LTC2977IUPPBF [Linear]

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement; 8通道的PMBus电源系统管理器拥有精确的输出电压测量
LTC2977IUPPBF
型号: LTC2977IUPPBF
厂家: Linear    Linear
描述:

8-Channel PMBus Power System Manager Featuring Accurate Output Voltage Measurement
8通道的PMBus电源系统管理器拥有精确的输出电压测量

文件: 总92页 (文件大小:927K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2977  
8-Channel PMBus Power  
System Manager Featuring Accurate  
Output Voltage Measurement  
FeaTures  
DescripTion  
The LTC®2977 is an 8-channel Power System Manager  
used to sequence, trim (servo), margin, supervise, man-  
n
Sequence, Trim, Margin and Supervise Eight Power  
Supplies  
n
n
n
n
n
n
Manage Faults, Monitor Telemetry and Create Fault Logs age faults, provide telemetry and create fault logs. PMBus  
PMBus Compliant Command Set  
Supported by LTpowerPlay™ GUI  
Margin or Trim Supplies to 0.25% Accuracy  
Fast OV/UV Supervisors Per Channel  
Coordinate Sequencing and Fault Management  
Across Multiple Chips  
commands support power supply sequencing, precision  
point-of-loadvoltageadjustmentandmargining.DACsuse  
a proprietary soft-connect algorithm to minimize supply  
disturbances. Supervisory functions include overvoltage  
and undervoltage threshold limits for eight power supply  
output channels and one power supply input channel, as  
well as over and under temperature limits. Programmable  
faultresponsescandisablethepowersupplieswithoptional  
retry after a fault is detected. Faults that disable a power  
supplycanautomaticallytriggerblackboxEEPROMstorage  
of fault status and associated telemetry. An internal 16-bit  
ADC monitors eight output voltages, one input voltage,  
and die temperature. In addition, odd numbered channels  
can be configured to measure the voltage across a current  
n
n
n
n
Automatic Fault Logging to Internal EEPROM  
Operate Autonomously without Additional Software  
Internal Temperature and Input Voltage Supervisors  
Accurate Monitoring of Eight Output Voltages, Input  
Voltage and Internal Die Temperature  
2
n
n
n
n
n
I C/SMBus Serial Interface  
Can Be Powered from 3.3V, or 4.5V to 15V  
Programmable Watchdog Timer  
100% Pin-Compatible Upgrade to the LTC2978/LTC2978A sense resistor. A programmable watchdog timer moni-  
Available in 64-pin 9mm × 9mm QFN Package  
tors microprocessor activity for a stalled condition and  
resets the microprocessor if necessary. A single wire bus  
synchronizes power supplies across multiple LTC power  
systemmanagementdevices.ConfigurationEEPROMsup-  
ports autonomous operation without additional software.  
L, LT, LTC, LTM, PolyPhase, Linear Technology and the Linear logo are registered trademarks  
and LTpowerPlay is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents including 7382303, 7420359 and  
7940091.  
applicaTions  
n
Computers and Network Servers  
n
Industrial Test and Measurement  
n
High Reliability Systems  
Medical Imaging  
Video  
n
n
Typical applicaTion  
8-Channel PMBus Power System Manager  
Typical ADC Total Unadjusted  
Error vs Temperature  
V
4.5V < V  
IBUS  
< 15V**  
IN  
0.25  
V
V
V
IN_SNS  
V
PWR  
OUT  
DIGITALLY  
V
= 1.8V  
SENSEP0  
3.3V**  
0.20 THREE TYPICAL PARTS  
V
DD33  
DACP0  
MANAGED  
POWER  
V
R30  
SENSEP0  
0.15  
0.10  
TO INTERMEDIATE  
V
IN_EN  
BUS CONVERTER ENABLE  
R20  
R10  
SUPPLY  
LTC2977*  
V
SDA  
LOAD  
FB  
0.05  
SCL  
V
PMBus  
INTERFACE  
DACM0  
0
ALERTB  
V
SENSEM0  
SGND  
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
CONTROL0  
V
RUN/SS  
OUT_EN0  
GND  
WRITE-PROTECT  
WP  
PWRGD  
TO µP RESETB INPUT  
WDI/RESETB  
ASEL0  
WATCHDOG  
TIMER INTERRUPT  
FAULTB00  
TO/FROM OTHER  
LTC POWER SUPPLY MANAGERS  
SHARE_CLK  
ASEL1  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
GND  
–50  
–10  
30 50 70 90 110  
–30  
10  
2977 TA01a  
TEMPERATURE (°C)  
**MAY BE POWERED FROM EITHER AN  
EXTERNAL 3.3V SUPPLY OR THE INTERMEDIATE BUS  
2977 TA01b  
2977f  
1
For more information www.linear.com/LTC2977  
LTC2977  
Table oF conTenTs  
Features.........................................................1  
Applications ....................................................1  
Typical Application ............................................1  
Description......................................................1  
Absolute Maximum Ratings..................................4  
Order Information..............................................4  
Pin Configuration ..............................................4  
Electrical Characteristics.....................................5  
PMBus Timing Diagram.......................................9  
Typical Performance Characteristics ..................... 10  
Pin Functions................................................. 13  
Block Diagram................................................ 15  
Operation...................................................... 16  
Operation Overview.....................................................16  
EEPROM..................................................................17  
Reset ...........................................................................17  
Write-Protect Pin.........................................................17  
Other Operations.........................................................17  
Clock Sharing..........................................................17  
PMBus Serial Digital Interface.....................................18  
PMBus ....................................................................18  
Device Address .......................................................21  
Processing Commands...........................................22  
PMBus Command Summary ............................... 23  
Summary Table.......................................................23  
Data Formats ..........................................................27  
PMBus Command Description............................. 28  
Addressing and Write Protect .....................................28  
PAGE.......................................................................28  
WRITE_PROTECT...................................................28  
MFR_PAGE_FF_MASK............................................29  
MFR_I2C_BASE_ADDRESS....................................29  
MFR_COMMAND_PLUS, MFR_DATA_PLUS0,  
VOUT_MODE...........................................................35  
Output Voltage Related Commands.............................36  
VOUT_COMMAND, VOUT_MAX, VOUT_MARGIN_  
HIGH, VOUT_MARGIN_LOW, VOUT_OV_FAULT_  
LIMIT, VOUT_OV_WARN_LIMIT, VOUT_UV_WARN_  
LIMIT, VOUT_UV_FAULT_LIMIT, POWER_GOOD_ON  
and POWER_GOOD_OFF ........................................36  
Input Voltage Related Commands ...............................36  
VIN_ON, VIN_OFF, VIN_OV_FAULT_LIMIT, VIN_OV_  
WARN_LIMIT, VIN_UV_WARN_LIMIT and VIN_UV_  
FAULT_LIMIT ..........................................................36  
Temperature Related Commands ................................37  
OT_FAULT_LIMIT, OT_WARN_LIMIT, UT_WARN_  
LIMIT and UT_FAULT_LIMIT...................................37  
Timer Limits................................................................37  
TON_DELAY, TON_RISE, TON_MAX_FAULT_LIMIT  
and TOFF_DELAY ....................................................37  
Fault Response for Voltages Measured by the High  
Speed Supervisor........................................................38  
VOUT_OV_FAULT_RESPONSE and VOUT_UV_  
FAULT_RESPONSE..................................................38  
Fault Response for Values Measured by the ADC........39  
OT_FAULT_RESPONSE, UT_FAULT_RESPONSE,  
VIN_OV_FAULT_RESPONSE and VIN_UV_FAULT_  
RESPONSE..............................................................39  
Timed Fault Response.................................................40  
TON_MAX_FAULT_RESPONSE ..............................40  
Status Commands.......................................................41  
STATUS_BYTE:.......................................................41  
STATUS_WORD: .....................................................41  
STATUS_VOUT........................................................42  
STATUS_INPUT ......................................................42  
STATUS_TEMPERATURE ........................................42  
STATUS_CML .........................................................43  
STATUS_MFR_SPECIFIC ........................................43  
ADC Monitoring Commands........................................44  
READ_VIN...............................................................44  
READ_VOUT ...........................................................44  
READ_TEMPERATURE_1........................................44  
PMBUS_REVISION .................................................44  
Manufacturer Specific Commands ..............................45  
MFR_CONFIG_LTC2977 .........................................45  
Tracking Supplies On and Off..................................46  
Tracking Implementation ........................................48  
MFR_CONFIG_ALL_LTC2977.................................49  
MFR_FAULTBz0_PROPAGATE, MFR_FAULTBz1_  
PROPAGATE............................................................50  
MFR_DATA_PLUS1, MFR_STATUS_PLUS0, and  
MFR_STATUS_PLUS1 ............................................30  
Reading Fault Log Using Command Plus and Mfr_  
data_plus0..............................................................31  
Peek Operation using Mfr_data_plus0....................32  
Enabling and Disabling Poke Operations.................32  
Poke Operation Using Mfr_data_plus0...................32  
Command Plus Operations Using Mfr_data_plus1.32  
Operation, Mode and EEPROM Commands.................33  
OPERATION ............................................................33  
ON_OFF_CONFIG ....................................................34  
CLEAR_FAULTS......................................................34  
STORE_USER_ALL and RESTORE_USER_ALL .....35  
CAPABILITY............................................................35  
2977f  
2
For more information www.linear.com/LTC2977  
LTC2977  
Table oF conTenTs  
MFR_PWRGD_EN...................................................51  
MFR_FAULTB00_RESPONSE, MFR_FAULTB01_  
Command Units On or Off ......................................76  
On Sequencing........................................................77  
On State Operation..................................................77  
Servo Modes...........................................................77  
DAC Modes.............................................................77  
Margining................................................................78  
Off Sequencing .......................................................78  
VOUT Off Threshold Voltage ....................................78  
Automatic Restart Via MFR_RESTART_DELAY  
RESPONSE, MFR_FAULTB10_RESPONSE and MFR_  
FAULTB11_RESPONSE............................................52  
MFR_VINEN_OV_FAULT_RESPONSE .....................53  
MFR_VINEN_UV_FAULT_RESPONSE .....................54  
MFR_RETRY_COUNT .............................................55  
MFR_RETRY_DELAY ..............................................55  
MFR_RESTART_DELAY ..........................................55  
MFR_VOUT_PEAK ..................................................56  
MFR_VIN_PEAK......................................................56  
MFR_TEMPERATURE_PEAK ..................................56  
MFR_DAC ...............................................................57  
MFR_POWERGOOD_ASSERTION_DELAY..............57  
MFR_PADS .............................................................58  
MFR_SPECIAL_ID ..................................................59  
MFR_SPECIAL_LOT ...............................................59  
MFR_VOUT_DISCHARGE_THRESHOLD .................59  
MFR_COMMON ......................................................60  
USER_DATA_00, USER_DATA_01, USER_DATA_02,  
USER_DATA_03, USER_DATA_04, MFR_LTC_  
Command and CONTROLn pin................................78  
Fault Management.......................................................78  
Output Overvoltage and Undervoltage Faults .........78  
Output Overvoltage and Undervoltage Warnings....79  
Configuring the VIN_EN Output................................79  
Multichannel Fault Management ............................81  
Interconnect Between Multiple LTC2977’s ..................81  
Application Circuits .....................................................82  
Trimming and Margining DC/DC Converters with  
External Feedback Resistors...................................82  
Four-Step Resistor Selection Procedure for DC/DC  
Converters with External Feedback Resistors.........83  
Trimming and Margining DC/DC Converters with a  
TRIM Pin.................................................................83  
Two-Step Resistor and DAC Full-Scale Voltage  
RESERVED_1 and MFR_LTC_RESERVED_2...........60  
MFR_VOUT_MIN.....................................................61  
MFR_VIN_MIN........................................................61  
MFR_TEMPERATURE_MIN.....................................61  
MFR_STATUS_2 .....................................................62  
MFR_TELEMETRY ..................................................63  
Watchdog Operation....................................................64  
MFR_WATCHDOG_T_FIRST and MFR_  
Selection Procedure for DC/DC Converters with a  
TRIM Pin.................................................................84  
Measuring Current..................................................84  
Measuring Current with a Sense Resistor...............84  
Measuring Current with Inductor DCR....................84  
Single Phase Design Example.................................85  
Measuring Multiphase Currents..............................85  
Multiphase Design Example....................................85  
Anti-aliasing Filter Considerations ..........................86  
Sensing Negative Voltages......................................86  
Connecting the DC1613 USB to I2C/SMBus/PMBus  
Controller to the LTC2977 in System ..........................87  
Design Checklist..........................................................88  
LTpowerPlay: An Interactive GUI for Power System  
Managers ....................................................................89  
PCB Assembly and Layout Suggestions......................90  
Bypass Capacitor Placement...................................90  
Exposed Pad Stencil Design ...................................90  
PC Board Layout.....................................................90  
Unused ADC Sense Inputs......................................90  
Package Description ........................................ 91  
Typical Application .......................................... 92  
Related Parts................................................. 92  
WATCHDOG_T ........................................................64  
Bulk Programming the User EEPROM Space ..............65  
MFR_EE_UNLOCK ..................................................65  
MFR_EE_ERASE.....................................................66  
MFR_EE_DATA .......................................................66  
Response When Part Is Busy..................................67  
MFR_EE Erase and Write Programming Time ........67  
Fault Log Operation.....................................................67  
MFR_FAULT_LOG_STORE......................................67  
MFR_FAULT_LOG_RESTORE .................................67  
MFR_FAULT_LOG_CLEAR ......................................68  
MFR_FAULT_LOG_STATUS ....................................68  
MFR_FAULT_LOG ...................................................69  
Applications Information ................................... 76  
Overview .....................................................................76  
Powering the LTC2977 ................................................76  
Setting Command Register Values..............................76  
Sequence, Servo, Margin and Restart Operations.......76  
2977f  
3
For more information www.linear.com/LTC2977  
LTC2977  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
Supply Voltages:  
TOP VIEW  
V
V
V
to GND ......................................... –0.3V to 15V  
to GND ....................................... –0.3V to 3.6V  
to GND ..................................... –0.3V to 2.75V  
PWR  
DD33  
DD25  
Digital Input/Output Voltages:  
V
V
V
V
V
V
V
V
1
2
3
4
5
6
7
8
9
48 V  
47 V  
46 V  
45 V  
44 V  
43 V  
42 V  
41 V  
40 V  
39 V  
38 V  
37 V  
36 V  
SENSEM6  
SENSEP3  
SENSEM2  
SENSEP2  
DACM2  
ALERTB, SDA, SCL, CONTROL0,  
CONTROL1............................................ –0.3V to 5.5V  
PWRGD, SHARE_CLK,  
V
SENSEP7  
SENSEM7  
OUT_EN0  
OUT_EN1  
OUT_EN2  
OUT_EN3  
OUT_EN4  
OUT_EN5  
DACP2  
WDI/RESETB, WP....................–0.3V to V  
FAULTB00, FAULTB01, FAULTB10,  
FAULTB11 ................................–0.3V to V  
ASEL0, ASEL1..........................–0.3V to V  
Analog Voltages:  
+ 0.3V  
SENSEM1  
SENSEP1  
DACM1  
DD33  
65  
GND  
+ 0.3V  
+ 0.3V  
DACP1  
DD33  
DD33  
V
V
10  
11  
12  
OUT_EN6  
OUT_EN7  
DACP0  
DACM0  
V
IN_EN  
SENSEM0  
DNC 13  
SENSEP0  
REFP................................................... –0.3V to 1.35V  
REFM to GND........................................ –0.3V to 0.3V  
V
14  
15  
16  
35 REFM  
34 REFP  
33 ASEL1  
IN_SNS  
V
PWR  
V
DD33  
V
V
V
V
V
V
V
to GND...................................... –0.3V to 15V  
IN_SNS  
to GND................................. –0.3V to 6V  
to GND ................................ –0.3V to 6V  
OUT_EN[3:0] IN_EN  
SENSEP[7:0]  
SENSEM[7:0]  
, V  
to GND .................. –0.3V to 15V  
to GND................................. –0.3V to 6V  
UP PACKAGE  
64-LEAD (9mm × 9mm) PLASTIC QFN  
OUT_EN[7:4]  
DACP[7:0]  
to GND .................................... –0.3V to 6V  
T
JMAX  
= 125°C, θ  
= 28°C/W, θ  
= 1°C/W  
JA-TOP  
JC-BOTTOM  
to GND ................................ –0.3V to 0.3V  
EXPOSED PAD (PIN 65) IS GND, MUST BE SOLDERED TO PCB  
DACM[7:0]  
Operating Junction Temperature Range:  
LTC2977C................................................ 0°C to 70°C  
LTC2977I ......................................... –40°C to 105°C*  
Storage Temperature Range .................. –65°C to 150°C  
Maximum Junction Temperature ........................ 125°C*  
*See OPERATION section for detailed EEPROM de-  
rating information for junction temperatures in excess  
of 105°C.  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2977CUP#PBF  
LTC2977IUP#PBF  
TAPE AND REEL  
PART MARKING*  
LTC2977UP  
PACKAGE DESCRIPTION  
JUNCTION TEMPERATURE RANGE  
0°C to 70°C  
LTC2977CUP#TRPBF  
LTC2977IUP#TRPBF  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
LTC2977UP  
–40°C to 105°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping  
container. Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2977f  
4
For more information www.linear.com/LTC2977  
LTC2977  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V, VDD33, VDD25, REFP and REFM pins floating,  
unless otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Characteristics  
l
l
l
l
V
V
V
V
V
V
Supply Input Operating Range  
Supply Current  
4.5  
15  
13  
13  
2.8  
V
mA  
mA  
V
PWR  
PWR  
PWR  
DD33  
DD33  
DD33  
I
I
4.5V ≤ V  
≤ 15V, V  
Floating  
10  
10  
PWR  
PWR  
DD33  
Supply Current  
3.13V ≤ V  
≤ 3.47V, V  
= V  
PWR DD33  
VDD33  
DD33  
V
Undervoltage Lockout  
Undervoltage Lockout  
Hysteresis  
V
Ramping Up, V  
= V  
2.35  
2.55  
120  
UVLO_VDD33  
DD33  
PWR  
DD33  
mV  
l
l
l
l
l
V
Supply Input Operating Range  
Regulator Output Voltage  
Regulator Output Short-Circuit Current  
Regulator Output Voltage  
Regulator Output Short-Circuit Current  
Initialization Time  
V
= V  
3.13  
3.13  
75  
3.47  
3.47  
140  
2.6  
V
V
DD33  
PWR  
DD33  
4.5V ≤ V  
≤ 15V  
3.26  
90  
PWR  
V
PWR  
= 4.5V, V  
= 0V  
mA  
V
DD33  
V
3.13V ≤ V  
≤ 3.47V  
2.35  
30  
2.5  
55  
DD25  
DD33  
DD33  
V
PWR  
= V  
= 3.47V, V  
= 0V  
80  
mA  
ms  
DD25  
t
Time from V Applied Until the  
TON_DELAY Timer Starts  
30  
INIT  
IN  
Voltage Reference Characteristics  
V
REF  
Output Voltage  
V
= V  
– V  
, 0 < I  
< 100µA  
1.232  
3
V
ppm/°C  
ppm  
REF  
REFP  
REFM  
REFP  
Temperature Coefficient  
Hysteresis  
(Note 3)  
100  
ADC Characteristics  
l
V
Voltage Sense Input Range  
Differential Voltage:  
= (V  
0
6
V
IN_ADC  
V
– V  
)
IN_ADC  
SENSEPn  
SENSEMn  
l
l
l
Single-Ended Voltage: V  
Single-Ended Voltage: V  
–0.1  
–0.1  
–170  
0.1  
6
V
V
SENSEMn  
Current Sense Input Range (Odd  
Numbered Channels Only)  
, V  
SENSEPn SENSEMn  
Differential Voltage: V  
170  
mV  
IN_ADC  
N_ADC  
Voltage Sense Resolution Uses L16  
Format  
0V ≤ V ≤ 6V  
122  
µV/LSB  
IN_ADC  
Current Sense Resolution (Odd  
Numbered Channels Only)  
0mV ≤ |V  
| < 16mV (Note13)  
15.625  
31.25  
62.5  
µV/LSB  
µV/LSB  
µV/LSB  
µV/LSB  
µV/LSB  
IN_ADC  
16mV ≤ |V  
32mV ≤ |V  
| < 32mV  
IN_ADC  
IN_ADC  
IN_ADC  
| < 63.9mV  
63.9mV ≤ |V  
127.9mV ≤ |V  
| < 127.9mV  
125  
|
250  
IN_ADC  
l
l
l
TUE_ADC  
INL_ADC  
Total Unadjusted Error  
Integral Nonlinearity  
V
≥ 1.8V (Note 4)  
0.25  
854  
%
µV  
µV  
IN_ADC  
Voltage Sense Mode (Note 5)  
Current Sense Mode, Odd Numbered  
Channels Only, 15.6µV/LSB (Note 5)  
31.3  
l
l
DNL_ADC  
Differential Nonlinearity  
Offset Error  
Voltage Sense Mode  
400  
µV  
µV  
Current Sense Mode, Odd Numbered  
Channels Only  
31.3  
l
l
V
Voltage Sense Mode  
250  
35  
µV  
µV  
OS_ADC  
Current Sense Mode, Odd Numbered  
Channels Only  
l
l
GAIN_ADC  
Gain Error  
Voltage Sense Mode, V  
= 6V  
0.2  
%
%
IN_ADC  
Current Sense Mode, Odd Numbered  
Channels Only, V = 0.17V  
0.35  
IN_ADC  
2977f  
5
For more information www.linear.com/LTC2977  
LTC2977  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V; VDD33, VDD25, REFP and REFM pins floating,  
unless otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
6.15  
24.6  
24.6  
160  
MAX  
UNITS  
ms  
t
Conversion Time  
Voltage Sense Mode (Note 6)  
Current Sense Mode (Note 6)  
Temperature Input (Note 6)  
CONV_ADC  
ms  
ms  
t
Maximum Update Time  
Odd Numbered Channels in Current Sense  
Mode (Note 6)  
ms  
UPDATE_ADC  
C
Input Sampling Capacitance  
Input Sampling Frequency  
Input Leakage Current  
1
pF  
kHz  
µA  
IN_ADC  
IN_ADC  
IN_ADC  
f
I
62.5  
l
V
= 0V, 0V ≤ V  
≤ 6V,  
0.5  
IN_ADC  
COMMONMODE  
Current Sense Mode  
l
l
Differential Input Current  
V
V
= 0.17V, Current Sense Mode  
= 6V, Voltage Sense Mode  
80  
10  
250  
15  
nA  
µA  
IN_ADC  
IN_ADC  
Voltage Buffered IDAC Output Characteristics  
N_V  
Resolution  
10  
Bits  
DACP  
l
l
V
Full-Scale Output Voltage  
(Programmable)  
DAC Code = 0x3FF Buffer Gain Setting_0  
1.32  
2.53  
1.38  
2.65  
1.44  
2.77  
V
V
FS_VDACP  
DAC Polarity = 1  
Buffer Gain Setting_1  
l
l
l
INL_V  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Voltage  
(Note 7)  
2
LSB  
LSB  
mV  
DACP  
DNL_V  
(Note 7)  
2.4  
10  
DACP  
OS_VDACP  
DACP  
V
V
(Note 7)  
Load Regulation (V  
– V  
)
V
DACPn  
V
DACPn  
= 2.65V, I Sourcing = 2mA  
VDACPn  
100  
100  
60  
ppm/mA  
ppm/mA  
dB  
DACPn  
DACMn  
= 0.1V, I  
Sinking = 2mA  
VDACPn  
PSRR (V  
– V  
)
DC: 3.13V ≤ V  
≤ 3.47V, V = V  
PWR DD33  
DACPn  
DACMn  
DD33  
100mV Step in 20ns with 50pF Load  
–0.1V ≤ V ≤ 0.1V  
40  
dB  
DC CMRR (V  
– V  
)
60  
dB  
DACPn  
DACMn  
DACMn  
l
l
l
Leakage Current  
V
DACPn  
V
DACPn  
V
DACPn  
V
DACPn  
Hi-Z, 0V ≤ V  
≤ 6V  
100  
–4  
nA  
DACPn  
Short-Circuit Current Low  
Short-Circuit Current High  
Output Capacitance  
Shorted to GND  
–10  
4
mA  
Shorted to V  
Hi-Z  
10  
mA  
DD33  
C
OUT  
10  
pF  
t
DAC Output Update Rate  
Fast Servo Mode  
250  
µs  
S_VDACP  
Voltage Supervisor Characteristics  
l
l
V
IN_VS  
Input Voltage Range (Programmable)  
V
= (V  
SENSEMn  
Low Resolution Mode  
High Resolution Mode  
0
0
6
3.8  
V
V
IN_VS  
SENSEPn  
)
– V  
l
Single-Ended Voltage: V  
–0.1  
0.1  
V
mV/LSB  
mV/LSB  
%
SENSEMn  
N_VS  
Voltage Sensing Resolution  
Total Unadjusted Error  
0V to 3.8V Range: High Resolution Mode  
0V to 6V Range: Low Resolution Mode  
4
8
l
l
TUE_VS  
2V ≤ V  
≤ 6V, Low Resolution Mode  
1.25  
1.0  
IN_VS  
1.5V < V  
Mode  
≤ 3.8V, High Resolution  
%
IN_VS  
l
0.8V ≤ V  
Mode  
≤ 1.5V, High Resolution  
1.5  
%
IN_VS  
t
Update Rate  
12.21  
90  
µs  
S_VS  
V
Input Characteristics  
IN_SNS  
l
l
V
V
Input Voltage Range  
0
15  
V
VIN_SNS  
IN_SNS  
IN_SNS  
R
V
Input Resistance  
70  
110  
kΩ  
VIN_SNS  
2977f  
6
For more information www.linear.com/LTC2977  
LTC2977  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V; VDD33, VDD25, REFP and REFM pins floating,  
unless otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
TUE  
PARAMETER  
CONDITIONS  
3V ≤ V  
MIN  
TYP  
MAX  
2.0  
UNITS  
%
l
l
l
l
VIN_ON, VIN_OFF Threshold Total  
Unadjusted Error  
≤ 8V  
≤ 8V  
VIN_SNS  
VIN_SNS  
V
> 8V  
1.0  
%
VIN_SNS  
READ_VIN Total Unadjusted Error  
3V ≤ V  
1.5  
%
VIN_SNS  
V
> 8V  
1.0  
%
VIN_SNS  
DAC Soft-Connect Comparator Characteristics  
Offset Voltage  
Temperature Sensor Characteristics  
TUE_TS Total Unadjusted Error  
l
V
3
1
18  
mV  
°C  
OS_CMP  
V
OUT  
Enable Output (V  
[3:0]) Characteristics  
OUT_EN  
l
l
l
V
Output High Voltage (Note 12)  
I
= –5µA, V = 3.3V  
DD33  
11.6  
–5  
3
12.5  
–6  
5
14.7  
–8  
8
V
µA  
VOUT_ENn  
VOUT_ENn  
VOUT_ENn  
I
Output Sourcing Current  
Output Sinking Current  
V
Pull-Up Enabled, V  
= 1V  
VOUT_ENn  
VOUT_ENn  
Strong Pull-Down Enabled,  
= 0.4V  
mA  
V
VOUT_ENn  
l
l
Weak Pull-Down Enabled, V  
= 0.4V  
33  
50  
60  
1
µA  
µA  
VOUT_ENn  
Output Leakage Current  
Internal Pull-Up Disabled,  
0V ≤ V  
≤ 15V  
VOUT_ENn  
V
Enable Output (V  
[7:4]) Characteristics  
OUT  
OUT_EN  
l
l
I
Output Sinking Current  
Strong Pull-Down Enabled,  
OUT_ENn  
3
6
9
1
mA  
µA  
VOUT_ENn  
V
= 0.1V  
Output Leakage Current  
0V ≤ V  
≤ 6V  
VOUT_ENn  
V
Enable Output (V ) Characteristics  
IN_EN  
IN  
l
l
l
l
V
Output High Voltage  
Output Sourcing Current  
Output Sinking Current  
Leakage Current  
I
= –5µA, V = 3.3V  
DD33  
11.6  
–5  
3
12.5  
–6  
5
14.7  
–8  
8
V
µA  
VIN_EN  
VIN_EN  
VIN_EN  
I
V
V
Pull-Up Enabled, V  
= 1V  
IN_EN  
VIN_EN  
= 0.4V  
mA  
µA  
VIN_EN  
Internal Pull-Up Disabled,  
0V ≤ V ≤ 15V  
1
VIN_EN  
EEPROM Characteristics  
l
Endurance  
(Notes 8, 11)  
0°C < T < 85°C During EEPROM Write  
10,000  
20  
Cycles  
J
Operations  
l
l
Retention  
(Notes 8, 11)  
T < 105°C  
J
Years  
ms  
t
Mass Write Operation Time (Note 9)  
STORE_USER_ALL, 0°C < T < 85°C During  
440  
20  
4100  
1.5  
MASS_WRITE  
J
EEPROM Write Operations  
Digital Inputs SCL, SDA, CONTROL0, CONTROL1, WDI/RESETB, FAULTB00, FAULTB01, FAULTB10, FAULTB11, WP  
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Hysteresis  
2.1  
V
V
IH  
l
IL  
mV  
µA  
HYST  
LEAK  
l
l
I
Input Leakage Current  
0V ≤ V ≤ 5.5V, SDA, SCL, CONTROLn  
2
2
PIN  
Pins Only  
0V ≤ V ≤ V  
+ 0.3V, FAULTBzn,  
µA  
PIN  
DD33  
WDI/RESETB, WP Pins Only  
FAULTBzn, CONTROLn Pins Only  
SDA, SCL Pins Only  
t
t
Pulse Width of Spike Suppressed  
10  
98  
µs  
ns  
SP  
Minimum Low Pulse Width for  
Externally Generated Faults  
110  
ms  
FAULT_MIN  
2977f  
7
For more information www.linear.com/LTC2977  
LTC2977  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TJ = 25°C. VPWR = VIN_SNS = 12V; VDD33, VDD25, REFP and REFM pins floating,  
unless otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
300  
0.3  
TYP  
MAX  
UNITS  
µs  
l
l
l
t
t
f
Pulse Width to Assert Reset  
Pulse Width to Reset Watchdog Timer  
Watchdog Interrupt Input Frequency  
Digital Input Capacitance  
V
V
≤ 1.5V  
≤ 1.5V  
RESETB  
WDI  
WDI/RESETB  
WDI/RESETB  
200  
1
µs  
MHz  
pF  
WDI  
C
10  
IN  
Digital Input SHARE_CLK  
l
l
l
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Frequency Operating Range  
Assertion Low Time  
Rise Time  
1.6  
V
V
IH  
0.8  
110  
1.1  
450  
1
IL  
f
t
t
I
90  
kHz  
µs  
SHARE_CLK_IN  
LOW  
V
V
< 0.8V  
0.825  
SHARE_CLK  
< 0.8V to V  
> 1.6V  
ns  
RISE  
SHARE_CLK  
SHARE_CLK  
Input Leakage Current  
Input Capacitance  
0V ≤ V  
≤ V + 0.3V  
DD33  
µA  
pF  
LEAK  
SHARE_CLK  
C
10  
IN  
Digital Outputs SDA, ALERTB, PWRGD, SHARE_CLK, FAULTB00, FAULTB01, FAULTB10, FAULTB11  
l
l
V
Digital Output Low Voltage  
I
= 3mA  
0.4  
V
OL  
SINK  
f
Output Frequency Operating Range  
5.49kΩ Pull-Up to V  
90  
100  
110  
kHz  
SHARE_CLK_OUT  
DD33  
Digital Inputs ASEL0,ASEL1  
l
l
l
l
V
V
Input High Threshold Voltage  
Input Low Threshold Voltage  
High, Low Input Current  
Hi-Z Input Current  
V
DD33  
– 0.5  
V
V
IH  
0.5  
95  
24  
IL  
I
I
ASEL[1:0] = 0, V  
µA  
µA  
pF  
IH,IL  
IH, Z  
DD33  
C
Input Capacitance  
10  
IN  
Serial Bus Timing Characteristics  
l
l
l
l
f
t
t
t
Serial Clock Frequency (Note 10)  
Serial Clock Low Period (Note 10)  
Serial Clock High Period (Note 10)  
10  
1.3  
0.6  
1.3  
400  
kHz  
µs  
SCL  
LOW  
HIGH  
BUF  
µs  
Bus Free Time Between Stop and Start  
(Note 10)  
µs  
l
l
l
l
t
t
t
t
Start Condition Hold Time (Note 10)  
Start Condition Setup Time (Note 10)  
Stop Condition Setup Time (Note 10)  
600  
600  
600  
0
ns  
ns  
ns  
ns  
HD,STA  
SU,STA  
SU,STO  
HD,DAT  
Data Hold Time (LTC2977 Receiving  
Data) (Note 10)  
l
l
Data Hold Time (LTC2977 Transmitting  
Data) (Note 10)  
300  
100  
900  
ns  
t
t
Data Setup Time (Note 10)  
ns  
ns  
SU,DAT  
Pulse Width of Spike Suppressed  
(Note 10)  
98  
SP  
l
l
t
Time Allowed to Complete any PMBus Longer Timeout = 0  
Command After Which Time SDA Will Longer Timeout = 1  
Be Released and Command Terminated  
25  
200  
35  
280  
ms  
ms  
TIMEOUT_BUS  
Additional Digital Timing Characteristics  
Minimum Off Time for Any Channel  
t
100  
ms  
OFF_MIN  
2977f  
8
For more information www.linear.com/LTC2977  
LTC2977  
elecTrical characTerisTics  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. Exposure to any Absolute Maximum  
Rating for extended periods may affect device reliability and lifetime.  
Note 7: Nonlinearity is defined from the first code that is greater than or  
equal to the maximum offset specification to full-scale code, 1023.  
Note 8: EEPROM endurance and retention are guaranteed by design,  
characterization and correlation with statistical process controls. The  
minimum retention specification applies for devices whose EEPROM has  
been cycled less than the minimum endurance specification.  
Note 2: All currents into device pins are positive. All currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
specified. If power is supplied to the chip via the V  
pin only, connect  
DD33  
V
and V  
pins together.  
PWR  
DD33  
Note 9: The LTC2977 will not acknowledge any PMBus commands except  
for MFR_COMMON, while a mass write operation is being executed. This  
includes the STORE_USER_ALL and MFR_FAULT_LOG_STORE commands  
or a fault log store initiated by a channel faulting off.  
Note 3: Hysteresis in the output voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Output voltage is always measured at 25°C, but the IC is  
cycled to 105°C or –40°C before successive measurements. Hysteresis is  
roughly proportional to the square of the temperature change.  
Note 10: Maximum capacitive load, C , for SCL and SDA is 400pF. Data  
B
and clock rise time (t ) and fall time (t ) are: (20 + 0.1 • C ) (ns) < t < 300ns  
r
f
B
r
Note 4: TUE(%) is defined as:  
and (20 + 0.1 • C ) (ns) < t < 300ns. C = capacitance of one bus line in pF.  
B f B  
SCL and SDA external pull-up voltage, V , is 3.13V < V < 5.5V.  
IO  
IO  
Gain Error (%) + 100 • (INL + V )/V .  
OS IN  
Note 11: EEPROM endurance and retention will be degraded when T > 105°C.  
J
Note 5: Integral nonlinearity (INL) is defined as the deviation of a code  
from a straight line passing through the actual endpoints of the transfer  
curve (0V and 6V). The deviation is measured from the center of the  
quantization band.  
Note 6: The time between successive ADC conversions (latency of the  
ADC) for any given channel is given as: 36.9ms + (6.15ms number of  
ADC channels configured in Low Resolution mode) + (24.6ms number of  
ADC channels configured in High Resolution mode).  
Note 12: Output enable pins are charge-pumped from V  
.
DD33  
Note 13: The current sense resolution is determined by the L11 format  
and the mV units of the returned value. For example, a full-scale value  
–2  
of 170mV returns an L11 value of 0xF2A8 = 680 • 2 = 170. This is the  
lowest range that can represent this value without overflowing the L11  
–2  
mantissa and the resolution for 1LSB in this range is 2 mV = 250µV.  
Each successively lower range improves resolution by cutting the LSB size  
in half.  
pMbus TiMing DiagraM  
SDA  
t
r
t
SU(DAT)  
t
t
SP  
t
r
HD(SDA)  
t
t
t
t
f
BUF  
f
LOW  
SCL  
t
t
t
SU(STO)  
HD(STA)  
SU(STA)  
t
t
HIGH  
HD(DAT)  
2977 TD  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
START  
CONDITION CONDITION  
2977f  
9
For more information www.linear.com/LTC2977  
LTC2977  
Typical perForMance characTerisTics  
Temperature Sensor Error  
vs Temperature  
ADC Total Unadjusted Error  
vs Temperature  
Reference Voltage vs Temperature  
1.2325  
1.2320  
1.2315  
1.2310  
1.2305  
1.2300  
1.2295  
1.2290  
1.2285  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.25  
THREE TYPICAL PARTS  
V
= 1.8V  
SENSEP0  
0.20 THREE TYPICAL PARTS  
0.15  
0.10  
0.05  
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–50  
–10  
30 50 70 90 110  
–30  
10  
110  
–50  
–10  
110  
–50  
–10  
30 50 70 90  
30 50 70 90  
TEMPERATURE (°C)  
2977 G03  
–30  
10  
–30  
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2977 G01  
2977 G02  
ADC Zero Code Center Offset  
Voltage vs Temperature  
ADC-INL  
ADC-DNL  
0.8  
0.6  
250  
200  
150  
100  
50  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VOLTAGE SENSE MODE  
THREE TYPICAL PARTS  
122µV/LSB  
122µV/LSB  
0.4  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–50  
–100  
–150  
–200  
–250  
–0.5  
–1.0  
–1.5  
–50  
–10  
30 50 70 90 110  
–0.2 0.8  
1.8  
2.8  
3.8  
4.8  
–30  
10  
–0.2 0.8  
1.8  
2.8  
3.8  
4.8  
5.8  
5.8  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
2977 G06  
2977 G04  
2977 G05  
Voltage Supervisor Total  
Unadjusted Error vs Temperature  
Input Sampling Current  
vs Differential Input Voltage  
ADC Noise Histogram  
1200  
1000  
9
8
7
6
5
4
3
2
1
1.0  
0.8  
V
= 1.5V  
V
= 0V  
SENSEP0  
IN  
HIGH RESOLUTION MODE  
THREE TYPICAL PARTS  
HIGH RESOLUTION MODE  
0.6  
0.4  
800  
600  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
400  
200  
0
0
–20  
–10  
0
10  
20  
–50  
–10  
30 50 70 90 110  
0
1
2
3
6
–30  
10  
4
5
READ_V  
(µV)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
OUT  
2977 G07  
2977 G08  
2977 G09  
2977f  
10  
For more information www.linear.com/LTC2977  
LTC2977  
Typical perForMance characTerisTics  
ADC High Resolution Mode  
Differential Input Current  
DAC Full-Scale Output Voltage vs  
Temperature  
DAC Offset Voltage vs  
Temperature  
10  
8
90  
80  
70  
60  
50  
40  
30  
20  
10  
2.68  
2.67  
2.66  
2.65  
2.64  
2.63  
2.62  
2.61  
2.60  
GAIN SETTING = 1  
THREE TYPICAL PARTS  
GAIN SETTING = 1  
THREE TYPICAL PARTS  
6
4
2
0
–2  
–4  
–6  
–8  
–10  
0
–50  
–10  
30 50 70 90 110  
–50  
–10  
30 50 70 90 110  
–30  
10  
0
20 40 60 80 100  
180  
–30  
10  
120 140 160  
TEMPERATURE (°C)  
DIFFERENTIAL INPUT VOLTAGE (mV)  
TEMPERATURE (°C)  
2977 G12  
2977 G11  
2977 G10  
DAC Short-Circuit Current vs  
Temperature  
DAC Output Impedance vs  
Frequency  
10  
9
1000  
100  
10  
GAIN SETTING = 1  
THREE TYPICAL PARTS  
8
7
1
6
5
4
0.1  
0.01  
0.01  
0.1  
1
10  
100  
1000  
–50  
–10  
30 50 70 90 110  
–30  
10  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
2977 G13  
2977 G14  
DAC Soft-Connect Transient  
Response when Transitioning from  
Hi-Z State to ON State  
DAC Soft-Connect Transient  
Response when Transitioning from  
ON State to Hi-Z State  
DAC Transient Response to 1LSB  
DAC Code Change  
CODE ‘h200  
HI-Z  
HI-Z  
500µV/DIV  
10mV/DIV  
10mV/DIV  
CONNECTED  
CONNECTED  
CODE ‘h1FF  
2977 G15  
2977 G17  
2977 G16  
2µs/DIV  
500µs/DIV  
500µs/DIV  
100k SERIES RESISTANCE ON  
CODE: ‘h1FF  
100k SERIES RESISTANCE ON  
CODE: ‘h1FF  
2977f  
11  
For more information www.linear.com/LTC2977  
LTC2977  
Typical perForMance characTerisTics  
VDD33 Regulator Output Voltage  
vs Temperature  
VDD33 Regulator Load Regulation  
Supply Current vs Supply Voltage  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.23  
3.22  
3.28  
3.26  
3.24  
3.22  
3.20  
3.18  
3.16  
3.14  
3.12  
9.24  
9.22  
9.20  
9.18  
9.16  
9.14  
9.12  
9.10  
9.08  
9.06  
9.04  
9.02  
9.00  
8.98  
8.96  
THREE TYPICAL PARTS  
TEMPERATURE = 33°C  
THREE TYPICAL PARTS  
25°C  
–40°C  
105°C  
3.10  
6
8
12  
4
14  
16  
0
20  
40  
CURRENT SOURCING (mA)  
60  
120  
10  
–50  
–10  
30  
50  
70  
90  
110  
80  
100  
–30  
10  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
2977 G20  
2977 G18  
2977 G19  
VOUT_EN[3:0] and VIN_EN Output  
High Voltage vs Current  
Supply Current vs Temperature  
14.0  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
9.0  
8.9  
8.8  
V
= 15V  
PWR  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
105°C  
25°C  
–40°C  
9.5  
–50  
–10  
30 50 70 90 110  
–30  
10  
0
1
2
3
7
4
5
6
TEMPERATURE (°C)  
CURRENT SOURCING (µA)  
2977 G21  
2977 G22  
VOUT_EN[3:0] and VIN_EN Output  
VOL vs Current  
VOUT_EN[7:4] VOL vs Current  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
105°C  
105°C  
25°C  
25°C  
–40°C  
–40°C  
8
12  
0
8
12  
16  
20  
24  
0
2
4
6
10  
4
CURRENT SINKING (mA)  
CURRENT SINKING (mA)  
2977 G24  
2977 G23  
2977f  
12  
For more information www.linear.com/LTC2977  
LTC2977  
pin FuncTions  
PIN NAME  
PIN NUMBER  
PIN TYPE  
In  
DESCRIPTION  
V
V
V
V
V
V
V
V
V
V
V
V
1*  
2*  
3*  
4
5
6
7
8
9
10  
11  
12  
13  
14  
DC/DC Converter Differential (–) Output Voltage-6 Sensing Pin  
DC/DC Converter Differential (+) Output Voltage or Current-7 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage or Current-7 Sensing Pin  
DC/DC Converter Enable-0 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA  
DC/DC Converter Enable-1 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA  
DC/DC Converter Enable-2 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA  
DC/DC Converter Enable-3 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA  
DC/DC Converter Open-Drain Pull-Down Output-4  
DC/DC Converter Open-Drain Pull-Down Output-5  
DC/DC Converter Open-Drain Pull-Down Output-6  
DC/DC Converter Open-Drain Pull-Down Output-7  
DC/DC Converter V ENABLE Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA  
SENSEM6  
SENSEP7  
SENSEM7  
OUT_EN0  
OUT_EN1  
OUT_EN2  
OUT_EN3  
OUT_EN4  
OUT_EN5  
OUT_EN6  
OUT_EN7  
IN_EN  
In  
In  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
0ut  
IN  
DNC  
Do Not Connect Do Not Connect to This Pin  
V
In  
V SENSE Input. This Voltage is Compared Against the V On and Off Voltage Thresholds in Order to  
IN IN  
Determine When to Enable and Disable, Respectively, the Downstream DC/DC Converters.  
IN_SNS  
V
15  
16  
In  
V
Serves as the Unregulated Power Supply Input to the Chip (4.5V to 15V). If a 4.5V to 15V Supply  
PWR  
PWR  
Voltage is Unavailable, Short V  
GND with 0.1µF Capacitor.  
to V  
and Power the Chip Directly from a 3.3V Supply. Bypass to  
PWR  
DD33  
V
In/Out  
If Shorted to V  
, it Serves as 3.13V to 3.47V Supply Input Pin. Otherwise, it is a 3.3V Internally  
PWR  
DD33  
Regulated Voltage Output (Use 0.1µF Decoupling Capacitor to GND).  
Input for Internal 2.5V Sub-Regulator. Short This Pin to Pin 16.  
2.5V Internally Regulated Voltage Output. Bypass to GND with a 0.1µF Capacitor.  
Digital Input. Write-Protect Input Pin, Active High.  
Power Good Open-Drain Output. Indicates When Outputs are Power Good. Can be Used as System  
Power-On Reset.  
V
V
WP  
17  
18  
19  
20  
In  
In/Out  
In  
DD33  
DD25  
PWRGD  
Out  
SHARE_CLK  
WDI/RESETB  
21  
22  
In/Out  
In  
Bidirectional Clock Sharing Pin. Connect a 5.49k Pull-Up Resistor to V  
.
DD33  
Watchdog Timer Interrupt and Chip Reset Input. Connect a 10k Pull-Up Resistor to V  
. Rising Edge  
DD33  
Resets Watchdog Counter. Holding This Pin Low for More Than t  
Resets the Chip.  
RESETB  
FAULTB00  
FAULTB01  
FAULTB10  
FAULTB11  
23  
24  
25  
26  
In/Out  
In/Out  
In/Out  
In/Out  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-00. Connect a 10k Pull-Up  
Resistor to V  
.
DD33  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-01. Connect a 10k Pull-Up  
Resistor to V  
.
DD33  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-10. Connect a 10k Pull-Up  
Resistor to V  
.
DD33  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-11. Connect a 10k Pull-Up  
Resistor to V  
.
DD33  
SDA  
SCL  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36*  
37*  
38  
39  
40  
In/Out  
In  
Out  
In  
In  
In  
PMBus Bidirectional Serial Data Pin  
PMBus Serial Clock Input Pin (400kHz Maximum)  
Open-Drain Output. Generates an Interrupt Request in a Fault/Warning Situation.  
Control Pin 0 Input  
Control Pin 1 Input  
Ternary Address Select Pin 0 Input. Connect to V  
Ternary Address Select Pin 1 Input. Connect to V  
Reference Voltage Output. Needs 0.1µF Decoupling Capacitor to REFM.  
Reference Return Pin. Needs 0.1µF Decoupling Capacitor to REFP.  
DC/DC Converter Differential (+) Output Voltage-0 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-0 Sensing Pin  
DAC0 Return. Connect to Channel 0 DC/DC Converter’s GND Sense or Return to GND.  
DAC0 Output  
ALERTB  
CONTROL0  
CONTROL1  
ASEL0  
ASEL1  
REFP  
, GND or Float to Encode 1 of 3 Logic States.  
, GND or Float to Encode 1 of 3 Logic States.  
DD33  
In  
DD33  
Out  
Out  
In  
REFM  
V
V
V
V
V
SENSEP0  
SENSEM0  
DACM0  
DACP0  
In  
Out  
Out  
Out  
DAC1 Output  
DACP1  
2977f  
13  
For more information www.linear.com/LTC2977  
LTC2977  
pin FuncTions  
PIN NAME  
PIN NUMBER  
PIN TYPE  
Out  
In  
DESCRIPTION  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
41  
DAC1 Return. Connect to Channel 1 DC/DC Converter’s GND Sense or Return to GND.  
DC/DC Converter Differential (+) Output Voltage or Current-1 Sensing Pins  
DC/DC Converter Differential (–) Output Voltage or Current-1 Sensing Pins  
DAC2 Output  
DAC2 Return. Connect to Channel 2 DC/DC Converter’s GND Sense or Return to GND.  
DC/DC Converter Differential (+) Output Voltage-2 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-2 Sensing Pin  
DC/DC Converter Differential (+) Output Voltage or Current-3 Sensing Pins  
DC/DC Converter Differential (–) Output Voltage or Current-3 Sensing Pins  
DAC3 Output  
DAC3 Return. Connect to Channel 3 DC/DC Converter’s GND Sense or Return to GND.  
DC/DC Converter Differential (+) Output Voltage-4 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-4 Sensing Pin  
DAC4 Return. Connect to Channel 4 DC/DC Converter’s GND Sense or Return to GND.  
DAC4 Output  
DACM1  
42*  
43*  
44  
SENSEP1  
SENSEM1  
DACP2  
In  
Out  
Out  
In  
In  
In  
45  
DACM2  
46*  
47*  
48*  
49*  
50  
SENSEP2  
SENSEM2  
SENSEP3  
SENSEM3  
DACP3  
In  
Out  
Out  
In  
51  
DACM3  
52*  
53*  
54  
55  
56  
57  
58  
59  
60  
SENSEP4  
SENSEM4  
DACM4  
In  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
In  
DACP4  
DAC5 Output  
DACP5  
DAC5 Return. Connect to Channel 5 DC/DC Converter’s GND Sense or Return to GND.  
DAC6 Return. Connect to Channel 6 DC/DC Converter’s GND Sense or Return to GND.  
DAC6 Output  
DACM5  
DACM6  
DACP6  
DAC7 Output  
DACP7  
61  
DAC7 Return. Connect to Channel 7 DC/DC Converter’s GND Sense or Return to GND.  
DC/DC Converter Differential (+) Output Voltage or Current-5 Sensing Pins  
DC/DC Converter Differential (–) Output Voltage or Current-5 Sensing Pins  
DC/DC Converter Differential (+) Output Voltage-6 Sensing Pin  
Exposed Pad, Must be Soldered to PCB  
DACM7  
62*  
63*  
64*  
65  
SENSEP5  
SENSEM5  
SENSEP6  
In  
In  
Ground  
GND  
*Any unused V  
or V  
or V pins must be tied to GND.  
DACMn  
SENSEPn  
SENSEMn  
2977f  
14  
For more information www.linear.com/LTC2977  
LTC2977  
block DiagraM  
3.3V REGULATOR  
IN  
V
15  
16  
V
V
OUT  
PWR  
V
V
DD  
DD33  
2.5V REGULATOR  
IN  
OUT  
V
V
17  
18  
V
V
DD33  
DD25  
3R  
V
V
SENSEM0  
SENSEP0  
V
14  
IN_SNS  
R
V
V
SENSEM1  
36  
37  
42  
43  
46  
47  
48  
49  
52  
53  
62  
63  
64  
1
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SENSEP0  
SENSEM0  
SENSEP1  
SENSEM1  
SENSEP2  
SENSEM2  
SENSEP3  
SENSEM3  
SENSEP4  
SENSEM4  
SENSEP5  
SENSEM5  
SENSEP6  
SENSEM6  
SENSEP7  
SENSEM7  
SENSEP1  
GND 65  
V
V
SENSEM2  
SENSEP2  
V
V
SENSEM3  
SENSEP3  
+
+
V
V
SENSEM4  
SENSEP4  
INTERNAL  
TEMP  
SENSOR  
CMP0  
MUX  
+
10-BIT  
DAC  
V
V
SENSEM5  
SENSEP5  
V
V
SENSEM6  
SENSEP6  
V
V
SENSEM7  
SENSEP7  
+
16-BIT  
∑ ADC  
2
3
ADC  
CLOCKS  
+
VBUF  
39  
40  
44  
50  
55  
56  
59  
60  
V
V
V
V
V
V
V
V
DACP0  
DACP1  
DACP2  
DACP3  
DACP4  
DACP5  
DACP6  
DACP7  
10-BIT  
DAC  
V
DD  
REFERENCE  
1.232V  
(TYP)  
REFP 34  
REFM 35  
38  
41  
45  
51  
54  
57  
58  
61  
V
V
V
V
V
V
V
V
DACM0  
DACM1  
DACM2  
DACM3  
DACM4  
DACM5  
DACM6  
DACM7  
NONVOLATILE MEMORY  
EEPROM  
SCL 28  
SDA 27  
PAGE 0  
PMBus  
INTERFACE  
ALERTB 29  
ASEL0 32  
ASEL1 33  
2
(400kHz I C  
RAM  
COMPATIBLE)  
ADC_RESULTS  
MONITOR LIMITS  
SERVO TARGETS  
PAGE 7  
WP 19  
4
5
6
7
V
V
V
V
OUT_EN0  
OUT_EN1  
OUT_EN2  
OUT_EN3  
OUTPUT  
CONTROL0 30  
CONTROL1 31  
WDI/RESETB 22  
FAULTB00 23  
FAULTB01 24  
FAULTB10 25  
FAULTB11 26  
CONFIG  
CLOCK  
GENERATION  
OSCILLATOR  
CONTROLLER  
PMBus ALGORITHM  
FAULT PROCESSOR  
WATCHDOG  
12  
V
IN_EN  
V
DD  
8
9
V
V
V
V
OUT_EN4  
OUT_EN5  
OUT_EN6  
OUT_EN7  
SEQUENCER  
UVLO  
OPEN-DRAIN  
OUTPUT  
10  
11  
PWRGD  
20  
SHARE_CLK 21  
2977 BD  
2977f  
15  
For more information www.linear.com/LTC2977  
LTC2977  
operaTion  
OPERATION OVERVIEW  
n
n
n
n
StorecommandregistercontentswithCRCtoEEPROM  
through PMBus programming.  
The LTC2977 is a PMBus programmable power system  
controller,monitor,sequencerandvoltagesupervisorthat  
can perform the following operations:  
Restore EEPROM contents through PMBus program-  
ming or when V  
is applied on power-up.  
DD33  
Report the DC/DC converter output voltage status  
throughthePMBusinterfaceandthepowergoodoutput.  
n
Accept PMBus compatible programming commands.  
n
Provide DC/DC converter input voltage and output volt-  
age/current readback through the PMBus interface.  
Generate interrupt requests by asserting the ALERTB  
pin in response to supported PMBus faults and  
warnings.  
n
Control the output of DC/DC converters that set the  
output voltage with a trim pin or DC/DC converters  
that set the output voltage using an external resistor  
feedback network.  
n
Coordinate system wide fault responses for all DC/DC  
converters connected to the FAULTBz0 and FAULTBz1  
pins.  
n
Sequence the start-up of DC/DC converters via PMBus  
n
n
n
Synchronizesequencingdelaysorshutdownformultiple  
devices using the SHARE_CLK pin.  
programming and their control input pins. Time-based  
sequencingandtrackingsequencingarebothsupported.  
Software and hardware write protect the command  
registers.  
n
Trim the DC/DC converter output voltage (typically in  
0.02% steps), in closed-loop servo operating mode,  
through PMBus programming.  
Disable the input voltage to the supervised DC/DC  
converters in response to output voltage OV and UV  
faults.  
n
Margin the DC/DC converter output voltage to PMBus  
programmed limits.  
n
n
Log telemetry and status data to EEPROM in response  
to a faulted-off condition  
n
Allow the user to trim or margin the DC/DC converter  
outputvoltageinamanualoperatingmodebyproviding  
direct access to the margin DAC.  
Supervise an external microcontroller’s activity for a  
stalled condition with a programmable watchdog timer  
and reset it if necessary.  
n
Supervise the DC/DC converter output voltage, input  
voltage, and the LTC2977 die temperature for over-  
value/undervalue conditions with respect to PMBus  
programmedlimitsandgenerateappropriatefaultsand  
warnings.  
n
Prevent a DC/DC converter from re-entering the ON  
state after a power cycle until a programmable interval  
(MFR_RESTART_DELAY) has elapsed and its output  
has decayed below a programmable threshold voltage  
(MFR_VOUT_DISCHARGE_THRESHOLD).  
n
Respond to a fault condition by either continuing  
operationindefinitely,latchingoffafteraprogrammable  
deglitch period, latching off immediately or sequencing  
off after TOFF_DELAY. A retry mode may be used to  
automatically recover from a latched-off condition.  
When enabled, the number of retries (0 to 6 or infinite)  
is the same for all pages and is programmed in MFR_  
RETRY_COUNT.  
n
n
Record minimum and maximum observed values of  
input voltage, output voltages and temperature.  
Access user EEPROM data directly, without altering  
RAM space (MFR_EE_UNLOCK, MFR_EE_ERASE, and  
MFR_EE_DATA).Facilitatesin-housebulkprogramming.  
n
Optionally stop trimming the DC/DC converter output  
voltage after reaching the initial margin or nominal  
target. Optionally allow servo to resume if target drifts  
outside of V  
warning limits.  
OUT  
2977f  
16  
For more information www.linear.com/LTC2977  
LTC2977  
operaTion  
EEPROM  
Equivalent operating time at 105°C = 86.5 hours.  
So the overall retention of the EEPROM was degraded by  
86.5 hours as a result of operation at a junction tempera-  
ture of 125°C for 10 hours. Note that the effect of this  
overstress is negligible when compared to the overall  
EEPROM retention rating of 175,200 hours at a maximum  
junction temperature of 105°C.  
The LTC2977 contains internal EEPROM (nonvolatile  
memory) to store configuration settings and fault log  
information. EEPROM endurance, retention, and mass  
write operation time are specified over the operating junc-  
tion temperature range. See Electrical Characteristics and  
Absolute Maximum Ratings sections.  
Nondestructive operation above T = 105°C is possible  
J
although the Electrical Characteristics are not guaranteed  
and the EEPROM will be degraded.  
RESET  
Operating the EEPROM above 105°C may result in a  
degradation of retention characteristics. The fault logging  
function, which is useful in debugging system problems  
that may occur at high temperatures, only writes to fault  
log EEPROM locations. If occasional writes to these  
registers occur above 105°C, a slight degradation in the  
data retention characteristics of the fault log may occur.  
Holding the WDI/RESETB pin low for more than t  
RESETB  
will cause the LTC2977 to enter the power-on reset state.  
While in the power-on reset state, the device will not  
2
communicate on the I C bus. Following the subsequent  
rising-edge of the WDI/RESETB pin, the LTC2977 will  
execute its power-on sequence per the user configuration  
stored in EEPROM. Connect WDI/RESETB to VDD33 with  
a 10k resistor. WDI/RESETB includes an internal 256µs  
deglitch filter so additional filter capacitance on this pin  
is not recommended.  
It is recommended that the EEPROM not be written using  
STORE_USER_ALLorbulkprogrammingwhenT >85°C.  
J
The degradation in EEPROM retention for temperatures  
>105°C can be approximated by calculating the dimen-  
sionless acceleration factor using the following equation.  
WRITE-PROTECT PIN  
TheWPpinallowstheusertowrite-protecttheLTC2977’s  
configuration registers. The WP pin is active high, and  
when asserted it provides Level 2 protection: all writes  
are disabled except to the WRITE_PROTECT, PAGE,  
MFR_EE_UNLOCK, STORE_USER_ALL, OPERATION,  
MFR_PAGE_FF_MASK and CLEAR_FAULTS commands.  
The most restrictive setting between the WP pin and  
WRITE_PROTECT command will override. For example  
if WP = 1 and WRITE_PROTECT = 0x80, then the  
WRITE_PROTECT command overrides, since it is the  
most restrictive.  
Ea  
k
1
1
T
USE +273 TSTRESS +273  
AF = e  
Where:  
AF = acceleration factor  
Ea = activation energy = 1.4 eV  
−5  
k = 8.625×10 eV/°K  
T
T
= 105°C specified junction temperature  
USE  
= actual junction temperature °C  
STRESS  
OTHER OPERATIONS  
Clock Sharing  
Example: Calculate the effect on retention when operating  
at a junction temperature of 125°C for 10 hours.  
T
T
= 125°C  
STRESS  
Multiple LTC PMBus devices can synchronize their clocks  
in an application by connecting together the open-drain  
= 105°C  
USE  
AF = 8.65  
2977f  
17  
For more information www.linear.com/LTC2977  
LTC2977  
operaTion  
SHARE_CLK input/outputs to a pull-up resistor as a wired  
OR. In this case the fastest clock will take over and syn-  
chronize all LTC2977s.  
The LTC2977 will not acknowledge any PMBus command  
other than MFR_COMMON if it is still busy with a STORE_  
USER_ALL, RESTORE_USER_ALL, MFR_CONFIG_  
LTC2977oriffaultlogdataisbeingwrittentotheEEPROM.  
Status_word_busy will be set when this happens.  
SHARE_CLK can optionally be used to synchronize ON/  
OFF dependency on V across multiple chips by setting  
IN  
the Mfr_config_all_vin_share_enable bit of the MFR_  
CONFIG_ALL_LTC2977 register. When configured this  
way the chip will hold SHARE_CLK low when the unit is  
off for insufficient input voltage and upon detecting that  
SHARE_CLK is held low the chip will disable all channels  
after a brief deglitch period. When the SHARE_CLK pin  
is allowed to rise, the chip will respond by beginning a  
soft-start sequence. In this case the slowest VIN_ON  
detection will take over and synchronize other chips to  
its soft-start sequence.  
PMBus  
PMBus is an industry standard that defines a means  
of communication with power conversion devices. It is  
comprised of an industry standard SMBus serial interface  
and the PMBus command language.  
The PMBus two wire interface is an incremental extension  
2
of the SMBus. SMBus is built upon I C with some minor  
differences in timing, DC parameters and protocol. The  
2
SMBus protocols are more robust than simple I C byte  
commands because they provide timeouts to prevent  
bus hangs and optional packet error checking (PEC) to  
ensure data integrity. In general, a master device that  
PMBus SERIAL DIGITAL INTERFACE  
TheLTC2977communicateswithahost(master)usingthe  
standard PMBus serial bus interface. The PMBus Timing  
Diagram shows the timing relationship of the signals on  
the bus. The two bus lines, SDA and SCL, must be high  
when the bus is not in use. External pull-up resistors or  
current sources are required on these lines.  
2
can be configured for I C communication can be used  
for PMBus communication with little or no change to  
hardware or firmware.  
For a description of the minor extensions and exceptions  
PMBus makes to SMBus, refer to PMBus Specification  
Part 1 Revision 1.1: paragraph 5: Transport. This can be  
found at:  
The LTC2977 is a slave device. The master can com-  
municate with the LTC2977 using the following formats:  
www.pmbus.org.  
n
Master transmitter, slave receiver  
For a description of the differences between SMBus and  
n
Master receiver, slave transmitter  
2
I C, refer to system management bus (SMBus) specifica-  
The following SMBus protocols are supported:  
tionversion2.0:AppendixB–DifferencesBetweenSMBus  
2
and I C. This can be found at:  
n
Write Byte, Write Word, Send Byte  
www.smbus.org.  
n
Read Byte, Read Word, Block Read  
2
When using an I C controller to communicate with a  
n
Alert Response Address  
PMBus part it is important that the controller be able to  
write a byte of data without generating a stop. This will  
allow the controller to properly form the repeated start  
of the PMBus read command by concatenating a start  
Figures 1-12 illustrate the aforementioned SMBus  
protocols.AlltransactionssupportPEC(parityerrorcheck)  
and GCP (group command protocol). The Block Read  
supports 255 bytes of returned data. For this reason, the  
PMBustimeoutmaybeextendedusingtheMfr_config_all_  
longer_pmbus_timeout setting.  
2
command byte write with an I C read.  
2977f  
18  
For more information www.linear.com/LTC2977  
LTC2977  
operaTion  
1
7
1
1
8
1
1
S
SLAVE ADDRESS Wr  
A
x
COMMAND CODE  
A
x
P
S
Sr  
START CONDITION  
REPEATED START CONDITION  
Rd READ (BIT VALUE OF 1)  
Wr WRITE (BIT VALUE OF 0)  
x
SHOWN UNDER A FIELD INDICATES THAT THE  
FIELD IS REQUIRED TO HAVE THE VALUE OF x  
A
ACKNOWLEDGE (THIS BIT POSITION MAY BE 0  
FOR AN ACK OR 1 FOR A NACK)  
P
STOP CONDITION  
PEC PACKET ERROR CODE  
MASTER TO SLAVE  
SLAVE TO MASTER  
CONTINUATION OF PROTOCOL  
...  
2977 F01a  
Figure 1a. PMBus Packet Protocol Diagram Element Key  
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE  
A
P
2977 F01b  
Figure 1b. Write Byte Protocol  
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
P
2977 F02  
Figure 2. Write Word Protocol  
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE  
A
PEC  
A
P
2977 F03  
Figure 3. Write Byte Protocol with PEC  
1
7
1
1
8
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
PEC  
A
P
2977 F04  
Figure 4. Write Word Protocol with PEC  
1
7
1
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
P
2977 F05  
Figure 5. Send Byte Protocol  
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
PEC  
A
P
2977 F06  
Figure 6. Send Byte Protocol with PEC  
2977f  
19  
For more information www.linear.com/LTC2977  
LTC2977  
operaTion  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr SLAVE ADDRESS Rd  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
P
1 2977 F07  
Figure 7. Read Word Protocol  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr SLAVE ADDRESS Rd  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
PEC  
A
P
1 2977 F08  
Figure 8. Read Word Protocol with PEC  
1
7
1
1
8
1
1
7
1
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr SLAVE ADDRESS Rd  
A
DATA BYTE  
A
P
1 2977 F09  
Figure 9. Read Byte Protocol  
1
7
1
1
8
1
1
7
1
1
8
1
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr SLAVE ADDRESS Rd  
A
DATA BYTE  
A
PEC  
A
P
1 2977 F10  
Figure 10. Read Byte Protocol with PEC  
1
7
1
1
8
1
1
7
1
1
8
1
...  
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr  
A
BYTE COUNT = N  
A
2977 F11  
SLAVE ADDRESS Rd  
...  
...  
8
1
8
1
8
1
A
1
1
DATA BYTE 1  
A
DATA BYTE 2  
A
DATA BYTE N  
P
Figure 11. Block Read  
1
7
1
1
8
1
1
7
1
1
8
1
...  
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
Sr  
A
BYTE COUNT = N  
A
2977 F12  
SLAVE ADDRESS Rd  
...  
...  
8
1
8
1
8
1
8
1
A
1
1
DATA BYTE 1  
A
DATA BYTE 2  
A
A
P
DATA BYTE N  
PEC  
Figure 12. Block Read with PEC  
2977f  
20  
For more information www.linear.com/LTC2977  
LTC2977  
operaTion  
Device Address  
be changed unless the desired range of addresses overlap  
existingaddresses. Watchthattheaddressrangedoesnot  
2
The I C/SMBus address of the LTC2977 equals the base  
2
overlap with other I C/SMBus device or global addresses,  
address + N where N is a number from 0 to 8. N can be  
2
including I C/SMBus multiplexers and bus buffers. This  
configuredbysettingtheASEL0andASEL1pinstoV  
,
DD33  
will bring you great happiness.  
GND or FLOAT. See Table 1. Using one base address and  
the nine values of N, nine LTC2977s can be connected  
together to control 72 outputs. The base address is stored  
in the MFR_I2C_BASE_ADDRESS register. The base ad-  
dress can be written to any value, but generally should not  
TheLTC2977alwaysrespondstoitsglobaladdressandthe  
SMBus Alert Response address regardless of the state of  
itsASELpinsandtheMFR_I2C_BASE_ADDRESSregister.  
Table 1. LTC2977 Device Address Look-Up Table  
ADDRESS  
DESCRIPTION  
HEX DEVICE  
ADDRESS  
BINARY DEVICE ADDRESS BITS  
ADDRESS PINS  
7-Bit  
0C  
8-Bit  
19  
6
0
1
1
1
1
1
1
1
1
1
1
5
0
0
0
0
0
0
1
1
1
1
1
4
0
1
1
1
1
1
0
0
0
0
0
3
1
1
1
1
1
1
0
0
0
0
0
2
1
0
1
1
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
R/W  
1
ASEL1  
ASEL0  
Alert Response  
Global  
N = 0  
X
X
X
X
5B  
5C*  
5D  
5E  
5F  
B6  
B8  
BA  
BC  
BE  
C0  
C2  
C4  
C6  
C8  
0
0
L
L
N = 1  
0
L
NC  
H
N = 2  
0
L
N = 3  
0
NC  
NC  
NC  
H
L
N = 4  
60  
61  
62  
63  
64  
0
NC  
H
N = 5  
0
N = 6  
0
L
N = 7  
0
H
NC  
H
N = 8  
0
H
H = Tie to V  
, NC = No Connect = Open or Float, L = Tie to GND, X = Don’t Care  
DD33  
*MFR_I2C_BASE_ADDRESS = 7bit 5C (Factory Default)  
2977f  
21  
For more information www.linear.com/LTC2977  
LTC2977  
operaTion  
Processing Commands  
The LTC2977 uses a dedicated processing block to ensure quick response to all of its commands. There are a few  
exceptions where the part will NACK a subsequent command because it is still processing the previous command.  
These are summarized in the following tables. MFR_COMMON is a special command that may always be read even  
when the part is busy. This provides an alternate method for a host to determine if the LTC2977 is busy.  
EEPROM Related Commands  
COMMAND  
TYPICAL DELAY*  
COMMENT  
STORE_USER_ALL  
t
See Electrical Characteristics table. The LTC2977 will not accept any commands while it is transferring  
register contents to the EEPROM. The command byte will be NACKed. MFR_COMMON may always be read.  
MASS_WRITE  
RESTORE_USER_ALL  
MFR_FAULT_LOG_CLEAR  
MFR_FAULT_LOG_STORE  
Internal Fault log  
30ms  
The LTC2977 will not accept any commands while it is transferring EEPROM data to command  
registers. The command byte will be NACKed. MFR_COMMON may always be read.  
175ms  
20ms  
20ms  
The LTC2977 will not accept any commands while it is initializing the fault log EEPROM space. The  
command byte will be NACKed. MFR_COMMON may always be read.  
The LTC2977 will not accept any commands while it is transferring the fault log RAM buffer to EEPROM  
space. The command byte will be NACKed. MFR_COMMON may always be read.  
An internal fault log event is a one time event that uploads the contents of the fault log to EEPROM in  
response to a fault. Internal fault logging may be disabled. Commands received during this EEPROM  
write are NACKed. MFR_COMMON may always be read.  
MFR_FAULT_LOG_  
RESTORE  
2ms  
The LTC2977 will not accept any commands while it is transferring EEPROM data to the fault log RAM  
buffer. The command byte will be NACKed. MFR_COMMON may always be read.  
*The typical delay is measured from the command’s stop to the next command’s start.  
COMMAND  
TYPICAL DELAY*  
COMMENT  
MFR_CONFIG_LTC2977  
<50µs  
The LTC2977 will not accept any commands while it is completing this command. The command byte  
will be NACKed. MFR_COMMON may always be read.  
*The typical delay is measured from the command’s stop to the next command’s start.  
Other PMBus Timing Notes  
COMMAND  
COMMENT  
CLEAR_FAULTS  
The LTC2977 will accept commands while it is completing this command but the affected status flags will not be cleared for  
up to 500µs.  
2977f  
22  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD suMMary  
Summary Table  
CMD  
DATA  
DEFAULT REF  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM  
VALUE  
PAGE  
PAGE  
0x00 Channel or page currently selected for any R/W Byte  
command that supports paging.  
N
Y
Y
Reg  
Reg  
Reg  
0x00  
28  
OPERATION  
0x01 Operating mode control. On/Off, Margin  
High and Margin Low.  
R/W Byte  
R/W Byte  
Send Byte  
Y
Y
0x00  
0x1E  
33  
34  
ON_OFF_CONFIG  
0x02 CONTROL pin & PMBus bus on/off  
command setting.  
CLEAR_FAULTS  
0x03 Clear any fault bits that have been set.  
Y
N
NA  
34  
28  
WRITE_PROTECT  
0x10 Level of protection provided by the device R/W Byte  
against accidental changes.  
Reg  
Y
0x00  
STORE_USER_ALL  
RESTORE_USER_ALL  
CAPABILITY  
0x15 Store entire operating memory to  
EEPROM.  
Send Byte  
Send Byte  
R Byte  
N
N
N
NA  
NA  
35  
35  
35  
0x16 Restore entire operating memory from  
EEPROM.  
0x19 Summary of PMBus optional  
communication protocols supported by  
this device.  
Reg  
0xB0  
VOUT_MODE  
VOUT_COMMAND  
VOUT_MAX  
0x20 Output voltage data format and mantissa  
R Byte  
Y
Y
Y
Reg  
L16  
L16  
0x13  
35  
36  
36  
–13  
exponent. (2  
)
0x21 Servo Target. Nominal DC/DC converter  
output voltage setpoint.  
R/W Word  
V
V
Y
Y
1.0  
0x2000  
0x24 Upper limit on the output voltage the unit R/W Word  
can command regardless of any other  
commands.  
4.0  
0x8000  
VOUT_MARGIN_HIGH  
VOUT_MARGIN_LOW  
VIN_ON  
0x25 Margin high DC/DC converter output  
voltage setting.  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
Y
Y
N
N
L16  
L16  
L11  
L11  
V
V
V
V
Y
Y
Y
Y
1.05  
36  
36  
36  
36  
0x219A  
0x26 Margin low DC/DC converter output  
voltage setting.  
0.95  
0x1E66  
0x35 Input voltage (V  
) above which  
10.0  
0xD280  
IN_SNS  
power conversion can be enabled.  
VIN_OFF  
0x36 Input voltage (V  
) below which  
9.0  
0xD240  
IN_SNS  
power conversion is disabled. All V  
pins go off immediately.  
OUT_EN  
VOUT_OV_FAULT_LIMIT  
0x40 Output overvoltage fault limit  
R/W Word  
R/W Byte  
R/W Word  
R/W Word  
R/W Word  
Y
Y
Y
Y
Y
L16  
Reg  
L16  
L16  
L16  
V
Y
Y
Y
Y
Y
1.1  
36  
38  
36  
36  
36  
0x2333  
VOUT_OV_FAULT_  
RESPONSE  
0x41 Action to be taken by the device when an  
output overvoltage fault is detected.  
0x80  
VOUT_OV_WARN_LIMIT  
VOUT_UV_WARN_LIMIT  
VOUT_UV_FAULT_LIMIT  
0x42 Output overvoltage warning limit .  
V
V
V
1.075  
0x2266  
0x43 Output undervoltage warning limit  
0.925  
0x1D9A  
0x44 Output undervoltage fault limit. Limit  
used to determine if TON_MAX_FAULT  
has been met and the unit is on.  
0.9  
0x1CCD  
VOUT_UV_FAULT_  
RESPONSE  
0x45 Action to be taken by the device when an  
output undervoltage fault is detected.  
R/W Byte  
R/W Word  
R/W Byte  
Y
N
N
Reg  
L11  
Reg  
Y
Y
Y
0x7F  
38  
37  
39  
OT_FAULT_LIMIT  
0x4F Overtemperature fault limit.  
°C  
105.0  
0xEB48  
OT_FAULT_RESPONSE  
0x50 Action to be taken by the device when an  
overtemperature fault is detected.  
0xB8  
2977f  
23  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD suMMary  
Summary Table  
CMD  
DATA  
DEFAULT REF  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM  
VALUE  
PAGE  
OT_WARN_LIMIT  
0x51 Overtemperature warning limit.  
R/W Word  
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
L11  
L11  
L11  
Reg  
L11  
Reg  
L11  
L11  
L11  
Reg  
L16  
L16  
L11  
°C  
°C  
°C  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
70.0  
37  
0xEA30  
UT_WARN_LIMIT  
0x52 Undertemperature warning limit.  
0x53 Undertemperature fault limit.  
R/W Word  
R/W Word  
R/W Byte  
0
37  
37  
39  
36  
39  
36  
36  
36  
39  
36  
36  
37  
0x8000  
UT_FAULT_LIMIT  
–40.0  
0xE580  
UT_FAULT_RESPONSE  
VIN_OV_FAULT_LIMIT  
0x54 Action to be taken by the device when an  
undertemperature fault is detected.  
0xB8  
0x55 Input overvoltage fault limit measured at R/W Word  
pin  
V
15.0  
0xD3C0  
V
IN_SNS  
VIN_OV_FAULT_  
RESPONSE  
0x56 Action to be taken by the device when an  
input overvoltage fault is detected.  
R/W Byte  
0x80  
VIN_OV_WARN_LIMIT  
VIN_UV_WARN_LIMIT  
VIN_UV_FAULT_LIMIT  
0x57 Input overvoltage warning limit measured R/W Word  
at V pin  
V
V
V
14.0  
0xD380  
IN_SNS  
0x58 Input undervoltage warning limit  
measured at V pin.  
R/W Word  
0
0x8000  
IN_SNS  
0x59 Input undervoltage fault limit measured at R/W Word  
pin  
0
V
0x8000  
IN_SNS  
VIN_UV_FAULT_  
RESPONSE  
0x5A Action to be taken by the device when an  
input undervoltage fault is detected.  
R/W Byte  
0x00  
POWER_GOOD_ON  
POWER_GOOD_OFF  
TON_DELAY  
0x5E Output voltage at or above which a power R/W Word  
good should be asserted.  
V
V
0.96  
0x1EB8  
0x5F Output voltage at or below which a power R/W Word  
good should be deasserted.  
0.94  
0x1E14  
0x60 Time from CONTROL pin and/or  
OPERATION command = ON to V  
pin = ON.  
R/W Word  
ms  
1.0  
0xBA00  
OUT_EN  
TON_RISE  
0x61 Time from when the V  
pin goes  
R/W Word  
Y
Y
L11  
L11  
ms  
ms  
Y
Y
10.0  
37  
37  
OUT_ENn  
high until the LTC2977 optionally soft-  
connects its DAC and begins to servo the  
output voltage to the desired value.  
0xD280  
TON_MAX_FAULT_LIMIT  
0x62 Maximum time from V  
= ON  
R/W Word  
15.0  
0xD3C0  
OUT_EN  
assertion that an UV condition will be  
tolerated before a TON_MAX_FAULT  
condition results.  
TON_MAX_FAULT_  
RESPONSE  
0x63 Action to be taken by the device when a  
TON_MAX_FAULT event is detected.  
R/W Byte  
Y
Y
Reg  
L11  
Y
Y
0xB8  
40  
37  
TOFF_DELAY  
0x64 Time from CONTROL pin and/or  
R/W Word  
ms  
1.0  
0xBA00  
OPERATION command = OFF to V  
pin = OFF.  
OUT_EN  
STATUS_BYTE  
0x78 One byte summary of the unit’s fault  
condition.  
R Byte  
Y
Y
Reg  
Reg  
NA  
NA  
41  
41  
STATUS_WORD  
0x79 Two byte summary of the unit’s fault  
condition.  
R Word  
STATUS_VOUT  
STATUS_INPUT  
0x7A Output voltage fault and warning status.  
R Byte  
R Byte  
Y
N
Reg  
Reg  
NA  
NA  
42  
42  
0x7C Input voltage fault and warning status  
measured at VIN_SNS pin.  
STATUS_TEMPERATURE  
0x7D Temperature fault and warning status for  
READ_TEMPERATURE_1.  
R Byte  
N
Reg  
NA  
42  
2977f  
24  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD suMMary  
Summary Table  
CMD  
DATA  
DEFAULT REF  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM  
VALUE  
PAGE  
STATUS_CML  
0x7E Communication and memory fault and  
warning status.  
R Byte  
N
Reg  
NA  
43  
STATUS_MFR_SPECIFIC  
0x80 Manufacturer specific fault and state  
information.  
R Byte  
Y
Reg  
NA  
43  
READ_VIN  
0x88 Input voltage measured at VIN_SNS pin.  
0x8B DC/DC converter output voltage.  
0x8D Internal junction temperature.  
R Word  
R Word  
R Word  
R Byte  
N
Y
N
N
L11  
L16  
L11  
Reg  
V
V
NA  
NA  
44  
44  
44  
44  
READ_VOUT  
READ_TEMPERATURE_1  
PMBUS_REVISION  
°C  
NA  
0x98 PMBus revision supported by this device.  
Current revision is 1.1.  
0x11  
USER_DATA_00  
USER_DATA_01  
USER_DATA_02  
USER_DATA_03  
USER_DATA_04  
MFR_LTC_RESERVED_1  
MFR_STATUS_2  
0xB0 Manufacturer reserved for LTpowerPlay™. R/W Word  
N
Y
N
Y
N
Y
Y
Reg  
Reg  
Reg  
Reg  
Reg  
Reg  
Reg  
Y
Y
Y
Y
Y
Y
NA  
NA  
60  
60  
60  
60  
60  
60  
62  
0xB1 Manufacturer reserved for LTpowerPlay.  
0xB2 OEM reserved.  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
R Word  
NA  
0xB3 Scratchpad location.  
0x00  
0x00  
NA  
0xB4 Scratchpad location.  
0xB5 Manufacturer reserved.  
0xB7 Additional manufacturer specific fault and  
state information.  
NA  
MFR_LTC_RESERVED_2  
MFR_EE_UNLOCK  
0xBC Manufacturer reserved.  
R/W Word  
R/W Byte  
Y
N
Reg  
Reg  
NA  
NA  
60  
65  
0xBD Unlock user EEPROM for access by  
MFR_EE_ERASE and MFR_EE_DATA  
commands.  
MFR_EE_ERASE  
MFR_EE_DATA  
0xBE Initialize user EEPROM for bulk  
programming by MFR_EE_DATA.  
R/W Byte  
N
N
Reg  
Reg  
NA  
NA  
66  
66  
0xBF Data transferred to and from EEPROM  
using sequential PMBus word reads or  
writes. Supports bulk programming.  
R/W Word  
MFR_COMMAND_PLUS  
MFR_DATA_PLUS0  
MFR_DATA_PLUS1  
0xC0 Alternate access to block read and other  
data: commands for all hosts.  
R/W Word  
R/W Word  
R/W Word  
N
N
N
Reg  
Reg  
Reg  
NA  
NA  
NA  
30  
30  
30  
0xC1 Alternate access to block read and other  
data: data for alternate host 0.  
0xC2 Alternate access to block read an other  
data: data for alternate host 1.  
MFR_TELEMETRY  
0xCF Telemetry data for all output channels.  
R Block  
N
Y
Reg  
Reg  
NA  
63  
45  
MFR_CONFIG_LTC2977  
0xD0 Configuration bits that are channel  
specific.  
R/W Word  
Y
Y
Y
0x0080  
MFR_CONFIG_ALL_  
LTC2977  
0xD1 Configuration bits that are common to all R/W Word  
pages.  
N
Y
Reg  
Reg  
0x1C7B  
0x00  
49  
50  
MFR_FAULTBz0_  
PROPAGATE  
0xD2 Configuration that determines if a  
channel’s faulted off state is propagated  
to the FAULTB00 and FAULTB10 pins.  
R/W Byte  
MFR_FAULTBz1_  
PROPAGATE  
0xD3 Manufacturer configuration that  
Configuration that determines if a  
R/W Byte  
Y
N
Reg  
Reg  
Y
Y
0x00  
50  
51  
channel’s faulted off state is propagated  
to the FAULTB01 and FAULTB11 pins.  
MFR_PWRGD_EN  
0xD4 Configuration for mapping PWRGD and  
WDI/RESETB status to the PWRGD pin.  
R/W Word  
0x0000  
2977f  
25  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD suMMary  
Summary Table  
CMD  
DATA  
DEFAULT REF  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM  
VALUE  
PAGE  
MFR_FAULTB00_  
RESPONSE  
0xD5 Action to be taken by the device when the R/W Byte  
FAULTB00 pin is asserted low.  
N
N
N
N
N
N
N
N
Y
Reg  
Reg  
Reg  
Reg  
Reg  
Reg  
L11  
L11  
L16  
Y
Y
Y
Y
Y
Y
Y
Y
0x00  
52  
MFR_FAULTB01_  
RESPONSE  
0xD6 Action to be taken by the device when the R/W Byte  
FAULTB01 pin is asserted low.  
0x00  
0x00  
0x00  
0x00  
0x00  
52  
52  
52  
53  
54  
55  
55  
56  
MFR_FAULTB10_  
RESPONSE  
0xD7 Action to be taken by the device when the R/W Byte  
FAULTB10 pin is asserted low.  
MFR_FAULTB11_  
RESPONSE  
0xD8 Action to be taken by the device when the R/W Byte  
FAULTB11 pin is asserted low.  
MFR_VINEN_OV_FAULT_  
RESPONSE  
0xD9 Action to be taken by the V  
pin in  
R/W Byte  
R/W Byte  
R/W Word  
R/W Word  
R Word  
IN_EN  
response to a VOUT_OV_FAULT  
MFR_VINEN_UV_FAULT_  
RESPONSE  
0xDA Action to be taken by the V  
pin in  
IN_EN  
response to a VOUT_UV_FAULT  
MFR_RETRY_DELAY  
MFR_RESTART_DELAY  
MFR_VOUT_PEAK  
MFR_VIN_PEAK  
0xDB Retry interval during FAULT retry mode.  
ms  
ms  
V
200.0  
0xF320  
0xDC Delay from actual CONTROL active edge  
to virtual CONTROL active edge.  
400.0  
0xFB20  
0xDD Maximum measured value of READ_  
VOUT.  
NA  
0xDE Maximum measured value of READ_VIN.  
R Word  
R Word  
N
N
L11  
L11  
V
NA  
NA  
56  
56  
MFR_TEMPERATURE_  
PEAK  
0xDF Maximum measured value of READ_  
TEMPERATURE_1.  
°C  
MFR_DAC  
0xE0 Manufacturer register that contains the  
code of the 10-bit DAC.  
R/W Word  
R/W Word  
R/W Word  
R/W Word  
R/W Byte  
Y
N
N
N
N
Reg  
L11  
L11  
L11  
Reg  
0x0000  
57  
57  
64  
64  
29  
MFR_POWERGOOD_  
ASSERTION_DELAY  
0xE1 Power good output assertion delay.  
ms  
ms  
ms  
Y
Y
Y
Y
100.0  
0xEB20  
MFR_WATCHDOG_T_FIRST 0xE2 First watchdog timer interval.  
0
0x8000  
MFR_WATCHDOG_T  
MFR_PAGE_FF_MASK  
0xE3 Watchdog timer interval.  
0
0x8000  
0xE4 Configuration defining which channels  
respond to global page commands  
(PAGE=0xFF).  
0xFF  
MFR_PADS  
0xE5 Current state of selected digital I/O pads.  
R Word  
N
N
Reg  
Reg  
N/A  
58  
29  
2
MFR_I2C_BASE_ADDRESS 0xE6 Base value of the I C/SMBus address  
byte.  
R/W Byte  
Y
Y
Y
0x5C  
MFR_SPECIAL_ID  
0xE7 Manufacturer code for identifying the  
LTC2977  
R Word  
R Byte  
N
Y
Reg  
Reg  
0x0130  
59  
59  
MFR_SPECIAL_LOT  
0xE8 Customer dependent codes that  
identify the factory programmed user  
configuration stored in EEPROM. Contact  
factory for default value.  
MFR_VOUT_DISCHARGE_  
THRESHOLD  
0xE9 Coefficient used to multiply VOUT_  
R/W Word  
Y
N
L11  
Y
2.0  
59  
67  
COMMAND in order to determine V  
threshold voltage.  
off  
0xC200  
OUT  
MFR_FAULT_LOG_STORE  
0xEA Command a transfer of the fault log from Send Byte  
RAM to EEPROM. This causes the part to  
NA  
behave as if a channel has faulted off.  
2977f  
26  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD suMMary  
Summary Table  
CMD  
DATA  
DEFAULT REF  
COMMAND NAME  
CODE DESCRIPTION  
TYPE  
PAGED FORMAT UNITS EEPROM  
VALUE  
PAGE  
MFR_FAULT_LOG_  
RESTORE  
0xEB Command a transfer of the fault log  
previously stored in EEPROM back to  
RAM.  
Send Byte  
N
NA  
67  
MFR_FAULT_LOG_CLEAR  
0xEC Initialize the EEPROM block reserved for  
fault logging and clear any previous fault  
logging locks.  
Send Byte  
N
NA  
68  
MFR_FAULT_LOG_STATUS 0xED Fault logging status.  
R Byte  
N
N
Reg  
Reg  
Y
Y
NA  
NA  
68  
69  
MFR_FAULT_LOG  
0xEE Fault log data bytes. This sequentially  
R Block  
retrieved data is used to assemble a  
complete fault log. 256 Bytes: 0xFF  
followed by 255 bytes of fault log data.  
MFR_COMMON  
MFR_RETRY_COUNT  
MFR_VOUT_MIN  
MFR_VIN_MIN  
0xEF Manufacturer status bits that are common  
across multiple LTC chips.  
R Byte  
R/W Byte  
R Word  
N
N
Y
Reg  
Reg  
L16  
NA  
0x07  
NA  
60  
55  
61  
0xF7 Retry count for all faulted off conditions  
that enable retry.  
Y
0xFB Minimum measured value of READ_  
VOUT.  
V
0xFC Minimum measured value of READ_VIN.  
R Word  
R Word  
N
N
L11  
L11  
V
NA  
NA  
61  
61  
MFR_TEMPERATURE_MIN 0xFD Minimum measured value of READ_  
TEMPERATURE_1.  
°C  
Data Formats  
L11  
L16  
Reg  
Linear_5s_11s  
Linear_16u  
Register  
PMBus data field b[15:0]  
N
Value = Y • 2  
where N = b[15:11] is a 5-bit two’s complement integer and Y = b[10:0] is an 11-bit two’s complement integer  
Example:  
READ_VIN = 10V  
For b[15:0] = 0xD280 = 1101_0010_1000_0000b  
–6  
Value = 640 • 2 = 10  
See PMBus Spec Part II: Paragraph 7.1  
PMBus data field b[15:0]  
N
Value = Y • 2 where Y = b[15:0] is an unsigned integer and N = Vout_mode_parameter is a 5-bit two’s complement  
exponent that is hardwired to –13 decimal.  
Example:  
VOUT_COMMAND = 4.75V  
For b[15:0] = 0x9800 = 1001_1000_0000_0000b  
–13  
Value = 38912 • 2 = 4.75  
See PMBus Spec Part II: Paragraph 8.3.1  
PMBus data field b[15:0] or b[7:0].  
Bit field meaning is defined in detailed PMBus Command Register Description.  
2977f  
27  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
ADDRESSING AND WRITE PROTECT  
PAGE  
The LTC2977 has eight pages that correspond to the eight DC/DC converter channels that can be managed. Each DC/DC  
converter channel can be uniquely programmed by first setting the appropriate page.  
Setting PAGE = 0xFF allows a simultaneous write to all pages for PMBus commands that support global page  
programming. The only commands that support PAGE = 0xFF are CLEAR_FAULTS, OPERATION and ON_OFF_CONFIG.  
See MFR_PAGE_FF_MASK for additional options. Reading any paged PMBus register with PAGE = 0xFF returns un-  
predictable data and will trigger a CML fault. Writes to pages that do not support PAGE = 0xFF with PAGE = 0xFF will  
be ignored and generate a CML fault.  
PAGE Data Contents  
BIT(S) SYMBOL PURPOSE  
b[7:0] Page Page operation.  
0x00: All PMBus commands address channel/page 0.  
0x01: All PMBus commands address channel/page 1.  
0x07: All PMBus commands address channel/page 7.  
0xXX: All nonspecified values reserved.  
0xFF: A single PMBus write/send to commands that support this mode will simultaneously address all channels/pages with  
MFR_PAGE_FF_MASK enabled.  
WRITE_PROTECT  
The WRITE_PROTECT command provides protection against accidental programming of the LTC2977 command  
registers. All supported commands may have their parameters read, regardless of the WRITE_PROTECT setting, and  
the EEPROM contents can also be read regardless of the WRITE_PROTECT settings.  
There are two levels of write protection:  
Level 1: Nothing can be changed except the level of write protection itself. Values can be read from all pages. This  
setting can be stored to EEPROM.  
Level 2: Nothing can be changed except for the level of protection, channel on/off state and clearing of faults. Values  
can be read from all pages. This setting can be stored to EEPROM.  
WRITE_PROTECT Data Contents  
BITS(S) SYMBOL  
OPERATION  
b[7:0] Write_protect[7:0] 1000_0000b: Level 1 Protection - Disable all writes except to the WRITE_PROTECT, PAGE, MFR_EE_UNLOCK, and  
STORE_USER_ALL commands.  
0100_0000b: Level 2 Protection – Disable all writes except to the WRITE_PROTECT, PAGE, MFR_EE_UNLOCK, STORE_  
USER_ALL, OPERATION, MFR_PAGE_FF_MASK and CLEAR_FAULTS commands.  
0000_0000b: Enable writes to all commands.  
xxxx_xxxxb: All other values reserved.  
2977f  
28  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_PAGE_FF_MASK  
The MFR_PAGE_FF_MASK command is used to select which channels respond when the global page command  
(PAGE=0xFF) is in use.  
MFR_PAGE_FF_MASK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Mfr_page_ff_mask_chan7  
Channel 7 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 6 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
b[6] Mfr_page_ff_mask_chan6  
b[5] Mfr_page_ff_mask_chan5  
b[4] Mfr_page_ff_mask_chan4  
b[3] Mfr_page_ff_mask_chan3  
b[2] Mfr_page_ff_mask_chan2  
b[1] Mfr_page_ff_mask_chan1  
b[0] Mfr_page_ff_mask_chan0  
1 = fully respond to global page command accesses  
Channel 5 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 4 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 3 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 2 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 1 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
1 = fully respond to global page command accesses  
Channel 0 masking of global page command (PAGE=0xFF) accesses  
0 = ignore global page command accesses  
1 = fully respond to global page command accesses  
MFR_I2C_BASE_ADDRESS  
2
The MFR_I2C_BASE_ADDRESS command determines the base value for the I C/SMBus address byte. Offsets of 0  
2
to 9 are added to this base address to make the device I C/SMBus address. The part responds to the device address.  
MFR_I2C_BASE_ADDRESS Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Reserved  
Read only, always returns 0.  
2
b[6:0] i2c_base_address This 7-bit value determines the base value of the 7-bit I C/SMBus address. See Operation Section: Device Address.  
2977f  
29  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_COMMAND_PLUS, MFR_DATA_PLUS0, MFR_DATA_PLUS1, MFR_STATUS_PLUS0, and MFR_STATUS_PLUS1  
Command Plus operations use a sequence of word commands to support the following:  
An alternate method for reading block data using sequential standard word reads.  
A peek operation that allows up to two additional hosts to read an internal register using PMBus word protocol  
where each host has a unique page.  
A poke operation that allows up to two additional hosts to write an internal register using PMBus word protocol  
where each host has a unique page.  
Peek, Poke and Command Plus block reads do not interfere with normal PMBus accesses or page values set by  
PAGE. This enables multi master support for up to 3 hosts.  
MFR_COMMAND_PLUS Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15]  
Mfr_command_plus_  
reserved  
Reserved. Always returns 0.  
b[14]  
Mfr_command_plus_id  
Command Plus host ID  
0: Mfr_command_plus pointer and page are cached and used for all Mfr_data_plus0 accesses.  
1: Mfr_command_plus pointer and page are cached and used for all Mfr_data_plus1 accesses.  
b[13:9] Mfr_command_plus_page  
Page to be used when peeking or poking via Mfr_data_plus0 or Mfr_data_plus1. Allowed values are 0  
through 7. This page value is cached separately for Mfr_data_plus0 and Mfr_data_plus1 based on the value of  
Mfr_command_plus_id when this register is written.  
b[8:0] Mfr_command_plus_pointer Internal memory location accessed by Mfr_data_plus0 or Mfr_data_plus1. Mfr_data_plus0 and Mfr_data_plus1  
pointers are cached separately. Legal values are listed in the Cmd Code column of the PMBus COMMAND  
SUMMARY table. All other values are reserved, except for the special poke enable/disable values listed in  
Enabling and Disabling Poke Operations on page 32, and the command values listed below for Mfr_status_plus0  
and Mfr_status_plus1.  
MFR_DATA_PLUS0 and MFR_DATA_PLUS1 Data Contents  
BIT(S) SYMBOL  
b[15:0] Mfr_data_plus0  
Mfr_data_plus1  
OPERATION  
A read from this register returns data referenced by the last matching Mfr_command_plus write. More  
specifically, writes to Mfr_command_plus by host 0 update Mfr_data_plus0, and writes to Mfr_command_plus  
by host1 update Mfr_data_plus1. Multiple sequential reads while pointer=MFR_FAULT_LOG return the complete  
contents of the block read buffer. Block reads beyond the end of the buffer return zeros.  
A write to this register will transfer the data to the location referenced by the last matching Mfr_command_  
plus_pointer when the Poke operation protocol described in Poke Operation Using Mfr_data_plus0 on page 32  
is followed.  
2977f  
30  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_STATUS_PLUS0 and MFR_STATUS_PLUS1 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:2] Reserved  
b[1]  
Mfr_status_plus_block_  
Status of most recent block peek for matching host.  
0: Last block peek was not aborted.  
peek_failed0  
Mfr_status_plus_block_  
peek_failed1  
1: Last block peek was aborted due to an intervening fault log EEPROM write, MFR_FAULT_LOG_STORE  
command, or standard PMBus block read of MFR_FAULT_LOG. The intervening operation is always completed  
cleanly.  
b[0]  
Mfr_status_plus_poke_  
failed0  
Status of most recent poke for matching host.  
0: Last poke operation did not fail.  
Mfr_status_plus_poke_  
failed1  
1: Last poke operation failed because pokes were not enabled as described in Enabling and Disabling Poke  
Operations below.  
MFR_STATUS_PLUS0 is at command location 0x2C, and MFR_STATUS_PLUS1 is at command location 0x2D. These correspond to reserved PMBus  
command locations. These two status registers can only be read via Command Plus peeks.  
Reading Fault Log Using Command Plus and Mfr_data_plus0  
Write Mfr_command_plus_pointer=0xEE with Mfr_command_plus_page=0 and Mfr_command_plus_id=0.  
Read data from Mfr_data_plus0; each read returns the next data word of the MFR_FAULT_LOG command:  
The first word read is Byte_count[15:0]=0x00FF.  
The next set of words read is the Preamble with 2 bytes packed into a word. Refer to Fault Log section for details.  
The next set of words read is the Cyclical Loop Data with 2 bytes per word. Refer to Fault Log section for details.  
Extra reads return zero.  
Interleaved PMBus word and byte commands do not interfere with an ongoing Command Plus block read.  
Interleaved PMBus block reads of MFR_FAULT_LOG will interrupt this command.  
Check status to be sure the data just read was all valid:  
Write Mfr_command_plus_pointer=0x2C with Mfr_command_plus_page=0 and Mfr_command_plus_id=0.  
Read data from Mfr_data_plus0 and confirm that Mfr_status_plus_block_peek_failed0 = 0.  
2977f  
31  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
Peek Operation using Mfr_data_plus0  
Internal words and bytes may be read using Command Plus:  
Write Mfr_command_plus_pointer=CMD_CODE with Mfr_command_plus_page=page and Mfr_command_plus_id=0.  
The CMD_CODE’s are listed in the PMBus COMMAND SUMMARY table.  
Read data from Mfr_data_plus0. Data is always read using a word read. Byte data is returned with the upper byte set to 0.  
Enabling and Disabling Poke Operations  
Poke operations to Mfr_data_plus0 are enabled by writing Mfr_command_plus = 0x0BF6.  
Poke operations to Mfr_data_plus0 are disabled by writing Mfr_command_plus = 0x01F6.  
Poke operations to Mfr_data_plus1 are enabled by writing Mfr_command_plus = 0x4BF6.  
Poke operations to Mfr_data_plus1 are disabled by writing Mfr_command_plus = 0x41F6.  
Poke Operation Using Mfr_data_plus0  
Internal words and bytes may be written using Command Plus:  
Enable poke access for Mfr_data_plus0. This need only be done once after a power-up or WDI reset.  
Write Mfr_command_plus_pointer=CMD_CODE with Mfr_command_plus_page=page and Mfr_command_plus_id=0.  
The CMD_CODE’s are listed in the PMBus COMMAND SUMMARY table.  
Write the new data value to Mfr_data_plus0  
Optionally check status to be sure data was written as desired:  
Write Mfr_command_plus_pointer=0x2C with Mfr_command_plus_page=0 and Mfr_command_plus_id=0.  
Read data from Mfr_data_plus0 and confirm that Mfr_status_plus_poke_failed0 = 0.  
Command Plus Operations Using Mfr_data_plus1  
All the previous operations may be accessed via Mfr_data_plus1 by substituting Mfr_command_plus_id value with  
a 1. Poke operations must be enabled for Mfr_data_plus1.  
2977f  
32  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
OPERATION, MODE AND EEPROM COMMANDS  
OPERATION  
The OPERATION command is used to turn the unit on and off in conjunction with the CONTROLn pin and ON_OFF_  
CONFIG. This command register responds to the global page command (PAGE=0xFF). The contents and functions of  
the data byte are shown in the following tables. A minimum t  
commands used to turn the unit off and then back on.  
wait time must be observed between OPERATION  
OFF_MIN  
OPERATION Data Contents (On_off_config_use_pmbus=1)  
SYMBOL  
BITS  
Action  
Operation_control[1:0] Operation_margin[1:0]  
Operation_fault[1:0]  
Reserved (read only)  
b[7:6]  
00  
b[5:4]  
XX  
b[3:2]  
XX  
b[1:0]  
00  
Turn off immediately  
Turn on  
10  
00  
XX  
00  
Margin Low (Ignore Faults and  
Warnings)  
10  
01  
01  
00  
Margin Low  
10  
10  
01  
10  
10  
01  
00  
00  
Margin High (Ignore Faults and  
Warnings  
Margin High  
10  
01  
10  
00  
10  
00  
00  
FUNCTION  
Sequence off and margin to  
nominal  
XX  
Sequence off and Margin Low  
(Ignore Faults and Warnings)  
01  
01  
01  
00  
Sequence off and Margin Low  
01  
01  
01  
10  
10  
01  
00  
00  
Sequence off and Margin High  
(Ignore Faults and Warnings)  
Sequence off and Margin High  
Reserved  
01  
10  
10  
00  
All remaining combinations  
OPERATION Data Contents (On_off_config_use_pmbus=0)  
SYMBOL  
BITS  
Action  
Operation_control[1:0] Operation_margin[1:0]  
Operation_fault[1:0]  
Reserved (read only)  
b[7:6]  
b[5:4]  
00  
b[3:2]  
XX  
b[1:0]  
00  
Output at Nominal  
00, 01 or 10  
00, 01 or 10  
Margin Low (Ignore faults and  
Warnings)  
01  
01  
00  
Margin Low  
00, 01 or 10  
00, 01 or 10  
01  
10  
10  
01  
00  
00  
FUNCTION  
Margin High (Ignore Faults and  
Warnings  
Margin High  
Reserved  
00, 01 or 10  
10  
10  
00  
All remaining combinations  
2977f  
33  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
ON_OFF_CONFIG  
TheON_OFF_CONFIGcommandconfiguresthecombinationofCONTROLnpininputandPMBusbuscommandsneeded  
to turn the LTC2977 on/off, including the power-on behavior, as shown in the following table. This command register  
responds to the global page command (PAGE=0xFF). After the part has initialized, an additional comparator monitors  
VIN_SNS. The VIN_ON threshold must be exceeded before the output power sequencing can begin. After V is initially  
IN  
applied, the part will typically require t  
time to initialize and begin the TON_DELAY timer. The readback of voltages  
INIT  
and currents may require an additional wait for t  
. A minimum t  
wait time must be observed for any  
UPDATE_ADC  
OFF_MIN  
CONTROL pin toggle used to turn the unit off and then back on.  
ON_OFF_CONFIG Data Contents  
BITS(S) SYMBOL  
OPERATION  
b[7:5]  
b[4]  
Reserved  
Don’t care. Always returns 0.  
On_off_config_controlled_on  
Controls default autonomous power-up operation.  
0: Unit powers up regardless of the CONTROLn pin or OPERATION value. Unit always powers up with  
sequencing. To turn unit on without sequencing, set TON_DELAY = 0.  
1: Unit does not power up unless commanded by the CONTROLn pin and/or the OPERATION command  
on the serial bus. If On_off_config[3:2] = 00, the unit never powers up.  
b[3]  
b[2]  
On_off_config_use_pmbus  
On_off_config_use_control  
Reserved  
Controls how the unit responds to commands received via the serial bus.  
0: Unit ignores the Operation_control[1:0] bits.  
1: Unit responds to Operation_control[1:0]. Depending on On_off_config_use_control, the unit may also  
require the CONTROLn pin to be asserted for the unit to start.  
Controls how unit responds to the CONTROLn pin.  
0: Unit ignores the CONTROLn pin.  
1: Unit requires the CONTROLn pin to be asserted to start the unit. Depending on On_off_config_use_  
pmbus the OPERATION command may also be required to instruct the device to start.  
b[1]  
b[0]  
Not supported. Always returns 1.  
On_off_config_control_fast_off CONTROLn pin turn off action when commanding the unit to turn off  
0: Use the programmed TOFF_DELAY.  
1: Turn off the output and stop transferring energy as quickly as possible, i.e. pull V  
low  
OUT_ENn  
immediately. The device does not sink current in order to decrease the output voltage fall time.  
CLEAR_FAULTS  
The CLEAR_FAULTS command is used to clear any status bits that have been set. This command clears all fault and  
warning bits in all unpaged status registers, and the paged status registers selected by the current PAGE setting. At  
the same time, the device negates (clears, releases) its contribution to ALERTB.  
The CLEAR_FAULTS command does not cause a unit that has latched off for a fault condition to restart. See Clearing  
Latched Faults for more information.  
If the fault condition is present after the fault status is cleared, the fault status bit shall be set again and the host noti-  
fied by the usual means.  
Note: This command responds to the global page command (PAGE=0xFF).  
2977f  
34  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
STORE_USER_ALL and RESTORE_USER_ALL  
STORE_USER_ALL, RESTORE_USER_ALL commands provide access to User EEPROM space. Once a command is  
stored in User EEPROM, it will be restored with an explicit restore command or when the part emerges from power-on  
reset after power is applied. While either of these commands is being processed, the device will indicate it is busy, see  
Response When Part Is Busy on page 67  
.
STORE_USER_ALL. Issuing this command will store all operating memory commands with a corresponding EE-  
PROM memory location.  
RESTORE_USER_ALL. Issuing this command will restore all commands from EEPROM Memory. It is recommended  
that this command not be executed while a unit is enabled since all monitoring is suspended while the EEPROM is  
transferred to operating memory, and intermediate values from EEPROM may not be compatible with the values initially  
stored in operating memory.  
CAPABILITY  
The CAPABILITY command provides a way for a host system to determine some key capabilities of the LTC2977. This  
one byte command is read only.  
CAPABILITY Data Contents  
BITS(S) SYMBOL  
OPERATION  
b[7]  
Capability_pec  
Hard coded to 1 indicating Packet Error Checking is supported. Reading the Mfr_config_all_pec_en bit will indicate  
whether PEC is currently required.  
b[6:5] Capability_scl_max  
Hard coded to 01b indicating the maximum supported bus speed is 400kHz.  
b[4]  
Capability_smb_alert Hard coded to 1 indicating this device does have an ALERTB pin and does support the SMBus Alert Response  
Protocol.  
b[3:0] Reserved  
Always returns 0.  
VOUT_MODE  
This command is read only and specifies the mode and exponent for all commands with an L16 data format. See Data  
Formats table on page 27.  
VOUT_MODE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:5] Vout_mode_type  
Reports linear mode. Hard wired to 000b.  
b[4:0] Vout_mode_parameter Linear mode exponent. 5-bit two’s complement integer. Hardwired to 0x13 (–13 decimal).  
2977f  
35  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
OUTPUT VOLTAGE RELATED COMMANDS  
VOUT_COMMAND, VOUT_MAX, VOUT_MARGIN_HIGH, VOUT_MARGIN_LOW, VOUT_OV_FAULT_LIMIT, VOUT_  
OV_WARN_LIMIT, VOUT_UV_WARN_LIMIT, VOUT_UV_FAULT_LIMIT, POWER_GOOD_ON and POWER_GOOD_OFF  
These commands use the same format and provide various servo, margining, and supervising limits for a channel’s  
output voltage. When odd channels are configured to measure current, the OV_WARN_LIMIT, UV_WARN_LIMIT,  
OV_FAULT_LIMIT and UV_FAULT_LIMIT commands are not supported.  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Vout_command[15:0],  
Vout_max[15:0],  
These commands relate to output voltage. The data uses the L16 format.  
Units: V  
Vout_margin_high[15:0],  
Vout_margin_low[15:0],  
Vout_ov_fault_limit[15:0],  
Vout_ov_warn_limit[15:0],  
Vout_uv_warn_limit[15:0],  
Vout_uv_fault_limit[15:0],  
Power_good_on[15:0],  
Power_good_off[15:0]  
INPUT VOLTAGE RELATED COMMANDS  
VIN_ON, VIN_OFF, VIN_OV_FAULT_LIMIT, VIN_OV_WARN_LIMIT, VIN_UV_WARN_LIMIT and VIN_UV_FAULT_  
LIMIT  
These commands use the same format and provide voltage supervising limits for the input voltage V  
.
IN_SNS  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Vin_on[15:0],  
Vin_off[15:0],  
These commands relate to input voltage. The data uses the L11 format.  
Units: V.  
Vin_ov_fault_limit[15:0],  
Vin_ov_warn_limit[15:0],  
Vin_uv_warn_limit[15:0],  
Vin_uv_fault_limit[15:0]  
2977f  
36  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
TEMPERATURE RELATED COMMANDS  
OT_FAULT_LIMIT, OT_WARN_LIMIT, UT_WARN_LIMIT and UT_FAULT_LIMIT  
These commands provide supervising limits for temperature.  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Ot_fault_limit[15:0], The data uses the L11 format.  
Ot_warn_limit[15:0], Units: °C.  
Ut_warn_limit[15:0],  
Ut_fault_limit[15:0]  
TIMER LIMITS  
TON_DELAY, TON_RISE, TON_MAX_FAULT_LIMIT and TOFF_DELAY  
These commands share the same format and provide sequencing and timer fault and warning delays in ms.  
TON_DELAY sets the amount of time in milliseconds that a channel waits following the start of an ON sequence before  
its V  
pin enables a DC/DC converter. This delay is counted using SHARE_CLK only.  
OUT_EN  
TON_RISE sets the amount of time in ms that elapses after the power supply has been enabled until the LTC2977’s  
DAC soft-connects and servos the output voltage to the desired level if Mfr_config_dac_mode = 00b. This delay is  
counted using SHARE_CLK if available, otherwise the internal oscillator is used.  
TON_MAX_FAULT_LIMIT is the maximum amount of time that the power supply being controlled by the LTC2977  
can attempt to power up the output without reaching the VOUT_UV_FAULT_LIMIT. If the output reaches VOUT_UV_  
FAULT_LIMIT prior to TON_MAX_FAULT_LIMIT, the LTC2977 unmasks the VOUT_UV_FAULT_LIMIT threshold. If it  
does not, then a TON_MAX_FAULT is declared. (Note that a value of zero means there is no limit to how long the power  
supply can attempt to bring up its output voltage.) This delay is counted using SHARE_CLK if available, otherwise the  
internal oscillator is used.  
TOFF_DELAY is the amount of time that elapses after the CONTROLn pin and/or OPERATION command is deasserted  
until the channel is disabled (soft-off). This delay is counted using SHARE_CLK if available, otherwise the internal  
oscillator is used.  
TON_DELAY and TOFF_DELAY are internally limited to 13.1 seconds, and rounded to the nearest 10µs when smaller  
than 655ms, or rounded to the nearest 200µs when larger than 655ms. TON_RISE and TON_MAX_FAULT_LIMIT are  
internally limited to 655ms, and rounded to the nearest 10µs. The read value of these commands always returns what  
was last written and does not reflect internal limiting.  
Data Contents  
BIT(S) SYMBOL  
b[15:0] Ton_delay[15:0],  
Ton_rise[15:0],  
OPERATION  
The data uses the L11 format.  
Units: ms.  
Ton_max_fault[15:0],  
Toff_delay[15:0]  
2977f  
37  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
FAULT RESPONSE FOR VOLTAGES MEASURED BY THE HIGH SPEED SUPERVISOR  
VOUT_OV_FAULT_RESPONSE and VOUT_UV_FAULT_RESPONSE  
The fault response documented here is for voltages that are measured by the high speed supervisor. These voltages  
are measured over a short period of time and may require a deglitch period. Note that in addition to the response  
described by these commands, the LTC2977 will also:  
Set the appropriate bit(s) in the STATUS_BYTE  
Set the appropriate bit(s) in the STATUS_WORD  
Set the appropriate bit in the corresponding STATUS_VOUT register, and  
Notify the host by pulling the ALERTB pin low.  
Note: Odd numbered channels configured for high resolution ADC measurements (current measurements) will not  
respond to OV/UV faults or warnings.  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:6] Vout_ov_fault_response_action, Response action:  
Vout_uv_fault_response_action 00b: The unit continues operation without interruption.  
01b: The unit continues operating for the delay time specified by bits[2:0] in increments of ts_vs. (See  
Electrical Characteristics Table, Voltage Supervisor Characteristics section).  
If the fault is still present at the end of the delay time, the unit shuts down immediately or sequences off after  
TOFF_DELAY (See Mfr_config_chan_mode). After shutting down, the device responds according to the retry  
setting in bits [5:3].  
1Xb: The unit shuts down immediately or sequences off after TOFF_DELAY (See Mfr_config_chan_mode).  
After shutting down, the device responds according to the retry setting in bits [5:3].  
b[5:3] Vout_ov_fault_response_retry,  
Vout_uv_fault_response_retry  
Response retry behavior:  
000b: A zero value for the retry setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
001b-111b: The PMBus device attempts to restart the number of times specified by the global Mfr_retry_  
count[2:0], until it is commanded OFF (by the CONTROL pin or OPERATION command or both), bias power  
is removed, or another fault condition causes the unit to shut down.  
b[2:0] Vout_ov_fault_response_delay, This sample count determines the amount of time a unit is to ignore a fault after it is first detected. Use this  
delay to deglitch fast faults.  
Vout_uv_fault_response_delay  
000b: The unit turns off immediately.  
001b-111b: The unit turns off after b[2:0] samples at the sampling period of ts_vs (12.2µs typical).  
2977f  
38  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
FAULT RESPONSE FOR VALUES MEASURED BY THE ADC  
OT_FAULT_RESPONSE, UT_FAULT_RESPONSE, VIN_OV_FAULT_RESPONSE and VIN_UV_FAULT_RESPONSE  
The fault response documented here is for values that are measured by the ADC. These values are measured over a  
longer period of time and are not deglitched. Note that in addition to the response described by these commands, the  
LTC2977 will also:  
Set the appropriate bit(s) in the STATUS_BYTE  
Set the appropriate bit(s) in the STATUS_WORD  
Set the appropriate bit in the corresponding STATUS_VIN or STATUS_TEMPERATURE register, and  
Notify the host by pulling the ALERTB pin low.  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:6] Ot_fault_response_action,  
Ut_fault_response_action,  
Response action:  
00b: The unit continues operation without interruption.  
Vin_ov_fault_response_action, 01b to 11b: The unit shuts down immediately or sequences off after TOFF_DELAY (See Mfr_config_chan_  
mode). After shutting down, the unit responds according to the retry setting in bits [5:3].  
Vin_uv_fault_response_action  
b[5:3] Ot_fault_response_retry,  
Response retry behavior:  
Ut_fault_response_retry,  
000b: A zero value for the retry setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
Vin_ov_fault_response_retry,  
Vin_uv_fault_response_retry  
001b-111b: The PMBus device attempts to restart the number of times specified by the global Mfr_retry_  
count[2:0] until it is commanded OFF (by the CONTROLn pin or OPERATION command or both), bias power is  
removed, or another fault condition causes the unit to shut down.  
b[2:0] Ot_fault_response_delay,  
Ut_fault_response_delay,  
Hard coded to 000b. There is no additional deglitch delay applied to fault detection.  
Vin_ov_fault_response_delay,  
Vin_uv_fault_response_delay  
2977f  
39  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
TIMED FAULT RESPONSE  
TON_MAX_FAULT_RESPONSE  
This command defines the LTC2977 response to a TON_MAX_FAULT. It may be used to protect against a short-circuited  
output at start-up. After start-up use VOUT_UV_FAULT_RESPONSE to protect against a short-circuited output.  
The device also:  
Sets the HIGH_BYTE bit in the STATUS_BYTE,  
Sets the VOUT bit in the STATUS_WORD,  
Sets the TON_MAX_FAULT bit in the STATUS_VOUT register, and  
Notifies the host by asserting ALERTB.  
TON_MAX_FAULT_RESPONSE Data Contents  
BIT(S) SYMBOL  
b[7:6] Ton_max_fault_response_action Response action:  
00b: The unit continues operation without interruption.  
OPERATION  
01b-11b: The unit shuts down immediately or sequences off after TOFF_DELAY (See Mfr_config_chan_  
mode). After shutting down, the unit responds according to the retry settings in bits [5:3].  
b[5:3] Ton_max_fault_response_retry  
Response retry behavior:  
000b: A zero value for the Retry Setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
001b-111b: The PMBus device attempts to restart the number of times specified by the global Mfr_retry_  
count[2:0] until it is commanded OFF (by the CONTROLn pin or OPERATION command or both), bias power  
is removed, or another fault condition causes the unit to shut down.  
b[2:0] Ton_max_fault_response_delay Hard coded to 000b. There is no additional deglitch delay applied to fault detection.  
Clearing Latched Faults  
When a channel shuts down due to a fault, the off state is latched. This is referred to as a latched fault condition. Latched  
faults are reset by toggling the CONTROL pin, using the OPERATION or ON_OFF_CONFIG command, or removing and  
reapplying the bias voltage to the V  
pin. All fault and warning conditions result in the ALERTB pin being asserted  
IN_SNS  
low and the corresponding bits being set in the status registers. The CLEAR_FAULTS command resets the contents  
of the status registers and de-asserts the ALERTB output, but it does not clear a faulted off state nor allow a channel  
to turn back on.  
2977f  
40  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
STATUS COMMANDS  
STATUS_BYTE:  
The STATUS_BYTE command returns the summary of the most critical faults or warnings which have occurred, as  
shown in the following table. STATUS_BYTE is a subset of STATUS_WORD and duplicates the same information.  
STATUS_BYTE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7]  
b[6]  
b[5]  
b[4]  
b[3]  
b[2]  
b[1]  
b[0]  
Status_byte_busy  
Same as Status_word_busy  
Same as Status_word_off  
Same as Status_word_vout_ov  
Same as Status_word_iout_oc  
Same as Status_word_vin_uv  
Same as Status_word_temp  
Same as Status_word_cml  
Same as Status_word_high_byte  
Status_byte_off  
Status_byte_vout_ov  
Status_byte_iout_oc  
Status_byte_vin_uv  
Status_byte_temp  
Status_byte_cml  
Status_byte_high_byte  
STATUS_WORD:  
The STATUS_WORD command returns two bytes of information with a summary of the unit’s fault condition. Based on  
the information in these bytes, the host can get more information by reading the appropriate detailed status register.  
The low byte of the STATUS_WORD is the same register as the STATUS_BYTE command.  
STATUS_WORD Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15] Status_word_vout  
b[14] Status_word_iout  
b[13] Status_word_input  
b[12] Status_word_mfr  
An output voltage fault or warning has occurred. See STATUS_VOUT.  
Notsupported.Alwaysreturns0.  
An input voltage fault or warning has occurred. See STATUS_INPUT.  
A manufacturer specific fault has occurred. See STATUS_MFR_SPECIFIC and MFR_STATUS_2.  
b[11] Status_word_power_not_good The PWRGD pin, if enabled, is negated. Power is not good.  
b[10] Status_word_fans  
Notsupported.Alwaysreturns0.  
b[9]  
b[8]  
b[7]  
b[6]  
Status_word_other  
Status_word_unknown  
Status_word_busy  
Status_word_off  
Notsupported.Alwaysreturns0.  
Notsupported.Alwaysreturns0.  
Device busy when PMBus command received. See OPERATION: Processing Commands.  
This bit is asserted if the unit is not providing power to the output, regardless of the reason, including  
simply not being enabled. The off bit is clear if unit is allowed to provide power to the output.  
b[5]  
b[4]  
b[3]  
b[2]  
b[1]  
b[0]  
Status_word_vout_ov  
Status_word_iout_oc  
Status_word_vin_uv  
Status_word_temp  
Status_word_cml  
An output overvoltage fault has occurred.  
Notsupported.Alwaysreturns0.  
A V undervoltage fault has occurred.  
IN  
A temperature fault or warning has occurred. See STATUS_TEMPERATURE.  
A communication, memory or logic fault has occurred. See STATUS_CML.  
A fault/warning not listed in b[7:1] has occurred.  
Status_word_high_byte  
2977f  
41  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
STATUS_VOUT  
The STATUS_VOUT command returns the summary of the output voltage faults or warnings which have occurred, as  
shown in the following table:  
STATUS_VOUT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Status_vout_ov_fault  
b[6] Status_vout_ov_warn  
b[5] Status_vout_uv_warn  
b[4] Status_vout_uv_fault  
b[3] Status_vout_max_fault  
Overvoltage fault.  
Overvoltage warning.  
Undervoltage warning  
Undervoltage fault.  
VOUT_MAX fault. An attempt has been made to set the output voltage to a value higher than allowed by the  
VOUT_MAX command.  
b[2] Status_vout_ton_max_fault  
b[1] Status_vout_toff_max_warn  
b[0] Status_vout_tracking_error  
TON_MAX_FAULT sequencing fault.  
Not supported. Always returns 0.  
Not supported. Always returns 0.  
STATUS_INPUT  
The STATUS_INPUT command returns the summary of the V faults or warnings which have occurred, as shown in  
IN  
the following table:  
STATUS_INPUT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7]  
b[6]  
b[5]  
b[4]  
b[3]  
b[2]  
b[1]  
b[0]  
Status_input_ov_fault  
V
V
V
V
Overvoltage fault  
IN  
IN  
IN  
IN  
Status_input_ov_warn  
Status_input_uv_warn  
Status_input_uv_fault  
Status_input_off  
Overvoltage warning  
Undervoltage warning  
Undervoltage fault  
Unit is off for insufficient input voltage.  
Not supported. Always returns 0.  
Not supported. Always returns 0.  
Not supported. Always returns 0.  
I
IN  
I
IN  
overcurrent fault  
overcurrent warn  
PIN overpower warn  
STATUS_TEMPERATURE  
The STATUS_TEMPERATURE command returns the summary of the temperature faults or warnings which have oc-  
curred, as shown in the following table:  
STATUS_TEMPERATURE Data Contents  
Bit(s) Symbol  
Operation  
b[7] Status_temperature_ot_fault  
b[6] Status_temperature_ot_warn  
b[5] Status_temperature_ut_warn  
b[4] Status_temperature_ut_fault  
b[3:0] Reserved  
Overtemperature fault.  
Overtemperature warning.  
Undertemperature warning.  
Undertemperature fault.  
Reserved. Always returns 0s.  
2977f  
42  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
STATUS_CML  
The STATUS_CML command returns the summary of the communication, memory and logic faults or warnings which  
have occurred, as shown in the following table:  
STATUS_CML Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7] Status_cml_cmd_fault  
b[6] Status_cml_data_fault  
b[5] Status_cml_pec_fault  
Illegal or unsupported command fault has occurred.  
Illegal or unsupported data received.  
A PEC fault has occurred. Note: PEC checking is always active in the LTC2977. Any extra byte received before a  
STOP will set Status_cml_pec_fault unless the extra byte is a matching PEC byte.  
b[4] Status_cml_memory_fault  
A fault has occurred in the EEPROM.  
b[3] Status_cml_processor_fault Not supported, always returns 0.  
b[2] Reserved  
Reserved, always returns 0.  
b[1] Status_cml_pmbus_fault  
A communication fault other than ones listed in this table has occurred. This is a catch all category for illegally  
2
formed I C/SMBus commands (Example: An address byte with read =1 received immediately after a START).  
b[0] Status_cml_unknown_fault Not supported, always returns 0.  
STATUS_MFR_SPECIFIC  
The STATUS_MFR_SPECIFIC command returns manufacturer specific status flags. Bits marked CHANNEL=All are  
not paged. Bits marked STICKY=Yes stay set until a CLEAR_FAULTS is issued or the channel is commanded on by  
the user. Bits marked ALERT=Yes pull ALERTB low when the bit is set. Bits marked OFF=Yes indicate that the event  
can be configured elsewhere to turn the channel off. See MFR_STATUS_2 on page 62 for additional bits related to  
manufacturer specific status.  
STATUS_MFR_SPECIFIC Data Contents  
BIT(S) SYMBOL  
OPERATION  
CHANNEL  
STICKY ALERT OFF  
b[7] Status_mfr_discharge  
A V discharge fault occurred while attempting to enter the ON Current Page  
Yes  
Yes Yes  
OUT  
state  
b[6] Status_mfr_fault1_in  
b[5] Status_mfr_fault0_in  
This channel attempted to turn on while the FAULTBz1 pin  
Current Page  
Current Page  
Yes  
Yes Yes  
was asserted low, or this channel has shut down at least once  
in response to a FAULTBz1 pin asserting low since the last  
CONTROLn pin toggle, OPERATION command ON/OFF cycle or  
CLEAR_FAULTS command.  
This channel attempted to turn on while the FAULTBz0 pin  
was asserted low, or this channel has shut down at least once  
in response to a FAULTBz0 pin asserting low since the last  
CONTROLn pin toggle, OPERATION command ON/OFF cycle or  
CLEAR_FAULTS command.  
Yes  
Yes Yes  
b[4] Status_mfr_servo_target_reached Servo target has been reached.  
Current Page  
Current Page  
Current Page  
No  
No  
No  
No  
No  
No  
No  
No  
b[3] Status_mfr_dac_connected  
b[2] Status_mfr_dac_saturated  
DAC is connected and driving V  
pin.  
DACP  
A previous servo operation terminated with maximum or  
minimum DAC value.  
Yes  
b[1] Status_mfr_vinen_faulted_off  
b[0] Status_mfr_watchdog_fault  
V
has been deasserted due to a V  
fault.  
All  
All  
No  
No  
No  
No  
IN_EN  
OUT  
A watchdog fault has occurred.  
Yes  
Yes  
2977f  
43  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
ADC MONITORING COMMANDS  
READ_VIN  
This command returns the most recent ADC measured value of the voltage measured at the V  
pin.  
IN_SNS  
READ_VIN Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Read_vin[15:0] The data uses the L11 format.  
Units: V  
READ_VOUT  
This command returns the most recent ADC measured value of the channel’s output voltage. When odd channels are  
configured to measure current, the data contents use the L11 format with units in mV.  
READ_VOUT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Read_vout[15:0] The data uses the L16 format.  
Units: V  
READ_VOUT Data Contents—for Odd Channels Configured to Measure Current (Mfr_config_adc_hires = 1)  
Bit(s) Symbol  
Operation  
The data uses the L11 format.  
Units: mV  
b[15:0] Read_vout[15:0]  
READ_TEMPERATURE_1  
This command returns the most recent ADC measured value of junction temperature in °C as determined by the  
LTC2977’s internal temperature sensor.  
READ_TEMPERATURE_1 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Read_temperature_1 [15:0] The data uses the L11 format.  
Units: °C.  
PMBUS_REVISION  
The PMBUS_REVISION command register is read only and reports the LTC2977 compliance to the PMBus standard  
revision 1.1.  
PMBUS_REVISION Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:0] PMBus_rev Reports the PMBus standard revision compliance. This is hard-coded to 0x11 for revision 1.1.  
2977f  
44  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MANUFACTURER SPECIFIC COMMANDS  
MFR_CONFIG_LTC2977  
This command is used to configure various manufacturer specific operating parameters for each channel.  
MFR_CONFIG_LTC2977 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:14] Mfr_config_chan_mode  
Select channel specific sequencing mode.  
00 = Channel uses PMBus delay sequencing with immediate off upon fault.  
01 = Channel uses PMBus delay sequencing with sequence off upon fault.  
1x = Channel is a slave in a tracked power supply system.  
Don’t care. Always returns 0.  
b[13:12] Reserved  
b[11] Mfr_config_fast_servo_off  
Disables fast servo when margining or trimming output voltages:  
0: fast-servo enabled.  
1: fast-servo disabled.  
b[10] Mfr_config_supervisor_resolution Selects supervisor resolution:  
0: high resolution = 4mV/LSB, range for V  
– V  
is 0V to 3.8V.  
is 0V to 6.0V.  
VSENSEPn  
VSENSEMn  
1: low resolution = 8mV/LSB, range for V  
– V  
VSENSEPn  
VSENSEMn  
b[9] Mfr_config_adc_hires  
Selects ADC resolution for odd channels. This is typically used to measure current. Ignored for even  
channels (they always use low resolution).  
0: low resolution = 122µV/LSB.  
1: high resolution = 15.6µV/LSB.  
b[8] Mfr_config_controln_sel  
Selects the active control pin input (CONTROL0 or CONTROL1) for this channel.  
0: Select CONTROL0 pin.  
1: Select CONTROL1 pin.  
b[7] Mfr_config_servo_continuous  
Select whether the UNIT should continuously servo V  
after it has reached a new margin or nominal  
OUT  
target. Only applies when Mfr_config_dac_mode = 00b.  
0: Do not continuously servo V after reaching initial target.  
OUT  
1: Continuously servo V  
to target.  
OUT  
b[6] Mfr_config_servo_on_warn  
b[5:4] Mfr_config_dac_mode  
Control re-servo on warning feature. Only applies when Mfr_config_dac_mode = 00b and  
Mfr_config_servo_continuous = 0.  
0: Do not allow the unit to re-servo when a V  
warning threshold is met or exceeded.  
OUT  
1: Allow the unit to re-servo V  
to nominal target if  
OUT  
V
V
≥ V(Vout_ov_warn_limit) or  
≤ V(Vout_uv_warn_limit).  
OUT  
OUT  
Determines how DAC is used when channel is in the ON state and TON_RISE has elapsed.  
00: Soft-connect (if needed) and servo to target.  
01: DAC not connected.  
10: DAC connected immediately using value from MFR_DAC command. If this is the configuration after a  
reset or RESTORE_USER_ALL, MFR_DAC will be undefined and must be written to desired value.  
11: DAC is soft-connected. After soft-connect is complete MFR_DAC may be written.  
b[3] Mfr_config_vo_en_wpu_en  
b[2] Mfr_config_vo_en_wpd_en  
V
pin charge-pumped, current-limited pull-up enable.  
OUT_EN  
0: Disable weak pull-up. V  
1: Use weak current-limited pull-up on V  
For channels 4-7 this bit is treated as a 0 regardless of its value.  
pin driver is three-stated when channel is on.  
OUT_EN  
pin when the channel is on.  
OUT_EN  
V
pin current-limited pull-down enable.  
OUT_EN  
0: Use a fast N-channel device to pull down V  
pin when the channel is off for any reason.  
OUT_EN  
1: Use weak current-limited pull-down to discharge V  
pin when channel is off due to soft stop by the  
OUT_EN  
CONTROLn pin and/or OPERATION command. If the channel is off due to a fault, use the fast pull-down on  
V
pin.  
OUT_EN  
For channels 4-7 this bit is treated as a 0 regardless of its value.  
2977f  
45  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_CONFIG_LTC2977 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1] Mfr_config_dac_gain  
DAC buffer gain.  
0: Select DAC buffer gain dac_gain_0 (1.38V full-scale)  
1: Select DAC buffer gain dac_gain_1 (2.65V full-scale)  
DAC output polarity.  
b[0] Mfr_config_dac_pol  
0: Encodes negative (inverting) DC/DC converter trim input.  
1: Encodes positive (noninverting) DC/DC converter trim input.  
Tracking Supplies On and Off  
The LTC2977 supports tracking power supplies that are equipped with a tracking pin and configured for tracking.  
A tracking power supply uses a secondary feedback terminal (TRACK) to allow its output voltage to be scaled to an  
external master voltage. Typically the external voltage is generated by the supply with the highest voltage in the sys-  
tem, which is fed to the slave track pins (see Figure 13a). Supplies that track a master supply must be enabled before  
the master supply comes up and disabled after the master supply comes down. Enabling the slave supplies when the  
master is down requires supervisors monitoring the slaves to disable UV detection. All channels configured for track-  
ing must track off together in response to a fault on any channel or any other condition that can bring one or more of  
the channels down. Prematurely disabling a slave channel via its RUN pin may cause that channel to shut down out  
of sequence (see Figure 13d)  
LTC2977  
CONTROL0  
FAULTB0  
CONTROL0  
FAULT00  
PWRGD  
RUN  
V
V
SENSEP0  
V
V
V
V
V
OUTP  
SENSEP0  
OUT_EN0  
V
V
V
DC/DC  
DC/DC  
DC/DC  
DC/DC  
LOAD  
FB  
SENSEM0  
DACP0  
TRACK  
V
V
V
V
V
OUTM  
SENSEM0  
RUN  
V
V
V
OUTP  
SENSEP1  
SENSEP1  
OUT_EN1  
V
V
V
LOAD  
FB  
SENSEM1  
DACP1  
TRACK  
V
OUTM  
SENSEM1  
R1_1  
R1_2  
R1_3  
R2_1  
R2_2  
R2_3  
RUN  
V
V
V
OUTP  
SENSEP2  
SENSEP2  
OUT_EN2  
V
V
V
LOAD  
FB  
SENSEM2  
DACP2  
TRACK  
V
OUTM  
SENSEM2  
RUN  
V
V
V
OUTP  
SENSEP3  
SENSEP3  
OUT_EN3  
V
V
V
LOAD  
FB  
SENSEM3  
DACP3  
TRACK  
V
SENSEM3  
OUTM  
2977 F13a  
Figure 13a. LTC2977 Configured to Control, Supervise and Monitor Power Supplies Equipped with Tracking Pin  
2977f  
46  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
An important feature of the LTC2977 is the ability to control, monitor, and supervise DC/DC converters that are con-  
figured to track a master supply on and off.  
The LTC2977 supports the following tracking features:  
Track channels on and off without issuing false UV events when the slave channels are tracking up or down.  
Track all channels down in response to a fault from a slave or master.  
Track all channels down when VIN_SNS drops below VIN_OFF, share clock is held low or RESTORE_USER_ALL is  
issued.  
Ability to reconfigure selected channels that are part of a tracking group to sequence up after the group has tracked  
up or sequence down before the group has tracked down.  
TON_RISE EXPIRES  
FOR ALL CHANNELS.  
UV DETECT ENABLED  
ON ALL CHANNELS  
TOFF_DELAY ENTERED  
FOR ALL CHANNELS.  
UV DETECT DISABLED  
ON ALL CHANNELS  
V
V
V
V
OUT0  
OUT1  
OUT2  
MASTER BRINGS DOWN  
NEXT HIGHEST SLAVE  
OUT3  
CONTROL  
VOUT_EN0  
VOUT_EN(3:1)  
2977 F13b  
SLAVE OUTPUT ENABLES TURN ON FIRST  
SLAVE OUTPUT ENABLES TURN OFF LAST  
Figure 13b. Control Pin Tracking All Supplies Up And Down  
TON_RISE EXPIRES  
FOR ALL CHANNELS.  
UV DETECT ENABLED  
ON ALL CHANNELS  
TOFF_DELAY ENTERED  
FOR ALL CHANNELS.  
UV DETECT DISABLED  
ON ALL CHANNELS  
V
V
V
V
OUT0  
OUT1  
OUT2  
OUT3  
UV FAULT ON CHANNEL 1 BRINGS DOWN MASTER  
VIA FAULTB0. ALL SLAVE CHANNELS INCLUDING  
THE ONE WITH THE UV FAULT ENTER TOFF_DELAY  
MASTER BRINGS DOWN  
NEXT HIGHEST SLAVE  
CONTROL  
FAULTB0  
VOUT_EN0  
VOUT_EN(3:1)  
2977 F13c  
SLAVE OUTPUT ENABLES TURN ON FIRST  
SLAVE OUTPUT ENABLES TURN OFF LAST  
Figure 13c. Fault on Channel 1 Tracking All Supplies Down  
2977f  
47  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
TON_RISE EXPIRES  
FOR ALL CHANNELS.  
UV DETECT ENABLED  
ON ALL CHANNELS  
TOFF_DELAY ENTERED  
FOR ALL CHANNELS.  
UV DETECT DISABLED  
ON ALL CHANNELS  
UV FAULT ON CHANNEL 1 BRINGS DOWN MASTER  
VIA FAULTB0. ALL SLAVES WITH ENABLED RUN  
PINS TRACK DOWN CORRECTLY  
V
V
V
V
OUT0  
OUT1  
OUT2  
OUT3  
DISABLING VOUT_EN1  
IMMEDIATELY IN RESPONSE  
TO THE UV FAULT CAUSES  
VOUT1 TO SHUT DOWN  
OUT OF SEQUENCE  
CONTROL  
FAULTB0  
VOUT_EN0  
VOUT_EN1  
VOUT_EN(3:2)  
2977 F13d  
SLAVE OUTPUT ENABLES TURN ON FIRST  
SLAVE OUTPUT ENABLES TURN OFF LAST  
Figure 13d. Improperly Configured Fault Response on Faulting Channel Disrupts Tracking  
Tracking Implementation  
TheLTC2977supportstrackingthroughthecoordinatedprogramingofTon_delay,Ton_rise,Toff_delayandMfr_config_  
chan_mode. The master channel must be configured to turn on after all the slave channels have turned on and to turn  
off before all the slave channels turn off. Slaves that are enabled before the master will remain off until the tracking pin  
allows them to turn on. Slaves will be turned off via the tracking pin even though their run pin is still asserted. Ton_rise  
must be extended on the slaves so that it ends relative to the rise of the TRACK pin and not the rise of the V  
pin.  
OUT_EN  
When Mfr_config_chan_mode = 1Xb the channel is reconfigured to:  
Sequence down on fault, VIN_OFF, SHARE_CLK low or RESTORE_USER_ALL.  
Ignore UV during TOFF_DELAY. Note that ignoring UV during TON_RISE and TON_MAX_FAULT always happens  
regardless of how these configuration bits are set.  
The following example illustrates configuring an LTC2977 with one master channel and three slaves.  
Master channel 0  
TON_DELAY = Ton_delay_master  
TON_RISE = Ton_rise_master  
TOFF_DELAY = Toff_delay_master  
Mfr_config_chan_mode = 00  
Slave channel n  
TON_DELAY = Ton_delay_slave  
TON_RISE = Ton_delay_master + Ton_rise_slave  
2977f  
48  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
TOFF_DELAY = Toff_delay_master + Toff_delay_slave  
Mfr_config_chan_mode = 10b  
Where:  
Ton_delay_master – Ton_delay_slave > RUN to TRACK setup time  
Toff_delay_slave > time for master supply to fall.  
The system response to a control pin toggle is illustrated in Figure 13b.  
The system response to a UV fault on a slave channel is illustrated in Figure 13c.  
MFR_CONFIG_ALL_LTC2977  
This command is used to configure parameters that are common to all channels on the IC. They may be set or reviewed  
from any PAGE setting.  
MFR_CONFIG_ALL_LTC2977 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15-13] Reserved  
Don’t care. Always returns 0  
b[12] Mfr_config_all_en_short_cycle_fault Enable short cycle fault detection. See Mfr_status_2_short_cycle_fault on page 62 for more information.  
0: Issuing an ON before prior OFF is complete will not cause a fault.  
1: Issuing an ON before prior OFF is complete will cause a fault.  
b[11] Mfr_config_all_pwrgd_off_uses_uv Selects PWRGD de-assertion source for all channels.  
0: PWRGD is de-asserted based on V  
being below or equal to POWER_GOOD_OFF. This option uses  
OUT  
the ADC. Response time is approximately 100ms to 200ms.  
1: PWRGD is de-asserted based on V  
being below or equal to VOUT_UV_LIMIT. This option uses the  
OUT  
high speed supervisor. Response time is approximately 12µs  
b[10] Mfr_config_all_fast_fault_log  
b[9:8] Reserved  
Controls number of ADC readings completed before transferring fault log memory to EEPROM.  
0: Slower. All ADC telemetry values will be updated before transferring fault log to EEPROM.  
1: Faster. Telemetry values will be transferred from fault log to EEPROM within 24ms after detecting fault.  
Don’t care. Always returns 0  
b[7]  
b[6]  
b[5]  
b[4]  
b[3]  
Mfr_config_all_fault_log_enable  
Enable fault logging to EEPROM in response to Fault.  
0: Fault logging to EEPROM is disabled  
1: Fault logging to EEPROM is enabled  
Mfr_config_all_vin_on_clr_faults_en Allow V rising above VIN_ON to clear all latched faults  
IN  
0: VIN_ON clear faults feature is disabled  
1: VIN_ON clear faults feature is enabled  
Mfr_config_all_control1_pol  
Mfr_config_all_control0_pol  
Mfr_config_all_vin_share_enable  
Selects active polarity of CONTROL1 pin.  
0: Active low (pull pin low to start unit)  
1: Active high (pull pin high to start unit)  
Selects active polarity of CONTROL0 pin.  
0: Active low (pull pin low to start unit)  
1: Active high (pull pin high to start unit)  
Allow this unit to hold SHARE_CLK pin low when V has not risen above VIN_ON or has fallen below  
IN  
VIN_OFF. When enabled, this unit will also turn all channels off in response to SHARE_CLK being held low.  
0: SHARE_CLK inhibit is disabled  
1: SHARE_CLK inhibit is enabled  
2977f  
49  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_CONFIG_ALL_LTC2977 Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[2]  
b[1]  
b[0]  
Mfr_config_all_pec_en  
PMBus packet error checking enable.  
0: PEC is accepted but not required  
1: PEC is required  
Increase PMBus timeout internal by a factor of 8. Recommended for fault logging.  
0: PMBus timeout is not multiplied by a factor of 8  
1: PMBus timeout is multiplied by a factor of 8  
Mfr_config_all_longer_pmbus_  
timeout  
Mfr_config_all_vinen_wpu_dis  
V
IN_EN  
charge-pumped, current-limited pull-up disable.  
0: Use weak current-limited pull-up on V  
after power-up, as long as no faults have forced V  
off.  
IN_EN  
IN_EN  
1: Disable weak pull-up. V  
IN_EN  
driver is three-stated after power-up as long as no faults have forced  
IN_EN  
V
off.  
MFR_FAULTBz0_PROPAGATE, MFR_FAULTBz1_PROPAGATE  
These manufacturer specific commands enable channels that have faulted off to propagate that state to the appropri-  
ate fault pin. Faulted off states for pages 0 through 3 can only be propagated to pins FAULTB00 and FAULTB01; this is  
referred to as zone 0. Faulted off states for pages 4 through 7 can only be propagated to pins FAULTB10 and FAULTB11;  
this is referred to as zone 1. The z designator in the command name is used to indicate that this command affects  
different zones depending on the page. See Figure 20.  
Note that pulling a fault pin low will have no effect for channels that have MFR_FAULTBzn_RESPONSE set to 0. The  
channel continues operation without interruption. This fault response is called Ignore (0x0) in LTpowerPlay.  
MFR_FAULTz0_PROPAGATE Data Content  
BIT(S) SYMBOL  
OPERATION  
b[7:1] Reserved  
Don’t care. Always returns 0.  
Enable fault propagation.  
b[0]  
Mfr_faultbz0_propagate  
For pages 0 through 3, zone 0  
0: Channel’s faulted off state does not assert FAULTB00 low.  
1: Channel’s faulted off state asserts FAULTB00 low.  
For pages 4 through 7, zone 1  
0: Channel’s faulted off state does not assert FAULTB10 low.  
1: Channel’s faulted off state asserts FAULTB10 low.  
MFR_FAULTz1_PROPAGATE Data Content  
BIT(S) SYMBOL  
OPERATION  
b[7:1] Reserved  
Don’t care. Always returns 0.  
b[0]  
Mfr_faultbz1_propagate  
Enable fault propagation.  
For pages 0 through 3, zone 0  
0: Channel’s faulted off state does not assert FAULTB01 low.  
1: Channel’s faulted off state asserts FAULTB01 low.  
For pages 4 through 7, zone 1  
0: Channel’s faulted off state does not assert FAULTB11 low.  
1: Channel’s faulted off state asserts FAULTB11 low.  
2977f  
50  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_PWRGD_EN  
This command register controls the mapping of the watchdog and channel power good status to the PWRGD pin. Note  
that odd numbered channels whose ADC is in high res mode do not contribute to power good.  
MFR_PWRGD_EN Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:9] Reserved  
Read only, always returns 0s.  
Watchdog  
b[8] Mfr_pwrgd_en_wdog  
1 = Watchdog timer not-expired status is ANDed with PWRGD status for any similarly enabled channels to  
determine when the PWRGD pin gets asserted.  
0 = Watchdog timer does not affect the PWRGD pin.  
Channel 7  
b[7] Mfr_pwrgd_en_chan7  
b[6] Mfr_pwrgd_en_chan6  
b[5] Mfr_pwrgd_en_chan5  
b[4] Mfr_pwrgd_en_chan4  
b[3] Mfr_pwrgd_en_chan3  
b[2] Mfr_pwrgd_en_chan2  
b[1] Mfr_pwrgd_en_chan1  
b[0] Mfr_pwrgd_en_chan0  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
Channel 6  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
Channel 5  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
Channel 4  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
Channel 3  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
Channel 2  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
Channel 1  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
Channel 0  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PWRGD status for this channel does not affect the PWRGD pin.  
2977f  
51  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_FAULTB00_RESPONSE, MFR_FAULTB01_RESPONSE, MFR_FAULTB10_RESPONSE and MFR_  
FAULTB11_RESPONSE  
These manufacturer specific commands share the same format and specify the response to assertions of the FAULTB  
pins. For fault zone 0, MFR_FAULTB00_RESPONSE determines whether channels 0 to 3 shut off when the FAULTB00  
pin is asserted, and MFR_FAULTB01_RESPONSE determines whether channels 0 to 3 shut off when the FAULTB01  
pin is asserted. For fault zone 1, MFR_FAULTB10_RESPONSE determines whether channels 4 to 7 shut off when the  
FAULTB10 pin is asserted, and MFR_FAULTB11_RESPONSE determines whether channels 4 to 7 shut off when the  
FAULTB11 pin is asserted. When a channel shuts off in response to a FAULTB pin, the ALERTB pin is asserted low and  
the appropriate bit is set in the STATUS_MFR_SPECIFIC register. For a graphical explanation, see the switches on the  
left hand side of Figure 20, Channel Fault Management Block Diagram.  
Data Contents—Fault Zone 0 Response Commands  
BIT(S) SYMBOL  
OPERATION  
b[7:4] Reserved  
Read only, always returns 0s.  
b[3] Mfr_faultb00_response_chan3, Channel 3 response.  
Mfr_faultb01_response_chan3 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[2] Mfr_faultb00_response_chan2, Channel 2 response.  
Mfr_faultb01_response_chan2 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[1] Mfr_faultb00_response_chan1, Channel 1 response.  
Mfr_faultb01_response_chan1 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[0] Mfr_faultb00_response_chan0, Channel 0 response.  
Mfr_faultb01_response_chan0 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
Data Contents—Fault Zone 1 Response Commands  
BIT(S) SYMBOL  
OPERATION  
b[7:4] Reserved  
Read only, always returns 0s.  
b[3] Mfr_faultb10_response_chan7, Channel 7 response.  
Mfr_faultb11_response_chan7 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[2] Mfr_faultb10_response_chan6, Channel 6 response.  
Mfr_faultb11_response_chan6 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[1] Mfr_faultb10_response_chan5, Channel 5 response.  
Mfr_faultb11_response_chan5 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[0] Mfr_faultb10_response_chan4, Channel 4 response.  
Mfr_faultb11_response_chan4 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
2977f  
52  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_VINEN_OV_FAULT_RESPONSE  
This command register determines whether V  
pulled low.  
overvoltage faults from a given channel cause the V  
pin to be  
OUT  
IN_EN  
MFR_VINEN_OV_FAULT_RESPONSE Data Contents  
BIT(S) SYMBOL  
OPERATION  
Response to channel 7 VOUT_OV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
b[7] Mfr_vinen_ov_fault_response_chan7  
IN_EN  
0 = Do not disable V  
.
IN_EN  
b[6] Mfr_vinen_ov_fault_response_chan6  
b[5] Mfr_vinen_ov_fault_response_chan5  
b[4] Mfr_vinen_ov_fault_response_chan4  
b[3] Mfr_vinen_ov_fault_response_chan3  
b[2] Mfr_vinen_ov_fault_response_chan2  
b[1] Mfr_vinen_ov_fault_response_chan1  
b[0] Mfr_vinen_ov_fault_response_chan0  
Response to channel 6 VOUT_OV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 5 VOUT_OV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 4 VOUT_OV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 3 VOUT_OV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 2 VOUT_OV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 1 VOUT_OV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 0 VOUT_OV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
2977f  
53  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_VINEN_UV_FAULT_RESPONSE  
This command register determines whether V  
pulled low.  
undervoltage faults from a given channel cause the V  
pin to be  
OUT  
IN_EN  
MFR_VINEN_UV_FAULT_RESPONSE Data Contents  
BIT(S) SYMBOL  
OPERATION  
Response to channel 7 VOUT_UV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
b[7] Mfr_vinen_uv_fault_response_chan7  
IN_EN  
0 = Do not disable V  
.
IN_EN  
b[6] Mfr_vinen_uv_fault_response_chan6  
b[5] Mfr_vinen_uv_fault_response_chan5  
b[4] Mfr_vinen_uv_fault_response_chan4  
b[3] Mfr_vinen_uv_fault_response_chan3  
b[2] Mfr_vinen_uv_fault_response_chan2  
b[1] Mfr_vinen_uv_fault_response_chan1  
b[0] Mfr_vinen_uv_fault_response_chan0  
Response to channel 6 VOUT_UV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 5 VOUT_UV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 4 VOUT_UV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 3 VOUT_UV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 2 VOUT_UV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 1 VOUT_UV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
Response to channel 0 VOUT_UV_FAULT.  
1 = Disable (pull low) V via fast pull-down.  
IN_EN  
0 = Do not disable V  
.
IN_EN  
2977f  
54  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_RETRY_COUNT  
The MFR_RETRY_COUNT is a global command that sets the number of retries attempted when any channel faults off  
with its fault response retry field set to a non zero value.  
In the event of multiple or recurring retry faults on the same channel the total number of retries equals MFR_RETRY_  
COUNT. If a channel has not been faulted off for 6 seconds, its retry counter is cleared. Toggling a channel’s CONTROL  
pin off then on or issuing OPERATION off then on commands will synchronously clear the retry count. Writing to  
MFR_RETRY_COUNT clears the retry count for all channels  
MFR_RETRY_COUNT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:3] Reserved  
Always returns zero.  
0: No retries:  
b[2:0] Mfr_retry_count [2:0]  
1-6: Number of retries.  
7: Infinite retries.  
MFR_RETRY_DELAY  
This command determines the retry interval when the LTC2977 is in retry mode in response to a fault condition. The read  
valueofthiscommandalwaysreturnswhatwaslastwrittenanddoesnotreflectinternallimiting.  
MFR_RETRY_DELAY Data Contents  
BIT(S) SYMBOL  
b[15:0] Mfr_retry_delay The data uses the L11 format.  
This delay is counted using SHARE_CLK only.  
OPERATION  
Delays are rounded to the nearest 200µs.  
Units: ms. Max delay is 13.1 sec.  
MFR_RESTART_DELAY  
ThiscommandsetstheminimumofftimeofaCONTROLinitiatedrestart.IftheCONTROLpinistoggledoffforatleast10µs  
thenon,alldependentchannelsaredisabled,heldoffforatime=Mfr_restart_delay,thensequencedbackon.CONTROLn  
pintransitionswhoseOFFtimeexceedsMfr_restart_delayarenotaffectedbythiscommand. Avalueofallzerosdisables  
thisfeature.Thereadvalueofthiscommandalwaysreturnswhatwaslastwrittenanddoesnotreflectinternallimiting.  
MFR_RESTART_DELAY Data Contents  
BIT(S) SYMBOL  
b[15:0] Mfr_restart_delay The data uses the L11 format.  
This delay is counted using SHARE_CLK only.  
OPERATION  
Delays are rounded to the nearest 200µs.  
Units: ms. Max delay is 13.1 sec.  
2977f  
55  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_VOUT_PEAK  
This command returns the maximum ADC measured value of the channel’s output voltage. This command is not  
supported for odd channels that are configured to measure current. This register is reset to 0xF800 (0.0) when the  
LTC2977 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
MFR_VOUT_PEAK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_vout_peak[15:0] The data uses the L16 format.  
Units: V.  
MFR_VIN_PEAK  
25  
This command returns the maximum ADC measured value of the input voltage. This register is reset to 0x7C00 (–2 )  
when the LTC2977 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
MFR_VIN_PEAK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_vin_peak[15:0] The data uses the L11 format.  
Units: V  
MFR_TEMPERATURE_PEAK  
ThiscommandreturnsthemaximumADCmeasuredvalueofjunctiontemperaturein°CasdeterminedbytheLTC2977’s  
25  
internal temperature sensor. This register is reset to 0x7C00 (–2 ) when the LTC2977 emerges from power-on reset  
or when a CLEAR_FAULTS command is executed.  
MFR_TEMPERATURE_PEAK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_temperature_peak[15:0] The data uses the L11 format.  
Units: °C.  
2977f  
56  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_DAC  
This command register allows the user to directly program the 10-bit DAC. Manual DAC writes require the channel  
to be in the ON state,TON_RISE to have expired and MFR_CONFIG_LTC2977 b[5:4] = 10b or 11b. Writing MFR_  
CONFIG_LTC2977 b[5:4] = 10b commands the DAC to hard-connect with the value in Mfr_dac_direct_val. Writing  
b[5:4] = 11b commands the DAC to soft-connect. Once the DAC has soft-connected, Mfr_dac_direct_val returns the  
value that allowed the DAC to be connected without perturbing the power supply. MFR_DAC writes are ignored when  
MFR_CONFIG_LTC2977 b[5:4] = 00b or 01b.  
MFR_DAC Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:10] Reserved  
Read only, always returns 0.  
b[9:0] Mfr_dac_direct_val DAC code value.  
MFR_POWERGOOD_ASSERTION_DELAY  
This command register allows the user to program the delay from when the internal power good signal becomes valid  
until the power good output is asserted. This delay is counted using SHARE_CLK if available, otherwise the internal  
oscillator is used. This delay is internally limited to 13.1 seconds, and rounded to the nearest 200µs. The read value  
of this command always returns what was last written and does not reflect internal limiting.  
The power good de-assertion delay and threshold source is controlled by Mfr_config_all_pwrgd_off_uses_uv.  
Systems that require a fast power good de-assertion should set Mfr_config_all_pwrgd_off_uses_uv=1. This uses the  
VOUT_UV_FAULT_LIMIT and the high speed comparator to de-assert the PWRGD pin. Systems that require a separate  
power good off threshold should set Mfr_config_all_pwrgd_off_uses_uv=0. This uses the slower ADC polling loop  
and POWER_GOOD_OFF to de-assert the PWRGD pin.  
MFR_POWERGOOD_ASSERTION_DELAY Data Contents  
BIT(S) SYMBOL  
b[15:0] Mfr_powergood_assertion_delay The data uses the L11 format.  
This delay is counted using SHARE_CLK if available, otherwise the internal oscillator is used.  
OPERATION  
Delays are rounded to the nearest 200µs.  
Units: ms. Max delay is 13.1 sec.  
2977f  
57  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_PADS  
The MFR_PADS command provides read only access to slow frequency digital pads (pins). The input values presented  
in bits[9:0] are before any deglitching logic.  
MFR_PADS Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15] Mfr_pads_pwrgd_drive  
0 = PWRGD pad is being driven low by this chip  
1 = PWRGD pad is not being driven low by this chip  
0 = ALERTB pad is being driven low by this chip  
1 = ALERTB pad is not being driven low by this chip  
b[14] Mfr_pads_alertb_drive  
b[13:10] Mfr_pads_faultb_drive[3:0] Bit[3] used for FAULTB00 pad, bit[2] used for FAULTB01 pad, bit[1] used for FAULTB10 pad, bit[0] used for  
FAULTB11 pad as follows:  
0 = FAULTBzn pad is being driven low by this chip  
1 = FAULTBzn pad is not being driven low by this chip  
b[9:8] Mfr_pads_asel1[1:0]  
b[7:6] Mfr_pads_asel0[1:0]  
11: Logic high detected on ASEL1 input pad  
10: ASEL1 input pad is floating  
01: Reserved  
00: Logic low detected on ASEL1 input pad  
11: Logic high detected on ASEL0 input pad  
10: ASEL0 input pad is floating  
01: Reserved  
00: Logic low detected on ASEL0 input pad  
1: Logic high detected on CONTROL1 pad  
0: Logic low detected on CONTROL1 pad  
1: Logic high detected on CONTROL0 pad  
0: Logic low detected on CONTROL0 pad  
b[5] Mfr_pads_control1  
b[4] Mfr_pads_control0  
b[3:0] Mfr_pads_faultb[3:0]  
Bit[3] used for FAULTB00 pad, bit[2] used for FAULTB01 pad, bit[1] used for FAULTB10 pad, bit[0] used for  
FAULTB11 pad as follows:  
1: Logic high detected on FAULTBzn pad  
0: Logic low detected on FAULTBzn pad  
2977f  
58  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_SPECIAL_ID  
This register contains the manufacturer ID for the LTC2977.  
MFR_SPECIAL_ID Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_special_id  
Read only, always returns 0x0130  
MFR_SPECIAL_LOT  
These paged registers contain information that identifies the user configuration that was programmed at the factory.  
Contact the factory to request a custom factory programmed user configuration and special lot number.  
MFR_SPECIAL_LOT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:0] Mfr_special_lot  
Contains the LTC default special lot number. Contact the factory to request a custom factory programmed user configu-  
ration and special lot number.  
MFR_VOUT_DISCHARGE_THRESHOLD  
This register contains the coefficient that multiplies VOUT_COMMAND in order to determine the OFF threshold  
voltage for the associated output. If the output voltage has not decayed below MFR_VOUT_DISCHARGE_  
THRESHOLD VOUT_COMMAND prior to the channel being commanded to enter/re-enter the ON state, the Status_  
mfr_discharge bit in the STATUS_MFR_SPECIFIC register will be set and the ALERTB pin will be asserted low. In  
addition, the channel will not enter the ON state until the output has decayed below its OFF threshold voltage. Setting  
this to a value greater than 1.0 effectively disables DISCHARGE_THRESHOLD checking, allowing the channel to turn  
back on even if it has not decayed at all.  
Other channels can be held off if a particular output has failed to discharge by using the bidirectional FAULTBzn pins  
(refer to the MFR_FAULTBzn_RESPONSE and MFR_FAULTBzn_PROPAGATE registers).  
MFR_VOUT_DISCHARGE_THRESHOLD Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_vout_discharge_ The data uses the L11 format.  
threshold  
Units: Dimensionless, this register contains a coefficient.  
2977f  
59  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_COMMON  
This command returns status information for the alert pin (ALERTB), share-clock pin (SHARE_CLK), write-protect pin  
(WP), and device busy state.  
This is the only command that may still be read when the device is busy processing an EEPROM or other command. It  
may be polled by the host to determine when the device is available to process a PMBus command. A busy device will  
always acknowledge its address but will NACK the command byte and set Status_byte_busy and Status_word_busy  
when it receives a command that it cannot immediately process.  
MFR_COMMON Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7]  
b[6]  
Mfr_common_alertb  
Returns alert status.  
1: ALERTB is de-asserted high.  
0: ALERTB is asserted low.  
Mfr_common_busyb  
Returns device busy status.  
1: The device is available to process PMBus commands.  
0: The device is busy and will NACK PMBus commands.  
Read only, always returns 1s  
b[5:2]  
b[1]  
Reserved  
Mfr_common_share_clk  
Returns status of share-clock pin  
1: Share-clock pin is being held low  
0: Share-clock pin is active  
b[0]  
Mfr_common_write_protect Returns status of write-protect pin  
1: Write-protect pin is high  
0: Write-protect pin is low  
USER_DATA_00, USER_DATA_01, USER_DATA_02, USER_DATA_03, USER_DATA_04, MFR_LTC_RESERVED_1  
and MFR_LTC_RESERVED_2  
These registers are provided as user scratchpad and additional manufacturer reserved locations.  
USER_DATA_00, USER_DATA_01, MFR_LTC_RESERVED_1 and MFR_LTC_RESERVED_2 are all reserved for  
manufacturer use. Such uses include manufacturer traceability information and LTpowerPlay features like the  
CRC calculation and storage for user EEPROM configurations.  
USER_DATA_02 is reserved for OEM use. These 2 bytes might be used for OEM traceability or revision information.  
USER_DATA_03 and USER_DATA_04 are available for user scratchpad use. These 18 bytes (1 unpaged word plus  
8 paged words) might be used for traceability or revision information such as serial number, board model number,  
assembly location, or assembly date.  
All user and OEM scratchpad registers may be stored and recalled from EEPROM using the STORE_USER_ALL and  
RESTORE_USER_ALL commands.  
2977f  
60  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_VOUT_MIN  
This command returns the minimum ADC measured value of the channel’s output voltage. This register is  
reset to 0xFFFF (7.999) when the LTC2977 emerges from power-on reset or when a CLEAR_FAULTS com-  
mand is executed. When odd channels are configured to measure current, this command is not supported.  
Updates are disabled when undervoltage detection is disabled, such as when Margin Low (Ignore Faults and  
Warnings) is enabled.  
MFR_VOUT_MIN Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_vout_min  
The data uses the L16 format.  
Units: V.  
MFR_VIN_MIN  
This command returns the minimum ADC measured value of the input voltage. This register is reset to 0x7BFF  
25  
(approximately 2 ) when the LTC2977 emerges from power-on reset or when a CLEAR_FAULTS command is executed.  
Updates are disabled when unit is off for insufficient input voltage.  
MFR_VIN_MIN Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_vin_min  
The data uses the L11 format.  
Units: V.  
MFR_TEMPERATURE_MIN  
This command returns the minimum ADC measured value of junction temperature in °C as determined by the LTC2977’s  
25  
internal temperature sensor. This register is reset to 0x7BFF (approximately 2 ) when the LTC2977 emerges from  
power-on reset or when a CLEAR_FAULTS command is executed.  
MFR_TEMPERATURE_MIN Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
b[15:0]  
Mfr_temperature_min The data uses the L11 format.  
Units: °C.  
2977f  
61  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_STATUS_2  
This command returns additional manufacturer specific fault and state information. Bits marked Sticky = Yes are set  
by the appropriate event and not cleared until the user issues a CLEAR_FAULTS command or turns the channel back  
on. Bits marked ALERT = Yes assert ALERTB low when they are set. Bits marked Channel = All are not paged.  
MFR_STATUS_2 Data Contents  
BIT(S) SYMBOL  
OPERATION  
STICKY ALERT CHANNEL  
b[15:3] Reserved  
Read only, always returns 0s.  
b[2]  
b[1]  
b[0]  
Mfr_status_2_short_cycle_fault 1: This channel was commanded on by user before it finished sequencing off.  
0: No short cycle fault has occurred for this channel.  
Yes  
No  
Yes  
No  
No  
Current  
Page  
Mfr_status_2_vinen_drive  
1: VIN_EN pad is being driven low by this chip.  
0: VIN_EN pad is not being driven low by this chip.  
All  
Mfr_status_2_vin_caused_off  
1: This channel was turned off due to VIN_SNS dropping below the VIN_OFF  
threshold.  
Yes  
Current  
Page  
0: VIN_SNS has not caused this channel to turn off.  
Short cycle fault detection is used to prevent out-of-order on sequencing when the user issues an ON command too  
soon after an OFF command. If some channels are still finishing OFF delays when the early ON command is received,  
they might turn back on too late. This fault should be propagated to all channels in the sequence to ensure a clean  
ON sequence. When a channel detects a short cycle fault it sets Mfr_status_2_short_cycle_fault, Status_word_mfr,  
Status_word_high_byte, and pulls ALERTB low. It also faults off, and stays off until the user issues an OFF-THEN-ON  
sequence or resets the part. Fault retries are not supported for short cycle faults.  
Mfr_status_2_vinen_drive indicates the current status of this chip’s VIN_EN pad driver. It is not affected by CLEAR_  
FAULTS commands, and no other status bits are affected when it is set.  
Mfr_status_2_vin_caused_off indicates that this channel was turned off because VIN_SNS dropped below the VIN_OFF  
threshold. Status_word_mfr and Status_word_high_byte are set at the same time, but ALERTB is not asserted. If  
VIN_SNS subsequently rises above VIN_ON, and this channel turns back on, Mfr_status_2_vin_caused_off will remain  
asserted to record the transient event regardless of the value of Mfr_config_all_vin_on_clr_faults_en.  
2977f  
62  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_TELEMETRY  
Read_vout3[7:0]  
Read_vout3[15:8]  
Status_word4[7:0]  
Status_word4[15:8]  
Status_vout4  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
This read-only command enables efficient polling of te-  
lemetry data for all output channels via a single 49 byte  
block read.  
MFR_TELEMETRY Data Block Contents  
DATA  
Status_mfr4  
BYTE*  
0
Read_vout4[7:0]  
Read_vout4[15:8]  
Status_word5[7:0]  
Status_word5[15:8]  
Status_vout5  
Status_word0[7:0]  
Status_word0[15:8]  
Status_vout0  
1
2
Status_mfr0  
3
Read_vout0[7:0]  
Read_vout0[15:8]  
Status_word1[7:0]  
Status_word1[15:8]  
Status_vout1  
4
Status_mfr5  
5
Read_vout5[7:0]  
Read_vout5[15:8]  
Status_word6[7:0]  
6
7
8
Status_word6[15:8]  
Status_vout6  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
Status_mfr1  
9
Read_vout1[7:0]  
Read_vout1[15:8]  
Status_word2[7:0]  
Status_word2[15:8]  
Status_vout2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Status_mfr6  
Read_vout6[7:0]  
Read_vout6[15:8]  
Status_word7[7:0]  
Status_word7[15:8]  
Status_vout7  
Status_mfr2  
Read_vout2[7:0]  
Read_vout2[15:8]  
Status_word3[7:0]  
Status_word3[15:8]  
Status_vout3  
Status_mfr7  
Read_vout7[7:0]  
Read_vout7[15:8]  
Reserved  
*Note: PMBus data byte numbers start at 1 rather than 0. Status_word0[7:0]  
is the first byte returned after BYTE COUNT = Ox31 See block read protocol.  
Status_mfr3  
2977f  
63  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
WATCHDOG OPERATION  
A non zero write to the MFR_WATCHDOG_T register will reset the watchdog timer. Low-to-high transitions on the  
WDI/RESETB pin also reset the watchdog timer. If the timer expires, ALERTB is asserted and the PWRGD output  
is optionally deasserted and then reasserted after MFR_PWRGD_ASSERTION_DELAY ms. Writing 0 to either the  
MFR_WATCH_DOG_T or MFR_WATCHDOG_T_FIRST registers will disable the timer.  
MFR_WATCHDOG_T_FIRST and MFR_WATCHDOG_T  
The MFR_WATCHDOG_T_FIRST register allows the user to program the duration of the first watchdog timer interval  
following assertion of the PWRGD pin, assuming the PWRGD signal reflects the status of the watchdog timer. If  
assertion of PWRGD is not conditioned by the watchdog timer’s status, then MFR_WATCHDOG_T_FIRST applies to  
the first timing interval after the timer is enabled. Writing a value of 0ms to the MFR_WATCHDOG_T_FIRST register  
disables the watchdog timer.  
The MFR_WATCHDOG_T register allows the user to program watchdog time intervals subsequent to the MFR_  
WATCHDOG_T_FIRST timing interval. Writing a value of 0ms to the MFR_WATCHDOG_T register disables the  
watchdog timer. A non-zero write to MFR_WATCHDOG_T will reset the watchdog timer.  
The read value of both commands always returns what was last written and does not reflect internal limiting.  
MFR_WATCHDOG_T_POR and MFR_WATCHDOG_T Data Contents  
BIT(S) SYMBOL  
b[15:0] Mfr_watchdog_t_first The data uses the L11 format.  
Mfr_watchdog_t These timers operate on an internal clock. The Mfr_watchdog_t timer will align to SHARE_CLK if it is running.  
OPERATION  
Delays are rounded to the nearest 10µs for _t and 1ms for _t_first.  
Writing a zero value for Y to the Mfr_watchdog_t or Mfr_watchdog_t_first registers will disable the watchdog timer.  
Units: ms. Max timeout is 0.6 sec for _t and 65 sec for _t_first  
2977f  
64  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
BULK PROGRAMMING THE USER EEPROM SPACE  
The MFR_EE_UNLOCK, MFR_EE_ERASE and MFR_EE_DATA commands provide a method for 3rd party EEPROM  
programming houses and end users to easily program the LTC2977 independent of any order dependencies or delays  
between PMBus commands. All data transfers are directly to and from the EEPROM and do not affect the volatile RAM  
space currently configuring the device.  
Thefirststepistoprogramamasterreferencepartwiththedesiredconfiguration.MFR_EE_UNLOCKandMFR_EE_DATA  
are then used to read back all the data in User EEPROM space as sequential words. This information is stored to the  
master programming HEX file. Subsequent parts may be cloned to match the master part using MFR_EE_UNLOCK,  
MFR_EE_ERASE and MFR_EE_DATA to transfer data from the master HEX file. These commands operate directly on  
the EEPROM independent of the part configurations stored in RAM space. During EEPROM access the part will indicate  
that it is busy as described below.  
In order to support simple programming fixtures the bulk programming feature only uses PMBus word and byte  
commands. The MFR_EE_UNLOCK configures the appropriate access mode and resets an internal address pointer  
allowing a series of word commands to behave as a block read or write with the address pointer being incremented  
after each operation. PEC use is optional and is configured by the MFR_EE_UNLOCK operation.  
MFR_EE_UNLOCK  
The MFR_EE_UNLOCK command prevents accidental EEPROM access in normal operation and configures the required  
EEPROM bulk programming mode for bulk initialization, sequential writes, or reads. MFR_EE_UNLOCK augments the  
protection provided by write protect. Upon unlocking the part for the required operation, an internal address pointer is  
reset allowing a series of MFR_EE_DATA reads or writes to sequentially transfer data, similar to a block read or block  
write. The MFR_EE_UNLOCK command can clear or set PEC mode based on the desired level of error protection. An  
MFR_EE_UNLOCK sequence consists of writing two unlock codes using two byte-write commands. The following  
table documents the allowed sequences. Writing a non-supported sequence locks the part. Reading MFR_EE_UNLOCK  
returns the last byte written or zero if the part is locked.  
MFR_EE_UNLOCK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:0] Mfr_ee_unlock[7:0] To unlock user EEPROM space for Mfr_ee_erase and Mfr_ee_data read or write operations with PEC allowed:  
Write 0x2b followed by 0xd4.  
To unlock user EEPROM space for Mfr_ee_erase and Mfr_ee_data read or write operations with PEC required:  
Write 0x2b followed by 0xd5.  
To unlock user and manufacturer EEPROM space for Mfr_ee_data read only operations with PEC allowed:  
Write 0x2b, followed by 0x91 followed by 0xe4.  
To unlock user and manufacturer EEPROM space for Mfr_ee_data read only operations with PEC required:  
Write 0x2b, followed by 0x91 followed by 0xe5.  
2977f  
65  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_EE_ERASE  
The MFR_EE_ERASE command is used to erase the entire contents of the user EEPROM space and configures this  
space to accept new program data. Writing values other than 0x2B will lock the part. Reads return the last value written.  
MFR_EE_ERASE Data contents  
BIT(S) SYMBOL  
b[7:0] Mfr_ee_erase[7:0] To erase the user EEPROM space and configure to accept new data:  
1) Use the appropriate Mfr_ee_unlock sequence to configure for Mfr_ee_erase commands with or without PEC.  
OPERATION  
2) Write 0x2B to Mfr_ee_erase.  
The part will indicate it is busy erasing the EEPROM by the mechanism detailed below.  
MFR_EE_DATA  
The MFR_EE_DATA command allows the user to transfer data directly to or from the EEPROM without affecting RAM  
space.  
To read the user EEPROM space issue the appropriate Mfr_ee_unlock command and perform Mfr_ee_data reads until  
the EEPROM has been completely read. Extra reads will lock the part and return zero. The first read returns the 16-bit  
EEPROM packing revision ID that is stored in ROM. The second read returns the number of 16-bit words available;  
this is the number of reads or writes to access all memory locations. Subsequent reads return EEPROM data starting  
with the lowest address.  
To write to the user EEPROM space issue, the appropriate Mfr_ee_unlock and Mfr_ee_erase commands followed by  
successive Mfr_ee_data word writes until the EEPROM is full. Extra writes will lock the part. The first write is to the  
lowest address.  
Mfr_ee_data reads and writes must not be mixed.  
MFR_EE_DATA Data Contents  
BIT(S) SYMBOL  
b[7:0] Mfr_ee_data[7:0] To read user space  
1) Use the appropriate Mfr_ee_unlock sequence to configure for Mfr_ee_data commands with or without PEC.  
OPERATION  
2) Read Mfr_ee_data[0] = PackingId (MFR Specific ID).  
3) Read Mfr_ee_data[1] = NumberOfUserWords (total number of 16-bit word available).  
4) Read Mfr_ee_data[2] through Mfr_ee_data[NumberOfUserWords+1] (User EEPROM data contents)  
To write user space  
1) Initialize the user memory using the sequence described for the MFR_EE_ERASE command.  
2) Use the appropriate Mfr_ee_unlock sequence to configure for Mfr_ee_data commands with or without PEC.  
3) Write Mfr_ee_data[0] through Mfr_ee_data[NumberOfUserWords-1] (User EEPROM data content to be written)  
The part will indicate it is busy erasing the EEPROM by the mechanism detailed below.  
2977f  
66  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
Response When Part Is Busy  
The part will indicate it is busy accessing the EEPROM by the following mechanism:  
1) Clearing Mfr_common_busyb of the MFR_COMMON register. This byte can always be read and will never NACK a  
byte read request even if the part is busy.  
2) NACKing commands other than MFR_COMMON.  
MFR_EE Erase and Write Programming Time  
2
The program time per word is typically 0.17ms and will require spacing the I C/SMBus writes at greater than 0.17ms  
to guarantee the write has completed. The Mfr_ee_erase command takes approximately 400ms. We recommend using  
MFR_COMMON for handshaking.  
FAULT LOG OPERATION  
A conceptual diagram of the fault log is shown in Figure 14. The fault log provides black box capability to the LTC2977.  
During normal operation the contents of the status registers, the output voltage readings, temperature readings as  
well as peak and min values of these quantities are stored in a continuously updated buffer in RAM. You can think of  
the operation as being similar to a strip chart recorder. When a fault occurs, the contents are written into EEPROM for  
nonvolatile storage. The EEPROM fault log is then locked. The part can be powered down with the fault log available  
for reading at a later time.  
MFR_FAULT_LOG_STORE  
This command allows the user to transfer data from the RAM buffer to EEPROM.  
MFR_FAULT_LOG_RESTORE  
This command allows the user to transfer a copy of the fault-log data from the EEPROM to the RAM buffer. After a  
restore the RAM buffer is locked until a successful MFR_FAULT_LOG read or MFR_FAULT_LOG_CLEAR.  
2977f  
67  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_FAULT_LOG_CLEAR  
This command initializes the EEPROM block reserved for fault logging. Any previous fault log stored in EEPROM will  
be erased by this operation and logging of the fault log RAM to EEPROM will be enabled.  
MFR_FAULT_LOG_STATUS  
Read only. This register is used to manage fault log events.  
Mfr_fault_log_status_eepromissetafteraMFR_FAULT_LOG_STOREcommandorafaulted-offeventtriggersatransfer  
of the fault log from RAM to EEPROM. This bit is cleared by a MFR_FAULT_LOG_CLEAR command.  
Mfr_fault_log_status_ram is set after a MFR_FAULT_LOG_RESTORE to indicate that the data in the RAM has been  
restored from EEPROM and not yet read using a MFR_FAULT_LOG command. This bit is cleared by a successful  
execution of an MFR_FAULT_LOG command, or by a successful execution of an MFR_FAULT_LOG_CLEAR command.  
MFR_FAULT_LOG_STATUS Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[1] Mfr_fault_log_status_ram  
Fault log RAM status:  
0: The fault log RAM allows updates.  
1: The fault log RAM is locked until the next MFR_FAULT_LOG read.  
b[0] Mfr_fault_log_status_eeprom Fault log EEPROM status:  
0: The transfer of the fault log RAM to the EEPROM is enabled.  
1: The transfer of the fault log RAM to the EEPROM is inhibited.  
RAM 255 BYTES  
EEPROM 255 BYTES  
8
ADC READINGS  
CONTINUOUSLY  
FILL BUFFER  
TIME OF FAULT  
TRANSFER TO  
EEPROM AND  
LOCK  
.
.
.
.
.
.
AFTER FAULT  
READ FROM  
EEPROM AND  
LOCK BUFFER  
2977 F14  
Figure 14. Fault Log Conceptual Diagram  
2977f  
68  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
MFR_FAULT_LOG  
Readonly.This2040-bit(255byte)datablockcontainsacopyoftheRAMbufferfaultlog.TheRAMbufferiscontinuously  
updated after each ADC conversion as long as Mfr_fault_log_status_ram is clear.  
With Mfr_config_all_fault_log_enable = 1 and Mfr_fault_log_status_eeprom = 0, the RAM buffer is transferred to  
EEPROM whenever an LTC2977 fault causes a channel to latch off or a MFR_FAULT_LOG_STORE command is received.  
This transfer is delayed until the ADC has updated its READ values for all channels when Mfr_config_all_fast_fault_log  
is clear, otherwise it happens within 24ms. This optional delay can be used to ensure that the slower, ADC monitored,  
values are all updated for the case where a fast supervisor detected fault initiates the transfer to EEPROM.  
Mfr_fault_log_status_eeprom is set high after the RAM buffer is transferred to EEPROM and not cleared until a  
MFR_FAULT_LOG_CLEAR is received, even if the LTC2977 is reset or powered down. Fault log EEPROM transfers are  
not initiated as a result of Status_mfr_discharge events.  
During a MFR_FAULT_LOG read, data is returned as defined by the following table. The fault log data is partitioned into  
two sections. The first section is referred to as the preamble and contains the Position-last pointer, time information  
and peak and minimum values. The second section contains a chronological record of telemetry and requires Position-  
last for proper interpretation. The fault log stores approximately 0.5 seconds of telemetry. To prevent timeouts during  
block reads, it is recommended that Mfr_config_all_longer_pmbus_timeout be set to 1.  
2977f  
69  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
Table 2. Data Block Contents  
DATA  
Table 2. Data Block Contents  
DATA  
BYTE* DESCRIPTION  
BYTE* DESCRIPTION  
Position_last[7:0]  
0
Position of fault log pointer  
Mfr_vout_peak6[7:0]  
Mfr_vout_peak6[15:8]  
Mfr_vout_min6[7:0]  
Mfr_vout_min6[15:8]  
Mfr_vout_peak7[7:0]  
Mfr_vout_peak7[15:8]  
Mfr_vout_min7[7:0]  
Mfr_vout_min7[15:8]  
Status_vout0  
Status_mfr0  
Mfr_status_2_0[7:0]  
Status_vout1  
Status_mfr1  
Mfr_status_2_1[7:0]  
Status_vout2  
Status_mfr2  
Mfr_status_2_2[7:0]  
Status_vout3  
Status_mfr3  
Mfr_status_2_3[7:0]  
Status_vout4  
Status_mfr4  
Mfr_status_2_4[7:0]  
Status_vout5  
Status_mfr5  
Mfr_status_2_5[7:0]  
Status_vout6  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
when fault occurred.  
Cyclic_data_valid_count[7:0]  
1
Number of valid bytes of cyclic  
data. 0xFF indicates all cyclic  
data is valid.  
41-bit share-clock counter  
value when fault occurred.  
Counter LSB is in 200µs  
increments. This counter is  
cleared at power-up or after  
the LTC2977 is reset  
SharedTime[7:0]  
SharedTime[15:8]  
2
3
4
5
6
7
8
9
SharedTime[23:16]  
SharedTime[31:24]  
SharedTime[39:32]  
SharedTime[40]  
Mfr_vout_peak0[7:0]  
Mfr_vout_peak0[15:8]  
Mfr_vout_min0[7:0]  
Mfr_vout_min0[15:8]  
Mfr_vout_peak1[7:0]  
Mfr_vout_peak1[15:8]  
Mfr_vout_min1[7:0]  
Mfr_vout_min1[15:8]  
Mfr_vin_peak[7:0]  
Reserved bits[15:8] not stored  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
Mfr_vin_peak[15:8]  
Mfr_vin_min[7:0]  
Mfr_vin_min[15:8]  
Mfr_vout_peak2[7:0]  
Mfr_vout_peak2[15:8]  
Mfr_vout_min2[7:0]  
Mfr_vout_min2[15:8]  
Mfr_vout_peak3[7:0]  
Mfr_vout_peak3[15:8]  
Mfr_vout_min3[7:0]  
Mfr_vout_min3[15:8]  
Mfr_temp_peak[7:0]  
Mfr_temp_peak[15:8]  
Mfr_ temp_min[7:0]  
Mfr_ temp_min[15:8]  
Mfr_vout_peak4[7:0]  
Mfr_vout_peak4[15:8]  
Mfr_vout_min4[7:0]  
Mfr_vout_min4[15:8]  
Mfr_vout_peak5[7:0]  
Mfr_vout_peak5[15:8]  
Mfr_vout_min5[7:0]  
Mfr_vout_min5[15:8]  
Status_mfr6  
Mfr_status_2_6[7:0]  
Status_vout7  
Status_mfr7  
Mfr_status_2_7[7:0]  
72 bytes for preamble  
Start of cyclic data  
Fault_log [Position_last]  
Fault_log  
.
.
72  
73  
.
Fault_log  
Reserved  
237  
238-254  
Last Valid Byte  
Number of cyclic data loops: (238-72)/46 = 3.6  
*Note: PMBus data byte numbers start at 1 rather than 0. Position_last is the  
first byte returned after BYTE COUNT = 0xFF. See block read protocol.  
2977f  
70  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
Thedatareturnedbetweenbytes72and237oftheprevious  
table is interpreted using Position_last and the following  
table. The key to identifying byte 72 is to locate the DATA  
corresponding to POSITION = Position_last in the next  
table. Subsequent bytes are identified by decrementing  
the value of POSITION. For example: If Position_last = 11  
then the first data returned in byte position 72 of a block  
readisRead_vin[15:8]followedbyRead_vin[7:0]followed  
by Mfr_status_2 of page 1. See Table 3.  
Table 3. Interpreting Cyclical Loop  
POSITION  
34  
DATA  
Status_mfr5  
Mfr_status_2_5[7:0]  
Read_vout6[7:0]  
Read_vout6[15:8]  
Status_vout6  
35  
36  
37  
38  
39  
40  
41  
42  
Status_mfr6  
Mfr_status_2_6[7:0]  
Read_vout7[7:0]  
Read_vout7[15:8]  
Status_vout7  
Status_mfr7  
Mfr_status_2_7[7:0]  
Total Bytes = 46  
Table 3. Interpreting Cyclical Loop  
43  
44  
45  
POSITION  
0
DATA  
Read_vout0[7:0]  
Read_vout0[15:8]  
Status_vout0  
1
2
3
4
5
6
7
8
9
Status_mfr0  
The following table fully decodes a sample fault log read  
to help clarify the cyclical nature of the operation.  
MFR_FAULT_LOG DATA BLOCK CONTENTS  
PREAMBLE INFORMATION  
Mfr_status_2_0[7:0]  
Read_vout1[7:0]  
Read_vout1[15:8]  
Status_vout1  
Status_mfr1  
Mfr_status_2_1[7:0]  
Read_vin[7:0]  
BYTE  
BYTE  
NUMBER NUMBER  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
DECIMAL  
HEX  
DATA  
DESCRIPTION  
Read_vin[15:8]  
Status_vin  
Read_vout2[7:0]  
Read_vout2[15:8]  
Status_vout2  
0
00  
Position_last[7:0] = 11 Position of  
Fault-Log Pointer  
When Fault  
Occurred.  
1
01  
Cyclic_data_valid_  
count[7:0] = 160  
Final 6 Bytes Of  
Cyclic Data Not  
Valid  
Status_mfr2  
Mfr_status_2_2[7:0]  
Read_vout3[7:0]  
Read_vout3[15:8]  
Status_vout3  
2
3
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
SharedTime[7:0]  
41-Bit Share-  
Clock Counter  
Value When Fault  
Occurred. Counter  
LSB Is in 200µs  
Increments.  
SharedTime[15:8]  
4
SharedTime[23:16]  
SharedTime[31:24]  
SharedTime[39:32]  
SharedTime[40]  
Status_mfr3  
5
Mfr_status_2_3[7:0]  
Read_temperature_1[7:0]  
Read_temperature_1[15:8]  
Status_temp  
Read_vout4[7:0]  
Read_vout4[15:8]  
Status_vout4  
6
7
8
Mfr_vout_peak0[7:0]  
Mfr_vout_peak0[15:8]  
Mfr_vout_min0[7:0]  
Mfr_vout_min0[15:8]  
Mfr_vout_peak1[7:0]  
Mfr_vout_peak1[15:8]  
Mfr_vout_min1[7:0]  
Mfr_vout_min1[15:8]  
9
10  
11  
12  
13  
14  
15  
Status_mfr4  
Mfr_status_2_4[7:0]  
Read_vout5[7:0]  
Read_vout5[15:8]  
Status_vout5  
2977f  
71  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
BYTE  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER  
NUMBER NUMBER  
DECIMAL  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
HEX  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
DATA  
DESCRIPTION  
DECIMAL  
52  
HEX  
34  
35  
36  
37  
38  
39  
3A  
3B  
3C  
3D  
3E  
3F  
DATA  
Status_mfr1  
DESCRIPTION  
Mfr_vin_peak[7:0]  
Mfr_vin_peak[15:8]  
Mfr_vin_min[7:0]  
53  
Mfr_status_2_1[7:0]  
Status_vout2  
54  
Mfr_vin_min[15:8]  
Mfr_vout_peak2[7:0]  
Mfr_vout_peak2[15:8]  
Mfr_vout_min2[7:0]  
Mfr_vout_min2[15:8]  
Mfr_vout_peak3[7:0]  
Mfr_vout_peak3[15:8]  
Mfr_vout_min3[7:0]  
Mfr_vout_min3[15:8]  
Mfr_temp_peak[7:0]  
Mfr_temp_peak[15:8]  
Mfr_ temp_min[7:0]  
Mfr_ temp_min[15:8]  
Mfr_vout_peak4[7:0]  
Mfr_vout_peak4[15:8]  
Mfr_vout_min4[7:0]  
Mfr_vout_min4[15:8]  
Mfr_vout_peak5[7:0]  
Mfr_vout_peak5[15:8]  
Mfr_vout_min5[7:0]  
Mfr_vout_min5[15:8]  
Mfr_vout_peak6[7:0]  
Mfr_vout_peak6[15:8]  
Mfr_vout_min6[7:0]  
Mfr_vout_min6[15:8]  
Mfr_vout_peak7[7:0]  
Mfr_vout_peak7[15:8]  
Mfr_vout_min7[7:0]  
Mfr_vout_min7[15:8]  
Status_vout0  
55  
Status_mfr2  
56  
Mfr_status_2_2[7:0]  
Status_vout3  
57  
58  
Status_mfr3  
59  
Mfr_status_2_3[7:0]  
Status_vout4  
60  
61  
Status_mfr4  
62  
Mfr_status_2_4[7:0]  
Status_vout5  
63  
64  
40  
41  
42  
43  
44  
45  
46  
47  
Status_mfr5  
65  
Mfr_status_2_5[7:0]  
Status_vout6  
66  
67  
Status_mfr6  
68  
Mfr_status_2_6[7:0]  
Status_vout7  
69  
70  
Status_mfr7  
71  
Mfr_status_2_7[7:0] End of Preamble  
CYCLICAL DATA LOOPS  
LOOP  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
46 BYTES PER  
DECIMAL  
HEX  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
DECIMAL  
DATA LOOP 0  
Read_vin[15:8]  
Read_vin[7:0]  
LOOP  
72  
11  
10  
9
Position_last  
73  
74  
Mfr_status_2_1[7:0]  
Status_mfr1  
75  
8
76  
7
Status_vout1  
77  
6
Read_vout1[15:8]  
Read_vout1[7:0]  
Mfr_status_2_0[7:0]  
Status_mfr0  
78  
5
79  
4
80  
50  
51  
52  
53  
3
Status_mfr0  
81  
2
Status_vout0  
Mfr_status_2_0[7:0]  
Status_vout1  
82  
1
Read_vout0[15:8]  
Read_vout0[7:0]  
83  
0
2977f  
72  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
LOOP  
LOOP  
BYTE  
BYTE  
BYTE  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
46 BYTES PER  
LOOP  
NUMBER NUMBER NUMBER  
46 BYTES PER  
LOOP  
DECIMAL  
HEX  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
DECIMAL  
DATA LOOP 1  
Mfr_status_2_7[7:0]  
Status_mfr7  
DECIMAL  
HEX  
77  
78  
79  
7A  
7B  
7C  
7D  
7E  
7F  
DECIMAL  
DATA LOOP 1  
Read_vin[7:0]  
84  
45  
119  
10  
9
8
7
6
5
4
3
2
1
0
85  
44  
120  
Mfr_status_2_1[7:0]  
Status_mfr1  
86  
43  
Status_vout7  
121  
87  
42  
Read_vout7[15:8]  
Read_vout7[7:0]  
Mfr_status_2_6[7:0]  
Status_mfr6  
122  
Status_vout1  
88  
41  
123  
Read_vout1[15:8]  
Read_vout1[7:0]  
Mfr_status_2_0[7:0]  
Status_mfr0  
89  
40  
124  
90  
39  
125  
91  
38  
Status_vout6  
126  
92  
37  
Read_vout6[15:8]  
Read_vout6[7:0]  
Mfr_status_2_5[7:0]  
Status_mfr5  
127  
Status_vout0  
93  
36  
128  
80  
81  
Read_vout0[15:8]  
Read_vout0[7:0]  
94  
35  
129  
95  
34  
96  
33  
Status_vout5  
LOOP  
BYTE  
BYTE  
BYTE  
97  
32  
Read_vout5[15:8]  
Read_vout5[7:0]  
Mfr_status_2_4[7:0]  
Status_mfr4  
NUMBER NUMBER NUMBER  
46 BYTES PER  
LOOP  
98  
31  
DECIMAL  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
HEX  
82  
83  
84  
85  
86  
87  
88  
89  
8A  
8B  
8C  
8D  
8E  
8F  
DECIMAL  
DATA LOOP 2  
Mfr_status_2_7[7:0]  
Status_mfr7  
99  
30  
45  
100  
101  
102  
103  
104  
105  
29  
44  
28  
Status_vout4  
43  
Status_vout7  
27  
Read_vout4[15:8]  
Read_vout4[7:0]  
Status_temp  
42  
Read_vout7[15:8]  
Read_vout7[7:0]  
Mfr_status_2_6[7:0]  
Status_mfr6  
26  
41  
25  
40  
24  
Read_  
temperature_1[15:8]  
39  
38  
Status_vout6  
106  
6A  
23  
Read_  
temperature_1[7:0]  
37  
Read_vout6[15:8]  
Read_vout6[7:0]  
Mfr_status_2_5[7:0]  
Status_mfr5  
36  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
6B  
6C  
6D  
6E  
6F  
70  
71  
72  
73  
74  
75  
76  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
Mfr_status_2_3[7:0]  
Status_mfr3  
35  
34  
Status_vout3  
33  
Status_vout5  
Read_vout3[15:8]  
Read_vout3[7:0]  
Mfr_status_2_2[7:0]  
Status_mfr2  
32  
Read_vout5[15:8]  
Read_vout5[7:0]  
Mfr_status_2_4[7:0]  
Status_mfr4  
90  
91  
92  
93  
94  
95  
96  
31  
30  
29  
Status_vout2  
28  
Status_vout4  
Read_vout2[15:8]  
Read_vout2[7:0]  
Status_vin  
27  
Read_vout4[15:8]  
Read_vout4[7:0]  
Status_temp  
26  
25  
Read_vin[15:8]  
2977f  
73  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
LOOP  
LOOP  
BYTE  
BYTE  
BYTE  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
46 BYTES PER  
LOOP  
NUMBER NUMBER NUMBER  
46 BYTES PER  
LOOP  
DECIMAL  
HEX  
DECIMAL  
DATA LOOP 2  
DECIMAL  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
HEX  
B6  
B7  
B8  
B9  
BA  
BB  
BC  
BD  
BE  
BF  
DECIMAL  
DATA LOOP 3  
Status_mfr6  
151  
97  
24  
Read_  
temperature_1[15:8]  
39  
38  
Status_vout6  
152  
98  
23  
Read_  
temperature_1[7:0]  
37  
Read_vout6[15:8]  
Read_vout6[7:0]  
Mfr_status_2_5[7:0]  
Status_mfr5  
36  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
99  
9A  
9B  
9C  
9D  
9E  
9F  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Mfr_status_2_3[7:0]  
Status_mfr3  
35  
34  
Status_vout3  
33  
Status_vout5  
Read_vout3[15:8]  
Read_vout3[7:0]  
Mfr_status_2_2[7:0]  
Status_mfr2  
32  
Read_vout5[15:8]  
Read_vout5[7:0]  
Mfr_status_2_4[7:0]  
Status_mfr4  
31  
30  
C0  
C1  
C2  
C3  
C4  
C5  
29  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
AA  
AB  
AC  
AD  
AE  
AF  
Status_vout2  
28  
Status_vout4  
Read_vout2[15:8]  
Read_vout2[7:0]  
Status_vin  
27  
Read_vout4[15:8]  
Read_vout4[7:0]  
Status_temp  
26  
25  
Read_vin[15:8]  
Read_vin[7:0]  
24  
Read_  
temperature_1[15:8]  
Mfr_status_2_1[7:0]  
Status_mfr1  
198  
C6  
23  
Read_  
temperature_1[7:0]  
8
7
Status_vout1  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
C7  
C8  
C9  
CA  
CB  
CC  
CD  
CE  
CF  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Mfr_status_2_3[7:0]  
Status_mfr3  
6
Read_vout1[15:8]  
Read_vout1[7:0]  
Mfr_status_2_0[7:0]  
Status_mfr0  
5
Status_vout3  
4
Read_vout3[15:8]  
Read_vout3[7:0]  
Mfr_status_2_2[7:0]  
Status_mfr2  
3
2
Status_vout0  
1
Read_vout0[15:8]  
Read_vout0[7:0]  
0
Status_vout2  
Read_vout2[15:8]  
Read_vout2[7:0]  
Status_vin  
LOOP  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
46 BYTES PER  
LOOP  
Read_vin[15:8]  
Read_vin[7:0]  
DECIMAL  
HEX  
B0  
B1  
B2  
B3  
B4  
B5  
DECIMAL  
DATA LOOP 3  
Mfr_status_2_7[7:0]  
Status_mfr7  
176  
45  
44  
43  
42  
41  
40  
Mfr_status_2_1[7:0]  
Status_mfr1  
177  
8
178  
Status_vout7  
7
Status_vout1  
179  
Read_vout7[15:8]  
Read_vout7[7:0]  
Mfr_status_2_6[7:0]  
6
Read_vout1[15:8]  
Read_vout1[7:0]  
180  
5
181  
2977f  
74  
For more information www.linear.com/LTC2977  
LTC2977  
pMbꢀꢁ coMManD DescripTion  
LOOP  
RESERVED BYTES  
BYTE  
BYTE  
BYTE  
238  
EE  
0x00  
Bytes EE - FE  
Return 0x00 But  
Must Be Read  
NUMBER NUMBER NUMBER  
46 BYTES PER  
LOOP  
DECIMAL  
HEX  
DECIMAL  
DATA LOOP 3  
Mfr_status_2_0[7:0]  
Status_mfr0  
217  
D9  
4
3
2
1
0
239  
240  
241  
242  
243  
244  
245  
246  
247  
248  
249  
250  
251  
252  
253  
254  
EF  
F0  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
218  
DA  
DB  
DC  
DD  
219  
Status_vout0  
220  
Read_vout0[15:8]  
Read_vout0[7:0]  
221  
LOOP  
BYTE  
BYTE  
BYTE  
NUMBER NUMBER NUMBER  
46 BYTES PER  
LOOP  
DECIMAL  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
HEX  
DE  
DF  
E0  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
E9  
EA  
EB  
EC  
ED  
DECIMAL  
DATA LOOP 4  
Mfr_status_2_7[7:0]  
Status_mfr7  
45  
44  
43  
Status_vout7  
42  
Read_vout7[15:8]  
Read_vout7[7:0]  
Mfr_status_2_6[7:0]  
Status_mfr6  
41  
40  
39  
38  
Status_vout6  
Use One Block  
Read Command  
to Read 255 Bytes  
Total, from 0x00  
to 0xFE  
37  
Read_vout6[15:8]  
Read_vout6[7:0]  
36  
35  
Mfr_status_2_5[7:0] Invalid data  
34  
Status_mfr5  
Invalid data  
Invalid data  
Invalid data  
Invalid data  
33  
Status_vout5  
32  
Read_vout5[15:8]  
Read_vout5[7:0]  
31  
30  
Mfr_status_2_4[7:0] Invalid data  
2977f  
75  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
OVERVIEW  
Alternatively, power from an external 3.3V supply may  
be applied directly to the V pins 16 and 17 using a  
DD33  
The LTC2977 is a power management IC that is capable  
of sequencing, margining, trimming, supervising output  
voltageforOV/UVconditions,providingfaultmanagement,  
and voltage readback for eight DC/DC converters. Input  
voltage and LTC2977 junction temperature readback are  
also available. Odd numbered channels can be configured  
to read back sense resistor voltages to provide current  
measurements for those channels. Linear Technology  
PowerSystemManagerscancoordinateoperationamong  
multipledevicesusingcommonSHARE_CLK,FAULTBand  
CONTROL pins. The LTC2977 utilizes a PMBus compliant  
interface and command set.  
voltagebetween3.13Vand3.47V. TieV  
toV  
pins.  
PWR  
DD33  
See Figure 16. All functionality is available when using  
this alternate power method. The higher voltages needed  
for the V  
pins and bias for the V  
pins are  
OUT_EN[0:3]  
charge-pumped from V  
SENSE  
.
DD33  
SETTING COMMAND REGISTER VALUES  
The command register settings described herein are in-  
tendedasareferenceandforthepurposeofunderstanding  
the registers in a software development environment. In  
actualpractice,theLTC2977canbecompletelyconfigured  
2
for standalone operation with the LTC USB to I C/SMBus/  
PMBus controller (DC1613) and software GUI using intui-  
tive menu driven objects.  
POWERING THE LTC2977  
The LTC2977 can be powered two ways. The first method  
requires that a voltage between 4.5V and 15V be applied  
SEꢀUENCE, SERVO, MARGIN AND RESTART  
OPERATIONS  
to the V  
pin. See Figure 15. An internal linear regula-  
PWR  
internal circuitry of the LTC2977.  
PWR  
tor converts V  
down to 3.3V which drives all of the  
Command Units On or Off  
Three control parameters determine how a particular  
channel is turned on and off. The CONTROL pins, the  
OPERATION command and the value of the input voltage  
4.5V < V  
< 15V  
PWR  
V
V
IN_SNS  
PWR  
0.1µF  
0.1µF  
0.1µF  
measured at the V  
pin (V ). In all cases, V  
V
V
V
DD33  
DD33  
DD25  
IN_SNS  
IN IN  
must exceed VIN_ON in order to enable the device to  
respond to the CONTROL pin or OPERATION command.  
LTC2977*  
GND  
When V drops below VIN_OFF an immediate OFF or  
IN  
*SOME DETAILS  
OMITTED FOR CLARITY  
sequence off after TOFF_DELAY of all channels will result  
(See Mfr_config_chan_mode). Refer to the OPERATION  
section in the data sheet for a detailed description of the  
ON_OFF_CONFIG command.  
2977 F15  
Figure 15. Powering LT2977 Directly from an Intermediate Bus  
Some examples of typical ON/OFF configurations are:  
1. ADC/DCconvertermaybeconfiguredtoturnonanytime  
EXTERNAL 3.3V  
0.1µF  
V
PWR  
V exceeds VIN_ON.  
IN  
V
V
V
2. A DC/DC converter may be configured to turn on only  
when it receives an OPERATION command.  
DD33  
DD33  
DD25  
LTC2977*  
GND  
3. A DC/DC converter may be configured to turn on only  
via the CONTROL pin.  
0.1µF  
*SOME DETAILS  
OMITTED FOR CLARITY  
2977 F16  
4. A DC/DC converter may be configured to turn on only  
when it receives an OPERATION command and the  
Figure 16. Powering LTC2977 from External 3.3V Supply  
CONTROL pin is asserted.  
2977f  
76  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
On Sequencing  
Servo Modes  
The ADC, DAC and internal processor comprise a digital  
servo loop that can be configured to operate in several  
usefulmodes.Theservotargetreferstothedesiredoutput  
voltage.  
The TON_DELAY command sets the amount of time that  
a channel will wait following the start of an ON sequence  
beforeitsV  
pinwillenableaDC/DCconverter. Once  
OUT_EN  
theDC/DCconverterhasbeenenabled,theTON_RISEvalue  
determines the time at which the device soft-connects  
the DAC and servos the DC/DC converter output to the  
VOUT_COMMAND value. The TON_MAX_FAULT_LIMIT  
value determines the time at which the device checks  
for an undervoltage condition. If a TON_MAX_FAULT  
occurs, the channel can be configured to disable the DC/  
DC converter and propagate the fault to other channels  
usingthebidirectionalFAULTBpins.Notethatovervoltage  
faults are checked against the VOUT_OV_FAULT_LIMIT  
at all times the device is powered up and not in a reset  
state nor margining while ignoring OVs. Figure 17 shows  
a typical on-sequence using the CONTROL pin.  
Continuous/noncontinuous trim mode. MFR_CONFIG_  
LTC2977 b[7]. In continuous trim mode, the servo will  
update the DAC in a closed loop fashion each time it  
takes a V  
reading. The update rate is determined by  
OUT  
the time it takes to step through the ADC MUX which is  
no more than t . See Electrical Characteristics  
UPDATE_ADC  
Table Note 6. In noncontinuous trim mode, the servo will  
drive the DAC until the ADC measures the output voltage  
desired and then stop updating the DAC.  
Aspartofcontinuous/noncontinuoustrimmode,fastservo  
mode can be used to speed up large output transitions,  
such as margin commands, or ON events. To use, set  
Mfr_config_fast_servo_off=0. When enabled, fast servo  
is started by a change to the target voltage or a new soft-  
On State Operation  
Once a channel has reached the ON state, the OPERATION  
commandcanbeusedtocommandtheDC/DCconverter’s  
output to margin high, margin low, or return to a nominal  
output voltage indicated by VOUT_COMMAND. The  
user also has the option of configuring a channel to  
continuouslytrimtheoutputoftheDC/DCconvertertothe  
connect. TheDACisrampedonelsbeveryt  
period  
S_VDACP  
until it is near the new target voltage, at which point slow  
servo mode is entered to avoid overshoot.  
Noncontinuous servo on warn mode. MFR_CONFIG_  
LTC2977b[7]=0, b[6]=1. Wheninnoncontinuousmode,  
the LTC2977 will retrim (reservo) the output if the output  
drifts beyond the OV or UV warn limits.  
VOUT_COMMANDvoltage,orthechannel’sV  
output  
DACPn  
can be placed in a high impedance state thus allowing the  
DC/DC converter output voltage to go to its nominal value,  
DAC Modes  
V
.RefertotheMFR_CONFIG_LTC2977command  
DCn(NOM)  
for details on how to configure the output voltage servo.  
The DACs that drive the V  
pins can operate in several  
DACn  
useful modes. See MFR_CONFIG_LTC2977.  
V
CONTROL  
Soft-connect. Using the LTC patented soft-connect  
feature, the DAC output is driven to within 1 LSB of the  
voltageattheDC/DC’sfeedbacknodebeforeconnecting,  
to avoid introducing transients on the output. This  
mode is used when servoing the output voltage. During  
start-up,theLTC2977waitsuntilTON_RISEhasexpired  
before connecting the DAC. This is the most common  
operating mode.  
V
OUT_EN  
VOUT_0V_FAULT_LIMIT  
V
OUT_COMMAND  
DAC SOFT-CONNECTS  
AND BEGINS  
ADJUSTING OUTPUT  
V
DC(NOM)  
VOUT_UV_FAULT_LIMIT  
V
OUT  
2977 F17  
Disconnected. DAC output is high Z.  
TON_RISE  
TON_DELAY  
TON_MAX_FAULT_LIMIT  
Figure 17. Typical On Sequence Using Control Pin  
2977f  
77  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
DAC manual with soft-connect. Non servo mode. The  
DAC soft-connects to the feedback node. Soft-connect  
drivestheDACcodetomatchthevoltageatthefeedback  
node. After connection, the DAC is moved by writing  
DAC codes to the MFR_DAC register.  
Automatic Restart Via MFR_RESTART_DELAY  
Command and CONTROLn pin  
An automatic restart sequence can be initiated by driving  
the CONTROL pin to the off state for >10μs then releasing  
it. The automatic restart disables all V  
pins that are  
OUT_EN  
DAC manual with hard-connect. Non servo mode. The  
DAC hard-connects to the feedback node using the  
currentvalueinMFR_DAC.Afterconnection,theDACis  
moved by writing DAC codes to the MFR_DAC register.  
mapped to a particular CONTROL pin for a time period  
= MFR_RESTART_DELAY and then starts all DC-DC  
Converters according to their respective TON_DELAYs.  
(See Figure 18). V  
pins are mapped to one of the  
OUT_ENn  
CONTROLpinsbytheMFR_CONFIG_LTC2977command.  
This feature allows a host that is about to reset to restart  
the power in a controlled manner after it has recovered.  
Margining  
The LTC2977 margins and trims the output of a DC/DC  
converter by forcing a voltage across an external resistor  
connectedbetweentheDACoutputandthefeedbacknode  
or the trim pin. Preset limits for margining are stored in  
the VOUT_MARGIN_HIGH/LOW registers. Margining is  
actuated by writing the appropriate bits to the OPERA-  
TION register.  
CONTROL  
PIN BOUNCE  
V
CONTROL  
V
OUT_END  
2977 F18  
Margining requires the DAC to be connected. Margin  
requests that occur when the DAC is disconnected will  
be ignored.  
TOFF_DELAY0  
MFR_RESTART_DELAY TON_DELAY0  
Figure 18. Off Sequence with Automatic Restart  
FAULT MANAGEMENT  
Off Sequencing  
An off sequence is initiated using the CONTROL pin or the  
OPERATIONcommand.TheTOFF_DELAYvaluedetermines  
the amount of time that elapses from the beginning of the  
Output Overvoltage and Undervoltage Faults  
The high speed voltage supervisor OV and UV fault  
thresholds are configured using the VOUT_OV_FAULT_  
LIMIT and VOUT_UV_FAULT_LIMIT commands,  
respectively. The VOUT_OV_FAULT_RESPONSE and  
VOUT_UV_FAULT_RESPONSE commands determine the  
responsestoOV/UVfaults.Faultresponsescanrangefrom  
disabling the DC/DC converter immediately, waiting to  
see if the fault condition persists for some interval before  
disabling the DC/DC converter, or allowing the DC/DC  
convertertocontinueoperatinginspiteofthefault.IfaDC/  
DC converter is disabled, the LTC2977 can be configured  
to retry one to six times, retry continuously without  
limitation, or latch-off. The retry interval is specified using  
the MFR_RETRY_DELAY command. Latched faults are  
resetbytogglingtheCONTROLpin,usingtheOPERATION  
command, or removing and reapplying the bias voltage to  
off sequence until each channel’s V  
pin is pulled  
OUT_EN  
low, thus disabling its DC/DC converter.  
V
OUT  
Off Threshold Voltage  
The MFR_VOUT_DISCHARGE_THRESHOLD command  
register allows the user to specify the OFF threshold that  
the output voltage must decay below before the channel  
can enter/re-enter the ON state. The OFF threshold voltage  
is specified by multiplying MFR_VOUT_DISCHARGE_  
THRESHOLD and VOUT_COMMAND. In the event that an  
output voltage has not decayed below its OFF threshold  
before attempting to enter the ON state, the channel will  
continue to be held off, the appropriate bit is set in the  
STATUS_MFR_SPECIFIC register, and the ALERTB pin  
will be asserted low. When the output voltage has decayed  
belowitsOFFthreshold,thechannelcanentertheONstate.  
the V  
pin. All fault and warning conditions result in  
IN_SNS  
2977f  
78  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
pulling low when the LTC2977 is commanded to re-enter  
the ON state following a faulted-off condition.  
theALERTBpinbeingassertedlowandthecorresponding  
bits being set in the status registers. The CLEAR_FAULTS  
command resets the contents of the status registers and  
deasserts the ALERTB output.  
Acharge-pumped5µApull-upto12Visalsoavailableonthe  
V
output. Refer to the MFR_CONFIG_ALL_LTC2977  
IN_EN  
register description in the PMBus COMMAND DESCRIP-  
Output Overvoltage and Undervoltage Warnings  
TION section for more information.  
OVandUVwarningthresholdvoltagesareprocessedbythe  
LTC2977’sADC.ThesethresholdsaresetbytheVOUT_OV_  
WARN_LIMIT and VOUT_UV_WARN_LIMIT commands  
respectively. If a warning occurs, the corresponding bits  
are set in the status registers and the ALERTB output  
is asserted low. Note that a warning will never cause a  
Figure 19 shows an application circuit where the V  
IN_EN  
outputisusedtotriggeranSCRcrowbarontheintermediate  
bus in order to protect the DC/DC converter’s load from a  
catastrophic fault such as a stuck top gate. The stuck top  
gatecausesanOVfault, whichinturncausestheLTC2977  
to pull V  
low, thus deasserting the ON input to the  
IN_EN  
V
output pin to disable a DC/DC converter.  
OUT_EN  
LTC4210 hot-swap controller, which opens the switch Q1  
that supplies the DC/DC converter input. In addition, when  
Configuring the V  
Output  
IN_EN  
V
goes low it forces the MCR12DC SCR device into  
IN_EN  
The V  
output may be used to disable the intermediate  
IN_EN  
the on-state via the 2N2907 PNP, thus quickly dropping  
bus voltage in the event of an output OV or UV fault.  
Use the MFR_VINEN_OV_FAULT_RESPONSE and  
MFR_VINEN_UV_FAULT_RESPONSE registers to  
the voltage on the V input to the DC/DC converter, pre-  
IN  
venting the stuck top gate from damaging components  
supplied by this converter. Note that the V  
input to  
PWR  
configure the V  
pin to assert low in response to  
IN_EN  
the LTC2977 bypasses switch Q1, keeping the LTC2977  
fully powered throughout the above sequence.  
VOUT_OV/UVfaultconditions. TheV  
outputwillstop  
IN_EN  
R
Q1  
Si4894BDY  
SENSE  
0.007Ω  
V
IN  
V
IN  
<15V  
C
BYPASS  
V
V
OUT  
IN_SNS  
V
V
PWR  
DACP0  
DC/DC  
CONVERTER  
100Ω  
68Ω  
V
V
SENSE  
GATE  
LTC4210-3  
SENSEP0  
CC  
0.1µF  
LTC2977*  
24.3k  
V
LOAD  
FB  
ON  
V
DACM0  
0.01µF  
TIMER GND  
V
10k  
SGND  
SENSEM0  
V
RUN/SS  
0.22µF  
OUT_EN0  
GND  
10k  
0.01µF  
2977 F19  
MCR12DC  
2N2907  
220Ω  
4.99k  
0.1µF  
BAT54  
REFP  
V
REFM  
IN_EN  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
V
V
V
GND  
DD33 DD33 DD25  
0.1µF  
0.1µF  
Figure 19. LTC2977 Application Circuit with Crowbar Protection on Intermediate Bus  
2977f  
79  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
Mfr_faultb00_response, page = 0  
Mfr_faultbz0_propagate_ch0  
FAULTED_OFF  
CHANNEL 0  
EVENT PROCESSOR  
PAGE = 0  
FAULTB00  
FAULTB01  
Mfr_faultb01_response, page = 0  
Mfr_faultbz1_propagate_ch0  
Mfr_faultb00_response, page = 1  
Mfr_faultb01_response, page = 1  
Mfr_faultbz0_propagate_ch1  
FAULTED_OFF  
CHANNEL 1  
EVENT PROCESSOR  
PAGE = 1  
Mfr_faultbz1_propagate_ch1  
Mfr_faultb00_response, page = 2  
Mfr_faultb01_response, page = 2  
Mfr_faultbz0_propagate_ch2  
FAULTED_OFF  
CHANNEL 2  
EVENT PROCESSOR  
PAGE = 2  
Mfr_faultbz1_propagate_ch2  
Mfr_faultb00_response, page = 3  
Mfr_faultb01_response, page = 3  
Mfr_faultbz0_propagate_ch3  
FAULTED_OFF  
CHANNEL 3  
EVENT PROCESSOR  
PAGE = 3  
Mfr_faultbz1_propagate_ch3  
ZONE 0  
ZONE 1  
ZONE 0  
ZONE 1  
Mfr_faultb10_response, page = 4  
Mfr_faultb11_response, page = 4  
Mfr_faultbz0_propagate_ch4  
FAULTED_OFF  
CHANNEL 4  
EVENT PROCESSOR  
PAGE = 4  
FAULTB10  
FAULTB11  
Mfr_faultbz1_propagate_ch4  
Mfr_faultb10_response, page = 5  
Mfr_faultb11_response, page = 5  
Mfr_faultbz0_propagate_ch5  
FAULTED_OFF  
CHANNEL 5  
EVENT PROCESSOR  
PAGE = 5  
Mfr_faultbz1_propagate_ch5  
Mfr_faultb10_response, page = 6  
Mfr_faultb11_response, page = 6  
Mfr_faultbz0_propagate_ch6  
FAULTED_OFF  
CHANNEL 6  
EVENT PROCESSOR  
PAGE = 6  
Mfr_faultbz1_propagate_ch6  
Mfr_faultb10_response, page = 7  
Mfr_faultb11_response, page = 7  
Mfr_faultbz0_propagate_ch7  
FAULTED_OFF  
Mfr_faultbz1_propagate_ch7  
CHANNEL 7  
EVENT PROCESSOR  
PAGE = 7  
2977 F20  
Figure 20. Channel Fault Management Block Diagram  
2977f  
80  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
Multichannel Fault Management  
A FAULTBzn pin can also be asserted low by an external  
driver in order to initiate an off-sequence after a 10µs  
deglitch delay.  
Multichannel fault management is handled using the  
bidirectional FAULTBzn pins. The “z” designates the fault  
zone which is either 0 or 1. There are two fault zones in  
the LTC2977. Each zone contains 4-channels. Figure 20  
illustrates the connections between channels and the  
FAULTBzn pins.  
INTERCONNECT BETWEEN MULTIPLE LTC2977’S  
Figure 21 shows how to interconnect the pins in a typical  
multi-LTC2977 array.  
TheMFR_FAULTBz0_PROPAGATEcommandactslikea  
programmableswitchthatallowsfaulted-offconditions  
from a particular channel (PAGE) to propagate to  
either FAULTBzn output in that channel’s zone. The  
MFR_FAULTBzn_RESPONSEcommandcontrolssimilar  
switches on the inputs to each channel that allow any  
channel to shut down in response to any combination  
of the FAULTBzn pins within a zone. Channels respond-  
ing to a FAULTBzn pin pulling low will attempt a new  
start sequence when the FAULTBzn pin in question is  
released by the faulted channel.  
All V  
lines should be tied together in a star type  
IN_SNS  
connection at the point where V is to be sensed.  
IN  
This will minimize timing errors for the case where the  
ON_OFF_CONFIG is configured to start the LTC2977  
based on V and ignore the CONTROL line and the  
IN  
OPERATION command. In multi-part applications that  
are sensitive to timing differences, it is recommended  
that the Vin_share_enable bit of the MFR_CONFIG_  
ALL_LTC2977 register be set high in order to allow  
SHARE_CLK to synchronize on/off sequencing in  
response to the VIN_ON and VIN_OFF thresholds.  
To establish dependencies across fault zones, tie the  
fault pins together, e.g., FAULTB01 to FAULTB10. Any  
channelcandependonanyother.Todisableallchannels  
in response to any channel faulting off, short all the  
FAULTBzn pins together, and set MFR_FAULTBzn_  
PROPAGATE = 0x01 and MFR_FAULTBzn_RESPONSE  
= 0x0F for all channels.  
Connecting all V  
lines together will allow selected  
IN_EN  
faults on any DC/DC converter’s output in the array to  
shut off a common input switch.  
ALERTB is typically one line in an array of PMBus con-  
verters.TheLTC2977allowsarichcombinationoffaults  
and warnings to be propagated to the ALERTB pin.  
TO V OF  
IN  
DC/DCs  
TO INPUT  
SWITCH  
TO HOST CONTROLLER  
LTC2977 N-1  
VIN_SNS  
LTC2977 N  
VIN_SNS  
VIN_EN  
VIN_EN  
SDA  
SCL  
SDA  
SCL  
ALERTB  
ALERTB  
CONTROL0  
CONTROL1  
WDI/RESETB  
FAULTB00  
FAULTB01  
FAULTB10  
FAULTB11  
SHARE_CLK  
PWRGD  
CONTROL0  
CONTROL1  
WDI/RESETB  
FAULTB00  
FAULTB01  
FAULTB10  
FAULTB11  
SHARE_CLK  
PWRGD  
GND  
GND  
2977 F21  
TO OTHER LTC2977s–10k EQUIV PULL-UP RECOMMENDED  
ON EACH LINE EXCEPT SHARE_CLK (USE 5.49k)  
Figure 21. Typical Connections Between Multiple LTC2977s  
2977f  
81  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
WDI/RESETB can be used to put the LTC2977 in the  
APPLICATION CIRCUITS  
power-on reset state. Pull WDI/RESETB low for at least  
Trimming and Margining DC/DC Converters with  
External Feedback Resistors  
t
to enter this state.  
RESETB  
TheFAULTBznlinescanbeconnectedtogethertocreate  
fault dependencies. Figure 21 shows a configuration  
where a fault on any FAULTBzn will pull all others low.  
This is useful for arrays where it is desired to abort a  
start-up sequence in the event any channel does not  
come up (see Figure 22).  
Figure 23 shows a typical application circuit for trimming/  
margining a power supply with an external feedback  
network. The V  
and V  
differential inputs  
SENSEP0  
SENSEM0  
sense the load voltage directly, and a correction voltage  
is developed between the V and V pins  
DACP0  
DACM0  
by the closed-loop servo algorithm. V  
connected to the point-of-load GND in order to minimize  
the effects of load induced grounding errors. The V  
output is connected to the DC/DC converter’s feedback  
node through resistor R30. For this configuration, set  
Mfr_config_dac_pol to 0.  
is Kelvin  
DACM0  
PWRGD reflects the status of the outputs that are  
mapped to it by the MFR_PWRGD_EN command. Fig-  
ure 20 shows all the PWRGD pins connected together,  
but any combination may be used.  
DACP0  
V
CONTROLn  
V
OUT0  
TON_DELAY0  
TON_DELAY1  
V
V
OUT1  
OUT2  
TON_DELAY2  
V
OUTn  
TON_DELAYn  
BUSSED  
VFAULTBzn  
PINS  
2977 F22  
TON_MAX_FAULT1  
Figure 22. Aborted On Sequence Due to Channel 1 Short  
V
IN  
V
V
IN  
4.5V < V  
< 15V  
IBUS  
V
V
IN_SNS  
PWR  
OUT  
0.1µF  
0.1µF  
V
DACP0  
0.1µF  
R30  
DC/DC  
CONVERTER  
V
V
V
V
SENSEP0  
DD33  
DD33  
DD25  
R20  
R10  
LTC2977*  
V
LOAD  
FB  
V
DACM0  
V
SGND  
SENSEM0  
V
RUN/SS  
OUT_EN0  
GND  
2977 F23  
GND  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
Figure 23. Application Circuit for DC/DC Converters with External Feedback Resistors  
2977f  
82  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
Four-Step Resistor Selection Procedure for DC/DC  
Converters with External Feedback Resistors  
The DAC has two full-scale settings, 1.38V and 2.65V.  
In order to select the appropriate full-scale setting,  
calculate the minimum required V  
voltage:  
output  
DACP0(F/S)  
The following four-step procedure should be used to  
calculate the resistor values required for the application  
circuit shown in Figure 23.  
R30  
R20  
VDACP0(F /S) > VDC(NOM) – VDC(MIN)  
+ VFB  
(
)
(3)  
1. AssumevaluesforfeedbackresistorR20andthenominal  
DC/DC converter output voltage V  
for R10.  
, and solve  
DC(NOM)  
4. Recalculate the minimum, nominal, and maximum DC/  
DC converter output voltages and the resulting margin-  
ing resolution.  
V
is the output voltage of the DC/DC converter  
DC(NOM)  
when the LTC2977’s V  
pin is in a high impedance  
DACP0  
R20  
R10  
state. R10 is a function of R20, V  
, the voltage at  
DC(NOM)  
VDC(NOM) = VFB 1+  
+IFB R20  
(4)  
the feedback node (V ) when the loop is in regulation,  
FB  
R20  
R30  
R20  
R30  
and the feedback node’s input current (I ).  
FB  
VDC(MIN) = VDC(NOM)  
V  
– V  
(5)  
(6)  
(
)
FB  
DACP0(F /S)  
R20 VFB  
R10 =  
(1)  
VDC(NOM) IFB R20 – V  
VDC(MAX) = VDC(NOM)  
+
V  
FB  
FB  
R20  
R30  
2. Solve for the value of R30 that yields the maximum  
required DC/DC converter output voltage V  
VDACP0(F /S)  
.
DC(MAX)  
VRES  
=
V/DAC LSB  
(7)  
1024  
WhenV  
isat0V,theoutputoftheDC/DCconverter  
DACP0  
is at its maximum voltage.  
Trimming and Margining DC/DC Converters with a  
TRIM Pin  
R20 VFB  
R30 ≤  
(2)  
VDC(MAX) – VDC(NOM)  
Figure 24 illustrates a typical application circuit for  
trimming/margining the output voltage of a DC/DC  
converter with a TRIM Pin. The LTC2977’s V  
connects to the TRIM pin through resistor R30, and the  
pin is connected to the converter’s point-of-load  
3. Solve for the minimum value of V  
that is needed  
DACP0  
pin  
DACP0  
to yield the minimum required DC/DC converter output  
voltage V  
.
DC(MIN)  
V
DACM0  
V
IN  
V
V
IN  
4.5V < V  
< 15V  
IBUS  
+
OUT  
V
V
IN_SNS  
PWR  
R30  
0.1µF  
TRIM  
V
V
DACP0  
0.1µF  
+
V
V
V
V
SENSEP0  
SENSE  
DD33  
DD33  
DD25  
DC/DC  
LTC2977*  
CONVERTER  
LOAD  
V
DACM0  
0.1µF  
V
V
SENSEM0  
SENSE  
ON/OFFB  
GND  
V
OUT_EN0  
GND  
2977 F24  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
Figure 24. Application Circuit for DC/DC Converters with Trim Pin  
2977f  
83  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
ground. For this configuration, set the DAC polarity bit  
Mfr_config_ dac_pol in MFR_CONFIG_LTC2977 to 1.  
Measuring Current  
Odd numbered ADC channels may be used to measure  
supply current. Set the ADC to high resolution mode to  
configure for current measuring and improve sensitivity.  
Note that no OV or UV faults or warnings are reported in  
thismode,buttelemetryisavailablefromtheREAD_VOUT  
command using the 11-bit signed mantissa plus 5-bit  
signed exponent L11 data format. Set the MFR_CONFIG_  
LTC2977 bit b[9] = 1 in order to enable high res mode.  
DC/DC converters with a TRIM pin may be margined  
high or low by connecting an external resistor between  
the TRIM pin and either the V  
or V  
pin. The  
SENSEP  
SENSEM  
relationships between these resistors and the % change  
in the output voltage of the DC/DC converter are typically  
expressed as:  
RTRIM 50  
RTRIM_DOWN  
=
RTRIM  
(8)  
The V  
pin will assert low in this mode and cannot  
OUT_EN  
ΔDOWN  
%
be used to control a DC/DC converter. The V  
pin is also unavailable.  
output  
DACP  
RTRIM_UP  
=
Measuring Current with a Sense Resistor  
VDC 100+ Δ %  
(
)
50  
UP  
RTRIM  
– 1  
(9)  
A circuit for measuring current with a sense resistor is  
shown in Figure 25. The balanced filter rejects both com-  
mon mode and differential mode noise from the output of  
theDC/DCconverter.Thefilterisplaceddirectlyacrossthe  
sense resistor in series with the DC/DC converter’s induc-  
tor. Note that the current sense inputs must be limited to  
2 VREF ΔUP%  
Δ %  
UP  
where R  
REF  
is the resistance looking into the TRIM pin,  
TRIM  
V
istheTRIMpin’sopen-circuitoutputvoltageandV  
DC  
istheDC/DCconverter’snominaloutputvoltage.%and  
UP  
% denote the percentage change in the converter’s  
DOWN  
less than 6V with respect to ground. Select R and C  
CM  
CM  
output voltage when margining up or down, respectively.  
such that the filter’s corner frequency is < 1/10 the DC/DC  
converter’sswitchingfrequency.Thiswillresultinacurrent  
sense waveform that offers a good compromise between  
the voltage ripple and the delay through the filter. A value  
Two-Step Resistor and DAC Full-Scale Voltage  
Selection Procedure for DC/DC Converters with a  
TRIM Pin  
1kΩ for R is suggested in order to minimize gain er-  
CM  
The following two-step procedure should be used to cal-  
culatetheresistorvalueforR30andtherequiredfull-scale  
DAC voltage (refer to Figure 24).  
rors due to the current sense inputs’ internal resistance.  
Measuring Current with Inductor DCR  
1. Solve for R30:  
Figure 26 shows the circuit for applications that require  
DCR current sense. A second order RC filter is required  
in these applications in order to minimize the ripple volt-  
age seen at the current sense inputs. A value of 1kΩ  
50 – ΔDOWN  
%
R30 RTRIM  
(10)  
ΔDOWN  
%
is suggested for R  
and R  
in order to minimize  
CM1  
CM2  
2. Calculate the maximum required output voltage for  
gain errors due the current sense inputs’ internal resis-  
V
DACP0  
:
tance. C  
should be selected to provide cancellation  
CM1  
ΔUP%  
R
CM  
VDAC 1+  
V  
(11)  
V
P0  
REF  
SENSEP1  
LTC2977  
ΔDOWN  
%
C
C
CM  
R
CM  
CM  
V
SENSEM1  
Note: Not all DC/DC’s converters follow these trim equa-  
tionsespeciallynewerbricks.ConsultLTC FieldApplication  
Engineering.  
L
R
SNS  
2977 F25  
LOAD CURRENT  
Figure 25. Sense Resistor Current Sensing Circuits  
2977f  
84  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
R
CM2  
Let C  
CM1  
= 3.3nF. Note that since C  
is much less than  
CM2  
CM2  
V
SENSEP1  
LTC2977  
C
C
the loading effects of the second stage filter on the  
CM2  
CM2  
C
C
CM1  
CM1  
R
matched first stage are not significant. Consequently, the  
delay time constant through the filter for the current sense  
waveform will be approximately 3μs.  
CM2  
C
V
SENSEM1  
2977 F26  
R
R
CM1  
CM1  
L
DCR  
SWX0  
Measuring Multiphase Currents  
Figure 26. Inductor DCR Current Sensing Circuits  
For current sense applications with more than one phase,  
RC averaging may be employed. Figure 27 shows an  
example of this approach for a 3-phase system with DCR  
currentsensing.Thecurrentsensewaveformsareaveraged  
together prior to being applied to the second stage of the  
of the zero created by the DCR and inductance, i.e.  
= L/(DCR R ). C should be selected to  
C
CM1  
CM1  
CM2  
provide a second stage corner frequency at < 1/10 of the  
DC/DC converter’s switching frequency. In addition, C  
CM2  
filter consisting of R  
and C . Because the R  
CM2  
CM2 CM1  
needs to be much smaller than C  
in order to prevent  
CM1  
resistors for the three phases are in parallel, the value of  
significant loading of the filter’s first stage.  
R
CM1  
must be multiplied by the number of phases. Also  
note that since the DCRs are effectively in parallel, the  
value for IOUT_CAL_GAIN will be equal to the inductor’s  
DCR divided by the number of phases. Care should to be  
taken in the layout of the multiphase inductors to keep the  
PCB trace resistance from the DC side of each inductor to  
the summing node balanced in order to provide the most  
accurate results.  
Single Phase Design Example  
As a design example for a DCR current sense application,  
assume L = 2.2μH, DCR = 10mΩ, and F = 500kHz.  
SW  
Let R  
= 1kΩ and solve for C  
:
CM1  
CM1  
2.2µH  
10m1kΩ  
C
= 220nF  
CM1  
Multiphase Design Example  
Let R  
SW  
= 1kΩ. In order to get a second pole at  
CM2  
/10 = 50kHz:  
Using the same values for inductance and DCR from  
F
the previous design example, the value for R  
will be  
CM1  
3kΩ for a three phase DC/DC converter if C  
is left at  
CM1  
1
C
= 3.18nF  
220nF. Similarly, the value for IOUT_CAL_GAIN will be  
CM2  
2π50kHz 1kΩ  
DCR/3 = 3.33mΩ.  
SWX1  
R
R
CM1  
CM1  
R
CM2  
R
C
CM1  
C
CM2  
CM1  
L
V
V
SENSEP1  
LTC2977  
DCR  
SENSEM1  
2977 F27  
R
/3  
CM1  
R
CM2  
DCR  
DCR  
C
CM1  
C
CM2  
L
L
TO LOAD  
SWX2  
SWX3  
Figure 27. Multiphase DCR Current Sensing Circuits  
2977f  
85  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
Anti-aliasing Filter Considerations  
while the VSENSEP1 input is tied to the REFP pin which  
has a typical output voltage of 1.23V. The voltage divider  
should be configured in order to present about 0.5V to the  
voltage sense inputs when the negative supply reaches its  
POWER_GOOD_ON threshold so that the current flowing  
out of the VSENSEMn pin is minimized to ~1µA. The  
relationship between the POWER_GOOD_ON register  
value and the corresponding negative supply value can  
be expressed as:  
Noisy environments require an anti-aliasing filter on the  
input to the LTC2977’s ADC. The R-C circuit shown in  
Figure 28 is adequate for most situations. Keep R40 = R50  
≤ 200Ω to minimize ADC gain errors, and select a value  
for capacitors C10 and C20 that does not add too much  
additional response time to the OV/UV supervisor, e.g. τ  
10µs (R = 100Ω, C = 0.10µF).  
Sensing Negative Voltages  
R2  
R1  
+1 – 1µAR2  
VEE = VREFP (READ_VOUT) •  
Figure 29 shows the LTC2977 sensing a negative power  
supply (V ). The R1/R2 resistor divider translates the  
EE  
negativesupplyvoltagetotheLTC2977sVSENSEM1input  
Where READ_VOUT returns VSENSEP – VSENSEM  
V
IN  
V
V
IN  
4.5V < V  
< 15V  
IBUS  
V
V
IN_SNS  
PWR  
OUT  
0.1µF  
0.1µF  
0.1µF  
V
DACP0  
R30  
DC/DC  
CONVERTER  
V
V
V
V
SENSEP0  
DD33  
DD33  
DD25  
R40  
R50  
C10  
C20  
R20  
R10  
LTC2977*  
GND  
V
LOAD  
FB  
V
SENSEM0  
V
SGND  
DACM0  
V
RUN/SS  
OUT_EN0  
GND  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
2977 F28  
Figure 28. Antialiasing Filter on VSENSE Lines  
4.5V < V  
< 15V  
IBUS  
V
V
IN_SNS  
PWR  
LTC2977  
1.23V TYP  
0.1µF  
REFP  
REFM  
SDA  
V
SENSEP1  
SCL  
PMBus  
INTERFACE  
1µA AT 0.5V  
0.1µF  
R1 = 4.99k  
R2 = 120k  
ALERTB  
CONTROL  
V
SENSEM1  
WDI/RESETB  
FAULTB  
V
= –12V  
EE  
SHARE_CLK  
ASEL0  
PWRGD  
USE POWER_GOOD_ON = 0.5V FOR V POWER_GOOD = –11.414V  
EE  
ASEL1  
ONLY ONE OF EIGHT CHANNELS SHOWN,  
SOME DETAILS OMITTED FOR CLARITY  
WDI/RESETB  
WP GND  
2977 F29  
Figure 29. Sensing Negative Voltages  
2977f  
86  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
2
Connecting the DC1613 USB to I C/SMBus/PMBus  
Figures 30 and 31 illustrate application schematics for  
powering, programming and communicating with one  
Controller to the LTC2977 in System  
2
or more LTC2977’s via the DC1613 I C/SMBus/PMBus  
2
The DC1613 USB to I C/SMBus/PMBus Controller can be  
controller regardless of whether or not system power is  
present.  
interfaced to LTC2977s on the user’s board for program-  
ming, telemetry and system debug. The controller, when  
used in conjunction with LTpowerPlay software, provides  
a powerful way to debug an entire power system. Failures  
arequicklydiagnosedusingtelemetry,faultstatusregisters  
and the fault log. The final configuration can be quickly  
developed and stored to the LTC2977’s EEPROM.  
Figure30showstherecommendedschematictousewhen  
the LTC2977 is powered by the system intermediate bus  
through its V  
pin.  
PWR  
REPEAT OUTLINED CIRCUIT FOR EVERY LTC2977  
4.5V TO 15V  
150k  
49.9k  
V
PWR  
0.1µF  
LTC2977*  
ISOLATED 3.3V  
V
V
DD33  
DD33  
SCL  
Si1303  
GND  
0.1µF  
0.1µF  
SDA  
V
DD25  
TO DC1613  
I C/SMBUS/PMBUS  
CONTROLLER  
2
10k  
10k  
5.49k  
SCL  
SDA  
SHARE_CLK  
WP GND  
TO/FROM OTHER  
LTC2977s  
2977 F30  
*PIN CONNECTIONS OMITTED FOR CLARITY  
Figure 30. DC1613 Controller Connections When VPWR Is Used  
2977f  
87  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
Figure31showstherecommendedschematictousewhen  
the LTC2977 is powered by the system 3.3V through its  
n
Check addresses for collision with other devices on the  
bus and any global addresses.  
V
and V  
pins. The LTC4412 ideal OR’ing circuit  
DD33  
PWR  
Output Enables  
allowseitherthecontrollerorsystemtopowertheLTC2977.  
n
Use appropriate pull-up resistors on all V  
pins.  
OUT_ENn  
Becauseofthecontroller’slimitedcurrentsourcingcapabil-  
ity, only the LTC2977s, their associated pull up resistors  
n
VerifythattheabsolutemaximumratingsoftheV  
pins are not violated.  
OUT_ENn  
2
and the I C/SMBus pull-up resistors should be powered  
fromtheORed3.3Vsupply.Inaddition,anydevicesharing  
2
V Sense  
I C/SMBus bus connections with the LTC2977 should not  
IN  
have body diodes between the SDA/SCL pins and its V  
DD  
n
No external resistive divider is required to sense V ;  
IN  
node because this will interfere with bus communication  
V
already has an internal calibrated divider.  
IN_SNS  
in the absence of system power.  
2
Logic Signals  
The DC1613 controller’s I C/SMBus connections are  
opto-isolated from the PC’s USB port. The 3.3V supply  
from the controller and the LTC2977’s V  
paralleled because the LTC LDOs that generate these volt-  
ages can be backdriven and draw <10μA. The controller’s  
3.3V current limit is 100mA.  
n
Verify the absolute maximum ratings of the digital  
pin can be  
pins (SCL, SDA, ALERTB, FAULTBzn, CONTROLn,  
DD33  
SHARE_CLK, WDI, ASELn, PWRGD) are not violated.  
n
Short all SHARE_CLK pins in the system together and  
pull up to 3.3V with a 5.49k resistor.  
n
Do not leave CONTROLn pins floating. Pull up to 3.3V  
with a 10k resistor.  
DESIGN CHECKLIST  
2
I C  
Floating Inputs  
n
The LTC2977 must be configured for a unique address.  
n
Connect all unused V  
pins to GND.  
, V  
and DACMn  
SENSEPn SENSEMn  
n
The address select pins (ASELn) are tri-level; See Table 1.  
IDEAL  
DIODE  
0R’d 3.3V  
TP0101K-SSOT23  
SYSTEM  
LTC2977_3.3V  
V
V
V
V
PWR  
3.3V  
DD33  
DD33  
DD25  
LTC4412  
10k  
10k 5.49k  
0.1µF  
V
SENSE  
GATE  
STAT  
IN  
0.1µF  
GND  
CTL  
LTC2977*  
ISOLATED 3.3V  
SCL  
SCL  
SDA  
GND  
SHARE_CLK  
SDA  
WP GND  
2977 F31  
TO DC1613  
I C/SMBUS/PMBUS  
CONTROLLER  
TO/FROM OTHER  
LTC2977s  
2
*PIN CONNECTIONS OMITTED FOR CLARITY  
2
NOTE: DC1613 CONTROLLER I C CONNECTIONS ARE OPTO-ISOLATED  
ISOLATED 3.3V FROM CONTROLLER CAN BE BACK DRIVEN AND WILL ONLY DRAW < 10µA  
ISOLATED 3.3V CURRENT LIMIT = 100mA  
Figure 31. DC1613 Controller Connections When LTC2977 Powered Directly from 3.3V  
2977f  
88  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
LTpowerPlay: AN INTERACTIVE GUI FOR POWER  
SYSTEM MANAGERS  
becomes a valuable diagnostic tool during board bring-up  
to program or tweak the power management scheme in  
a system or to diagnose power issues when bringing up  
rails. LTpowerPlay utilizes Linear Technology’s DC1613  
LTpowerPlay is a powerful Windows based develop-  
ment environment that supports Linear Technology  
Power System Manager ICs with EEPROM, including the  
LTC2977 8-channel PMBus Power System Manager. The  
software supports a variety of different tasks. You can  
use LTpowerPlay to evaluate Linear Technology ICs by  
connecting to a demo board system. LTpowerPlay can  
also be used in an offline mode (with no hardware pres-  
ent) in order to build a multi-chip configuration file that  
can be saved and reloaded at a later time. LTpowerPlay  
provides unprecedented diagnostic and debug features. It  
2
USB-to-I C/SMBus/PMBus Controller to communicate  
with one of many potential targets, including the DC2028  
demoboardset,theDC1508socketedprogrammingboard,  
or a customer target system. The software also provides  
an automatic update feature to keep the software current  
with the latest set of device drivers and documentation.  
A great deal of context sensitive help is available within  
LTpowerPlay along with several tutorial demos. Complete  
information is available at:  
www.linear.com/ltpowerplay  
2977f  
89  
For more information www.linear.com/LTC2977  
LTC2977  
applicaTions inForMaTion  
PCB ASSEMBLY AND LAYOUT SUGGESTIONS  
The proposed stencil design enables out-gassing of the  
solderpasteduringreflowaswellasregulatingthefinished  
solder thickness. See IPC7525A.  
Bypass Capacitor Placement  
The LTC2977 requires 0.1µF bypass capacitors between  
PC Board Layout  
the V  
pins and GND, the V  
pin and GND, and the  
DD33  
DD25  
REFP pin and REFM pin. If the chip is being powered from  
the V input, then that pin should also be bypassed  
to GND by a 0.1µF capacitor. In order to be effective,  
these capacitors should be made of high quality ceramic  
dielectric such as X5R or X7R and be placed as close to  
the chip as possible.  
Mechanical stress on a PC board and soldering-induced  
stress can cause the LTC2977’s reference voltage and  
voltage drift to shift. A simple way to reduce these stress-  
related shifts is to mount the IC near the short edge of the  
PC board, or in a corner. The board edge acts as a stress  
boundary, or a region where the flexure of the board is  
minimal.  
PWR  
Exposed Pad Stencil Design  
Unused ADC Sense Inputs  
The LTC2977’s package is thermally and electrically  
efficient. This is enabled by the exposed die attach pad  
on the under side of the package which must be soldered  
down to the PCB or mother board substrate. It is a good  
practice to minimize the presence of voids within the  
exposed pad inter-connection. Total elimination of voids  
is difficult, but the design of the exposed pad stencil is  
key. Figure 32 shows a suggested screen print pattern.  
Connect all unused ADC sense inputs (V  
SENSEMn  
or  
SENSEPn  
V
) to GND. In a system where the inputs are  
connected to removable cards and may be left floating  
in certain situations, connect the inputs to GND using  
100k resistors. Place the 100k resistors before any filter  
components, as shown in Figure 33, to prevent loading  
of the filter.  
V
SENSEP  
LTC2977  
SENSEM  
QFN PACKAGE  
100k  
APERATURE DESIGN 50% TO 80% REDUCTION  
GROUND PLANE  
V
100k  
2977 F33  
Figure 33. Connecting Unused Inputs to GND  
2977 F32  
Figure 32. Suggested Screen Pattern for Die Attach Pad  
2977f  
90  
For more information www.linear.com/LTC2977  
LTC2977  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UP Package  
64-Lead Plastic QFN (9mm × 9mm)  
(Reference LTC DWG # 05-08-1705 Rev C)  
0.70 0.05  
7.ꢀ5 0.05  
7.50 REF  
8.ꢀ0 0.05 9.50 0.05  
(4 SIDES)  
7.ꢀ5 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.ꢀꢀ5  
TYP  
9 .00 0.ꢀ0  
(4 SIDES)  
R = 0.ꢀ0  
TYP  
63 64  
0.40 0.ꢀ0  
PIN ꢀ TOP MARK  
(SEE NOTE 5)  
2
PIN ꢀ  
CHAMFER  
C = 0.35  
7.ꢀ5 0.ꢀ0  
7.50 REF  
(4-SIDES)  
7.ꢀ5 0.ꢀ0  
(UP64) QFN 0406 REV C  
0.200 REF  
0.25 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
ꢀ. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION WNJR-5  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
6. DRAWING NOT TO SCALE  
2977f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
91  
LTC2977  
Typical applicaTion  
0.1µF  
3.3V  
0.1µF  
0.1µF  
13 35 34 65 19 18 17 16 15 33 32 14  
V
V
V
V
IN  
IN  
OUT  
39  
36  
60  
2
OUT  
V
V
V
DACP7  
DACP0  
R30  
R20  
R37  
R27  
DC/DC  
CONVERTER  
V
DC/DC  
CONVERTER  
SENSEP0  
SENSEP7  
V
V
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
FB  
FB  
37  
38  
3
R10  
V
V
V
R17  
SENSEM0  
DACM0  
SENSEM7  
61  
V
RUN/SS SGND  
GND  
SGND RUN/SS  
GND  
DACM7  
4
11  
V
V
OUT_EN7  
OUT_EN0  
V
V
IN  
40  
42  
59  
64  
OUT  
V
V
V
DACP6  
DACP1  
R36  
R26  
V
DC/DC  
CONVERTER  
SENSEP1  
SENSEP6  
V
FB  
43  
41  
1
V
V
V
R16  
SENSEM1  
DACM1  
SENSEM6  
58  
V
SGND RUN/SS  
GND  
DACM6  
5
10  
V
V
OUT_EN6  
OUT_EN1  
LTC2977  
V
V
V
V
IN  
IN  
OUT  
44  
46  
56  
62  
OUT  
V
V
V
DACP5  
DACP2  
R32  
R22  
R35  
R25  
DC/DC  
V
DC/DC  
CONVERTER  
SENSEP2  
SENSEP5  
CONVERTER  
V
FB  
V
LOAD  
FB  
47  
45  
63  
57  
R12  
V
V
V
R15  
SENSEM2  
DACM2  
SENSEM5  
V
RUN/SS SGND  
GND  
SGND RUN/SS  
GND  
DACM5  
6
9
V
V
OUT_EN5  
OUT_EN2  
V
V
IN  
50  
48  
55  
52  
OUT  
V
V
V
DACP4  
DACP3  
R34  
R24  
V
DC/DC  
CONVERTER  
SENSEP3  
SENSEP4  
V
FB  
49  
51  
53  
54  
V
V
V
R14  
SENSEM3  
DACM3  
SENSEM4  
V
SGND RUN/SS  
GND  
DACM4  
IN  
OUT  
7
8
INTERMEDIATE  
V
V
OUT_EN4  
OUT_EN3  
2977 F34  
BUS  
CONVERTER  
12 23 24 25 26 21 27 28 29 30 31 20  
10k  
22  
EN  
10k  
10k  
10k  
10k  
10k  
10k  
3.3V  
3.3V  
10k  
10k  
10k  
5.49k  
10k  
TO/FROM OTHER LTC2974s, LTC2977s AND MICROCONTROLLER  
Figure 34. LTC2977 Application Circuit with 3.3V Chip Power  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
2
LTC2970  
LTC2974  
LTC3880  
LTC3883  
Dual I C Power Supply Monitor and Margining Controller 5V to 15V, 0.5% TUE 14-Bit ADC, 8-Bit DAC, Temperature Sensor  
4-Channel PMBus Power System Manager  
0.25% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision  
0.5% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision  
Dual Output PolyPhase Step-Down DC/DC Controller  
Single Output PolyPhase Step-Down DC/DC Controller 0.5% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision  
2977f  
LT 0413 • PRINTED IN USA  
92 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2013  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2977  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY