. The low threshold is then –V  
HYS  
relativetothehighthresholddeterminedbyINH. Figure3a  
introduces built-in hysteresis on the rising edge because  
INH is pulled to ground. A two-resistor network, R1 and  
R2, is used to set the voltage on INL using:  
Table 2. Built-In Hysteresis Voltage vs Range  
RANGE  
5x  
V
REFERRED BUILT-IN HYSTERESIS  
IN  
110mV  
220mV  
440mV  
880mV  
10x  
R2 V  
REF  
20x  
=
–1  
R1 V  
40x  
INL  
2966fc  
11  
For more information www.linear.com/LTC2966  
LTC2966  
APPLICATIONS INFORMATION  
Error Analysis  
The actual V falling threshold has an error tolerance of  
IN  
216mV or 1.2ꢀ.  
V thresholds are subject to the following errors:  
IN  
• REF Voltage Variation (∆V  
)
Improving Threshold Accuracy  
The biggest threshold error terms are:  
• External Resistive Divider Accuracy  
• REF Voltage Variation  
REF  
• Comparator ꢂffset (V )  
ꢂS  
• Internal Divider Range Error (A  
)
VERR  
• External Resistive Divider Error (A  
)
XERR  
The effect these errors have on the V threshold is  
expressed by:  
IN  
Evenusing1toleranceresistors,externalresistivedivider  
accuracystillaccountsforasmuchas 2thresholderror  
while REF voltage variation accounts for 1ꢀ threshold  
error. In order to minimize these threshold error terms,  
an external reference can be used to set the thresholds for  
INH/INL as shown in Figure 4. An LT6656-2.048 has an  
initial accuracy of 0.05ꢀ and provides bias via the 0.1ꢀ  
resistive divider network for INH and INL. It is biased off  
of the LTC2966 REF pin. The threshold error tolerance  
is calculated using the method described in the Typical  
V
INH(L)  
VERR =RANGEVꢂS VREF  
VINH(L) AXERR  
VREF  
RANGE•AVERR V  
INH(L)  
TꢂLERANCE  
100  
V
INH(L)  
AXERR = 2•  
• 1–  
V
REF  
Externaldividererrorisdeterminedbythepercentagetoler-  
ance values of the resistors. If 1ꢀ tolerance resistors are  
used in the external divider then there is a 2ꢀ worst-case  
voltage error associated with it. The effects of comparator  
Applications section with ∆V  
= 1.024mV given the  
REF  
initial accuracy of the LT6656 2.048V output and using  
0.1ꢀ tolerance resistors for the external divider.  
offset and V voltage are uncorrelated with each other.  
REF  
V
Therefore, a Root-Sum-Square can be applied to the error  
INL  
VERR(REF) = RANGE VREF  
(
)
voltage referred to V . Using the example from Threshold  
V
REF   
IN  
Configuration and assuming 1ꢀ resistors implement the  
1.8V  
2.048V  
= 10 • 1.024mV •  
= 9mV  
external resistive divider, the falling V threshold of ap-  
( )  
IN  
proximately 18V has an error tolerance of:  
V
VREF  
INL  
VERR(EXT) = RANGE V 2•0.001• 1–  
V
(
)
INL  
INL  
VERR(REF) = RANGE VREF  
(
)
V
REF   
= 10 • 1.8V 0.0005 = 9mV  
( ) (  
)
1.8V  
2.402V  
= 10 • 24mV •  
= 180mV  
( )  
VERR(VꢂS) = RANGE VꢂS = 10 • 3mV = 30mV  
(
)
)
(
(
)
( ) (  
)
VERR(RS) = RANGE AVERR  
V
V
(
)(  
)
INL  
INL  
VREF  
VERR(EXT) = RANGE V 2•0.01• 1–  
(
)
INL  
= 10 • 0.004 • 1.8V = 72mV  
( ) ( ) (  
)
= 10 • 1.8V 0.005 = 90mV  
( ) (  
)
VERR = VE2RR(REF) +VE2RR(EXT) +VE2RR(VꢂS) +VE2RR(RS)  
VERR(VꢂS) = RANGE VꢂS = 10 • 3mV = 30mV  
(
)
(
)
( ) (  
V
)
2
2
2
2
=
9mV + 9mV + 30mV + 72mV  
(
)
(
)
(
)
(
)
VERR(RS) = RANGE AVERR  
(
)
(
)(  
)
INL  
= 79mV  
= 10 • 0.004 • 1.8V = 72mV  
( ) ( ) (  
VERR = VE2RR(REF) +VE2RR(EXT) +VE2RR(VꢂS) +VE2RR(RS)  
)
The resulting V threshold error is reduced to 0.44ꢀ  
IN  
from 1.2ꢀ in the previous error analysis example.  
2
2
2
2
=
180mV + 90mV + 30mV + 72mV  
(
)
(
)
(
)
(
)
= 216mV  
2966fc  
12  
For more information www.linear.com/LTC2966  
LTC2966  
APPLICATIONS INFORMATION  
V
current specifications. When the status outputs are low,  
power is dissipated in the pull-up resistors. An internal  
pull-up is present if the ꢂUT pins are left floating or if  
low power consumption is required. The internal pull-up  
resistor does not draw current if an external resistor pulls  
IN  
R4  
10k  
LT6656-2.048  
OUT IN  
V
IN  
REF  
R3  
47.5k  
0.1%  
GND  
1µF  
LTC2966  
INH  
R2  
ꢂUT up to a voltage greater than V .  
ꢂH  
200k  
0.1%  
INL  
GND  
If PS is connected to ground, the comparator output is  
R1  
1.8M  
0.1%  
noninverting. This means that ꢂUT pulls low when V  
IN  
falls below the scaled INL voltage. ꢂUT is released after  
2966 F04  
V
rises above the scaled INH voltage. Likewise, if PS  
IN  
Figure 4. Reducing VIN Threshold Error  
is connected to REF or a voltage >V , the comparator  
TH  
output is inverting. This means that ꢂUT pulls low when  
Disabling a Channel  
V
rises above the scaled INH voltage and is released  
IN  
Figure 5 shows the proper technique for disabling a chan-  
nel.Table4summarizesthecorrectconnections.Correctly  
disabling an unused channel prevents its comparator  
output from chattering and introducing unwanted noise  
in the system.  
when V falls below the scaled INL voltage.  
IN  
If both V pins fall below the UVLꢂ threshold minus hys-  
IN  
teresis, the outputs are pulled to ground. The outputs are  
guaranteed to stay low for V ≥ V ≥ 1.25V regardless  
INA  
INB  
of the output logic configuration.  
Table 4. Disabling a Channel  
It is recommended that circuit board traces associated  
with the ꢂUT pin be located on a different layer than those  
associated with the INH/INL and REF pins where possible  
to avoid capacitive coupling.  
PIN  
CONNECT TO  
GND  
V
IN  
INH  
INL  
REF  
GND  
RS1  
RS2  
PS  
GND or REF  
GND or REF  
GND or REF  
ꢂpen  
Hot Swap Events  
The LTC2966 can withstand high voltage transients up  
to 140V. However, when a supply voltage is abruptly  
connected to the input resonant ringing can occur as a  
result of series inductance. The peak voltage could rise  
to 2x the input supply, but in practice can reach 2.5x if  
a capacitor with a strong voltage coefficient is present.  
Circuit board trace inductances of as little as 10nH can  
produce significant ringing. Ringing beyond the absolute  
maximum specification can be destructive to the part and  
shouldbeavoidedwheneverpossible.neeffectivemeans  
ꢂUT  
V
INA  
REF  
OUTA  
OPEN  
OPEN  
1/2 LTC2966  
INHA  
INLA  
RS1A  
RS2A  
PSA  
GND  
to eliminate ringing seen at the V pins and to protect the  
IN  
part is to include a 1kΩ to 5kΩ resistance between the  
2966 F05  
monitored voltage and the V pin as shown in Figure 6.  
IN  
Figure 5. Disabling a Channel  
This provides damping for the resonant circuit. If there  
is a decoupling capacitor on the V /V pins the time  
INA INB  
Output Configuration with Polarity Selection  
constantformedbytheRCnetworkshouldbeconsidered.  
TheUTpinmaybeusedwithawiderangeofuser-defined  
voltages up to 100V with an external resistor. Select a  
resistor compatible with desired output rise time and load  
2966fc  
13  
For more information www.linear.com/LTC2966  
LTC2966  
APPLICATIONS INFORMATION  
V
IN  
REF  
INH  
INL  
REF  
INH  
INL  
R
S
1k  
LTC2966  
GND  
LTC2966  
GND  
R
S
R
S
V
/V  
INA INB  
C
C
REF  
REF  
LTC2966  
2966 F07ab  
GND  
2966 F06  
7a  
7b  
Figure 6. Hot Swap Protection  
100  
High Voltage Pin Creepage/Clearance Options  
10  
1
Appropriate spacing between component lead traces is  
critical to avoid flashover between conductors. There  
are multiple industry and safety standards that have  
differentspacingrequirementsdependingonfactorssuch  
as operating voltage, presence of conformal coat, eleva-  
tion, etc. The LTC2966 is available in a 20-lead SW pack-  
age which offers pin-to-pin clearance of at least 0.76mm  
(0.03in) to satisfy high voltage external component lead  
specifications for standards such as the UL60950 and  
IPC2221. The package incorporates unconnected pins  
between all adjacent high voltage and low voltage pins to  
maximize PC board trace clearance. For voltages >30V the  
SW shouldbeused,otherwisethesmallerQFNissufficient  
whenclearanceisnotanissue.Formoreinformation,refer  
to the printed circuit board design standards described in  
IPC2221 and UL60950.  
0.1  
0.001  
0.01  
0.1  
1
CAPACITANCE VALUE (µF)  
2966 F07c  
7c  
Figure 7. Using Series Resistance to Dampen REF  
Transient Response  
1nF  
10nF + 4.3kΩ  
0.1µF + 1.5kΩ  
1µF + 600Ω  
V
REF  
2.4V  
50mV/DIV  
Voltage Reference  
LOAD CURRENT  
100µA  
10µA  
The REF pin is a buffered reference with a voltage of V  
REF  
referenced to GND. A bypass capacitor up to 1000pF  
in value can be driven by the REF pin directly. Larger  
capacitances require a series resistance to dampen the  
transient response as shown in Figure 7A. If a resistive  
divider is already present then the bypass capacitor can  
be connected to the INH or INL pin as shown in Figure 7B.  
Figure 7C shows the resistor value required for different  
capacitor values to achieve critical damping. Bypass-  
ing the reference can help prevent false tripping of the  
comparators by preventing glitches on the INH/INL pins.  
Figure 8 shows the reference load transient response.  
Figure 9 shows the reference line transient response. If  
thereis adecoupling capacitoron the INH/INL pinthe time  
constantformedbytheRCnetworkshouldbeconsidered.  
Use a capacitor with a compatible voltage rating.  
2966 F08  
100µs/DIV  
Figure 8. VREF Load Transient  
1nF  
1µF + 600Ω  
V
REF  
2.4V  
10mV/DIV  
8V  
1V/DIV  
3.5V  
V
INA  
2966 F09  
10µs/DIV  
Figure 9. VREF Line Transient  
2966fc  
14  
For more information www.linear.com/LTC2966  
LTC2966  
TYPICAL APPLICATIONS  
48V UV/OV Monitor  
15V Undervoltage Monitor  
The LTC2966 can be used to monitor a positive and a  
negative supply simultaneously. In the circuit shown in  
Figure 11, Channel B is used to monitor the –15V supply  
The circuit in Figure 10 monitors a single 48V supply  
and is configured for UV/ꢂV window detection. Channel  
A is used to monitor undervoltage conditions where the  
36V threshold is determined by 1.8V at INLA scaled by  
20x. Channel B is used to monitor overvoltage conditions  
where the 72V threshold is determined by the same 1.8V  
at INHB with 40x range. UV is pulled high to indicate an  
undervoltage condition when the supply drops below the  
UV threshold. Therefore PSA is pulled to REF to obtain  
the correct polarity on ꢂUTA. ꢂV is pulled high when the  
supply rises above the ꢂV threshold which means PSB is  
pulled to ground to obtain the appropriate output polarity.  
Connecting INHA and INLB to ground enables internal  
hysteresis for each channel in the appropriate direction  
and reduces the number of external components.  
by connecting V ’s internal resistor divider to REF and  
INB  
configuring to 5x range. The voltage at the V sensing  
IN  
inputoftheChannelBcomparatorisfixedat480mV.When  
the15VsupplyisundervoltageINHB>480mVandUTB  
is pulled low because PSB is connected to ground. As the  
negative supply comes into regulation the comparator  
monitors the INHB pin to detect when its voltage crosses  
480mVcorrespondingto14.3V.UVBisreleasedindicating  
that there is no longer an undervoltage condition. As the  
negative supply drops out of regulation the comparator  
monitors the INLB pin to detect when its voltage crosses  
480mV,correspondingto13.6Vduetotheexternaldivider  
48V OV/UV MONITOR  
CHANNEL  
A
B
RISING THRESHOLD  
36.6V 72.2V  
FALLING THRESHOLD 36.0V 71.2V  
HYSTERESIS  
RANGE  
0.6V  
20x  
1.0V  
40x  
48V  
REF  
5V  
V
INA  
V
INB  
R3  
100k  
R4  
C1  
1000pF  
10V  
100k  
R2  
UV  
INHA  
INLA  
INHB  
INLB  
OUTA  
OUTB  
294k  
LTC2966  
5V  
SYS  
R1  
887k  
OV  
PSA RS1A RS2A PSB RS1B RS2B GND  
2966 F10  
Figure 10. Use Range Selection and Built-In Hysteresis to Minimize External Components  
2966fc  
15  
For more information www.linear.com/LTC2966  
LTC2966  
TYPICAL APPLICATIONS  
gain. UVB is pulled low after the comparator detects the  
threshold crossing to indicate an undervoltage condition.  
Channel A is configured to monitor for an undervoltage  
condition on the 15V supply by pulling UVA low when the  
positive supply drops below 13.6V.  
ꢂV thresholds, where channel A and B are configured  
similarly to the 48V UV/ꢂV monitor circuit in Figure 10.  
Hysteresis for each comparator is implemented by the  
external resistor network. High voltage ꢂUT pins allow a  
pair of 4N25 opto-couplers to be used in translating the  
statussignalsforthe5Vsystem. R5, R6, R7andR8setthe  
maximum current through the optos to be approximately  
4.2mA. If an exposed pad is present it should be tied to  
the GND pin or left open.  
–48V UV/OV Voltage Monitor  
InthecircuitshowninFigure12,theLTC2966isconfigured  
as a –48V UV/ꢂV monitor by referencing the GND pin to  
the negative supply. R1 through R4 configure the UV and  
±±15V 5VꢀMONIMꢁ  
CHANNEL  
A
B
RISING THRESHOLD  
14.3V –14.4V  
FALLING THRESHOLD 13.5V –13.6V  
HYSTERESIS  
RANGE  
0.8V  
10x  
–0.8V  
5x  
15V  
5V  
V
INA  
V
INB  
REF  
R7  
100k  
R8  
R3  
100k  
162k  
R
UVA  
S
INHA  
OUTA  
OUTB  
600  
R2  
12.4k  
C1  
LTC2966  
5V  
SYS  
INLA  
INHB  
1µF  
R4  
R1  
226k  
10V  
182k  
UVB  
R5  
8.6k  
INLB  
R6  
1.4M  
PSA RS1A RS2A PSB RS1B RS2B GND  
RTN  
2965 F11  
–15V  
Figure 11. Dual Polarity Voltage Monitoring  
2966fc  
16  
For more information www.linear.com/LTC2966  
LTC2966  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC2966#packaging for the most recent package drawings.  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691 Rev Ø)  
0.70 ±0.05  
3.50 ±0.05  
2.10 ±0.05  
1.45 ±0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
R = 0.115  
TYP  
0.75 ±0.05  
3.00 ±0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 ±0.10  
1
2
1.45 ± 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 ±0.05  
0.00 – 0.05  
0.50 BSC  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
2966fc  
17  
For more information www.linear.com/LTC2966  
LTC2966  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC2966#packaging for the most recent package drawings.  
SW Package  
20-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 .005  
.030 .005  
TYP  
.496 – .512  
(12.598 – 13.005)  
NOTE 4  
N
19 18  
16  
14 13 12 11  
20  
N
17  
15  
.325 .005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
1
2
3
N/2  
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
2
3
5
7
8
9
10  
1
4
6
.037 – .045  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
(0.940 – 1.143)  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.406 – 1.270)  
INCHES  
(MILLIMETERS)  
S20 (WIDE) 0502  
(0.356 – 0.482)  
TYP  
NOTE:  
1. DIMENSIONS IN  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
2966fc  
18  
For more information www.linear.com/LTC2966  
LTC2966  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
09/15 Fixed typos  
1, 3, 10, 11,  
12, 15  
B
C
03/16 Added ABS ꢁax Rating for INHA, INHB, INLA and INLB pins  
08/17 Corrected example error threshold calculations  
2
12  
2966fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconn tio itsir its escribedre ill n in ring on existing patent rights.  
19  
ecnofccuasdheinwotfe
LTC2966  
TYPICAL APPLICATION  
5V  
–48V UV/OV MONITOR  
CHANNEL  
RISING THRESHOLD  
FALLING THRESHOLD –36.0V –56.0V  
HYSTERESIS  
RANGE  
R9  
R10  
100k  
A
B
100k  
UV  
OV  
–40.0V –72.0V  
5V  
SYS  
–4.0V –16.0V  
20x  
40x  
4.2mA  
AT –48V  
4.2mA  
AT –48V  
RTN  
R6  
1k  
R8  
1k  
4N25  
V
INA  
V
INB  
4N25  
REF  
R4  
66.5k  
R5  
10k  
INHA  
OUTA  
OUTB  
R3  
33.2k  
C1  
LTC2966  
R7  
10k  
INLA  
INHB  
INLB  
1000pF  
10V  
R2  
66.5k  
PSA RS1A RS2A PSB RS1B RS2B GND  
R1  
232k  
2966 F12  
–48V  
Figure 12. Monitoring Negative Voltage with Isolation  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
ꢁicropower Triple Supply ꢁonitor for 5V/2.5V, 3.3V and ADJ  
COMMENTS  
LTC1326  
4.725V, 3.118V, 1V Threshold ( 0.75ꢀ) and ADJ  
LTC1440/LTC1441/ Ultralow Power Single/Dual Comparator with Reference  
LTC1442  
Adjustable Hysteresis, 3mm × 3mm × 0.75mm DFN Package  
LTC1726/LTC1727/ ꢁicropower Triple Supply ꢁonitor  
LTC1728  
Adjustable Reset and Watchdog Timeouts  
5-Lead SꢂT-23 Package  
LTC1985  
ꢁicropower Triple Supply ꢁonitor with Push-Pull Reset ꢂutput  
LTC2900/LTC2901/ Programmable Quad Supply ꢁonitor  
LTC2902  
Adjustable Reset, Watchdog Timer and Tolerance,  
10-Lead ꢁSꢂP and DFN Packages  
LTC2903  
Precision Quad Supply ꢁonitor  
6-Lead SꢂT-23 and DFN Packages  
8-Lead SꢂT-23 and DFN Packages  
LTC2904/LTC2905/ Three-State Programmable Precision Dual Supply ꢁonitor  
LTC2906/LTC2907  
LTC2908  
LTC2909/LTC2919 Precision Triple/Dual Input UV, ꢂV and Negative Voltage ꢁonitor  
LTC2910 ꢂctal Positive/Negative Voltage ꢁonitor  
Precision Six-Supply ꢁonitor (Four Fixed and Two Adjustable)  
8-Lead TSꢂT-23 and DFN Packages  
Shunt Regulated V Pin, Adjustable Threshold and Reset  
CC  
Separate V Pin, Eight Inputs, Up to Two Negative ꢁonitors  
CC  
Adjustable Reset Timer, 16-Lead SSꢂP and DFN Packages  
LTC2912/LTC2913/ Single/Dual/Quad UV and ꢂV Voltage ꢁonitors  
LTC2914  
Separate V Pin, Adjustable Reset Timer  
CC  
LTC2915/LTC2916/ Single Voltage Supervisors with 27 Pin-Selectable Thresholds  
LTC2917/LTC2918  
ꢁanual Reset and Watchdog Functions, 8- and 10-Lead  
TSꢂT-23, ꢁSꢂP and DFN Packages  
LTC2965  
LTC2960  
LT6700  
100V ꢁicropower Single Voltage ꢁonitor  
3.5V to 98V ꢁonitoring Range, 3.5V to 100V ꢂperating Range,  
7µA Quiescent Current  
36V Nano-Current Two Input Voltage ꢁonitor  
ꢁicropower Dual Comparator with 400mV Reference  
36V, 850nA Quiescent Current, 2mm × 2mm 8-Lead DFN and  
TSꢂT-23 Packages  
SꢂT-23, 2mm × 3mm DFN Package  
2966fc  
LT 0817 REV C • PRINTED IN USA  
www.linear.com/LTC2966  
20  
LINEAR TECHNOLOGY CORPORATION 2015  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY