LTC2978CUPPBF [Linear]

Octal PMBus Power Supply Monitor and Controller with EEPROM; 八路的PMBus电源监视器和控制器与EEPROM
LTC2978CUPPBF
型号: LTC2978CUPPBF
厂家: Linear    Linear
描述:

Octal PMBus Power Supply Monitor and Controller with EEPROM
八路的PMBus电源监视器和控制器与EEPROM

监视器 控制器 可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总64页 (文件大小:2157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2978  
Octal PMBus Power Supply  
Monitor and Controller  
with EEPROM  
FeaTures  
DescripTion  
The LTC®2978 is an octal, PMBus compliant power sup-  
ply monitor, supervisor, sequencer and margin control-  
ler. PMBus functions include warning and fault OV/UV  
threshold pairs for eight output channels and one input  
channel. Programmable fault response allows the power  
supplies to be disabled with optional retry after a fault has  
been detected. PMBus reads allow eight output voltages  
and one input voltage to be monitored. In addition, odd  
numbered channels can substitute sense resistor voltage  
measurements for output voltage measurements. PMBus  
commandssupportpowersupplysequencingandprecision  
point-of-load voltage servo to one of three programmed  
values: margin high, margin low and nominal. A program-  
mable watchdog timer monitors microprocessor activity  
for a stalled condition and resets the micro if necessary.  
The 1-wire synchronization bus supports power supply  
sequencing across multiple LTC2978 devices. User pro-  
grammableparameterscanbestoredinEEPROM.Voltage  
supervisor, voltage monitor and temperature faults can  
also be logged to EEPROM.  
n
PMBus Compliant Interface and Command Set  
n
Configuration EEPROM  
n
Fault Logging to Internal EEPROM  
n
Differential Input, 15-Bit ∆Σ ADC with Less Than  
±0.25% of Total Unadjusted Error  
n
Monitors Eight Output Channels and One Input  
Voltage  
8-Channel Sequencer  
Programmable Watchdog Timer  
Eight UV/OV Voltage Supervisors  
n
n
n
n
Eight 10-Bit Voltage-Buffered IDACs with Soft  
Connect  
n
Linear, Voltage Servo Adjusts Supply Voltages by  
Ramping Voltage-Buffered IDAC Outputs Up/Down  
n
Supports Multichannel Fault Management  
n
On-Chip Digital Temperature Sensor  
n
Available in 64-Pin 9mm × 9mm QFN Package  
applicaTions  
n
Computers  
Network Servers  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 7382203 and 7420359.  
n
Typical applicaTion  
Octal Power Supply Controller with PMBus Interface  
V
V
4.5V < V  
IBUS  
< 15V  
IN  
V
V
V
IN_SNS  
PWR  
OUT  
TO INTERMEDIATE  
BUS CONVERTER  
ENABLE  
V
DIGITALLY  
MANAGED  
POWER  
IN_EN  
DACP0  
R30  
41.2k  
V
SENSEP0  
R20  
7.5k  
SUPPLY  
LTC2978*  
V
SDA  
LOAD  
FB  
R10  
20k  
SCL  
V
PMBus  
DACM0  
INTERFACE  
ALERTB  
V
SENSEM0  
SGND  
CONTROL0  
WP  
V
RUN/SS  
OUT_EN0  
GND  
WRITE-PROTECT  
PWRGD  
TO µP RESETB INPUT  
WDI/RESETB  
ASEL0  
WATCHDOG  
TIMER INTERRUPT  
FAULTB00  
TO/FROM OTHER  
LTC2978s  
SHARE_CLK  
ASEL1  
GND  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
2978 TA01  
2978fa  
LTC2978  
Table oF conTenTs  
Features.............................................................................................................................1  
Applications ........................................................................................................................1  
Typical Application ................................................................................................................1  
Description..........................................................................................................................1  
Absolute Maximum Ratings......................................................................................................3  
Order Information..................................................................................................................3  
Pin Configuration ..................................................................................................................3  
Electrical Characteristics.........................................................................................................4  
Timing Diagram....................................................................................................................8  
Typical Performance Characteristics ...........................................................................................8  
Pin Functions..................................................................................................................... 12  
Block Diagram.................................................................................................................... 14  
Operation.......................................................................................................................... 15  
Operation Overview ...............................................................................................................................................15  
PMBus Serial Digital Interface ...............................................................................................................................16  
Register Command Set..........................................................................................................................................18  
Detailed PMBus Command Register Descriptions .................................................................................................22  
Manufacturer Specific Commands.........................................................................................................................35  
Watchdog ..............................................................................................................................................................49  
Reset .....................................................................................................................................................................49  
Write-Protect Pin...................................................................................................................................................49  
Other Operations....................................................................................................................................................49  
Applications Information ....................................................................................................... 50  
PCB Assembly and Layout Suggestions ................................................................................................................61  
Typical Application .............................................................................................................. 62  
Package Description ............................................................................................................ 63  
Typical Application .............................................................................................................. 64  
Related Parts..................................................................................................................... 64  
2978fa  
LTC2978  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
TOP VIEW  
Supply Voltages:  
V
V
V
V
to GND......................................... –0.3V to 15V  
PWR  
IN_SNS  
DD33  
DD25  
to GND ..................................... –0.3V to 15V  
to GND ....................................... –0.3V to 3.6V  
to GND ..................................... –0.3V to 2.75V  
V
V
V
V
V
V
V
V
1
2
3
4
5
6
7
8
9
48 V  
SENSEM6  
SENSEP3  
V
47 V  
46 V  
45 V  
44 V  
43 V  
42 V  
41 V  
40 V  
39 V  
38 V  
37 V  
36 V  
SENSEP7  
SENSEM7  
SENSEM2  
SENSEP2  
DACM2  
Digital Input/Output Voltages:  
ALERTB, SDA, SCL, CONTROL0,  
CONTROL1............................................ –0.3V to 5.5V  
PWRGD, SHARE_CLK,  
OUT_EN0  
OUT_EN1  
OUT_EN2  
OUT_EN3  
OUT_EN4  
OUT_EN5  
DACP2  
SENSEM1  
SENSEP1  
DACM1  
65  
WDI, WP..................................–0.3V to V  
FAULTB00, FAULTB01, FAULTB10,  
FAULTB11 ................................–0.3V to V  
ASEL0, ASEL1..........................–0.3V to V  
Analog Voltages:  
+ 0.3V  
DD33  
DACP1  
V
V
10  
11  
12  
OUT_EN6  
OUT_EN7  
DACP0  
DACM0  
+ 0.3V  
+ 0.3V  
V
DD33  
DD33  
IN_EN  
SENSEM0  
SENSEP0  
DNC 13  
V
14  
15  
16  
35 REFM  
34 REFP  
33 ASEL1  
IN_SNS  
V
PWR  
V
DD33  
REFP................................................... –0.3V to 1.35V  
REFM to GND........................................ –0.3V to 0.3V  
V
V
V
V
V
V
to GND................................. –0.3V to 6V  
to GND ................................ –0.3V to 6V  
OUT_EN[3:0] IN_EN  
SENSEP[7:0]  
SENSEM[7:0]  
, V  
to GND .................. –0.3V to 15V  
UP PACKAGE  
64-LEAD (9mm s 9mm) PLASTIC QFN  
to GND................................. –0.3V to 6V  
OUT_EN[7:4]  
DACP[7:0]  
DACM[7:0]  
T
= 125°C, θ = 28°C/W  
JA  
EXPOSED PAD (PIN 65) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
to GND .................................... –0.3V to 6V  
to GND ............................... –0.3V to 0.3V  
Operating Temperature Range:  
LTC2978C................................................ 0°C to 70°C  
LTC2978I .............................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 125°C  
orDer inForMaTion  
LEAD FREE FINISH  
LTC2978CUP#PBF  
LTC2978IUP#PBF  
TAPE AND REEL  
PART MARKING*  
LTC2978  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2978CUP#TRPBF  
LTC2978IUP#TRPBF  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
LTC2978  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
2978fa  
LTC2978  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VPWR = VIN_SNS = 12V, VDD33, VDD25 and REF pins floating, unless  
otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power-Supply Characteristics  
l
l
l
l
V
V
V
V
V
V
Supply Input Operating Range  
Supply Current  
4.5  
15  
13  
13  
2.8  
V
mA  
mA  
V
PWR  
PWR  
PWR  
DD33  
DD33  
DD33  
I
I
4.5V ≤ V  
≤ 15V, V  
Floating  
DD33  
10  
10  
PWR  
PWR  
Supply Current  
3.13V ≤ V  
≤ 3.47V, V  
= V  
PWR  
VDD33  
DD33  
DD33  
DD33  
V
Undervoltage Lockout  
Undervoltage Lockout  
Hysteresis  
V
Ramping Up, V = V  
PWR  
2.35  
2.55  
120  
UVLO_VDD33  
DD33  
mV  
l
l
l
l
l
V
Supply Input Operating Range  
Regulator Output Voltage  
V
= V  
3.13  
3.13  
75  
3.47  
3.47  
140  
2.6  
V
V
DD33  
PWR  
DD33  
4.5V ≤ V  
≤ 15V  
3.26  
90  
PWR  
Regulator Output Short-Circuit Current  
Regulator Output Voltage  
V
= 4.5V, V  
= 0V  
DD33  
mA  
V
PWR  
V
3.13V ≤ V  
≤ 3.47V  
2.35  
30  
2.5  
55  
DD25  
DD33  
DD33  
Regulator Output Short-Circuit Current  
V
= V  
= 3.47V, V  
= 0V  
80  
mA  
PWR  
DD25  
Voltage Reference Characteristics  
V
Output Voltage  
1.232  
3
V
ppm/°C  
ppm  
REF  
Temperature Coefficient  
Hysteresis  
(Note 3)  
100  
ADC Characteristics  
l
V
Voltage Sense Input Range  
Differential Voltage:  
= (V  
0
6
V
IN_ADC  
V
– V  
)
IN_ADC  
SENSEPn  
SENSEMn  
l
l
l
Single-Ended Voltage: V  
Single-Ended Voltage: V  
–0.1  
–0.1  
–170  
0.1  
6
V
V
SENSEMn  
Current Sense Input Range (Odd  
Numbered Channels Only When So  
Configured)  
, V  
SENSEPn SENSEMn  
Differential Voltage: V  
170  
mV  
IN_ADC  
N_ADC  
Voltage Sense Resolution  
0V ≤ V ≤ 6V  
122  
µV/LSB  
IN_ADC  
Current Sense Resolution (Odd  
Numbered Channels Only When So  
Configured)  
0mV ≤ |V  
| < 16mV  
15.625  
31.25  
62.5  
µV/LSB  
µV/LSB  
µV/LSB  
µV/LSB  
µV/LSB  
IN_ADC  
16mV ≤ |V  
32mV ≤ |V  
| < 32mV  
IN_ADC  
IN_ADC  
IN_ADC  
| < 63.9mV  
63.9mV ≤ |V  
127.9mV ≤ |V  
| < 127.9mV  
125  
|
250  
IN_ADC  
l
l
l
TUE_ADC  
INL_ADC  
Total Unadjusted Error  
Integral Nonlinearity  
V
≥ 1.8V (Note 4 )  
0.25  
854  
%
µV  
µV  
IN_ADC  
Voltage Sense Mode (Note 5)  
Current Sense Mode, Odd Numbered  
Channels Only, 15.6µV/LSB (Note 5)  
31.3  
l
l
DNL_ADC  
Differential Nonlinearity  
Offset Error  
Voltage Sense Mode  
400  
µV  
µV  
Current Sense Mode, Odd Numbered  
Channels Only  
31.3  
l
l
V
Voltage Sense Mode  
250  
35  
µV  
µV  
OS_ADC  
Current Sense Mode, Odd Numbered  
Channels Only  
l
l
GAIN_ADC  
Gain Error  
Voltage Sense Mode, V  
= 6V  
0.2  
0.2  
%
%
IN_ADC  
Current Sense Mode, Odd Numbered  
Channels Only, V 0.17V  
=
IN_ADC  
t
Conversion Time  
Voltage Sense Mode (Note 6)  
Current Sense Mode (Note 6)  
Temperature Input (Note 6)  
6.15  
24.6  
24.6  
1
ms  
ms  
CONV_ADC  
ms  
C
Input Sampling Capacitance  
Input Sampling Frequency  
pF  
IN_ADC  
f
62.5  
kHz  
2978fa  
IN_ADC  
LTC2978  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VPWR = VIN_SNS = 12V; VDD33, VDD25 and REF pins floating, unless  
otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
= 0V, 0V ≤ V ≤ 6V,  
COMMONMODE  
MIN  
TYP  
MAX  
UNITS  
l
I
Input Leakage Current  
V
0.5  
µA  
IN_ADC  
IN_ADC  
Current Sense Mode  
l
l
Differential Input Current  
V
V
= 0.17V, Current Sense Mode  
= 6V, Voltage Sense Mode  
80  
10  
250  
15  
nA  
µA  
IN_ADC  
IN_ADC  
Voltage Buffered IDAC Output Characteristics  
N_V  
Resolution  
10  
Bits  
DACP  
l
l
V
Full-Scale Output Voltage  
(Programmable)  
DAC Code = 0x3FF Buffer Gain Setting_0  
DAC Polarity = 1  
(Note 7)  
1.32  
2.53  
1.38  
2.65  
1.44  
2.77  
V
V
FS_VDACP  
Buffer Gain Setting_1  
l
l
l
INL_V  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Voltage  
2
LSB  
LSB  
mV  
DACP  
DNL_V  
(Note 7)  
2.4  
10  
DACP  
OS_VDACP  
DACP  
V
V
(Note 7)  
Load Regulation (V  
– V  
)
V
V
= 2.65V, I Sourcing = 2mA  
VDACPn  
100  
100  
60  
ppm/mA  
ppm/mA  
dB  
DACPn  
DACMn  
DACPn  
DACPn  
= 0.1V, I  
Sinking = 2mA  
VDACPn  
PSRR (V  
– V  
)
DC: 3.13V ≤ V  
≤ 3.47V, V  
= V  
PWR DD33  
DACPn  
DACMn  
DD33  
100mV Step in 20ns with 50pF Load  
–0.1V ≤ V ≤ 0.1V  
40  
dB  
DC CMRR (V  
– V  
)
60  
dB  
DACPn  
DACMn  
DACMn  
l
l
l
Leakage Current  
V
V
V
V
Hi-Z, 0V ≤ V  
≤ 6V  
100  
–4  
nA  
DACPn  
DACPn  
DACPn  
DACPn  
DACPn  
Short-Circuit Current Low  
Short-Circuit Current High  
Output Capacitance  
Shorted to GND  
–10  
4
mA  
Shorted to V  
Hi-Z  
10  
mA  
DD33  
C
10  
pF  
OUT  
t
DAC Output Update Rate  
Fast Servo Mode  
250  
µs  
S_VDACP  
Voltage Supervisor Characteristics  
l
l
V
Input Voltage Range (Programmable)  
V
= (V  
SENSEMn  
Low Resolution Mode  
High Resolution Mode  
0
0
6
3.8  
V
V
IN_VS  
IN_VS  
SENSEPn  
)
– V  
l
Single-Ended Voltage: V  
–0.1  
0.1  
V
mV/LSB  
mV/LSB  
%
SENSEMn  
N_VS  
Voltage Sensing Resolution  
Total Unadjusted Error  
0V to 3.8V Range: High Resolution Mode  
0V to 6V Range: Low Resolution Mode  
4
8
l
l
l
TUE_VS  
2V ≤ V  
≤ 6V, Low Resolution Mode  
1.25  
1.0  
IN_VS  
1.5V < V  
0.8V ≤ V  
≤ 3.8V, High Resolution Mode  
≤ 1.5V, High Resolution Mode  
%
IN_VS  
IN_VS  
1.5  
%
t
Update Rate  
12.21  
90  
µs  
S_VS  
V
Input Characteristics  
IN_SNS  
l
l
l
l
l
l
V
V
Input Voltage Range  
0
15  
110  
2.0  
1.0  
1.5  
1.0  
V
kΩ  
%
VIN_SNS  
IN_SNS  
IN_SNS  
R
V
V
Input Resistance  
Threshold Total  
70  
VIN_SNS  
TUE  
, V  
3V ≤ V  
≤ 8V  
≤ 8V  
VIN_SNS  
IN_ON IN_OFF  
VIN_SNS  
Unadjusted Error  
V
> 8V  
%
VIN_SNS  
READ_V Total Unadjusted Error  
3V ≤ V  
%
IN  
VIN_SNS  
V
> 8V  
%
VIN_SNS  
Voltage Buffered IDAC Soft-Connect Comparator Characteristics  
Offset Voltage  
Temperature Sensor Characteristics  
TUE_TS Total Unadjusted Error  
Enable Output (V  
l
V
3
1
18  
mV  
°C  
OS_CMP  
V
[3:0]) Characteristics  
OUT  
OUT_EN  
l
V
Output High Voltage  
I
= –5µA, V = 3.3V  
DD33  
11.6  
12.5  
14.7  
V
VOUT_ENn  
VOUT_ENn  
2978fa  
LTC2978  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VPWR = VIN_SNS = 12V; VDD33, VDD25 and REF pins floating, unless  
otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
Pull-Up Enabled, V  
MIN  
–5  
3
TYP  
–6  
5
MAX  
–8  
UNITS  
µA  
l
l
I
Output Sourcing Current  
Output Sinking Current  
V
= 1V  
VOUT_ENn  
VOUT_ENn  
VOUT_ENn  
Strong Pull-Down Enabled,  
= 0.4V  
8
mA  
V
VOUT_ENn  
l
l
Weak Pull-Down Enabled, V  
Internal Pull-Up Disabled,  
= 0.4V  
33  
50  
60  
1
µA  
µA  
VOUT_ENn  
Output Leakage Current  
0V ≤ V  
≤ 15V  
VOUT_ENn  
V
Enable Output (V  
[7:4]) Characteristics  
OUT  
OUT_EN  
l
l
I
Output Sinking Current  
Strong Pull-Down Enabled,  
OUT_ENn  
3
6
9
1
mA  
µA  
VOUT_ENn  
V
= 0.1V  
Output Leakage Current  
0V ≤ V  
≤ 6V  
VOUT_ENn  
V
Enable Output (V ) Characteristics  
IN_EN  
IN  
l
l
l
l
l
V
Output High Voltage  
I
= –5µA, V = 3.3V  
DD33  
11.6  
–5  
3
12.5  
–6  
5
14.7  
–8  
8
V
µA  
VIN_EN  
VIN_EN  
VIN_EN  
I
Output Sourcing Current  
Output Sinking Current  
V
Pull-Up Enabled, V  
= 1V  
IN_EN  
VIN_EN  
Strong Pull-Down Enabled, V  
= 0.4V  
mA  
µA  
VIN_EN  
Weak Pull-Down Enabled, V  
Internal Pull-Up Disabled,  
0V ≤ V  
= 0.4V  
33  
50  
60  
1
VIN_EN  
Leakage Current  
µA  
≤ 15V  
VIN_EN  
EEPROM Characteristics  
l
Endurance  
(Note 8)  
0°C < T < 85°C During EEPROM Write  
10,000  
10  
Cycles  
J
Operations  
l
l
Retention  
(Note 8)  
T < 85°C  
A
Years  
ms  
Mass_Write Mass Write Operation Time (Note 9)  
STORE_USER_ALL, 0°C < T < 85°C During  
440  
20  
4100  
1.5  
J
EEPROM Write Operations  
Digital Inputs SCL, SDA, CONTROL0, CONTROL1, WDI/RESETB, FAULTB00, FAULTB01, FAULTB10, FAULTB11, WP  
l
V
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Hysteresis  
2.1  
V
V
IH  
l
IL  
mV  
µA  
HYST  
LEAK  
l
l
I
Input Leakage Current  
0V ≤ V ≤ 5.5V, SDA, SCL, CONTROLx  
2
2
PIN  
Pins Only  
0V ≤ V ≤ V  
+ 0.3V, FAULTBxx,  
µA  
PIN  
DD33  
WDI/RESETB, WP Pins Only  
FAULTBxx, CONTROLx Pins Only  
SDA, SCL Pins Only  
t
Pulse Width of Spike Suppressed  
10  
98  
µs  
ns  
SP  
l
l
l
t
t
Pulse Width to Assert Reset  
V
≤ 1.5V  
≤ 1.5V  
300  
0.3  
µs  
RESETB  
WDI  
WDI/RESETB  
Pulse Width to Reset Watchdog Timer  
Watchdog Interrupt Input Frequency  
Digital Input Capacitance  
V
200  
1
µs  
WDI/RESETB  
f
MHz  
pF  
WDI  
C
10  
IN  
Digital Input SHARE_CLK  
l
l
l
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Frequency Operating Range  
Assertion Low Time  
Rise Time  
1.6  
V
V
IH  
0.8  
110  
1.1  
450  
1
IL  
f
t
t
I
90  
kHz  
µs  
SHARE_CLK_IN  
LOW  
V
V
< 0.8V  
0.825  
SHARE_CLK  
SHARE_CLK  
< 0.8V to V  
> 1.6V  
ns  
RISE  
SHARE_CLK  
Input Leakage Current  
Input Capacitance  
0V ≤ V  
≤ V + 0.3V  
DD33  
µA  
pF  
LEAK  
SHARE_CLK  
C
10  
IN  
2978fa  
LTC2978  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VPWR = VIN_SNS = 12V; VDD33, VDD25 and REF pins floating, unless  
otherwise indicated. CVDD33 = 100nF, CVDD25 = 100nF and CREF = 100nF.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Digital Outputs SDA, ALERTB, PWRGD, SHARE_CLK, FAULTB00, FAULTB01, FAULTB10, FAULTB11  
l
l
V
Digital Output Low Voltage  
I
= 3mA  
0.4  
V
OL  
SINK  
f
Output Frequency Operating Range  
5.49kΩ Pull-Up to V  
90  
100  
110  
kHz  
SHARE_CLK_OUT  
DD33  
Digital Inputs ASEL0,ASEL1  
l
l
l
l
V
V
Input High Threshold Voltage  
Input Low Threshold Voltage  
High, Low Input Current  
Hi-Z Input Current  
V
DD33  
– 0.5  
V
V
IH  
0.5  
95  
24  
IL  
I
I
ASEL[1:0] = 0, V  
µA  
µA  
pF  
IH,IL  
IH, Z  
DD33  
C
Input Capacitance  
10  
IN  
Serial Bus Timing Characteristics  
l
l
l
l
f
t
t
t
Serial Clock Frequency (Note 10)  
Serial Clock Low Period (Note 10)  
Serial Clock High Period (Note 10)  
10  
1.3  
0.6  
1.3  
400  
kHz  
µs  
SCL  
LOW  
HIGH  
BUF  
µs  
Bus Free Time Between Stop and Start  
(Note 10)  
µs  
l
l
l
l
t
t
t
t
Start Condition Hold Time (Note 10)  
Start Condition Setup Time (Note 10)  
Stop Condition Setup Time (Note 10)  
600  
600  
600  
0
ns  
ns  
ns  
ns  
HD,STA  
SU,STA  
SU,STO  
HD,DAT  
Data Hold Time (LTC2978 Receiving  
Data) (Note 10)  
l
l
Data Hold Time (LTC2978 Transmitting  
Data) (Note 10)  
300  
100  
900  
ns  
t
t
Data Setup Time (Note 10)  
ns  
ns  
SU,DAT  
SP  
Pulse Width of Spike Suppressed  
(Note 10)  
98  
l
l
t
Time Allowed to Complete any PMBus Longer Timeout = 0  
Command After Which Time SDA Will Longer Timeout = 1  
Be Released and Command Terminated  
25  
200  
35  
280  
ms  
ms  
TIMEOUT_BUS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating for extended periods may affect device reliability and  
lifetime.  
Note 6: The time between successive ADC conversions (latency of the  
ADC) for any given channel is given as: 36.9ms + (6.15ms • number of  
ADC channels configured in Low Resolution mode) + (24.6ms • number of  
ADC channels configured in High Resolution mode).  
Note 2: All currents into device pins are positive. All currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
Note 7: Nonlinearity is defined from the first code that is greater than or  
equal to the maximum offset specification to full-scale code, 1023.  
specified. If power is supplied to the chip via the V  
pin only, connect  
DD33  
Note 8: EEPROM endurance and retention are guaranteed by design,  
characterization and correlation with statistical process controls. The  
minimum retention specification applies for devices whose EEPROM has  
been cycled less than the minimum endurance specification.  
Note 9: The LTC2978 will not acknowledge any PMBus write commands  
when a STORE_USER_ALL command is being executed.  
V
and V  
pins together.  
PWR  
DD33  
Note 3: Hysteresis in the output voltage is created by package stress that  
differs depending on whether the IC was previously at a higher or lower  
temperature. Output voltage is always measured at 25°C, but the IC is  
cycled to 85°C or –40°C before successive measurements. Hysteresis is  
roughly proportional to the square of the temperature change.  
Note 10: Maximum capacitive load, C , for SCL and SDA is 400pF. Data  
B
Note 4: TUE(%) is defined as:  
and clock rise time (t ) and fall time (t ) are: (20 + 0.1• C ) (ns) < t <  
r
f
B
r
Gain Error (%) + 100 • (INL + V )/V .  
300ns and (20 + 0.1 • C ) (ns) < t < 300ns. C = capacitance of one bus  
OS IN  
B f B  
line in pF. SCL and SDA external pull-up voltage, V , is 3.13V < V < 5.5V.  
IO  
IO  
Note 5: Integral nonlinearity (INL) is defined as the deviation of a code  
from a straight line passing through the actual endpoints of the transfer  
curve (0V and 6V). The deviation is measured from the center of the  
quantization band.  
2978fa  
LTC2978  
TiMing DiagraM  
SDA  
t
r
t
SU(DAT)  
t
t
SP  
t
HD(SDA)  
r
t
t
t
f
t
f
BUF  
LOW  
SCL  
t
t
t
SU(STO)  
HD(STA)  
SU(STA)  
t
t
HIGH  
HD(DAT)  
2978 TD  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
START  
CONDITION CONDITION  
Typical perForMance characTerisTics  
ADC Total Unadjusted Error  
vs Temperature  
Temperature Sensor Error  
Reference Voltage vs Temperature  
vs Temperature  
1.2355  
1.2350  
1.2345  
1.2340  
1.2335  
1.2330  
1.2325  
1.2320  
1.2315  
1.2310  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.035  
0.030  
ADC V = 1.8V  
IN  
0.025  
0.020  
0.015  
0.010  
0.005  
THREE TYPICAL PARTS  
0
–50 –35 –20 –5 10 25  
100  
–50 –35 –20 –5 10 25 40 55 70 85 100  
–50  
–5  
55  
100  
70 85  
40 55 70 85  
–35 –20  
10 25 40  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
2978 G01  
2978 G02  
2978 G03  
ADC Zero Code Center Offset  
Voltage vs Temperature  
ADC-INL  
ADC-DNL  
0.8  
0.6  
0
–20  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VOLTAGE SENSE MODE  
122µV/LSB  
122µV/LSB  
0.4  
–40  
0.2  
–60  
0
–80  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–100  
–120  
–140  
–160  
–180  
–0.5  
–1.0  
–1.5  
–0.2 0.8  
1.8  
2.8  
3.8  
4.8  
–50 –35 –20 –5 10 25  
100  
–0.2 0.8  
1.8  
2.8  
3.8  
4.8  
5.8  
40 55 70 85  
5.8  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
2978 G06  
2978 G04  
2978 G05  
2978fa  
LTC2978  
Typical perForMance characTerisTics  
ADC Rejection  
vs Frequency at VIN  
ADC Rejection  
vs Frequency at VIN (Zoom)  
ADC Rejection vs Frequency  
at VIN (Current Sense Mode)  
0
0
0
–20  
–20  
–20  
–40  
–60  
–40  
–60  
–40  
–60  
–80  
–100  
–120  
–80  
–100  
–120  
–80  
–100  
–120  
0
12500 25000 37500 50000 62500  
FREQUENCY (Hz)  
0
3125  
6250  
FREQUENCY (Hz)  
9375  
12500  
0
12500 25000 37500 50000 62500  
FREQUENCY (Hz)  
2978 G07  
2978 G08  
2978 G09  
ADC Rejection vs Frequency  
Voltage Supervisor Total  
ADC Noise Histogram  
at VIN (Current Sense Mode, Zoom)  
Unadjusted Error vs Temperature  
1200  
1000  
0
0
–0.05  
–0.10  
–0.15  
–0.20  
–0.25  
–0.30  
–0.35  
–0.40  
V
= 0V  
V
= 0.8V  
IN  
IN  
HIGH RESOLUTION MODE  
HIGH RESOLUTION MODE  
–20  
800  
600  
–40  
–60  
400  
200  
0
–80  
–100  
–120  
–20  
–10  
0
10  
20  
0
3125  
6250  
9375  
12500  
–50 –35 –20 –5 10 25 40 55 70 85 100  
READ_V  
(µV)  
FREQUENCY (Hz)  
OUT  
TEMPERATURE (°C)  
2978 G11  
2978 G10  
2978 G12  
Voltage Buffered IDAC Full-Scale  
Output Voltage vs Temperature  
Input Sampling Current  
vs Differential Input Voltage  
ADC High Resolution Mode  
Differential Input Current  
2.698  
9
8
7
6
5
4
3
2
1
90  
80  
70  
60  
50  
40  
30  
20  
10  
2.696  
2.694  
2.692  
2.690  
2.688  
2.686  
2.684  
2.682  
2.680  
2.678  
0
0
–50 –35 –20 –5 10 25 40 55 70 85 100  
TEMPERATURE (°C)  
0
1
2
3
6
4
5
0
20 40 60 80 100  
180  
120 140 160  
INPUT VOLTAGE (V)  
DIFFERENTIAL INPUT VOLTAGE (mV)  
2978 G15  
2978 G13  
2978 G14  
2978fa  
LTC2978  
Typical perForMance characTerisTics  
Voltage Buffered IDAC Offset  
Voltage vs Temperature  
Voltage Buffered IDAC DNL  
Voltage Buffered IDAC-INL  
1.0  
0.8  
1.0  
0.8  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
0.9  
0.7  
0.5  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
–50 –35 –20 –5 10 25 40 55 70 85 100  
DAC CODE  
DAC CODE  
TEMPERATURE (°C)  
2978 G17  
2978 G18  
2978 G16  
IDAC Voltage Buffer Load  
Regulation (Sinking)  
IDAC Voltage Buffer Short-Circuit  
Current vs Temperature  
Voltage Buffered IDAC Load  
Regulation (Sourcing)  
2.698  
9.00  
8.95  
0.1038  
0.1036  
0.1034  
0.1032  
0.1030  
0.1028  
0.1026  
85°C  
2.696  
2.694  
2.692  
2.690  
2.688  
2.686  
2.684  
2.682  
2.680  
2.678  
85°C  
25°C  
25°C  
8.90  
8.85  
8.80  
8.75  
8.70  
–40°C  
–40°C  
0
–1  
–1.50 1.75  
–50 –35 –20 –5 10 25 40 55 70 85 100  
TEMPERATURE (°C)  
–0.25 –0.5 –0.75  
–1.25  
–2  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
CURRENT (mA)  
CURRENT (mA)  
2978 G19  
2978 G21  
2978 G20  
IDAC Voltage Buffer Soft Connect  
Transient Response when  
Transitioning from Hi-Z State to  
ON State  
IDAC Voltage Buffer Soft Connect  
Transient Response when  
Transitioning from ON State to  
Hi-Z State  
IDAC Voltage Buffer Transient  
Response to 1LSB DAC Code  
Change  
CODE ‘h200  
HI-Z  
HI-Z  
500µV/DIV  
10mV/DIV  
10mV/DIV  
CONNECTED  
CONNECTED  
CODE ‘h1FF  
2978 G22  
2978 G24  
2978 G23  
2µs/DIV  
500µs/DIV  
500µs/DIV  
100k SERIES RESISTANCE ON  
CODE: ‘h1FF  
100k SERIES RESISTANCE ON  
CODE: ‘h1FF  
2978fa  
ꢀ0  
LTC2978  
Typical perForMance characTerisTics  
VDD33 Regulator Output Voltage  
vs Temperature  
VDD33 Regulator Short-Circuit  
Current vs Temperature  
VDD33 Regulator Line Regulation  
3.275  
3.270  
3.265  
3.260  
3.255  
3.250  
3.245  
3.240  
3.235  
–86  
–88  
400  
300  
85°C  
25°C  
200  
–90  
100  
–92  
–40°C  
0
–94  
–100  
–200  
–300  
–400  
–96  
–98  
–100  
–102  
–500  
–50 –35 –20 –5 10 25 40 55 70 85 100  
–50 –35 –20 –5 10 25 40 55 70 85 100  
4.5  
6
7.5  
9
15  
10.5 12 13.5  
(V)  
TEMPERATURE (°C)  
V
TEMPERATURE (°C)  
PWR  
2978 G25  
2978 G27  
2978 G26  
VOUT_EN[3:0] and VIN_EN Output  
High Voltage vs Load Current  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
10.5  
10.4  
10.3  
10.2  
10.1  
10.0  
9.9  
10.16  
10.14  
V
= V  
DD33  
V
= 12V  
PWR  
PWR  
85°C  
25°C  
10.12  
–40°C  
10.10  
10.08  
10.06  
10.04  
9.8  
9.5  
10.02  
3.1  
3.2  
3.4  
3
3.5  
3.6  
3.3  
0
1
2
3
7
4
5
6
10  
25 40 55 70 85 100  
–50  
–5  
–35 –20  
CURRENT SOURCING (µA)  
V
(V)  
TEMPERATURE (°C)  
DD33  
2978 G28  
2978 G30  
2978 G29  
VOUT_EN[3:0] and VIN_EN VOL  
vs Current  
Voltage Buffered IDAC Output  
Impedance vs Frequency  
VOUT_EN[7:4] VOL vs Current  
1000  
100  
10  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
85°C  
25°C  
85°C  
25°C  
1
–40°C  
–40°C  
0.1  
0.01  
0.01  
0.1  
1
10  
100  
1000  
0
8
12  
(mA)  
16  
20  
24  
8
12  
4
0
2
4
6
10  
I
FREQUENCY (kHz)  
I
(mA)  
SINK  
SINK  
2978 G31  
2978 G33  
2978 G32  
2978fa  
ꢀꢀ  
LTC2978  
Typical perForMance characTerisTics  
PWRGD and FAULTBzn VOL  
vs Current  
ALERTB VOL vs Current  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
8
12  
0
2
4
6
10  
0
4
6
8
10  
12  
2
I
(mA)  
I
(mA)  
SINK  
SINK  
2978 G35  
2978 G34  
pin FuncTions  
PIN NAME  
PIN NUMBER  
PIN TYPE  
In  
DESCRIPTION  
V
V
V
V
V
V
V
V
V
V
V
V
1*  
2*  
3*  
4
5
6
7
8
9
10  
11  
12  
13  
14  
DC/DC Converter Differential (–) Output Voltage-6 Sensing Pin  
DC/DC Converter Differential (+) Output Voltage or Current-7 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage or Current-7 Sensing Pin  
DC/DC Converter Enable-0 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA  
DC/DC Converter Enable-1 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA  
DC/DC Converter Enable-2 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA  
DC/DC Converter Enable-3 Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA  
DC/DC Converter Open-Drain Pull-Down Output-4  
DC/DC Converter Open-Drain Pull-Down Output-5  
DC/DC Converter Open-Drain Pull-Down Output-6  
DC/DC Converter Open-Drain Pull-Down Output-7  
DC/DC Converter V ENABLE Pin. Output High Voltage Optionally Pulled Up to 12V by 5µA  
SENSEM6  
SENSEP7  
SENSEM7  
OUT_EN0  
OUT_EN1  
OUT_EN2  
OUT_EN3  
OUT_EN4  
OUT_EN5  
OUT_EN6  
OUT_EN7  
IN_EN  
In  
In  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
0ut  
IN  
DNC  
Do Not Connect Do Not Connect to This Pin  
V
V
V
In  
V SENSE Input. This Voltage is Compared Against the V On and Off Voltage Thresholds in Order to  
IN IN  
Determine When to Enable and Disable, Respectively, the Downstream DC/DC Converters  
V Serves as the Unregulated Power Supply Input to the Chip (4.5V to 15V). If a 4.5V to 15V Supply  
PWR  
Voltage is Unavailable, Short V  
If Shorted to V  
IN_SNS  
15  
16  
In  
PWR  
to V  
and Power the Chip Directly from a 3.3V Supply  
PWR  
DD33  
In/Out  
, it Serves as 3.13V to 3.47V Supply Input Pin. Otherwise it is a 3.3V Internally  
DD33  
PWR  
Regulated Voltage Output (Use 100nF Decoupling Capacitor to GND)  
Input for Internal 2.5V Sub-Regulator. Short This Pin to Pin 16  
2.5V Internally Regulated Voltage Output. Bypass to GND with a 0.1µF Capacitor  
Digital Input. Write-Protect Input Pin, Active High  
Power Good Open-Drain Output. Indicates When Outputs are Power Good. Can be Used as System  
Power-On Reset  
V
V
WP  
17  
18  
19  
20  
In  
In/Out  
In  
DD33  
DD25  
PWRGD  
Out  
SHARE_CLK  
WDI/RESET  
21  
22  
In/Out  
In  
Bidirectional Clock Sharing Pin. Connect a 5.49k Pull-Up Resistor to V  
DD33  
Watchdog Timer Interrupt and Chip Reset Input. Connect a 10k Pull-Up Resistor to V  
. Rising Edge  
DD33  
Resets Watchdog Counter. Holding This Pin Low for More Than t  
Resets the Chip  
RESETB  
2978fa  
ꢀꢁ  
LTC2978  
pin FuncTions  
FAULTB00  
FAULTB01  
FAULTB10  
FAULTB11  
23  
24  
25  
26  
In/Out  
In/Out  
In/Out  
In/Out  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-00. Connect a 10k Pull-Up  
Resistor to V  
DD33  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-01. Connect a 10k Pull-Up  
Resistor to V  
DD33  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-10. Connect a 10k Pull-Up  
Resistor to V  
DD33  
Open-Drain Output and Digital Input. Active Low Bidirectional Fault Indicator-11. Connect a 10k Pull-Up  
Resistor to V  
DD33  
SDA  
SCL  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36*  
37*  
38  
39  
40  
In/Out  
In  
Out  
In  
In  
In  
PMBus Bidirectional Serial Data Pin  
PMBus Serial Clock Input Pin (400kHz Maximum)  
Open-Drain Output. Generates an Interrupt Request in a Fault/Warning Situation  
Control Pin 0 Input  
Control Pin 1 Input  
Ternary Address Select Pin 0 Input. Connect to V  
Ternary Address Select Pin 1 Input. Connect to V  
Reference Voltage Output. Needs 0.1µF Decoupling Capacitor to REFM  
Reference Return Pin. Needs 0.1µF Decoupling Capacitor to REFP.  
DC/DC Converter Differential (+) Output Voltage-0 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-0 Sensing Pin  
Voltage Buffered IDAC0 Return. Connect to Channel 0 DC/DC Converter’s GND Sense or Return to GND  
Voltage Buffered IDAC0 Output  
ALERTB  
CONTROL0  
CONTROL1  
ASEL0  
ASEL1  
REFP  
, GND or Float to Encode 1 of 3 Logic States  
, GND or Float to Encode 1 of 3 Logic States  
DD33  
In  
DD33  
Out  
Out  
In  
REFM  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SENSEP0  
SENSEM0  
DACM0  
In  
Out  
Out  
Out  
Out  
In  
DACP0  
Voltage Buffered IDAC1 Output  
DACP1  
41  
Voltage Buffered IDAC1 Return. Connect to Channel 1 DC/DC Converter’s GND Sense or Return to GND  
DC/DC Converter Differential (+) Output Voltage or Current-1 Sensing Pins  
DC/DC Converter Differential (–) Output Voltage or Current-1 Sensing Pins  
Voltage Buffered IDAC2 Output  
Voltage Buffered IDAC2 Return. Connect to Channel 2 DC/DC Converter’s GND Sense or Return to GND  
DC/DC Converter Differential (+) Output Voltage-2 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-2 Sensing Pin  
DC/DC Converter Differential (+) Output Voltage or Current-3 Sensing Pins  
DC/DC Converter Differential (–) Output Voltage or Current-3 Sensing Pins  
Voltage Buffered IDAC3 Output  
Voltage Buffered IDAC3 Return. Connect to Channel 3 DC/DC Converter’s GND Sense or Return to GND  
DC/DC Converter Differential (+) Output Voltage-4 Sensing Pin  
DC/DC Converter Differential (–) Output Voltage-4 Sensing Pin  
Voltage Buffered IDAC4 Return. Connect to Channel 4 DC/DC Converter’s GND Sense or Return to GND  
Voltage Buffered IDAC4 Output  
DACM1  
42*  
43*  
44  
SENSEP1  
SENSEM1  
DACP2  
In  
Out  
Out  
In  
In  
In  
45  
DACM2  
46*  
47*  
48*  
49*  
50  
SENSEP2  
SENSEM2  
SENSEP3  
SENSEM3  
DACP3  
In  
Out  
Out  
In  
51  
DACM3  
52*  
53*  
54  
55  
56  
57  
58  
59  
60  
SENSEP4  
SENSEM4  
DACM4  
In  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
Out  
In  
DACP4  
Voltage Buffered IDAC5 Output  
DACP5  
Voltage Buffered IDAC5 Return. Connect to Channel 5 DC/DC Converter’s GND Sense or Return to GND  
Voltage Buffered IDAC6 Return. Connect to Channel 6 DC/DC Converter’s GND Sense or Return to GND  
Voltage Buffered IDAC6 Output  
DACM5  
DACM6  
DACP6  
Voltage Buffered IDAC7 Output  
DACP7  
61  
Voltage Buffered IDAC7 Return. Connect to Channel 7 DC/DC Converter’s GND Sense or Return to GND  
DC/DC Converter Differential (+) Output Voltage or Current-5 Sensing Pins  
DC/DC Converter Differential (–) Output Voltage or Current-5 Sensing Pins  
DC/DC Converter Differential (+) Output Voltage-6 Sensing Pin  
Exposed Pad, Must be Soldered to PCB  
DACM7  
62*  
63*  
64*  
65  
SENSEP5  
SENSEM5  
SENSEP6  
In  
In  
Ground  
GND  
*Any unused V  
or V  
pins must be tied to GND.  
SENSEPn  
SENSEMn  
2978fa  
ꢀꢂ  
LTC2978  
block DiagraM  
3.3V REGULATOR  
IN  
V
15  
16  
V
V
OUT  
PWR  
V
V
DD  
DD33  
2.5V REGULATOR  
IN  
OUT  
V
V
17  
18  
V
V
DD33  
DD25  
3R  
V
V
SENSEM0  
SENSEP0  
V
14  
IN_SNS  
R
V
V
SENSEM1  
SENSEP1  
36  
37  
42  
43  
46  
47  
48  
49  
52  
53  
62  
63  
64  
1
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
SENSEP0  
SENSEM0  
SENSEP1  
SENSEM1  
SENSEP2  
SENSEM2  
SENSEP3  
SENSEM3  
SENSEP4  
SENSEM4  
SENSEP5  
SENSEM5  
SENSEP6  
SENSEM6  
SENSEP7  
SENSEM7  
GND 65  
V
V
SENSEM2  
SENSEP2  
V
V
SENSEM3  
SENSEP3  
+
+
V
V
SENSEM4  
SENSEP4  
INTERNAL  
TEMP  
SENSOR  
CMP0  
MUX  
+
10-BIT  
VDAC  
V
V
SENSEM5  
SENSEP5  
V
V
SENSEM6  
SENSEP6  
V
V
SENSEM7  
SENSEP7  
+
15-BIT  
+
$∑ ADC  
2
SC  
CMP0  
3
IDAC0  
10 BITS  
+
ADC  
CLOCKS  
39  
40  
44  
50  
55  
56  
59  
60  
V
V
V
V
V
V
V
V
VBUF0  
DACP0  
DACP1  
DACP2  
DACP3  
DACP4  
DACP5  
DACP6  
DACP7  
V
DD  
REFERENCE  
1.232V  
REFP 34  
REFM 35  
(TYP)  
38  
41  
45  
51  
54  
57  
58  
61  
V
V
V
V
V
V
V
V
DACM0  
DACM1  
DACM2  
DACM3  
DACM4  
DACM5  
DACM6  
DACM7  
NONVOLATILE MEMORY  
EEPROM  
SCL 28  
SDA 27  
PMBus  
INTERFACE  
ALERTB 29  
ASEL0 32  
ASEL1 33  
2
(400kHz I C  
RAM  
COMPATIBLE)  
ADC_RESULTS  
MONITOR LIMITS  
SERVO TARGETS  
WP 19  
4
5
6
7
V
V
V
V
OUT_EN0  
OUT_EN1  
OUT_EN2  
OUT_EN3  
OUTPUT  
CONFIG  
CONTROL0 30  
CONTROL1 31  
WDI/RESET 22  
FAULTB00 23  
FAULTB01 24  
FAULTB10 25  
FAULTB11 26  
CLOCK  
GENERATION  
OSCILLATOR  
CONTROLLER  
PMBus ALGORITHM  
FAULT PROCESSOR  
WATCHDOG  
12  
V
IN_EN  
V
DD  
8
9
V
V
V
V
OUT_EN4  
OUT_EN5  
OUT_EN6  
OUT_EN7  
SEQUENCER  
UVLO  
OPEN-DRAIN  
OUTPUT  
10  
11  
PWRGD  
20  
SHARE_CLK 21  
2978 BD  
2978fa  
ꢀꢃ  
LTC2978  
operaTion  
OPERATION OVERVIEW  
n
n
n
Store command register contents to EEPROM through  
PMBus programming.  
The LTC2978 is a PMBus programmable power supply  
controller, monitor, sequencer and voltage supervisor that  
can perform the following operations:  
Restore EEPROM contents through PMBus program-  
ming or on POR.  
n
Accept PMBus compatible programming commands.  
Report the DC/DC converter output voltage status  
through the PMBus interface and the power good  
output.  
n
Provide DC/DC converter input voltage and output volt-  
age/current read back through the PMBus interface.  
n
n
n
n
n
Generate interrupt requests by asserting the ALERTB  
pin in response to supported PMBus faults.  
n
Control the output of modules that set voltage with a  
trim pin or modules that set the output voltage using  
an external resistor feedback network.  
Shut down multiple DC/DC converters in response to  
a fault through the FAULTBz0 and FAULTBz1 pins.  
n
Sequence the start-up of DC/DC converters via PMBus  
programming and the CONTROL input pins.  
Synchronizesequencingdelaysorshutdownformultiple  
devices using the SHARE_CLK pin.  
n
Trim the DC/DC converter output voltage (typically in  
0.1% steps), in closed-loop servo operating mode,  
through PMBus programming.  
Software and hardware write protect the command  
registers.  
n
Margin the DC/DC converter output voltage to PMBus  
programmed limits (typically 10%).  
Disable the input voltage to the supervised DC/DC  
converters in response to output voltage OV and UV  
faults.  
n
Allow the user to trim or margin the DC/DC converter  
n
n
outputvoltageinamanualoperatingmodebyproviding  
direct access to the margin DAC.  
Log telemetry and status data to EEPROM in response  
to a faulted-off condition  
n
Supervise the DC/DC converter output voltage, input  
Supervise an external microcontroller’s activity for a  
stalled condition with a programmable watchdog timer  
and reset it if necessary.  
voltage, and the LTC2978 die temperature for over-  
value/undervalue conditions with respect to PMBus  
programmedlimitsandgenerateappropriatefaultsand  
warnings.  
n
Prevent a DC/DC converter from re-entering the ON  
state after a power cycle until a programmable interval  
(MFR_RESTART_DELAY) has elapsed and its output  
has decayed below a programmable threshold voltage  
(MFR_VOUT_DISCHARGE_THRESHOLD).  
n
Respond to a fault condition by either continuing op-  
eration indefinitely, latching off after a programmable  
de-glitch period or latching off immediately. A retry  
mode may be used to automatically recover from a  
latched-off condition.  
n
Record minimum and maximum observed values of  
input voltage, output voltages and temperature.  
n
StoptrimmingtheDC/DCconverteroutputvoltageafter  
itreachedtheinitialmarginornominaltarget.Optionally  
allows servo to resume if target drifts outside of V  
warning limits.  
OUT  
2978fa  
ꢀꢄ  
LTC2978  
operaTion  
PMBus SERIAL DIGITAL INTERFACE  
Figures 1-10 illustrate the aforementioned SMBus pro-  
tocols. All transactions support PEC (parity error check)  
and GCP (group command protocol). The Block Read  
supports 256 bytes of returned data. For this reason, the  
PMBustimeoutmaybeextendedusingtheMfr_config_all_  
longer_pmbus_timeout setting.  
The LTC2978 communicates with a host (master) using  
the standard PMBus serial bus interface. The Timing  
Diagram shows the timing relationship of the signals on  
the bus. The two bus lines, SDA and SCL, must be high  
when the bus is not in use. External pull-up resistors or  
current sources are required on these lines.  
TheLTC2978willnotacknowledgeanyPMBuscommandif  
itisstillbusywithaSTORE_USER_ALL,RESTORE_USER_  
ALL, MFR_CONFIG or if fault log data is being written to  
the EEPROM. Status_word_busy will also be set.  
TheLTC2978isaslavedevice.Themastercancommunicate  
with the LTC2978 using the following formats:  
n
Master transmitter, slave receiver  
Slave Address  
n
Master receiver, slave transmitter  
The LTC2978 can be configured to respond to one of nine  
addresses for a given MFR_I2C_BASE_ADDRESS value  
(the factory default value for this register is 7’h5C). In  
addition, the LTC2978 will always respond to its global  
address and the PMBus Alert Response address regard-  
less of the state of the address select pins.  
The following SMBus protocols are supported:  
n
Write Byte, Write Word, Send Byte  
n
Read Byte, Read Word, Block Read  
n
Alert Response Address  
By connecting each of the address inputs to V  
, GND,  
DD33  
or by floating them, the user determines the slave address  
as shown in Table 1.  
Table 1. LTC2978 Address Look-Up Table  
HEX DEVICE  
DESCRIPTION  
ADDRESS  
BINARY DEVICE ADDRESS  
ADDRESS PINS  
7’h  
8’h  
19  
B6  
B8  
BA  
BC  
BE  
C0  
C2  
C4  
C6  
C8  
6
0
1
1
1
1
1
1
1
1
1
1
5
0
0
0
0
0
0
1
1
1
1
1
4
0
1
1
1
1
1
0
0
0
0
0
3
1
1
1
1
1
1
0
0
0
0
0
2
1
0
1
1
1
1
0
0
0
0
1
1
0
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
R/W  
1
ASEL1  
ASEL0  
Alert Response  
0C  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
X
X
X
X
Global  
0
0*  
1
0
L
L
0
L
NC  
H
2
0
L
3
0
NC  
NC  
NC  
H
L
4
0
NC  
H
5
0
6
0
L
7
0
H
NC  
H
8
0
H
H = Tie to V  
, NC = No Connect, Open or Float, L = Tie to GND, X = Don’t Care  
DD33  
*MFR_I2C_BASE_ADDRESS = 7’h5C (Factory Default)  
2978fa  
ꢀꢅ  
LTC2978  
operaTion  
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE  
A
P
2978 F01  
Figure 1. Write Byte Protocol  
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
P
2978 F02  
Figure 2. Write Word Protocol  
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE  
A
PEC  
A
P
2978 F03  
Figure 3. Write Byte Protocol with PEC  
1
7
1
1
8
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
PEC  
A
P
2978 F04  
Figure 4. Write Word Protocol with PEC  
1
7
1
1
8
1
1
S
SLAVE ADDRESS Wr  
A
DATA BYTE  
A
P
2978 F05  
Figure 5. Send Byte Protocol  
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
DATA BYTE  
A
PEC  
A
P
2978 F06  
Figure 6. Send Byte Protocol with PEC  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
S
SLAVE ADDRESS Rd  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
P
1 2978 F07  
Figure 7. Read Word Protocol  
1
7
1
1
8
1
1
7
1
1
8
1
8
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
S
SLAVE ADDRESS Rd  
A
DATA BYTE LOW  
A
DATA BYTE HIGH  
A
PEC  
A
P
1 2978 F08  
Figure 8. Read Word Protocol with PEC  
1
7
1
1
8
1
1
8
1
1
8
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
S
SLAVE ADDRESS Rd  
A
DATA BYTE  
A
P
1 2978 F09  
Figure 9. Read Byte Protocol  
1
7
1
1
8
1
1
8
1
1
8
1
1
1
S
SLAVE ADDRESS Wr  
A
COMMAND CODE  
A
S
SLAVE ADDRESS Rd  
A
DATA BYTE  
A
PEC  
A
P
1 2978 F10  
Figure 10. Read Byte Protocol with PEC  
2978fa  
ꢀꢆ  
LTC2978  
operaTion  
REGISTER COMMAND SET  
Summary  
DATA  
NV  
LENGTH COMMAND MEMORY DEFAULT PAGED  
COMMAND FUNCTION  
PAGE  
DESCRIPTION  
R/W  
R/W  
R/W  
R/W  
(BITS) BYTE VALUE  
TYPE  
VALUE  
?
N
Y
Y
8
8
8
‘h00  
‘h01  
‘h02  
‘h00  
OPERATION  
Operating mode control.  
EEPROM  
EEPROM  
‘h00  
ON_OFF_CONFIG  
CONTROL pin and PMBus bus on/off  
command setting.  
‘h12  
CLEAR_FAULTS  
CLEAR_FAULTS is used to clear any fault  
bits that have been set.  
W
R/W  
W
0
8
0
0
8
‘h03  
‘h10  
‘h15  
‘h16  
‘h19  
NA  
‘h00  
NA  
Y
N
N
N
N
WRITE_PROTECT  
STORE_USER_ALL  
RESTORE_USER_ALL  
CAPABILITY  
Provides protection against accidental  
changes.  
EEPROM  
ROM  
Store entire operating memory to  
EEPROM.  
Restore entire operating memory from  
EEPROM.  
W
NA  
The CAPABILITY command provides a  
way for a host system to determine the  
capabilities of the PMBus device.  
R
‘hE0  
VOUT_MODE  
Output voltage format control.  
R
8
‘h20  
‘h21  
ROM  
‘h13  
Y
Y
VOUT_COMMAND  
Servo DC/DC converter output voltage  
value setting.  
R/W  
16  
EEPROM  
‘h2000  
VOUT_MAX  
The VOUT_MAX command sets an upper  
limit on the output voltage, in volts, the  
unit can command regardless of any other  
commands or combinations.  
R/W  
16  
‘h24  
EEPROM  
‘h8000  
Y
VOUT_MARGIN_HIGH  
VOUT_MARGIN_LOW  
VIN_ON  
Margin high DC/DC converter output  
voltage limit setting.  
R/W  
R/W  
R/W  
16  
16  
16  
‘h25  
‘h26  
‘h35  
EEPROM  
EEPROM  
EEPROM  
‘h219A  
‘h1E66  
‘hD280  
Y
Y
N
Margin low DC/DC converter output  
voltage limit setting.  
The VIN_ON command sets the input  
voltage, in volts, at which the unit should  
start power conversion.  
VIN_OFF  
The VIN_OFF command sets the input  
voltage, in volts, at which the unit should  
stop power conversion.  
R/W  
16  
‘h36  
EEPROM  
‘hD240  
N
VOUT_OV_FAULT_LIMIT  
Overvoltage DC/DC converter fault limit  
setting.  
R/W  
R/W  
16  
8
‘h40  
‘h41  
EEPROM  
EEPROM  
‘h2333  
‘h80  
Y
Y
VOUT_OV_FAULT_RESPONSE  
The VOUT_OV_FAULT_RESPONSE  
command instructs the device on what  
action to take in response to an output  
overvoltage fault.  
VOUT_OV_WARN_LIMIT  
VOUT_UV_WARN_LIMIT  
Overvoltage DC/DC converter warning limit R/W  
setting.  
16  
16  
‘h42  
‘h43  
EEPROM  
EEPROM  
‘h2266  
‘h1D9A  
Y
Y
Undervoltage DC/DC converter warning  
limit setting.  
R/W  
2978fa  
ꢀꢇ  
LTC2978  
operaTion  
Summary  
DATA  
NV  
LENGTH COMMAND MEMORY DEFAULT PAGED  
COMMAND FUNCTION  
DESCRIPTION  
R/W  
(BITS) BYTE VALUE  
TYPE  
VALUE  
?
VOUT_UV_FAULT_LIMIT  
Undervoltage DC/DC converter fault limit  
setting. This limit is also used to determine  
if Ton_max_fault has been met and the  
unit is on.  
R/W  
16  
‘h44  
EEPROM ‘h1CCD  
Y
VOUT_UV_FAULT_RESPONSE  
The VOUT_UV_FAULT_RESPONSE  
command instructs the device on  
what action to take in response to an  
undervoltage fault.  
R/W  
8
‘h45  
EEPROM  
‘h7F  
Y
OT_FAULT_LIMIT  
Overtemperature fault limit setting.  
R/W  
R/W  
16  
8
‘h4F  
‘h50  
EEPROM  
EEPROM  
‘hEAA8  
‘hB8  
N
N
OT_FAULT_RESPONSE  
The OT_FAULT_RESPONSE command  
instructs the device on what action to take  
in response to an overtemperature fault.  
OT_WARN_LIMIT  
UT_WARN_LIMIT  
UT_FAULT_LIMIT  
UT_FAULT_RESPONSE  
Overtemperature warning limit setting.  
Undertemperature warn limit setting.  
Undertemperature fault limit setting.  
R/W  
R/W  
R/W  
R/W  
16  
16  
16  
8
‘h51  
‘h52  
‘h53  
‘h54  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
‘hEA58  
‘h8000  
‘hCD80  
‘hB8  
N
N
N
N
The UT_FAULT_RESPONSE command  
instructs the device on what action to take  
in response to an undertemperature fault.  
VIN_OV_FAULT_LIMIT  
Input supply overvoltage fault limit setting. R/W  
16  
8
‘h55  
‘h56  
EEPROM  
EEPROM  
‘hD3C0  
‘h80  
N
N
VIN_OV_FAULT_RESPONSE  
The VIN_OV_FAULT_RESPONSE command R/W  
instructs the device on what action to take  
in response to an input overvoltage fault.  
VIN_OV_WARN_LIMIT  
VIN_UV_WARN_LIMIT  
VIN_UV_FAULT_LIMIT  
VIN_UV_FAULT_RESPONSE  
Overvoltage input supply warning limit  
setting.  
R/W  
R/W  
R/W  
16  
16  
16  
8
‘h57  
‘h58  
‘h59  
‘h5A  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
‘hD380  
‘h8000  
‘h8000  
‘h00  
N
N
N
N
Undervoltage input supply warning limit  
setting.  
Undervoltage input supply fault limit  
setting.  
The VIN_UV_FAULT_RESPONSE command R/W  
instructs the device on what action to take  
in response to an input undervoltage fault.  
POWER_GOOD_ON  
POWER_GOOD_OFF  
TON_DELAY  
Output voltage at or above which a power  
good should be asserted.  
R/W  
R/W  
R/W  
R/W  
16  
16  
16  
16  
‘h5E  
‘h5F  
‘h60  
‘h61  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
‘h1EB8  
‘h1E14  
‘hBA00  
‘hD280  
Y
Y
Y
Y
Output voltage at or below which a power  
good should be deasserted.  
Time, in ms, from CONTROL and/or  
Operation on to V  
on.  
OUT_EN  
TON_RISE  
Time, in ms, from when the output starts  
to rise until the LTC2978 optionally soft-  
connects its voltage-buffered current DAC  
and begins to servo the output voltage to  
the desired value.  
TON_MAX_FAULT_LIMIT  
Maximum time, in ms, from V  
R/W  
R/W  
16  
8
‘h62  
‘h63  
EEPROM  
EEPROM  
‘hD3C0  
‘hB8  
Y
OUT_EN  
on assertion that an UV condition will  
be tolerated before a TON_MAX_FAULT  
condition results.  
TON_MAX_FAULT_RESPONSE  
Specifies response to a TON_MAX_FAULT  
event.  
Y
2978fa  
ꢀꢈ  
LTC2978  
operaTion  
Summary  
DATA  
NV  
LENGTH COMMAND MEMORY DEFAULT PAGED  
COMMAND FUNCTION  
DESCRIPTION  
R/W  
(BITS) BYTE VALUE  
TYPE  
VALUE  
?
TOFF_DELAY  
Time, in ms, from CONTROL and/or  
Operation off to VOUT_EN off.  
R/W  
16  
‘h64  
EEPROM  
‘hBA00  
Y
STATUS_BYTE  
Fault status reporting.  
R
R
8
‘h78  
‘h79  
NA  
NA  
Y
Y
STATUS_WORD  
The STATUS_WORD command returns  
two bytes of information with a summary  
of the unit’s fault condition.  
16  
STATUS_VOUT  
STATUS_INPUT  
Voltage fault status reporting.  
R
R
8
8
‘h7A  
‘h7C  
NA  
NA  
Y
N
The STATUS_INPUT command returns one  
byte with status on V  
.
IN_SNS  
STATUS_TEMPERATURE  
STATUS_CML  
The STATUS_TEMPERATURE command  
returns one byte with status information  
on temperature.  
R
R
R
8
8
8
‘h7D  
‘h7E  
‘h80  
NA  
NA  
NA  
N
N
Y
The STATUS_CML command returns  
one byte with status information on  
communication and memory.  
STATUS_MFR_SPECIFIC  
The STATUS_MFR_SPECIFIC command  
returns one byte with the manufacturer  
specific status information.  
READ_VIN  
Input supply voltage read back.  
R
R
16  
16  
16  
8
‘h88  
‘h8B  
‘h8D  
‘h98  
‘hD0  
NA  
NA  
N
Y
N
N
Y
READ_VOUT  
DC/DC converter output voltage read back.  
Internal junction temperature read back.  
Read the supported PMBus revision (1.1).  
READ_TEMPERATURE_1  
PMBUS_REVISION  
MFR_CONFIG  
R
NA  
R
ROM  
‘h11  
‘h0080  
Manufacturer configuration bits that are  
channel specific.  
R/W  
16  
EEPROM  
MFR_CONFIG_ALL  
Manufacturer configuration bits that are  
common to all pages.  
R/W  
R/W  
8
8
‘hD1  
‘hD2  
EEPROM  
EEPROM  
‘h7B  
‘h00  
N
Y
MFR_FAULTBz0_PROPAGATE  
Manufacturer configuration that  
determines which channel faults are  
propagated to FAULTBz0 where z = 0 for  
channels 0-3, and z=1 for channels 4-7.  
MFR_FAULTBz1_PROPAGATE  
Manufacturer configuration that  
determines which channel faults are  
propagated to FAULTBz1.  
R/W  
8
‘hD3  
EEPROM  
‘h00  
Y
MFR_PWRGD_EN  
Maps PWRGD status to the PWRGD pin.  
R/W  
R/W  
16  
8
‘hD4  
‘hD5  
EEPROM  
EEPROM  
‘h0000  
‘h00  
N
N
MFR_FAULTB00_RESPONSE  
Determines response to FAULTB00 pin  
being asserted low.  
MFR_FAULTB01_RESPONSE  
MFR_FAULTB10_RESPONSE  
MFR_FAULTB11_RESPONSE  
MFR_VINEN_OV_FAULT_RESPONSE  
Determines response to FAULTB01 pin  
being asserted low.  
R/W  
R/W  
R/W  
R/W  
8
8
8
8
‘hD6  
‘hD7  
‘hD8  
‘hD9  
EEPROM  
EEPROM  
EEPROM  
EEPROM  
‘h00  
‘h00  
‘h00  
‘h00  
N
N
N
N
Determines response to FAULTB10 pin  
being asserted low.  
Determines response to FAULTB11 pin  
being asserted low.  
Determines the response of the VIN_EN  
pin to a VOUT_OV_FAULT  
2978fa  
ꢁ0  
LTC2978  
operaTion  
Summary  
DATA  
NV  
LENGTH COMMAND MEMORY DEFAULT PAGED  
COMMAND FUNCTION  
DESCRIPTION  
R/W  
(BITS) BYTE VALUE  
TYPE  
VALUE  
?
MFR_VINEN_UV_FAULT_RESPONSE  
Determines the response of the VIN_EN  
pin to a VOUT_UV_FAULT  
R/W  
8
‘hDA  
EEPROM  
‘h00  
N
MFR_RETRY_DELAY  
Sets retry interval during retry mode.  
R/W  
R/W  
16  
16  
‘hDB  
‘hDC  
EEPROM  
EEPROM  
‘hF320  
‘hFB20  
N
N
MFR_RESTART_DELAY  
Sets delay from actual CONTROL active  
edge to virtual CONTROL active edge.  
MFR_VOUT_PEAK  
MFR_VIN_PEAK  
Returns the maximum measured value of  
OUT  
R
R
16  
16  
16  
16  
‘hDD  
‘hDE  
‘hDF  
‘hE0  
NA  
NA  
Y
N
N
Y
V
.
Returns the maximum measured value of  
V
.
IN_SNS  
MFR_TEMPERATURE_PEAK  
MFR_DAC  
Returns the maximum measured value of  
temperature.  
R
NA  
Manufacturer register that contains the  
code of the 10-bit voltage-buffered current  
DAC.  
R/W  
EEPROM  
EEPROM  
‘h0000  
MFR_POWERGOOD_ASSERTION_DELAY Determines power good output assertion  
delay.  
R/W  
16  
‘hE1  
‘hEB20  
N
MFR_WATCHDOG_T_FIRST  
MFR_WATCHDOG_T  
First watchdog timer interval.  
Watchdog timer interval.  
R/W  
R/W  
R/W  
16  
16  
8
‘hE2  
‘hE3  
‘hE4  
EEPROM  
EEPROM  
EEPROM  
‘h8000  
‘h8000  
‘hFF  
N
N
N
MFR_PAGE_FF_MASK  
Selects which channels respond to global  
page commands.  
MFR_PADS  
Returns values detected and driven onto  
digital I/O pads.  
R
16  
8
‘hE5  
‘hE6  
‘hE7  
‘hE8  
N/A  
‘h5C  
N
N
N
Y
MFR_I2C_BASE_ADDRESS  
MFR_SPECIAL_ID  
MFR_SPECIAL_LOT  
This register determines the base value of  
R/W  
R
EEPROM  
EEPROM  
2
the I C address byte.  
This register contains the manufacturer  
code for identifying the LTC2978.  
16  
8
‘h0121  
These registers contain customer  
dependent codes that identify the factory  
programmed user configuration stored in  
EEPROM.  
R/W  
EEPROM Contact  
the  
Factory  
MFR_VOUT_DISCHARGE_THRESHOLD  
MFR_FAULT_LOG_STORE  
Coefficient used to multiply VOUT_  
COMMAND in order to determine VOUT  
OFF threshold voltage.  
R/W  
W
16  
0
‘hE9  
‘hEA  
‘hEB  
‘hEC  
EEPROM  
‘hC200  
NA  
Y
N
N
N
Command a transfer of the fault log from  
RAM to EEPROM. This causes the part to  
behave as if a channel has faulted off.  
MFR_FAULT_LOG_RESTORE  
MFR_FAULT_LOG_CLEAR  
Command a transfer of the fault log  
previously stored in EEPROM back to  
RAM.  
W
0
NA  
Initialize the EEPROM block reserved for  
fault logging and clear any previous fault  
logging locks.  
W
0
NA  
MFR_FAULT_LOG_STATUS  
MFR_FAULT_LOG  
This command returns one byte with  
status information on fault logging.  
R
R
8
‘hED  
‘hEE  
EEPROM  
EEPROM  
NA  
NA  
N
N
Fault log. Accessed using a block read.  
Returns data in the form last in first out.  
2048  
2978fa  
ꢁꢀ  
LTC2978  
operaTion  
Summary  
DATA  
NV  
LENGTH COMMAND MEMORY DEFAULT PAGED  
COMMAND FUNCTION  
DESCRIPTION  
R/W  
(BITS) BYTE VALUE  
TYPE  
VALUE  
?
MFR_COMMON  
Contains manufacturer status bits that are  
common across multiple LTC chips.  
R
8
‘hEF  
NA  
N
MFR_SPARE_0  
MFR_SPARE_2  
MFR_VOUT_MIN  
Scratchpad register.  
R/W  
R/W  
R
16  
16  
16  
‘hF7  
‘hF9  
‘hFB  
EEPROM  
EEPROM  
‘h0000  
‘h0000  
NA  
N
Y
Y
Paged scratchpad register.  
Returns the minimum measured value of  
VOUT.  
MFR_VIN_MIN  
Returns the minimum measured value of  
IN_SNS  
R
R
16  
16  
‘hFC  
‘hFD  
NA  
NA  
N
N
V
.
MFR_TEMPERATURE_MIN  
Returns the minimum measured junction  
temperature value.  
PAGE Data Contents  
BIT(S) SYMBOL PURPOSE  
b[7:0] Page Page operation.  
DETAILED PMBus COMMAND REGISTER  
DESCRIPTIONS  
‘h00: All PMBus commands address channel/page 0.  
‘h01: All PMBus commands address channel/page 1.  
PAGE  
The PAGE command provides the ability to configure,  
control and monitor multiple outputs on one unit. Set-  
ting PAGE = ‘hFF allows PMBus commands that support  
global page programming to be written simultane-  
ously. The only commands that support PAGE = ‘hFF are  
OPERATION and ON_OFF_CONFIG. See MFR_PAGE_FF_  
MASK for additional options. Reading any PMBus register  
withPAGE=hFFreturnsunpredictabledataandwilltrigger  
a CML fault.  
‘h07: All PMBus commands address channel/page 7.  
‘hXX: All nonspecified values reserved.  
‘hFF: PMBus commands that support this global PAGE  
write mode will be written simultaneously.  
2978fa  
ꢁꢁ  
LTC2978  
operaTion  
OPERATION  
The OPERATION command is used to turn the unit on and  
off in conjunction with the CONTROLn pin and ON_OFF_  
CONFIG. This command register responds to the global  
page command. The contents and functions of the data  
byte are shown in the following tables.  
OPERATION Data Contents When On_Off_Config_Use_PMBus Enables Operation_Control  
SYMBOL  
BITS  
Action  
Operation_control[1:0] Operation_margin[1:0]  
Operation_fault[1:0]  
Reserved (read only)  
b[7:6]  
00  
b[5:4]  
XX  
b[3:2]  
XX  
b[1:0]  
00  
Turn off immediately  
Turn on  
10  
00  
XX  
00  
Margin Low (Ignore Faults and  
Warnings)  
10  
01  
01  
00  
Margin Low  
10  
10  
01  
10  
10  
01  
00  
00  
Margin High (Ignore Faults and  
Warnings  
Margin High  
10  
01  
10  
00  
10  
00  
00  
FUNCTION  
Sequence off and margin to  
nominal  
XX  
Sequence off and Margin Low  
(Ignore Faults and Warnings)  
01  
01  
01  
00  
Sequence off and Margin Low  
01  
01  
01  
10  
10  
01  
00  
00  
Sequence off and Margin High  
(Ignore Faults and Warnings)  
Sequence off and Margin High  
Reserved  
01  
10  
10  
00  
All remaining combinations  
OPERATION Data Contents When On_Off_Config is Configured Such That OPERATION Command is Not Used to Command Channel On  
or Off  
SYMBOL  
BITS  
Action  
Operation_control[1:0] Operation_margin[1:0]  
Operation_fault[1:0]  
Reserved (read only)  
b[7:6]  
b[5:4]  
00  
b[3:2]  
XX  
b[1:0]  
00  
Output at Nominal  
00, 01 or 10  
00, 01 or 10  
Margin Low (Ignore faults and  
Warnings)  
01  
01  
00  
Margin Low  
00, 01 or 10  
00, 01 or 10  
01  
10  
10  
01  
00  
00  
FUNCTION  
Margin High (Ignore Faults and  
Warnings  
Margin High  
Reserved  
00, 01 or 10  
10  
10  
00  
All remaining combinations  
2978fa  
ꢁꢂ  
LTC2978  
operaTion  
ON_OFF_CONFIG  
The ON_OFF_CONFIG command configures the combina-  
tion of CONTROLn pin input and PMBus bus commands  
neededtoturntheLTC2978on/off, includingthepower-on  
behavior, as shown in the following table. This command  
register responds to the global page command.  
ON_OFF_CONFIG Data Contents  
BITS(S) SYMBOL  
OPERATION  
b[7:5] Reserved  
Don’t care. Always returns 0.  
b[4] On_off_config_controlled_on  
Control default autonomous power-up operation.  
0: Unit powers up regardless of the CONTROLn pin. Unit always powers up with sequencing. To turn unit on  
without sequencing, set TON_DELAY = 0.  
1: Unit does not power up unless commanded by the CONTROLn pin and/or the OPERATION command on  
the serial bus. If On_off_config[3:2] = 00, the unit never powers up.  
b[3] On_off_config_use_pmbus  
b[2] On_off_config_use_control  
b[1] Reserved  
Controls how the unit responds to commands received via the serial bus.  
0: Unit ignores the Operation_control[1:0].  
1: Unit responds to Operation_control[1:0]. Depending on On_off_config_use_control, the unit may also  
require the CONTROLn pin to be asserted for the unit to start.  
Controls how unit responds to the CONTROLn pin.  
0: Unit ignores the CONTROLn pin.  
1: Unit requires the CONTROLn pin to be asserted to start the unit. Depending on On_off_config_use_  
PMBus the OPERATION command may also be required to instruct the device to start.  
Not supported. Always returns 1.  
b[0] On_off_config_control_fast_off CONTROLn pin turn off action when commanding the unit to turn off  
0: Use the programmed TOFF_DELAY.  
1: Turn off the output and stop transferring energy as quickly as possible. The device does not sink current  
in order to decrease the output voltage fall time.  
2978fa  
ꢁꢃ  
LTC2978  
operaTion  
STORE_USER_ALL. No Data Contents. Accessing this  
command will store all operating memory commands  
with a corresponding EEPROM memory location. It is  
recommended that this command not be executed while  
a unit is enabled since all monitoring is suspended while  
the operating memory is transferred to EEPROM.  
CLEAR_FAULTS  
The CLEAR_FAULTS command is used to clear any status  
faults that have been set. This command clears all bits in  
allunpagedstatusregisters,andthepagedstatusregisters  
selected by the current PAGE setting. At the same time,  
the device negates (clears, releases) its contribution to  
ALERTB.  
RESTORE_USER_ALL. No Data Contents. Accessing  
this command will restore all commands from EEPROM  
Memory. It is recommend that this command not be  
executed while a unit is enabled since all monitoring is  
suspended while the EEPROM is transferred to operating  
memory, and intermediate values from EEPROM may not  
be compatible with the values initially stored in operating  
memory.  
The CLEAR_FAULTS command does not cause a unit that  
has latched off for a fault condition to restart.  
If the fault condition is present after the fault status is  
cleared, the fault status bit shall be set again and the host  
notified by the usual means.  
Note: this command register does not respond to the  
global page command.  
CAPABILITY  
WRITE_PROTECT  
The CAPABILITY command provides a way for a host  
systemtodeterminesomekeycapabilitiesoftheLTC2978.  
This one byte command is read only.  
The WRITE_PROTECT command provides protection  
againstaccidentalprogrammingoftheLTC2978command  
registers.Allsupportedcommandsmayhavetheirparam-  
eters read, regardless of the WRITE_PROTECT setting.  
CAPABILITY Data Contents  
BITS(S) SYMBOL  
OPERATION  
b[7]  
Capability_pec  
Hard coded to 1 indicating Packet  
Error Checking is supported. Reading  
the Mfr_config_all_pec_en bit will  
indicate whether PEC is currently  
required.  
WRITE_PROTECT Data Contents  
BITS(S) SYMBOL  
OPERATION  
b[7:0] Write_protect[7:0] 8’b1000_0000: Disable all writes except  
to the WRITE_PROTECT, PAGE, and  
STORE_USER_ALL commands.  
b[6]  
b[5]  
Capability_scl_max  
Hard coded to 1 indicating the  
maximum supported bus speed is  
400kHz.  
8’b0100_0000: Disable all writes except  
to the WRITE_PROTECT, PAGE, STORE_  
USER_ALL, OPERATION, MFR_PAGE_  
FF_MASK, and CLEAR_FAULTS.  
Capability_smb_alert Hard coded to 1 indicating this device  
does have an ALERTB pin and does  
support the SMBus Alert Response  
Protocol.  
8’b0000_0000: Enable writes to all  
commands.  
8’bxxxx_xxxx: All other values reserved.  
b[4:0] Reserved  
X: Always returns 0.  
STORE_USER_ALL and RESTORE_USER_ALL  
STORE_USER_ALL, RESTORE_USER_ALL commands  
provide access to user nonvolatile EEPROM memory.  
Once a command is stored in EEPROM, it will be restored  
with explicit restore command or when the part emerges  
from power-on reset after power is applied. While either  
of these commands is being processed, the device will  
2
NACK I C writes.  
2978fa  
ꢁꢄ  
LTC2978  
operaTion  
VOUT_MODE  
Output Voltage Related Commands  
The data byte for the VOUT_MODE command is 8 bits  
that consists of a three bit format and a five bit exponent.  
The three bit format specifies PMBus linear mode for all  
output voltage related commands. The five bit exponent  
provides the exponent for the mantissa specified in the  
data word. The LTC2978 device sets the format at the time  
of manufacture. The five bit exponent is read only and is  
set to a value of –13 decimal.  
VOUT_COMMAND, VOUT_MAX, VOUT_MARGIN_  
HIGH, VOUT_MARGIN_LOW, VOUT_OV_FAULT_LIMIT,  
VOUT_OV_WARN_LIMIT, VOUT_UV_WARN_LIMIT,  
VOUT_UV_FAULT_LIMIT, POWER_GOOD_ON and  
POWER_GOOD_OFF  
Thesecommandsusethesameformatandprovidevarious  
servo, margining, and supervising limits for a channel’s  
output voltage. When odd channels are configured to  
measurecurrent,theOV_WARN_LIMIT,UV_WARN_LIMIT,  
OV_FAULT_LIMIT and UV_FAULT_LIMIT commands are  
not supported.  
Output voltage related commands are calculated as fol-  
lows except for odd numbered channels configured to  
measure current:  
N
Voltage = V[15:0] • 2  
Data Contents  
where Voltage is the parameter of interest in volts.  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Vout_command[15:0],  
Vout_max[15:0],  
These commands relate to  
output voltage. The data uses  
the linear mode format as  
defined by VOUT_MODE:  
V is a 16-bit unsigned binary integer for all voltages,  
(e.g. Margin_high[15:0]);  
Vout_margin_high[15:0],  
Vout_margin_low[15:0],  
Vout_ov_fault_limit[15:0],  
Vout_ov_warn_limit[15:0],  
Vout_uv_warn_limit[15:0],  
Vout_uv_fault_limit[15:0],  
Power_good_on[15:0],  
Power_good_off[15:0]  
N=Vout_mode_exponent, isa5-bittwo’scomplementary  
binary integer with a value hardwired to –13 decimal.  
N
V(Symbol) = Y • 2 where  
Y = b[15:0] is an unsigned  
integer and N = Vout_mode_  
parameter is a 5-bit two’s  
complement exponent that’s  
hardwired to –13 decimal.  
Vout_mode_parameter is read only.  
Vout_mode_type is read only.  
VOUT_MODE Data Contents  
Units: V  
BIT(S) SYMBOL  
OPERATION  
b[7:5] Vout_mode_type  
Reports linear mode. Hard wired to  
3’b000.  
b[4:0] Vout_mode_parameter Linear mode exponent. 5-bit two’s  
complement integer. Hardwired to  
‘h13 (–13 decimal).  
2978fa  
ꢁꢅ  
LTC2978  
operaTion  
Input Voltage Related Commands  
TON_DELAY is the amount time in ms that elapses after  
the channel has been allowed on (usually due to CON-  
TROLn pin or OPERATION command) until the channel  
enables the power supply. This delay is counted using  
SHARE_CLK only.  
VIN_ON, VIN_OFF, VIN_OV_FAULT_LIMIT, VIN_OV_  
WARN_LIMIT, VIN_UV_WARN_LIMIT and VIN_UV_  
FAULT_LIMIT  
Thesecommandsusethesameformatandprovidevoltage  
supervising limits for VIN.  
TON_RISE is the amount of time in ms that elapses after  
the power supply has been enabled until the LTC2978’s  
voltage buffered current DAC soft connects and servo’s  
the output voltage to the desired level if Mfr_dac_mode =  
2’b00. This delay is counted using SHARE_CLK only.  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Vin_on[15:0],  
Vin_off[15:0],  
These commands relate to input  
voltage. The data uses the linear  
format:  
TON_MAX_FAULT_LIMITisthemaximumamountoftime  
that can elapse after the power supply has been enabled  
until the LTC2978 unmasks the VOUT_UV_FAULT_LIMIT  
threshold. (Notethatavalueofzeromeansthereisnolimit  
to how long the power supply can attempt to bring up its  
output voltage.) This delay is counted using SHARE_CLK  
only.  
Vin_ov_fault_limit[15:0],  
N
V(Symbol) = Y • 2  
Vin_ov_warn_limit[15:0],  
Vin_uv_warn_limit[15:0],  
Vin_uv_fault_limit[15:0]  
where N = b[15:11] is a 5-bit  
two’s complement integer and  
Y = b[10:0] is an 11-bit two’s  
complement integer  
Units: V.  
TOFF_DELAY is the amount of time that elapses after the  
CONTROLn pin and/or OPERATION command is deas-  
serted until the channel is disabled (soft-off). This delay  
is counted using SHARE_CLK if available, otherwise the  
internal oscillator is used.  
Temperature Related Commands  
OT_FAULT_LIMIT, OT_WARN_LIMIT, UT_WARN_LIMIT  
and UT_FAULT_LIMIT  
These commands provide supervising limits for tem-  
perature.  
Data Contents  
BIT(S) SYMBOL  
b[15:0] Ton_delay[15:0],  
Ton_rise[15:0],  
OPERATION  
Data Contents  
The data uses the linear format:  
BIT(S) SYMBOL  
OPERATION  
N
T(Symbol) = Y • 2  
b[15:0] Ot_fault_limit[15:0], The data uses the linear format:  
Ton_max_fault_limit[15:0], Where N = b[15:11] is a 5-bit  
N
Ot_warn_limit[15:0], T(Symbol) = Y • 2  
two’s complement integer and  
Toff_delay[15:0],  
Ut_warn_limit[15:0], where N = b[15:11] is a 5-bit two’s  
Y = b[10:0] is an 11-bit two’s  
complement integer  
complement integer and  
Ut_fault_limit[15:0]  
Y = b[10:0] is an 11-bit two’s  
complement integer  
The internal timers operate  
on a 10µs internal clock. The  
SHARE_CLK pin may be used to  
synchronize the 10µs timer.  
Units: °C.  
Delays are rounded to the nearest  
10µs  
Timer Limits  
Units: ms. Max value: 655ms  
TON_DELAY, TON_RISE, TON_MAX_FAULT_LIMIT and  
TOFF_DELAY  
These commands share the same format and provide  
sequencing and timer fault and warning delays in ms.  
2978fa  
ꢁꢆ  
LTC2978  
operaTion  
Fault Response for Voltages Measured by the High  
Speed Supervisor  
• Set the appropriate bit(s) in the STATUS_BYTE  
• Set the appropriate bit(s) in the STATUS_WORD  
VOUT_OV_FAULT_RESPONSE and VOUT_UV_FAULT_  
RESPONSE  
Set the appropriate bit in the corresponding STATUS_  
VOUT register, and  
The fault response documented here is for voltages that  
aremeasuredbythehighspeedsupervisor.Thesevoltages  
are measured over a short period of time and may require  
a de-glitch period. Note that in addition to the response  
described by these commands, the LTC2978 will also:  
• Notify the host by pulling the ALERTB pin low.  
Note: Odd numbered channels configured for high resolu-  
tion ADC measurements will not respond to OV/UV faults  
or warnings.  
Data Contents  
BIT(S) SYMBOL  
b[7:6] Vout_ov_fault_response_action, Response action.  
Vout_uv_fault_response_action 2’b00: The unit continues operation without interruption.  
OPERATION  
2’b01: The unit continues operating for the delay time specified by bits[2:0] in increments of Ts_vs.  
If the fault is still present at the end of the delay time, the unit responds as programmed in the retry  
setting (bits [5:3]).  
2’b1X: The device shuts down and responds according to the retry setting in bits [5:3].  
Response action:  
b[5:3] Vout_ov_fault_response_retry,  
Vout_uv_fault_response_retry  
3’b000: A zero value for the retry setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
3’b001-111: The PMBus device attempts to restart continuously, without limitation, using Mfr_retry_delay,  
until it is commanded OFF (by the CONTROL pin or OPERATION command or both), bias power is removed,  
or another fault condition causes the unit to shut down.  
b[2:0] Vout_ov_fault_response_delay, This sample count determines the amount of time a unit is to ignore a fault after it is first detected. Use this  
delay to de-glitch fast faults.  
Vout_uv_fault_response_delay  
3’b000: The unit turns off immediately.  
3’b001 – 3’b111: The unit turns off after b[2:0] samples at the sampling period of Ts_vs (12.2µs typical).  
2978fa  
ꢁꢇ  
LTC2978  
operaTion  
Fault Response for Values Measured by the ADC  
• Set the appropriate bit(s) in the STATUS_BYTE  
• Set the appropriate bit(s) in the STATUS_WORD  
OT_FAULT_RESPONSE, UT_FAULT_RESPONSE,  
VIN_OV_FAULT_RESPONSE and VIN_UV_FAULT_  
RESPONSE  
• SettheappropriatebitinthecorrespondingSTATUS_VIN  
or STATUS_TEMPERATURE register, and  
The fault response documented here is for values that are  
measured by the ADC. These values are measured over a  
longer period of time and are not de-glitched. Note that in  
addition to the response described by these commands,  
the LTC2978 will also:  
• Notify the host by pulling the ALERTB pin low.  
Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:6] Ot_fault_response_action,  
Ut_fault_response_action,  
Response action:  
2’b00: The unit continues operation without interruption.  
Vin_ov_fault_response_action, 2’b01: The device shuts down and responds according to the retry setting in bits [5:3].  
Vin_uv_fault_response_action 2’b10: The device shuts down and responds according to the retry setting in bits [5:3].  
2’b11: The device shuts down and responds according to the retry setting in bits [5:3].  
b[5:3] Ot_fault_response_retry,  
Response action:  
Ut_fault_response_retry,  
3’b000: A zero value for the retry setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
Vin_ov_fault_response_retry,  
Vin_uv_fault_response_retry  
3’b001-111: The PMBus device attempts to restart continuously, without limitation, using Mfr_retry_delay,  
until it is commanded OFF (by the CONTROLn pin or OPERATION command or both), bias power is removed,  
or another fault condition causes the unit to shut down.  
b[2:0] Ot_fault_response_delay,  
Ut_fault_response_delay,  
Hard coded to 3’b000. The unit turns off immediately.  
Vin_ov_fault_response_delay,  
Vin_uv_fault_response_delay  
2978fa  
ꢁꢈ  
LTC2978  
operaTion  
Timed Fault Response  
The device also:  
• Sets the HIGH_BYTE bit in the STATUS_BYTE,  
• Sets the VOUT bit in the STATUS_WORD,  
TON_MAX_FAULT_RESPONSE  
This command defines the LTC2978 response to a  
TON_MAX_FAULT. At start-up, the TON_MAX_FAULT_  
RESPONSE is disarmed once the output voltage reaches  
the VOUT_UNDER_VOLTAGE_LIMIT. The only way to  
protect against a short-circuited output at start-up is  
to take action in response to a TON_MAX_FAULT since  
VOUT_UV_FAULT_RESPONSEisnotarmeduntiltheoutput  
reaches the VOUT_UNDER_VOLTAGE_LIMIT.  
• Sets the TON_MAX_FAULT bit in the STATUS_VOUT  
register, and  
• Notifies the host by asserting ALERTB.  
TON_MAX_FAULT_RESPONSE Data Contents  
BIT(S) SYMBOL  
b[7:6] Ton_max_fault_response_action Response action.  
2’b00: The unit continues operation without interruption.  
OPERATION  
2’b01: The unit continues operating for the delay time specified which for this type of fault corresponds to an  
immediate shutdown. After shutting off, the device responds according to the retry settings in bits [5:3].  
2’b1X: The device shuts down and responds according to the retry setting in bits [5:3].  
Response action:  
b[5:3] Ton_max_fault_response_retry  
3’b000: A zero value for the Retry Setting means that the unit does not attempt to restart. The output remains  
disabled until the fault is cleared.  
3’b001-111: The PMBus device attempts to restart continuously, without limitation, using Mfr_retry_delay,  
until it is commanded OFF (by the CONTROLn pin or OPERATION command or both), bias power is removed,  
or another fault condition causes the unit to shut down.  
b[2:0] Ton_max_fault_response_delay Hard coded to 3’b000. The unit turns off immediately.  
2978fa  
ꢂ0  
LTC2978  
operaTion  
STATUS_WORD Data Contents  
BIT(S) SYMBOL  
STATUS_BYTE:  
OPERATION  
The STATUS_BYTE command returns the summary of the  
most critical faults or warnings which have occurred, as  
shown in the following table:  
b[15] Status_word_vout  
An output voltage fault or  
warning has occurred.  
b[14] Status_word_iout  
b[13] Status_word_input  
Notsupported.Alwaysreturns0.  
An input voltage fault or  
warning has occurred.  
STATUS_BYTE Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[12] Status_word_mfr  
A manufacturer specific fault  
has occurred.  
b[7] Status_byte_busy  
Device busy when PMBus command  
received.  
b[11] Status_word_power_not_good The POWER_GOOD signal, if  
b[6] Status_byte_off  
This bit is asserted if the unit is  
not providing power to the output,  
regardless of the reason, including  
simply not being enabled.  
present is negated. Power is  
not good.  
b[10] Status_word_cooling  
b[9] Status_word_other  
b[8] Status_word_unknown  
b[7] Status_word_busy  
Notsupported.Alwaysreturns0.  
Notsupported.Alwaysreturns0.  
Notsupported.Alwaysreturns0.  
b[5] Status_byte_vout_ov  
An output overvoltage fault has  
occurred.  
b[4] Status_byte_iout_oc  
b[3] Status_byte_vin_uv  
b[2] Status_byte_temp  
Not supported. Always returns 0.  
Device busy when PMBus  
command received.  
A V undervoltage fault has occurred.  
IN  
b[6] Status_word_off  
Status_byte_off  
A temperature fault or warning has  
occurred.  
b[5] Status_word_vout_ov  
b[4] Status_word_iout_oc  
b[3] Status_word_vin_uv  
b[2] Status_word_temp  
b[1] Status_word_cml  
Status_byte_vout_ov  
Notsupported.Alwaysreturns0.  
Status_byte_vin_uv  
Status_byte_temp  
b[1] Status_byte_cml  
A communication, memory or logic  
fault has occurred.  
b[0] Status_byte_high_byte Fault/warning not listed in b[7:1].  
Status_byte_cml  
STATUS_WORD:  
b[0] Status_word_high_byte  
A bit in the high byte of the  
STATUS_WORD (b[15:8]) is  
set.  
The STATUS_WORD command returns two bytes of infor-  
mation with a summary of the unit’s fault condition. Based  
on the information in these bytes, the host can get more  
information by reading the appropriate status byte.  
The low byte of the STATUS_WORD is the same register  
as the STATUS_BYTE command.  
2978fa  
ꢂꢀ  
LTC2978  
operaTion  
STATUS_VOUT  
STATUS_TEMPERATURE  
The STATUS_VOUT command returns the summary of  
the voltage faults or warnings which have occurred, as  
shown in the following table:  
The STATUS_TEMPERATURE command returns the sum-  
mary of the temperature faults or warnings which have  
occurred, as shown in the following table:  
STATUS_VOUT Data Contents  
STATUS_TEMPERATURE Data Contents  
BIT(S) SYMBOL  
OPERATION  
Bit(s) Symbol  
Operation  
b[7] Status_vout_ov_fault  
b[6] Status_vout_ov_warn  
b[5] Status_vout_uv_warn  
b[4] Status_vout_uv_fault  
b[3] Status_vout_max_fault  
Overvoltage fault.  
Overvoltage warning.  
Undervoltage warning  
Undervoltage fault.  
b[7] Status_temperature_ot_fault  
b[6] Status_temperature_ot_warn  
b[5] Status_temperature_ut_warn  
b[4] Status_temperature_ut_fault  
b[3] Reserved  
Overtemperature fault.  
Overtemperature warning.  
Undertemperature warning.  
Undertemperature fault.  
Reserved. Always returns 0.  
Reserved. Always returns 0.  
Reserved. Always returns 0.  
Reserved. Always returns 0.  
VOUT_MAX fault. An attempt  
has been made to set the output  
voltage to a value higher than  
allowed by the VOUT_MAX  
command.  
b[2] Reserved  
b[1] Reserved  
b[0] Reserved  
b[2] Status_vout_ton_max_fault TON_MAX_FAULT sequencing  
fault.  
STATUS_CML  
b[1] Status_vout_toff_max_warn Not supported. Always returns 0.  
b[0] Status_vout_tracking_error Not supported. Always returns 0.  
The STATUS_CML command returns the summary of the  
communication, memory and logic faults or warnings  
which have occurred, as shown in the following table:  
STATUS_INPUT  
The STATUS_INPUT command returns the summary of  
STATUS_CML Data Contents  
BIT(S) SYMBOL  
the V faults or warnings which have occurred, as shown  
IN  
OPERATION  
in the following table:  
b[7] Status_cml_cmd_fault  
1 = An illegal or unsupported  
command fault has occurred.  
STATUS_INPUT Data Contents  
BIT(S) SYMBOL  
0 = No fault has occurred.  
OPERATION  
b[6] Status_cml_data_fault  
1 = Illegal or unsupported data  
received.  
b[7] Status_input_ov_fault  
b[6] Status_input_ov_warn  
b[5] Status_input_uv_warn  
b[4] Status_input_uv_fault  
b[3] Status_input_off  
V
V
V
V
Overvoltage fault  
IN  
IN  
IN  
IN  
Overvoltage warning  
Undervoltage warning  
Undervoltage fault  
0 = No fault has occurred.  
1 = A PEC fault has occurred.  
0 = No fault has occurred.  
b[5] Status_cml_pec_fault  
b[4] Status_cml_memory_fault  
1 = A fault has occurred in the  
NVM.  
Unit is off for insufficient input voltage.  
Not supported. Always returns 0.  
Not supported. Always returns 0.  
Not supported. Always returns 0.  
b[2]  
b[1]  
I
I
overcurrent fault  
overcurrent warn  
IN  
IN  
0 = No fault has occurred.  
b[3] Status_cml_processor_fault Not supported, always returns 0.  
b[0] PIN overpower warn  
b[2] Reserved  
Not supported, always returns 0.  
b[1] Status_cml_PMBus_fault  
1 = A communication fault other  
than ones listed in this table has  
occurred.  
0 = No fault has occurred.  
b[0] Status_cml_unknown_fault Not supported, always returns 0.  
2978fa  
ꢂꢁ  
LTC2978  
operaTion  
STATUS_MFR_SPECIFIC  
TheSTATUS_MFR_SPECIFICcommandreturnsmanufac-  
turer specific status flags. Bits marked FAULT = No are  
intended to support polled handshaking; these are not  
latched nor do they assert ALERTB. Bits marked Channel  
= All can be read from any page. Bits marked FAULT = Yes  
assert ALERTB low and are cleared by CLEAR_FAULTS.  
STATUS_MFR_SPECIFIC Data Contents  
BIT(S) SYMBOL  
OPERATION  
1 = A V discharge fault occurred while attempting to enter the ON state  
CHANNEL  
Current Page  
FAULT  
b[7] Status_mfr_discharge  
Yes  
OUT  
0 = No V  
discharge fault has occurred  
OUT  
b[6] Status_mfr_fault1_in  
b[5] Status_mfr_fault0_in  
This channel attempted to turn on while the FAULTBz1 pin was asserted low, Current Page  
or this channel has shut down at least once in response to a FAULTBz1 pin  
asserting low since the last CONTROLn pin toggle, OPERATION command  
ON/OFF cycle or CLEAR_FAULTS command.  
Yes  
Yes  
This channel attempted to turn on while the FAULTBz0 pin was asserted low, Current Page  
or this channel has shut down at least once in response to a FAULTBz0 pin  
asserting low since the last CONTROLn pin toggle, OPERATION command  
ON/OFF cycle or CLEAR_FAULTS command.  
b[4] Status_mfr_servo_target_reached Servo target has been reached.  
Current Page  
Current Page  
Current Page  
No  
No  
b[3] Status_mfr_dac_connected  
b[2] Status_mfr_dac_saturated  
DAC is connected and driving V  
pin.  
DACP  
A previous servo operation terminated with maximum or minimum DAC  
value.  
Yes  
b[1] Status_mfr_vinen_faulted_off  
b[0] Status_mfr_watchdog_fault  
V
has been deasserted due to a VOUT fault.  
All  
All  
No  
IN_EN  
1 = A watchdog fault has occurred.  
0 = No watchdog fault has occurred.  
Yes  
2978fa  
ꢂꢂ  
LTC2978  
operaTion  
ADC Monitoring Commands  
READ_TEMPERATURE_1  
This command returns the most recent ADC measured  
value of junction temperature in °C as determined by the  
LTC2978’s internal temperature sensor.  
READ_VIN  
This command returns the most recent ADC measured  
value of the voltage measured at the V  
pin.  
IN_SNS  
READ_TEMPERATURE_1 Data Contents  
READ_VIN Data Contents  
BIT(S) SYMBOL  
OPERATION  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Read_temperature_1 [15:0] The data uses the linear format:  
N
b[15:0] Read_vin[15:0] The data uses the linear format:  
Temp(Symbol) = Y • 2  
N
V(Symbol) = Y • 2  
Where N = b[15:11] is a 5-bit  
two’s complement integer and  
where N = b[15:11] is a 5-bit two’s  
complement integer and  
Y = b[10:0] is an 11-bit two’s  
complement integer  
Y = b[10:0] is an 11-bit two’s complement  
integer  
Units: °C.  
Units: V  
PMBUS_REVISION  
READ_VOUT  
ThePMBUS_REVISIONcommandregisterisreadonlyand  
reports the LTC2978 compliance to the PMBus standard  
revision 1.1.  
This command returns the most recent ADC measured  
value of the channel’s output voltage. When odd channels  
are configured to measure current, the data contents have  
a slightly modified meaning, as described in the second  
table below.  
PMBUS_REVISION Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:0] PMBus_rev Reports the PMBus standard revision  
compliance. This is hard-coded to ‘h11 for  
revision 1.1.  
READ_VOUT Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Read_vout[15:0] The data uses the linear mode format as  
defined by VOUT_MODE:  
N
V(Read_vout) = Y • 2 where Y = b[15:0] is  
an unsigned integer and N = Vout_mode_  
parameter is a 5-bit two’s complement  
exponent that’s hardwired to –13 decimal.  
Units: V.  
READ_VOUT Data Contents—for Odd Channels Configured to  
Measure Current  
Bit(s) Symbol  
Operation  
b[15:0] Read_vout[15:0] The data uses the linear format:  
N
V(Symbol) = Y • 2  
where N = b[15:11] is a 5-bit two’s  
complement integer and  
Y = b[10:0] is an 11-bit two’s complement  
integer  
Units: mV  
2978fa  
ꢂꢃ  
LTC2978  
operaTion  
MANUFACTURER SPECIFIC COMMANDS  
MFR_CONFIG:  
This command is used to configure various manufacturer  
specific operating parameters for each channel.  
MFR_CONFIG Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:12] Reserved  
Don’t care. Always returns 0.  
b[11] Mfr_config_fast_servo_off  
Disables fast servo when margining or trimming output voltages:  
0: fast-servo enabled.  
1: fast-servo disabled.  
b[10] Mfr_config_supervisor_resolution Selects supervisor resolution:  
0: high resolution – 4mV/LSB, range for V  
1: low resolution – 8mV/LSB, range for V  
is 0V to 3.8V.  
SENSEP  
is 0V to 6.0V.  
SENSEP  
b[9] Mfr_config_adc_hires  
Selects ADC resolution for odd channels. Ignored for even channels (they always use low res).  
0: low resolution – 122µV/LSB.  
1: high resolution – 15.6µV/LSB.  
b[8] Mfr_config_controln_sel  
b[7] Mfr_config_servo_continuous  
Selects the active control pin input (CONTROL0 or CONTROL1) for this channel.  
0: Select CONTROL0 pin.  
1: Select CONTROL1 pin.  
Select whether the UNIT should continuously servo V  
after it has reached a new margin or nominal  
OUT  
target. Only applies when Mfr_dac_mode = 2’b00.  
0: Do not continuously servo V  
after reaching initial target.  
OUT  
1: Continuously servo V  
to target.  
OUT  
b[6] Mfr_config_servo_on_warn  
b[5:4] Mfr_config_dac_mode  
Control re-servo on warning feature. Only applies when Mfr_config_dac_mode = 2’b00 and  
Mfr_config_servo_continuous = 0.  
0: Do not allow the unit to re-servo when a V  
warning threshold is met or exceeded.  
OUT  
1: Allow the unit to re-servo V  
to nominal target if  
OUT  
V
V
≥ V(Vout_ov_warn_limit) or  
≤ V(Vout_uv_warn_limit).  
OUT  
OUT  
Determines how DAC is used when channel enters ON state or is already in ON state.  
00: Soft connect (if needed) and servo to target. Wait for TON_RISE if just entering ON state.  
01: DAC not connected.  
10: DAC connected using value from MFR_DAC command. Does not wait for TON_RISE if just entering ON state.  
11: DAC is soft connected. After soft connect is complete MFR_DAC may be written.  
b[3] Mfr_config_vo_en_wpu_en  
b[2] Mfr_config_vo_en_wpd_en  
V
charge pumped, current-limited pull-up enable.  
O_EN  
0: Disable weak pull-up. V  
1: Use weak current-limited pull-up on V  
For channels 4-7 this bit is treated as a 0 regardless of its value.  
V
driver is three-stated when channel is on.  
O_EN  
when the channel is on.  
O_EN  
current-limited pull-down enable.  
O_EN  
0: Use a fast N-channel device to pull down V  
when the channel is off for any reason.  
O_EN  
1: Use weak current-limited pull-down to discharge V  
when channel is off due to soft stop by the CONTROLn  
O_EN  
pin and/or OPERATION command. If the channel is off due to a fault, use the fast pull-down on V  
For channels 4-7 this bit is treated as a 0 regardless of its value.  
DAC buffer gain.  
.
O_EN  
b[1] Mfr_config_dac_gain  
b[0] Mfr_config_dac_pol  
0: Select DAC buffer gain dac_gain_0 (1.38V full-scale)  
1: Select DAC buffer gain dac_gain_1 (2.65V full-scale)  
DAC output polarity.  
0: Encodes negative (inverting) DC/DC converter trim input.  
1: Encodes positive (noninverting) DC/DC converter trim input.  
2978fa  
ꢂꢄ  
LTC2978  
operaTion  
MFR_CONFIG_ALL:  
This command is used to configure parameters that are  
common to all channels on the IC. They may be set or  
reviewed from any PAGE setting.  
MFR_CONFIG_ALL Data Contents  
MFR_CONFIG_ALL Data Contents  
b[3] Mfr_config_vin_share_enable Allow this unit to hold share-  
clock pin low when VIN_ON  
BIT(S) SYMBOL  
OPERATION  
b[7] Mfr_config_fault_log_enable Enable fault logging to NVM in  
response to Fault.  
has fallen below VIN_OFF. When  
enabled, this unit will also turn  
0: Fault logging to NVM is  
disabled  
all channels off in response to  
share-clock being held low.  
1: Fault logging to NVM is  
enabled  
VIN_ON rising edge to clear all  
latched faults  
0: VIN_ON clear faults feature is  
disabled  
1: VIN_ON clear faults feature is  
enabled  
Selects active polarity of  
control1 pin.  
0: Active low (pull pin low to  
start unit)  
1: Active high (pull pin high to  
start unit)  
Selects active polarity of  
control0 pin.  
0: Share-clock inhibit is disabled  
1: Share-clock inhibit is enabled  
PMBus packet error checking  
enable.  
0: PEC is accepted but not  
required  
1: PEC is required  
Increase PMBus timeout internal  
by a factor of 8.  
0: PMBus timeout is not  
multiplied by a factor of 8  
1: PMBus timeout is multiplied  
by a factor of 8  
b[6] Mfr_vin_on_clr_faults_en  
b[5] Mfr_config_control1_pol  
b[4] Mfr_config_control0_pol  
b[2] Mfr_config_all_pec_en  
b[1] Mfr_config_all_longer_  
pmbus_timeout  
b[0] Mfr_config_all_vinen_wpu_  
dis  
V
charge pumped, current-  
IN_EN  
limited pull-up disable.  
0: Use weak current-limited pull-  
0: Active low (pull pin low to  
start unit)  
1: Active high (pull pin high to  
start unit)  
up on V  
after power-up, as  
IN_EN  
long as no faults have forced  
off.  
V
IN_EN  
1: Disable weak pull-up. V  
driver is three-stated after  
IN_EN  
power-up as long as no faults  
have forced V  
off.  
IN_EN  
2978fa  
ꢂꢅ  
LTC2978  
operaTion  
MFR_FAULTB00_PROPAGATE, MFR_FAULTB01_  
PROPAGATE, MFR_FAULTB10_PROPAGATE and  
MFR_FAULTB11_PROPAGATE  
MFR_FAULTB10_PROPAGATE Data Contents—Fault Zone 1  
(Pages 4-7)  
BIT(S) SYMBOL  
b[7:1] Reserved  
OPERATION  
Don’t care. Always returns 0.  
These manufacturer specific commands enable channels  
that have faulted off to propagate that state to the ap-  
propriate fault pin. There are two zones in the LTC2978.  
In zone 0, faulted off states for channels 0 through 3 can  
be propagated to FAULT00 or FAULT01. In zone 1, faulted  
off states for channels 4 through 7 can be propagated to  
FAULT10 or FAULT11. See Figure 13.  
b[0]  
Mfr_faultb10_propagate  
Enable fault propagation.  
0: FAULTB10 will not be affected if  
a fault is declared.  
1: FAULTB10 will be asserted low  
if a fault is declared.  
MFR_FAULTB11_PROPAGATE Data Contents—Fault Zone 1  
(Pages 4-7)  
MFR_FAULTB00_PROPAGATE Data Contents—Fault Zone 0  
(Pages 0-3)  
BIT(S) SYMBOL  
OPERATION  
b[7:1] Reserved  
Don’t care. Always returns 0.  
BIT(S) SYMBOL  
OPERATION  
b[0]  
Mfr_faultb11_propagate  
Enable fault propagation.  
0: FAULTB11 will not be affected if  
a fault is declared.  
b[7:1] Reserved  
Don’t care. Always returns 0.  
b[0]  
Mfr_faultb00_propagate  
Enable fault propagation.  
1: FAULTB11 will be asserted low  
if a fault is declared.  
0: FAULTB00 will not be affected if  
a fault is declared.  
1: FAULTB00 will be asserted low  
if a fault is declared.  
MFR_FAULTB01_PROPAGATE Data Contents—Fault Zone 0  
(Pages 0-3)  
BIT(S) SYMBOL  
OPERATION  
b[7:1] Reserved  
Don’t care. Always returns 0.  
b[0]  
Mfr_faultb01_propagate  
Enable fault propagation.  
0: FAULTB01 will not be affected if  
a fault is declared.  
1: FAULTB01 will be asserted low  
if a fault is declared.  
2978fa  
ꢂꢆ  
LTC2978  
operaTion  
MFR_PWRGD_EN  
This command register controls the mapping of power  
good status to the power good pin. Note that odd num-  
bered channels whose ADC is in high res mode do not  
contribute to power good.  
MFR_PWRGD_EN Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:9] Reserved  
Read only, always returns 0s.  
Watchdog  
b[8] Mfr_pwrgd_en_wdog  
1 = Watchdog timer not-expired status is ANDed with PWRGD status for any similarly enabled channels to  
determine when the PWRGD pin gets asserted.  
0 = Watchdog timer does not affect the PWRGD pin.  
Channel 7  
b[7] Mfr_pwrgd_en_chan7  
b[6] Mfr_pwrgd_en_chan6  
b[5] Mfr_pwrgd_en_chan5  
b[4] Mfr_pwrgd_en_chan4  
b[3] Mfr_pwrgd_en_chan3  
b[2] Mfr_pwrgd_en_chan2  
b[1] Mfr_pwrgd_en_chan1  
b[0] Mfr_pwrgd_en_chan0  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 6  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 5  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 4  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 3  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 2  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 1  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PRWGD status for this channel does not affect the PWRGD pin.  
Channel 0  
1 = PWRGD status for this channel is ANDed with PWRGD status for any similarly enabled channels to determine  
when the PWRGD pin gets asserted.  
0 = PRWGD status for this channel does not affect the PWRGD pin.  
2978fa  
ꢂꢇ  
LTC2978  
operaTion  
MFR_FAULTB00_RESPONSE, MFR_FAULTB01_  
RESPONSE, MFR_FAULTB10_RESPONSE and MFR_  
FAULTB11_RESPONSE  
when the FAULTB01 pin is asserted. For fault zone 1,  
MFR_FAULTB10_RESPONSE determines how channels  
4-7 respond when the FAULTB10 pin is asserted, and  
MFR_FAULTB11_RESPONSE determines how channels  
4-7 respond when the FAULTB11 pin is asserted. If one  
or more bits in the MFR_FAULTBzn_RESPONSE registers  
are set, a FAULTBzn assertion will cause the ALERTB pin to  
assertlowandsettheappropriatebitintheSTATUS_MFR_  
SPECIFIC register.  
These manufacturer specific commands share the same  
format and specify the response to assertions of the bidi-  
rectional fault pins. For fault zone 0, MFR_FAULTB00_RE-  
SPONSE determines how channels 0-3 respond when  
the FAULTB00 pin is asserted, and MFR_FAULTB01_  
RESPONSE determines how channels 0-3 respond  
Data Contents—Fault Zone 0 Response Commands  
BIT(S) SYMBOL  
OPERATION  
b[7:4] Reserved  
Read only, always returns 0s.  
b[3] Mfr_faultb00_response_chan3, Channel 3 response.  
Mfr_faultb01_response_chan3 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[2] Mfr_faultb00_response_chan2, Channel 2 response.  
Mfr_faultb01_response_chan2 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[1] Mfr_faultb00_response_chan1, Channel 1 response.  
Mfr_faultb01_response_chan1 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[0] Mfr_faultb00_response_chan0, Channel 0 response.  
Mfr_faultb01_response_chan0 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
Data Contents—Fault Zone 1 Response Commands  
BIT(S) SYMBOL  
OPERATION  
b[7:4] Reserved  
Read only, always returns 0s.  
b[3] Mfr_faultb10_response_chan7, Channel 7 response.  
Mfr_faultb11_response_chan7 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[2] Mfr_faultb10_response_chan6, Channel 6 response.  
Mfr_faultb11_response_chan6 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[1] Mfr_faultb10_response_chan5, Channel 5 response.  
Mfr_faultb11_response_chan5 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
b[0] Mfr_faultb10_response_chan4, Channel 4 response.  
Mfr_faultb11_response_chan4 0: The channel continues operation without interruption.  
1: The channel shuts down if the corresponding FAULTBzn pin is still asserted after 10µs. When the FAULTBzn  
pin subsequently deasserts, the channel turns back on, honoring TON_DELAY and TON_RISE settings.  
2978fa  
ꢂꢈ  
LTC2978  
operaTion  
MFR_VINEN_OV_FAULT_RESPONSE  
This command register determines whether V  
voltage faults from a given channel cause the V  
to be forced off.  
over  
IN_EN  
OUT  
pin  
MFR_VINEN_OV_FAULT_RESPONSE Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
Response to channel 7 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
b[7]  
Mfr_vinen_ov_fault_response_chan7  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
b[6]  
b[5]  
b[4]  
b[3]  
b[2]  
b[1]  
b[0]  
Mfr_vinen_ov_fault_response_chan6  
Mfr_vinen_ov_fault_response_chan5  
Mfr_vinen_ov_fault_response_chan4  
Mfr_vinen_ov_fault_response_chan3  
Mfr_vinen_ov_fault_response_chan2  
Mfr_vinen_ov_fault_response_chan1  
Mfr_vinen_ov_fault_response_chan0  
Response to channel 6 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 5 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 4 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 3 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 2 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 1 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 0 VOUT_OV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
2978fa  
ꢃ0  
LTC2978  
operaTion  
MFR_VINEN_UV_FAULT_RESPONSE  
This command register determines whether V  
under  
IN_EN  
OUT  
voltage faults from a given channel cause the V  
pin  
to be forced off.  
MFR_VINEN_UV_FAULT_RESPONSE Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
Response to channel 7 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
b[7]  
Mfr_vinen_uv_fault_response_chan7  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
b[6]  
b[5]  
b[4]  
b[3]  
b[2]  
b[1]  
b[0]  
Mfr_vinen_uv_fault_response_chan6  
Mfr_vinen_uv_fault_response_chan5  
Mfr_vinen_uv_fault_response_chan4  
Mfr_vinen_uv_fault_response_chan3  
Mfr_vinen_uv_fault_response_chan2  
Mfr_vinen_uv_fault_response_chan1  
Mfr_vinen_uv_fault_response_chan0  
Response to channel 6 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 5 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 4 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 3 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 2 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 1 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
Response to channel 0 VOUT_UV_FAULT.  
1 = Disable V via fast pull-down.  
IN_EN  
0 = Leave V  
as-is.  
IN_EN  
2978fa  
ꢃꢀ  
LTC2978  
operaTion  
MFR_RETRY_DELAY  
MFR_VOUT_PEAK  
This command determines the retry interval when the  
LTC2978isinhiccupmodeinresponsetoafaultcondition.  
ThiscommandreturnsthemaximumADCmeasuredvalue  
of the channel’s output voltage. This command is not sup-  
ported for odd channels that are configured to measure  
current. This register is reset to zero when the LTC2978  
emerges from power-on reset or when a CLEAR_FAULTS  
command is executed.  
MFR_RETRY_DELAY Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_retry_delay The data uses the linear format:  
N
T(Symbol) = Y • 2  
MFR_VOUT_PEAK Data Contents  
Where N = b[15:11] is a 5-bit two’s  
complement integer and  
BIT(S) SYMBOL  
OPERATION  
Y = b[10:0] is an 11-bit two’s complement  
integer  
b[15:0] Mfr_vout_peak[15:0] The data uses the linear mode format as  
defined by VOUT_MODE:  
This delay is counted using SHARE_CLK  
only.  
N
V(mfr_vout_peak) = Y • 2 where Y =  
b[15:0] is an unsigned integer and N =  
Vout_mode_parameter is a 5-bit two’s  
complement exponent that’s hardwired  
to –13 decimal.  
Delays are rounded to the nearest 200µs.  
Units: ms. Max delay is 13.1 sec.  
Units: V.  
MFR_RESTART_DELAY  
This command determines how the CONTROLn pins are  
adjusted before use. The time the adjusted version of the  
CONTROLnpinisintheoffpolarityisstretchedbythiscom-  
mand to be at least Mfr_restart_delay ms. CONTROLn pin  
transitionswhoseOFFtimeexceedsMfr_restart_delayare  
not affected by this command. A value of all zeros disables  
thisfeature.  
MFR_VIN_PEAK  
ThiscommandreturnsthemaximumADCmeasuredvalue  
of the input voltage. The contents of this register are reset  
toh7C00whentheLTC2978emergesfrompower-onreset  
or when a CLEAR_FAULTS command is executed.  
MFR_VIN_PEAK Data Contents  
BIT(S) SYMBOL  
OPERATION  
MFR_RESTART_DELAY Data Contents  
b[15:0] Mfr_vin_peak[15:0] The data uses the linear format:  
BIT(S) SYMBOL  
OPERATION  
N
V(Symbol) = Y • 2  
b[15:0] Mfr_restart_delay The data uses the linear format:  
where N = b[15:11] is a 5-bit two’s  
complement integer and  
N
T(Symbol) = Y • 2  
Where N = b[15:11] is a 5-bit two’s  
complement integer and  
Y = b[10:0] is an 11-bit two’s  
complement integer  
Y = b[10:0] is an 11-bit two’s complement  
integer  
Units: V  
This delay is counted using SHARE_CLK  
only.  
MFR_TEMPERATURE_PEAK  
Delays are rounded to the nearest 200µs.  
Units: ms. Max delay is 13.1 sec.  
This command returns the maximum ADC measured  
value of junction temperature in °C as determined by  
the LTC2978’s internal temperature sensor. The contents  
2978fa  
ꢃꢁ  
LTC2978  
operaTion  
of this register are reset to ‘h7C00 when the LTC2978  
emerges from power-on reset or when a CLEAR_FAULTS  
command is executed.  
MFR_WATCHDOG_T_FIRST and MFR_WATCHDOG_T  
TheMFR_WATCHDOG_T_FIRSTregisterallowstheuserto  
program the duration of the first watchdog timer interval  
followingassertionofthePOWERGOODsignal, assuming  
thePOWERGOODsignalreflectsthestatusofthewatchdog  
timer.IfassertionofPOWERGOODisnotconditionedbythe  
watchdogtimer’sstatus,thenMFR_WATCHDOG_T_FIRST  
appliestothersttimingintervalafterthetimerisenabled.  
Writing a value of 0ms to the MFR_WATCHDOG_T_FIRST  
register disables the watchdog timer.  
MFR_TEMPERATURE_PEAK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_temperature_peak[15:0] The data uses the linear format:  
N
V(Symbol) = Y • 2  
Where N = b[15:11] is a 5-bit  
two’s complement integer and  
Y = b[10:0] is an 11-bit two’s  
complement integer  
The MFR_WATCHDOG_T register allows the user to  
program watchdog time intervals subsequent to the  
MFR_WATCHDOG_T_FIRST timing interval. Writing a  
valueof0mstotheMFR_WATCHDOG_Tregisterdisables  
the watchdog timer. A non-zero write to MFR_WATCH-  
DOG_T will reset the watchdog timer.  
Units: °C.  
MFR_DAC  
This command register returns the 10-bit value for the  
voltage-buffered current DAC. This register may be writ-  
ten when Mfr_config_dac_mode is configured for either  
of the two manual DAC modes.  
MFR_WATCHDOG_T_POR and MFR_WATCHDOG_T Data  
Contents  
MFR_DAC Data Contents  
BIT(S) SYMBOL  
BIT(S) SYMBOL  
OPERATION  
OPERATION  
b[15:0] Mfr_watchdog_t_first The data uses the linear format:  
b[15:10] Reserved  
Read only, always returns ‘h3F.  
N
Mfr_watchdog_t  
T(Symbol) = Y • 2  
b[9:0] Mfr_dac_direct_val Voltage-buffered current DAC code value.  
Where N = b[15:11] is a 5-bit two’s  
complement integer and  
Y = b[10:0] is an 11-bit two’s  
complement integer  
MFR_POWERGOOD_ASSERTION_DELAY  
This command register allows the user to program the  
delay from when the internal power good signal becomes  
valid until the power good output is asserted.  
These timers operate on an internal  
clock independent of SHARE_CLK.  
Delays are rounded to the nearest 10µs  
for _t and 1ms for _t_first.  
Writing a zero value for Y to the  
Mfr_watchdog_t or Mfr_watchdog_t_  
first registers will disable the watchdog  
timer.  
Units: ms. Max timeout is 0.6 sec for _t  
and 65 sec for _t_first  
MFR_POWERGOOD_ASSERTION_DELAY Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[15:0] Mfr_powergood_assertion_delay The data uses the linear format:  
N
T(Symbol) = Y • 2  
Where N = b[15:11] is a 5-bit  
two’s complement integer and  
Y = b[10:0] is an 11-bit two’s  
complement integer.  
This delay is counted using  
internal clock independent of  
SHARE_CLK.  
Delays are rounded to the  
nearest 200µs  
Units: ms. Max delay is 13.1  
sec.  
2978fa  
ꢃꢂ  
LTC2978  
operaTion  
MFR_PAGE_FF_MASK  
b[5] Mfr_pads_control1  
b[4] Mfr_pads_control0  
b[3:0] Mfr_pads_faultb[3:0]  
1: Logic high detected on  
CONTROL1 pad  
The MFR_PAGE_FF_MASK command is used to select  
which channels respond when the global page (FF) is in  
use. Note that the only commands that support PAGE =  
‘hFF are OPERATION and ON_OFF_CONFIG.  
0: Logic low detected on  
CONTROL1 pad  
1: Logic high detected on  
CONTROL0 pad  
0: Logic low detected on  
CONTROL0 pad  
Bit[3] used for FAULTB00 pad,  
bit[2] used for FAULTB01 pad,  
bit[1] used for FAULTB10 pad,  
bit[0] used for FAULTB11 pad  
as follows:  
MFR_PAGE_FF_MASK Data Contents  
BIT(S) SYMBOL  
OPERATION  
b[7:0] Mfr_page_ff_mask Global page response enable, per channel  
Each bit enables/disables the  
corresponding channel:  
0 = ignore global page accesses  
1 = fully respond to global page accesses  
1: Logic high detected on  
FAULTBzn pad  
0: Logic low detected on  
FAULTBzn pad  
MFR_PADS  
The MFR_PADS command provides read only access to  
slow frequency digital pads. The input values presented  
in bits[9:0] are before any deglitching logic.  
MFR_I2C_BASE_ADDRESS  
TheMFR_I2C_BASE_ADDRESScommanddeterminesthe  
2
base value for the I C address byte.  
MFR_PADS_PWRGD_DRIVE Data Contents  
BIT(S) SYMBOL  
OPERATION  
MFR_I2C_BASE_ADDRESS Data Contents  
b[15] Mfr_pads_pwrgd_drive  
0 = PWRGD pad is being driven  
low by this chip  
BIT(S) SYMBOL  
OPERATION  
b[7] Reserved  
Read only, always returns 0.  
1 = PWRGD pad is not being  
driven low by this chip  
0 = ALERTB pad is being driven  
low by this chip  
b[6:0] i2c_base_address This 7-bit value determines the base value  
2
of the 7-bit I C address.  
b[14] Mfr_pads_alertb_drive  
MFR_SPECIAL_ID  
1 = ALERTB pad is not being  
driven low by this chip  
This register contains the manufacturer ID for the  
LTC2978.  
b[13:10] Mfr_pads_faultb_drive[3.0] Bit[3] used for FAULTB00 pad,  
bit[2] used for FAULTB01 pad,  
bit[1] used for FAULTB10 pad,  
bit[0] used for FAULTB11 pad  
as follows:  
MFR_SPECIAL_ID Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
0 = FAULTB pad is being driven  
low by this chip  
b[15:0]  
Mfr_special_id  
Read only, always returns ‘h0121  
1 = FAULTB pad is not being  
driven low by this chip  
MFR_SPECIAL_LOT  
b[9:8] Mfr_pads_asel1[1:0]  
b[7:6] Mfr_pads_asel0[1:0]  
11: Logic high detected on ASEL1  
input pad  
Thesepagedregisterscontaininformationthatidentifiesthe  
user configuration that was programmed at the factory.  
10: ASEL1 input pad is floating  
01: Reserved  
MFR_SPECIAL_LOT Data Contents  
00: Logic low detected on ASEL1  
input pad  
11: Logic high detected on ASEL0  
input pad  
BIT(S)  
SYMBOL  
OPERATION  
b[7:0]  
Mfr_special_lot  
Contains the LTC default special lot  
number. Contact the factory to request  
a custom factory programmed user  
configuration and special lot number.  
10: ASEL0 input pad is floating  
01: Reserved  
00: Logic low detected on ASEL0  
input pad  
2978fa  
ꢃꢃ  
LTC2978  
operaTion  
MFR_VOUT_DISCHARGE_THRESHOLD  
MFR_FAULT_LOG_CLEAR  
This register contains the coefficient that multiplies  
VOUT_COMMAND in order to determine the OFF thresh-  
old voltage for the associated output. If the output volt-  
age has not decayed below MFR_VOUT_DISCHARGE_  
THRESHOLD • VOUT_COMMAND prior to the channel  
being commanded to enter/re-enter the ON state, bit [7]  
in the STATUS_MFR_SPECIFIC register will be set and the  
ALERTB pin will be asserted low. In addition, the channel  
will not enter the ON state until the output has decayed  
below its OFF threshold voltage.  
This command initializes the EEPROM block reserved for  
fault logging. Any previous fault log stored in EEPROM  
will be erased by this operation.  
MFR_FAULT_LOG_STATUS  
Read only. This register is used to manage fault log  
events.  
Mfr_fault_log_status_eeprom is set after a MFR_FAULT_  
LOG_STORE command or a faulted-off event triggers a  
transfer of the fault log from RAM to EEPROM. This bit is  
cleared by a MFR_FAULT_LOG_CLEAR command.  
Other channels can be held off if a particular output has  
failed to discharge by using the bidirectional FAULTzn pins  
(refertotheMFR_FAULTBzn_RESPONSEandMFR_FAULT-  
Bzn_PROPAGATE registers).  
Mfr_fault_log_status_ram is set after a MFR_FAULT_  
LOG_RESTORE to indicate that the data in the RAM has  
been restored from EEPROM and not yet read using a  
MFR_FAULT_LOG command. This bit is cleared by a  
MFR_FAULT_LOG command.  
MFR_VOUT_DISCHARGE_THRESHOLD Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
b[15:0]  
Mfr_vout_discharge_ The data uses the linear format:  
N
MFR_FAULT_LOG_STATUS Data Contents  
threshold  
k = Y • 2  
BIT(S) SYMBOL  
OPERATION  
Where N=b[15:11] is a 5-bit two’s  
complement integer and Y= b[10:0]  
is an 11-bit two’s complement  
integer.  
b[1] Mfr_fault_log_status_ram  
Fault log RAM status:  
0: The fault log RAM allows  
updates.  
Units: Dimensionless, this register  
contains a coefficient.  
1: The fault log RAM is locked  
until the next Mfr_fault_log  
read.  
MFR_FAULT_LOG_STORE  
b[0] Mfr_fault_log_status_eeprom Fault log EEPROM status:  
This command allows the user to transfer data from the  
RAM buffer to EEPROM.  
0: The transfer of the fault log  
RAM to the EEPROM is enabled.  
1: The transfer of the fault  
log RAM to the EEPROM is  
inhibited.  
MFR_FAULT_LOG_RESTORE  
This command allows the user to transfer a copy of the  
fault-log data from the EEPROM to the RAM buffer. After  
a restore the RAM buffer is locked until a successful  
Mfr_fault_log read.  
2978fa  
ꢃꢄ  
LTC2978  
operaTion  
MFR_FAULT_LOG  
MFR_FAULT_LOG Data Block Contents  
DATA  
BYTE BLOCK READ COMMAND  
Read only. This 2048-bit data block contains a copy of  
the RAM buffer fault log. The RAM buffer is continuously  
updated after each ADC conversion as long as Mfr_fault_  
log_status_ramisclear.WithMfr_config_fault_log_en=1  
and Mfr_fault_log_status_eeprom = 0, the RAM buffer is  
transferredtoEEPROMwheneveranLTC2978faultcauses  
a channel to latch off or a MFR_FAULT_LOG_STORE com-  
mand is received. Mfr_fault_log_status_eeprom is set  
high after the RAM buffer is transferred to EEPROM and  
not cleared until a Mfr_fault_log_clear is received; even if  
the LTC2978 is reset or powered down. Fault log EEPROM  
transfers are not initiated as a result of Status_mfr_dis-  
charge, Status_mfr_fault1_in or Status_mfr_fault0_in  
events. During a Mfr_fault_log read, data is returned one  
byte at a time as defined by the following table. The fault  
log stores approximately 1 to 2 seconds of telemetry.  
Mfr_vin_min[15:8]  
Mfr_vout_peak2[7:0]  
Mfr_vout_peak2[15:8]  
Mfr_vout_min2[7:0]  
Mfr_vout_min2[15:8]  
Mfr_vout_peak3[7:0]  
Mfr_vout_peak3[15:8]  
Mfr_vout_min3[7:0]  
Mfr_vout_min3[15:8]  
Mfr_temp_peak[7:0]  
Mfr_temp_peak[15:8]  
Mfr_ temp_min[7:0]  
Mfr_ temp_min[15:8]  
Mfr_vout_peak4[7:0]  
Mfr_vout_peak4[15:8]  
Mfr_vout_min4[7:0]  
Mfr_vout_min4[15:8]  
Mfr_vout_peak5[7:0]  
Mfr_vout_peak5[15:8]  
Mfr_vout_min5[7:0]  
Mfr_vout_min5[15:8]  
Mfr_vout_peak6[7:0]  
Mfr_vout_peak6[15:8]  
Mfr_vout_min6[7:0]  
Mfr_vout_min6[15:8]  
Mfr_vout_peak7[7:0]  
Mfr_vout_peak7[15:8]  
Mfr_vout_min7[7:0]  
Mfr_vout_min7[15:8]  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
MFR_FAULT_LOG Data Block Contents  
DATA  
BYTE BLOCK READ COMMAND  
Position_last[7:0]  
0
Position of fault log pointer  
when fault occurred.  
SharedTime[7:0]  
1
2
3
4
5
41-bit share-clock counter  
value when fault occurred.  
Counter LSB is in 200µs  
increments. This counter is  
cleared at power-up or after  
the LTC2978 is reset  
SharedTime[15:8]  
SharedTime[23:16]  
SharedTime[31:24]  
SharedTime[39:32]  
SharedTime[40]  
6
Mfr_vout_peak0[7:0]  
Mfr_vout_peak0[15:8]  
Mfr_vout_min0[7:0]  
Mfr_vout_min0[15:8]  
Mfr_vout_peak1[7:0]  
Mfr_vout_peak1[15:8]  
Mfr_vout_min1[7:0]  
Mfr_vout_min1[15:8]  
Mfr_vin_peak[7:0]  
Mfr_vin_peak[15:8]  
Mfr_vin_min[7:0]  
7
8
9
47 bytes for preamble  
Fault_log [Position_last]  
Fault_log [Position_last-1]  
.
.
47  
48  
10  
11  
12  
13  
14  
15  
16  
17  
.
Fault_log [Position_last-201]  
Reserved  
247  
248-255  
Number of loops  
(248-47)/40 = 5  
2978fa  
ꢃꢅ  
LTC2978  
operaTion  
Data is logged into memory in the order shown in the  
POSITION  
DATA  
32  
33  
34  
35  
36  
37  
38  
39  
Read_vout6[7:0]  
Read_vout6[15:8]  
Status_vout6  
following table.  
When data is returned during a block read it is returned in  
reverseorderbasedonthevalueofPosition_last[7:0].Data  
byteRead_vout0[7:0]isfollowedbyStatus_mfrofpage7.  
Example: If Position_last = 9 then the first data returned in  
byteposition47ofablockreadisRead_vin[15:8]followed  
by Read_vin[7:0] followed by Status_mfr of page 1.  
Status_mfr6  
Read_vout7[7:0]  
Read_vout7[15:8]  
Status_vout7  
Status_mfr7  
Total Bytes =40  
POSITION  
0
DATA  
Read_vout0[7:0]  
Read_vout0[15:8]  
Status_vout0  
MFR_COMMON  
1
2
This command returns status information for the share-  
clock pin (SCLK) and the write-protect pin (WP).  
3
Status_mfr0  
4
5
6
Read_vout1[7:0]  
Read_vout1[15:8]  
Status_vout1  
MFR_COMMON Data Contents  
BIT(S)  
b[7:2]  
b[1]  
SYMBOL  
OPERATION  
7
Status_mfr1  
Reserved  
Read only, always returns 0s  
Returns status of share-clock pin  
1: Share-clock pin is being held low  
0: Share-clock pin is active  
Returns status of write-protect pin  
1: Write-protect pin is high  
0: Write-protect pin is low  
8
9
Read_vin[7:0]  
Read_vin[15:8]  
Status_vin  
Mfr_common_  
share_clk  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Reserved  
b[0]  
Mfr_common_  
write_protect  
Read_vout2[7:0]  
Read_vout2[15:8]  
Status_vout2  
Status_mfr2  
MFR_SPARE0  
Read_vout3[7:0]  
Read_vout3[15:8]  
Status_vout3  
This 16-bit wide registers can be used to store miscel-  
laneous information. The contents of these registers  
may be stored and recalled from EEPROM using the  
STORE_USER_ALL and RESTORE_USER_ALL com-  
mands, respectively.  
Status_mfr3  
Read_temperature_1[7:0]  
Read_temperature_1[15:8]  
Status_temp  
Reserved  
Read_vout4[7:0]  
Read_vout4[15:8]  
Status_vout4  
MFR_SPARE2  
These 16-bit wide, paged registers can be used to store  
miscellaneous information. The contents of these reg-  
isters may be stored and recalled from EEPROM using  
the STORE_USER_ALL and RESTORE_USER_ALL com-  
mands, respectively.  
Status_mfr4  
Read_vout5[7:0]  
Read_vout5[15:8]  
Status_vout5  
Status_mfr5  
2978fa  
ꢃꢆ  
LTC2978  
operaTion  
MFR_VOUT_MIN  
MFR_TEMPERATURE_MIN  
ThiscommandreturnstheminimumADCmeasuredvalue  
of the channel’s output voltage. The contents of this reg-  
ister is reset to ‘hFFFF when the LTC2978 emerges from  
power-on reset or when a CLEAR_FAULTS command is  
executed. When odd channels are configured to measure  
current, this command is not supported.  
This command returns the minimum ADC measured  
value of junction temperature in °C as determined by the  
LTC2978’s internal temperature sensor. The contents of  
this register is reset to ‘h7BFF when the LTC2978 emerges  
frompower-onresetorwhenaCLEAR_FAULTScommand  
is executed.  
MFR_TEMPERATURE_MIN Data Contents  
MFR_VOUT_MIN Data Contents  
BIT(S) SYMBOL  
OPERATION  
BIT(S)  
SYMBOL  
OPERATION  
b[15:0] Mfr_temperature_min The data uses the linear format:  
b[15:0]  
Mfr_vout_min  
The data uses the linear mode format  
as defined by VOUT_MODE:  
N
V(mfr_vin_min) = Y • 2  
N
V(mfr_vout_min) = Y • 2  
Where N = b[15:11] is a 5-bit two’s  
complement integer and  
Where Y = b[15:0] is an unsigned  
integer and N = Vout_mode_parameter  
is a 5-bit two’s complement exponent  
that’s hardwired to a value of –13  
decimal.  
Y = b[10:0] is an 11-bit two’s  
complement integer  
Units: °C.  
Units: V.  
MFR_VIN_MIN  
ThiscommandreturnstheminimumADCmeasuredvalue  
of the input voltage. The contents of this register is reset  
to ‘h7BFF when the LTC2978 emerges from power-on  
reset or when a CLEAR_FAULTS command is executed.  
Updates are disabled when unit is off for insufficient input  
voltage.  
MFR_VIN_MIN Data Contents  
BIT(S)  
SYMBOL  
OPERATION  
b[15:0]  
Mfr_vin_min  
The data uses the linear format:  
N
V(mfr_vin_min) = Y • 2  
Where N = b[15:11] is a 5-bit two’s  
complement integer and  
Y = b[10:0] is an 11-bit two’s  
complement integer  
Units: V.  
2978fa  
ꢃꢇ  
LTC2978  
operaTion  
WATCHDOG  
OTHER OPERATIONS  
Clock Sharing  
A non-zero write to the MFR_WATCHDOG_T register will  
reset the watchdog timer. Low-to-high transitions on the  
WDIpinalsoresetthewatchdogtimer. Ifthetimerexpires,  
ALERTB is asserted and the PWRGD output is optionally  
deasserted and then reasserted after MFR_PWRGD_AS-  
SERTION_DELAYms.Writing0toeithertheMFR_WATCH-  
DOG_T or MFR_WATCHDOG_T_FIRST registers will  
disable the timer.  
MultipleLTC2978scansynchronizetheirclocksinanappli-  
cationbyconnectingtogethertheopen-drainSHARE_CLK  
input/outputs to a pull-up resistor as a wired AND. In this  
case the fastest clock will take over and synchronize all  
LTC2978s.  
The LTC2978 can be configured to respond to the  
SHARE_CLK pin being held low by disabling all channels  
after a brief de-glitch period. When the SHARE_CLK pin  
is allowed to rise, the LTC2978 will respond by beginning  
a soft-start sequence.  
RESET  
Holding the WDI pin low for more than t  
will cause  
RESETB  
the LTC2978 to enter the power-on reset state. Following  
the subsequent rising-edge of the WDI pin, the LTC2978  
willexecuteitspower-onsequencepertheuserconfigura-  
tion stored in EEPROM.  
The LTC2978 can be configured to hold SHARE_CLK  
low when the unit is off for insufficient input voltage by  
writing b[3] = 1 “mfr_config_vin_share_enable” of the  
MFR_CONFIG_ALL register.  
WRITE-PROTECT PIN  
The WP pin allows the user to write-protect the LTC2978’s  
configuration registers. The WP pin is active high, and  
when asserted it overrides the WRITE_PROTECT com-  
mand register. All registers are write-protected by the  
WP pin except for PAGE, OPERATION, CLEAR_FAULTS,  
MFR_PAGE_FF_MASK and STORE_USER_ALL.  
2978fa  
ꢃꢈ  
LTC2978  
applicaTions inForMaTion  
LTC2978 Overview  
Some examples of typical ON/OFF configurations are:  
1. A DC/DC may be configured to turn on anytime V  
The LTC2978 is a power management IC that is capable  
of sequencing, margining, trimming, OV/UV supervision,  
providing fault management, and voltage read back for  
eight DC/DC converters. Input voltage and temperature  
readbackisalsoavailable.Oddnumberedchannelscanbe  
configured to read back sense resistor voltages. Multiple  
LTC2978s can be synchronized to operate in unison using  
theSHARE_CLK,FAULTBandCONTROLpins.TheLTC2978  
utilizes a PMBus compliant interface and command set.  
IN  
exceeds V  
.
IN_ON  
2. A DC/DC may be configured to turn on only when it  
receives an OPERATION command.  
3. A DC/DC may be configured to turn on only via the  
CONTROL pin.  
4. A DC/DC may be configured to turn on only when it  
receives an OPERATION command and the CONTROL  
pin is asserted.  
Setting Command Register Values  
On Sequencing  
The command register settings described herein are for  
the purpose of understanding and software development  
in a host processor. In actual practice, the LTC2978 can  
be completely configured for standalone operation with  
the LTC DC590B dongle and software GUI using intuitive  
menu driven objects.  
The TON_DELAY command sets the amount of time that  
a channel will wait following the start of an ON sequence  
beforeitsV  
pinwillenableaDC/DCconverter.Once  
OUT_ENn  
the DC/DC converter has been enabled, the TON_RISE  
command determines the amount of time the LTC2978  
waits before the V  
output is soft-connected and the  
DACPnꢀ  
Command Units On or Off  
DC/DC converter output is servoed to VOUT_COMMAND  
volts.TheTON_MAX_FAULT_LIMITcommanddetermines  
the amount of time after the DC/DC converter has been  
enabled that an undervoltage condition will be tolerated  
before a fault occurs. If a TON_MAX_FAULT occurs, the  
channel can be configured to disable the DC/DC converter  
and propagate the fault to other channels using the bidi-  
rectional FAULTBzn pins. Figure 11 shows a typical on-  
sequence using the CONTROL pin.  
Three control parameters determine how a particular  
channel is turned on and off. The CONTROLn pins, the  
OPERATION command and the value of the input voltage  
measured at the V  
pin (V ). In all cases, V must  
IN_SNS  
IN IN  
exceed V  
below V  
in order to enable a start. When V drops  
IN_ON  
IN  
, an immediate shutdown of all channels  
IN_OFF  
will result. Refer to the OPERATION section in the data  
sheet for a detailed description of the ON_OFF_CONFIG  
command.  
V
CONTROL  
V
OUT_EN  
VOUT_0V_FAULT_LIMIT  
V
OUT_COMMAND  
DAC SOFT-CONNECTS  
AND BEGINS  
ADJUSTING OUTPUT  
V
DC_NOM  
VOUT_UV_FAULT_LIMIT  
V
OUT  
2978 F11  
TON_RISE  
TON_DELAY  
TON_MAX_FAULT_LIMIT  
Figure 11. Typical On Sequence Using Control Pin  
2978fa  
ꢄ0  
LTC2978  
applicaTions inForMaTion  
ON State Operation  
ALERTB pin will be asserted low. When the output volt-  
age has decayed below its OFF threshold, the channel can  
enter the ON state.  
Once a channel has reached the ON state, the OPERATION  
command can be used to command the DC/DC converter’s  
output to margin high, margin low, or return to a nominal  
outputvoltageindicatedbyVOUT_COMMAND.Theuseralso  
hastheoptionofconfiguringachanneltocontinuouslytrim  
theoutputoftheDC/DCconvertertotheVOUT_COMMAND  
Automatic Restart via MFR_RESTART_DELAY  
Command  
If the CONTROLn pin is toggled quickly (>10µs deglitch),  
an automatic restart sequence can be triggered using the  
MFR_RESTART_DELAYcommandforthechannelsenabled  
by the CONTROLn pin (see Figure 12).  
voltage, or the channel’s V output can be placed in a  
DACPnꢀ  
high impedance state thus allowing the DC/DC converter  
outputvoltagetogotoitsnominalvalue,V .Referto  
DCn(NOM)  
theMFR_CONFIGcommandfordetailsonhowtoconfigure  
the output voltage servo.  
V
OV/UV Faults  
OUT  
ThehighspeedvoltagesupervisorOVandUVfaultthresh-  
olds are configured using the VOUT_OV_FAULT_LIMIT  
and VOUT_UV_FAULT_LIMIT commands, respectively.  
TheVOUT_UV_FAULT_RESPONSEandVOUT_UV_FAULT_  
RESPONSE commands determine the response to an  
OV/UV fault. Fault responses can range from disabling  
the DC/DC converter immediately, waiting to see if the  
fault condition persists for some interval before disabling  
the DC/DC converter, or allowing the DC/DC converter  
to continue operating in spite of the fault. If a DC/DC  
converter is disabled, the LTC2978 can be configured to  
retry or latch-off. The retry interval is specified using the  
MFR_RETRY_DELAY command. Latched faults are reset  
by toggling the CONTROLn pin, using the OPERATION  
command, or removing and reapplying the bias voltage  
Off Sequencing  
An off sequence is initiated using the CONTROLn pin or  
the OPERATION command. The TOFF_DELAY command  
determines the amount of time that elapses from the be-  
ginning of the off sequence until each channel’s V  
pin is pulled low thus disabling its DC/DC converter.  
OUT_EN  
V
Off Threshold Voltage  
OUT  
The MFR_VOUT_DISCHARGE_THRESHOLD command  
register allows the user to specify the OFF threshold that  
the output voltage must decay below before the chan-  
nel can enter/re-enter the ON state. The OFF threshold  
voltage is specified by multiplying MFR_VOUT_DIS-  
CHARGE_THRESHOLD and VOUT_COMMAND. In the  
event that an output voltage has not decayed below its  
OFF threshold before attempting to enter the ON state,  
the channel will continue to be held off, the appropriate  
bit is set in the STATUS_MFR_SPECIFIC register, and the  
(V  
pin). All fault and warning conditions result in  
IN_SNS  
the ALERTB pin being asserted lowand the corresponding  
bits being set in the status registers. The CLEAR_FAULTS  
command resets the contents of the status registers and  
deasserts the ALERTB output.  
CONTROL  
PIN BOUNCE  
V
CONTROL  
V
OUT_END  
2978 F012  
TOFF_DELAY0  
MFR_RESTART_DELAY  
TON_DELAY0  
Figure 12. Off Sequence with Automatic Restart  
2978fa  
ꢄꢀ  
LTC2978  
applicaTions inForMaTion  
OUT  
V
OV/UV Warnings  
Multichannel Fault Management  
OV and UV warning threshold voltages are processed  
by the LTC2978’s ADC. These thresholds are set by the  
VOUT_OV_WARN_LIMIT and VOUT_UV_WARN_LIMIT  
commands. If a warning occurs, the corresponding bits  
are set in the status registers and the ALERTB output  
is asserted low. Note that a warning will never cause a  
VOUT_ENn output to disable a DC/DC converter.  
Multichannel fault management is handled using the  
bidirectional FAULTBzn pins. The “z” designates the fault  
zone which is either 0 or 1. There are two fault zones in  
the LTC2978. Each zone contains 4-channels. Figure 13  
illustrates the connections between channels and the  
FAULTBzn pins.  
• The MFR_FAULTBz0_PROPAGATE command acts like  
a programmable switch that allows faulted-off condi-  
tions from a particular channel (PAGE) to propagate  
to either FAULTBzn output in that channel’s zone. The  
MFR_FAULTBzn_RESPONSEcommandcontrolssimilar  
switches on the inputs to each channel that allow any  
channeltoshutdowninresponsetoanycombinationof  
the FAULTBzn pins within a zone. Channels responding  
to a FAULTBzn pin pulling low will attempt a new start  
sequencewhentheFAULTBznpininquestionisreleased  
by the faulted channel.  
Configuring the V  
Output  
IN_EN  
The V  
output may be used to disable the interme-  
IN_EN  
diate bus voltage in the event of an output OV or UV  
fault. Use the MFR_VINEN_OV_FAULT_RESPONSE and  
MFR_VINEN_UV_FAULT_RESPONSE registers to config-  
uretheV  
pintoassertlowinresponsetoVOUT_OV/UV  
IN_EN  
fault conditions. The V  
output will stop pulling low  
IN_EN  
when the LTC2978 is commanded to re-enter the ON state  
following a faulted-off condition.  
A charge-pumped 5µA pull-up to 12V is also available  
• To establish dependencies across fault zones, tie the  
fault pins together, e.g., FAULTB01 to FAULTB10. Any  
channel can depend on any other. To disable all chan-  
nels in response to any channel faulting off, short all  
the FAULTBzn pins together, and set MFR_FAULTBzn_  
PROPAGATE = ‘h01 and MFR_FAULTBzn_RESPONSE  
= ‘h0F for all channels.  
on the V  
output. Refer to the MFR_CONFIG_ALL  
IN_EN  
register description in the OPERATION section for more  
information.  
Figure 23 shows an application circuit where the V  
IN_EN  
outputisusedtotriggeraSCRcrowbarontheintermediate  
bus in order to protect the DC/DC converter’s load from a  
catastrophic fault such as a stuck top gate.  
• A FAULTBzn pin can also be asserted low by an external  
driver in order to initiate an immediate off-sequence  
after a 10µs deglitch delay.  
2978fa  
ꢄꢁ  
LTC2978  
applicaTions inForMaTion  
MFR_FAULTB00_RESPONSE, PAGE = 0  
MFR_FAULTB00_PROPAGATE, PAGE = 0  
MFR_FAULTB01_PROPAGATE, PAGE = 0  
CHANNEL 0  
EVENT PROCESSOR  
PAGE = 0  
FAULTB00  
FAULTB01  
MFR_FAULTB01_RESPONSE, PAGE = 0  
MFR_FAULTB00_RESPONSE, PAGE = 1  
MFR_FAULTB01_RESPONSE, PAGE = 1  
MFR_FAULTB00_PROPAGATE, PAGE = 1  
MFR_FAULTB01_PROPAGATE, PAGE = 1  
CHANNEL 1  
EVENT PROCESSOR  
PAGE = 1  
MFR_FAULTB00_RESPONSE, PAGE = 2  
MFR_FAULTB01_RESPONSE, PAGE = 2  
MFR_FAULTB00_PROPAGATE, PAGE = 2  
MFR_FAULTB01_PROPAGATE, PAGE = 2  
CHANNEL 2  
EVENT PROCESSOR  
PAGE = 2  
MFR_FAULTB00_RESPONSE, PAGE = 3  
MFR_FAULTB01_RESPONSE, PAGE = 3  
MFR_FAULTB00_PROPAGATE, PAGE = 3  
MFR_FAULTB01_PROPAGATE, PAGE = 3  
CHANNEL 3  
EVENT PROCESSOR  
PAGE = 3  
ZONE 0  
ZONE 1  
ZONE 0  
ZONE 1  
MFR_FAULTB10_RESPONSE, PAGE = 4  
MFR_FAULTB11_RESPONSE, PAGE = 4  
MFR_FAULTB10_PROPAGATE, PAGE = 4  
MFR_FAULTB11_PROPAGATE, PAGE = 4  
CHANNEL 4  
EVENT PROCESSOR  
PAGE = 4  
FAULTB10  
FAULTB11  
MFR_FAULTB10_RESPONSE, PAGE = 5  
MFR_FAULTB11_RESPONSE, PAGE = 5  
MFR_FAULTB10_PROPAGATE, PAGE = 5  
MFR_FAULTB11_PROPAGATE, PAGE = 5  
CHANNEL 5  
EVENT PROCESSOR  
PAGE = 5  
MFR_FAULTB10_RESPONSE, PAGE = 6  
MFR_FAULTB11_RESPONSE, PAGE = 6  
MFR_FAULTB10_PROPAGATE, PAGE = 6  
MFR_FAULTB11_PROPAGATE, PAGE = 6  
CHANNEL 6  
EVENT PROCESSOR  
PAGE = 6  
MFR_FAULTB10_RESPONSE, PAGE = 7  
MFR_FAULTB11_RESPONSE, PAGE = 7  
MFR_FAULTB10_PROPAGATE, PAGE = 7  
MFR_FAULTB11_PROPAGATE, PAGE = 7  
CHANNEL 7  
EVENT PROCESSOR  
PAGE = 7  
2978 F13  
Figure 13. Channel Fault Management Block Diagram  
2978fa  
ꢄꢂ  
LTC2978  
applicaTions inForMaTion  
Interconnect Between Multiple LTC2978s  
• ALERTB is typically one line in an array of PMBus  
converters. The LTC2978 allows a rich combination of  
faults and warnings to be propagated to the ALERTB  
pin.  
Figure 14 shows how to interconnect the pins in a typical  
multi-LTC2978 array.  
• All V  
lines should be tied together in a star type  
IN_SNS  
• WDI/RESET can be used to put the LTC2978 in the  
power-on reset state. Pull WDI/RESET low for at least  
connection at the point where V is to be sensed.  
IN  
This will minimize timing errors for the case where the  
t
to enter this state.  
RESETB  
ON_OFF_CONFIG is configured to start the LTC2978  
• TheFAULTBznlinescanbeconnectedtogethertocreate  
fault dependencies. Figure 14 shows a configuration  
where a fault on any FAULTBzn will pull all others low.  
This is useful for arrays where it is desired to abort a  
startup sequence in the event any channel does not  
come up (see Figure 15).  
based on V and ignore the CONTROLn line and the  
IN  
OPERATION command. In multi-part applications that  
are sensitive to timing errors, it is recommended that  
the Vin_share_enable bit of the MFR_CONFIG_ALL  
register be set high in order to allow SHARE_CLK to  
synchronizeon/offsequencinginresponsetotheV  
IN_ON  
and V  
thresholds.  
IN_OFF  
• PWRGD reflects the status of the outputs that are  
mapped to it by the MFR_PWRGD_EN command. Fig-  
ure 14 shows all the PWRGD pins connected together,  
but any combination may be used.  
• Connecting all V  
lines together will allow an  
IN_EN  
overvoltage (OV) fault on any DC/DC converter’s output  
in the array to shut off a common input switch.  
TO V OF  
IN  
DC/DCs  
TO INPUT  
SWITCH  
TO HOST CONTROLLER  
LTC2978 1  
VIN_SNS  
LTC2978 #n  
VIN_SNS  
VIN_EN  
VIN_EN  
SDA  
SCL  
SDA  
SCL  
ALERTB  
ALERTB  
CONTROL0  
CONTROL1  
WDI/RESET  
FAULTB00  
FAULTB01  
FAULTB10  
FAULTB11  
SHARE_CLK  
PWRGD  
CONTROL0  
CONTROL1  
WDI/RESET  
FAULTB00  
FAULTB01  
FAULTB10  
FAULTB11  
SHARE_CLK  
PWRGD  
GND  
GND  
2978 F14  
TO OTHER LTC2978s–10k EQUIV PULL-UP RECOMMENDED  
ON EACH LINE EXCEPT SHARE_CLK (USE 5.49k)  
Figure 14. Typical Connections Between Multiple LTC2978s  
2978fa  
ꢄꢃ  
LTC2978  
applicaTions inForMaTion  
Trimming and Margining DC/DC Converters with  
External Feedback Resistors  
is developed between the V  
and V  
DACM0  
pins by the  
DACM0  
DACP0  
closed-loop servo algorithm. V  
is Kelvin connected  
to the point-of-load GND in order to minimize the effects  
of load induced grounding errors. The V output is  
Figure 16 shows a typical application circuit for trim-  
ming/margining a power supply with an external feedback  
DACP0  
connectedtotheDC/DCconverter’sfeedbacknodethrough  
network. The V  
and V  
differential inputs  
SENSEP0  
SENSEM0  
resistor R30.  
sense the load voltage directly, and a correction voltage  
V
CONTROLn  
V
OUT0  
TON_DELAY0  
TON_DELAY1  
V
V
OUT1  
OUT2  
TON_DELAY2  
V
OUTn  
TON_DELAYn  
BUSSED  
VFAULTBzn  
PINS  
2978 F15  
TON_MAX_FAULT1  
Figure 15. Aborted On Sequence Due to Channel 1 Short  
V
IN  
V
V
IN  
4.5V < V  
< 15V  
IBUS  
V
V
IN_SNS  
PWR  
OUT  
0.1µF  
V
DACP0  
R30  
DC/DC  
CONVERTER  
V
V
V
V
SENSEP0  
DD33  
DD33  
DD25  
R20  
R10  
LTC2978*  
V
LOAD  
FB  
V
DACM0  
0.1µF  
V
SGND  
SENSEM0  
V
RUN/SS  
OUT_EN0  
GND  
2978 F16  
GND  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
Figure 16. Application Circuit for DC/DC Converters with External Feedback Resistors  
2978fa  
ꢄꢄ  
LTC2978  
applicaTions inForMaTion  
4-Step Resistor Selection Procedure for DC/DC  
Converters with External Feedback Resistors  
3. Solve for the minimum value of V  
that’s needed  
DACP0  
to yield the minimum required DC/DC converter output  
voltage V  
.
DC0(MIN)  
The following 4-step procedure should be used to calcu-  
late the resistor values required for the application circuit  
shown in Figure 16.  
The voltage-buffered current DAC has two full-scale  
settings, 1.33V 3.7% and 2.7V 3.7%. In order to  
select the appropriate full-scale setting, calculate the  
1. AssumevaluesforfeedbackresistorR20andthenominal  
maximum required V  
output voltage:  
DAC0P  
DC/DC converter output voltage V  
for R10.  
, and solve  
DC0(NOM)  
R30  
VDACP0 > VDC(NOM) – VDC(MIN)  
+ VFB (3)  
(
)
R20  
V
is the output voltage of the DC/DC converter  
DC0(NOM)  
when the LTC2978’s V  
pin is in a high impedance  
DACP0  
4. Recalculate the minimum, nominal, and maximum  
DC/DC converter output voltages and the resulting  
margining resolution.  
state.R10isafunctionofR20,V  
,thevoltageat  
DC0(NOM)  
the feedback node (V ) when the loop is in regulation,  
FB  
and the feedback node’s input current (I ).  
FB  
R20  
R10  
R20 • VFB0  
VDC(NOM) IFB0 • R20 – V  
VDC(NOM) = VFB • 1+  
+IFB R20  
(4)  
R10 =  
(1)  
FB  
R20  
VDC0(MIN) = VDC0(NOM)  
VDACP0(F/S)– V (5)  
(
)
FB  
2. Solve for the value of R30 that yields the maximum  
required DC/DC converter output voltage V  
R30  
R20  
R30  
.
DC0(MAX)  
VDC0(MAX) = VDC(NOM)  
+
• V  
(6)  
(7)  
FB  
WhenV  
isat0V, theoutputoftheDC/DCconverter  
is at its maximum voltage.  
DACP0  
R20  
VDACP0(F/S)  
1024  
R30  
R20 • VFB  
R30 ≤  
VRES  
=
V/DAC LSB  
(2)  
VDC(MAX) – VDC(NOM)  
2978fa  
ꢄꢅ  
LTC2978  
applicaTions inForMaTion  
Trimming and Margining DC/DC Converters  
with a TRIM Pin  
% and ∆  
% denote the percentage change in the  
DOWN  
UP  
converter’s output voltage when margining up or down,  
respectively.  
Figure 17 illustrates a typical application circuit for trim-  
ming/margining the output voltage of a DC/DC converter  
2-Step Resistor and DAC Full-Scale Voltage Selection  
Procedure for DC/DC Converters with a TRIM Pin  
with a TRIM Pin. The LTC2978’s V  
pin connects to  
DACPn  
the TRIM pin through resistor R30, and the V  
pin is  
DACM0  
Thefollowing2-stepprocedureshouldbeusedtocalculate  
the resistor value for R30 and the required full-scale DAC  
voltage (refer to Figure 17).  
connected to the converter’s point-of-load ground.  
DC/DC converters with a TRIM pin are typically margined  
high or low by connecting an external resistor between  
1. Solve for R30:  
the TRIM pin and either the V  
or V  
pin. The  
SENSEP  
SENSEM  
relationships between these resistors and the % change  
in the output voltage of the DC/DC converter are typically  
expressed as:  
50 – DOWN  
%
R30 RTRIM  
(10)  
%
DOWN  
RTRIM • 50  
2. Calculate the maximum required output voltage for  
RTRIM_DOWN  
=
RTRIM  
(8)  
V
:
%
DACP0  
DOWN  
UP%  
RTRIM_UP  
=
VDACP0 1+  
• VREF  
(11)  
%
DOWN  
V • 100 + ∆ %  
(
)
50  
DC  
UP  
RTRIM  
– 1  
(9)  
2 • VREF UP%  
%  
UP  
where R  
is the resistance looking into the TRIM pin,  
TRIM  
V
V
is the TRIM pin’s open-circuit output voltage and  
is the DC/DC converter’s nominal output voltage.  
REF  
DC  
V
IN  
V
IN  
4.5V < V  
< 15V  
IBUS  
+
V
OUT  
V
V
IN_SNS  
PWR  
R30  
0.1µF  
TRIM  
V
V
DACP0  
+
V
V
V
V
SENSEP0  
SENSE  
DD33  
DD33  
DD25  
DC/DC  
CONVERTER  
LTC2978*  
LOAD  
V
DACM0  
0.1µF  
V
V
SENSEM0  
SENSE  
ON/OFFB  
GND  
V
OUT_EN0  
GND  
2978 F17  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
Figure 17. Application Circuit for DC/DC Converters with Trim Pin  
2978fa  
ꢄꢆ  
LTC2978  
applicaTions inForMaTion  
Measuring Current  
differential mode noise from the inductor of the switching  
DC/DC converter. The filter to the ADC is placed directly  
across the inductor or a sense resistor in series with the  
inductor. Note that the + input to the ADC must be limited  
Odd numbered ADC channels may be used to measure  
supply current. Set the ADC to high resolution mode to  
configure for current measuring and improve sensitivity.  
Note that no OV or UV faults or warnings are reported in  
thismode,buttelemetryisavailablefromtheREAD_VOUT  
command using the 11-bit signed mantissa plus 5-bit  
signed exponent linear data format. Set the MFR_CONFIG  
bit b[9] = 1 in order to enable high res mode. Note: Any  
channel configured for ADC high res mode should be per-  
manentlycommandedoff,i.e.,OPERATIONregister=h00  
to <6V above ground. Select R and C such that the  
CM  
CM  
corner frequency is ≤1/10 the DC/DC converter switching  
frequency and ≤1/10 of the internal 62.5kHz clock of the  
LTC2978’s ∆Σ ADC. This will assure that the DC value  
at the (+) input to the ADC will be equal to the output  
voltage with small ripple. Good values are R = 100Ω,  
CM  
C
≥ 1µF. Keep R ≤ 100Ω to minimize gain errors due  
CM  
CM  
to ADC input resistance.  
(this is the factory default EEPROM value). The V  
OUT_ENn  
will assert low in this mode and cannot be used to control  
a DC/DC. The V output is also unavailable.  
Many switching regulator control ICs derive AC inductor  
current information from an RC network such as the one  
formed by R1, C1, R2 and C2. The proper placement of  
the balanced common mode filter for the ADC input is  
also shown in Figure 18.  
DACPn  
A circuit for measuring current is shown in Figure 18.  
The balanced filter, R , C , rejects common mode and  
CM CM  
R
CM  
LTC2978  
C
C
+
CM  
ADC  
R
CM  
CM  
L
DCR  
+
LOAD CURRENT  
C1  
R1  
+
TO  
CONTROLLER  
IC  
R2  
C2  
2978 F18  
Figure 18. DCR Current Sensing Circuits  
2978fa  
ꢄꢇ  
LTC2978  
applicaTions inForMaTion  
Antialiasing Filter Considerations  
R40=R50200ΩtominimizeADCgainerrors, andselect  
a value for capacitors C10 and C20 that doesn’t add too  
much additional response time to the OV/UV supervisor,  
e.g. τ ≅ 10µs (R = 100Ω, C = 0.10µF).  
Extremelynoisyenvironmentsmayrequireanantialiasing  
filter on the input to the LTC2978’s ADC. The R-C circuit  
shown in Figure 19 is adequate for most situations. Keep  
V
IN  
V
V
IN  
4.5V < V  
< 15V  
IBUS  
V
V
IN_SNS  
PWR  
OUT  
0.1µF  
V
DACP0  
R30  
DC/DC  
CONVERTER  
V
V
V
V
SENSEP0  
DD33  
DD33  
DD25  
R40  
R50  
C10  
C20  
R20  
R10  
LTC2978*  
GND  
V
LOAD  
FB  
V
SENSEM0  
0.1µF  
V
SGND  
DACM0  
V
RUN/SS  
OUT_EN0  
GND  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
2978 F09  
Figure 19. Antialiasing Filter on VSENSE Lines  
2978fa  
ꢄꢈ  
LTC2978  
applicaTions inForMaTion  
2
Dongle Connections  
theLTC2978’sandtheI Cpull-upresistorsshouldbepow-  
ered from the ORed 3.3V supply. In addition, any device  
Figure20illustratestheapplicationschematicforpowering  
and programming one or more LTC2978’s from the LTC  
PMBuscontrollerintheabsenceofsystempower.Because  
of the controller’s limited current sourcing capability, only  
2
sharing I C bus connections with the LTC2978 should not  
have body diodes between the SDA/SCL pins and its V  
DD  
node because this will interfere with bus communication  
in the absence of system power.  
IDEAL  
DIODE  
OR’d 3.3V  
TP0101K-SSOT23  
SYSTEM  
V
V
V
V
PWR  
DD33  
DD33  
DD25  
3.3V  
0.1µF  
0.1µF  
LTC4412  
V
SENSE  
IN  
GND GATE  
CTL STAT  
LTC2978  
PIN CONNECTIONS  
OMITTED FOR  
CLARITY  
ISOLATED 3.3V  
SDA  
SCL  
LTC  
CONTROLLER  
HEADER  
SDA  
SCL  
SHARE_CLK  
WP GND  
TO/FROM OTHER  
LTC2978s  
2978 F10  
2
NOTE: LTC CONTROLLER I C CONNECTONS ARE OPTO-ISOLATED  
ISOLATED 3.3V FROM CONTROLLER CAN BE BACK DRIVEN AND WILL ONLY DRAW < 10µA  
ISOLATED 3.3V CURRENT LIMIT = 100mA  
Figure 20. LTC Controller Connections for Powering and Communicating with the LTC2978  
2978fa  
ꢅ0  
LTC2978  
applicaTions inForMaTion  
PCB ASSEMBLY AND LAYOUT SUGGESTIONS  
practice to minimize the presence of voids within the  
exposed pad inter-connection. Total elimination of voids  
is difficult, but the design of the exposed pad stencil is  
key. Figure 21 shows a suggested screen print pattern.  
The proposed stencil design enables out-gassing of the  
solderpasteduringreflowaswellasregulatingthenished  
solder thickness.  
Bypass Capacitor Placement  
The LTC2978 requires 0.1µF bypass capacitors between  
the V  
pins and GND, the V  
pin and GND, and the  
DD33  
DD25  
REFP pin and REFM pin. If the chip is being powered from  
the V input, then that pin should also be bypassed  
PWR  
to GND by a 0.1µF capacitor. In order to be effective,  
these capacitors should be made of high quality ceramic  
dielectric such as X5R or X7R and be placed as close to  
the chip as possible.  
PC Board Layout  
Mechanical stress on a PC board and soldering-induced  
stress can cause the LTC2978’s reference voltage and  
voltage drift to shift. A simple way to reduce these stress-  
related shifts is to mount the IC near the short edge of the  
PC board, or in a corner. The board edge acts as a stress  
boundary, or a region where the flexure of the board is  
minimal.  
Exposed Pad Stencil Design  
The LTC2978’s package is thermally and electrically  
efficient. This is enabled by the exposed die attach pad  
on the under side of the package which must be soldered  
down to the PCB or mother board substrate. It is a good  
2978 F11  
Figure 21. Suggested Screen Pattern for Die Attach Pad  
2978fa  
ꢅꢀ  
LTC2978  
Typical applicaTion  
0.1µF  
3.3V  
0.1µF  
0.1µF  
14 36? 35 65 20 19 18 17 16 34 33 15  
V
V
V
V
IN  
IN  
OUT  
40  
37  
61  
3
OUT  
V
V
V
DACP7  
DACP0  
R30  
R20  
R37  
R27  
DC/DC  
CONVERTER  
V
DC/DC  
CONVERTER  
SENSEP0  
SENSEP7  
V
V
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
FB  
FB  
38  
39  
4
R10  
V
V
V
R17  
SENSEM0  
DACM0  
SENSEM7  
62  
V
RUN/SS SGND  
GND  
SGND RUN/SS  
GND  
DACM7  
5
12  
V
V
OUT_EN7  
OUT_EN0  
V
V
IN  
41  
43  
60  
1
OUT  
V
V
V
DACP6  
DACP1  
R36  
R26  
V
DC/DC  
CONVERTER  
SENSEP1  
SENSEP6  
V
FB  
44  
42  
2
V
V
V
R16  
SENSEM1  
DACM1  
SENSEM6  
59  
V
SGND RUN/SS  
GND  
DACM6  
6
11  
V
V
OUT_EN6  
OUT_EN1  
LTC2978  
V
V
V
V
IN  
IN  
OUT  
45  
47  
57  
63  
OUT  
V
V
V
DACP5  
DACP2  
R32  
R22  
R35  
R25  
DC/DC  
V
DC/DC  
CONVERTER  
SENSEP2  
SENSEP5  
CONVERTER  
V
V
LOAD  
FB  
FB  
48  
46  
64  
58  
R12  
V
V
V
R15  
SENSEM2  
DACM2  
SENSEM5  
V
RUN/SS SGND  
GND  
SGND RUN/SS  
GND  
DACM5  
7
10  
V
V
OUT_EN5  
OUT_EN2  
V
V
IN  
51  
49  
56  
53  
OUT  
V
V
V
DACP4  
DACP3  
R34  
R24  
V
DC/DC  
CONVERTER  
SENSEP3  
SENSEP4  
V
FB  
50  
52  
54  
55  
V
V
V
R14  
SENSEM3  
DACM3  
SENSEM4  
V
SGND RUN/SS  
GND  
DACM4  
IN  
OUT  
8
9
INTERMEDIATE  
V
V
OUT_EN4  
OUT_EN3  
2978 F12  
BUS  
CONVERTER  
13 24 25 26 27 22 28 29 30 31 32 21  
10k  
23  
EN  
10k  
10k  
3.3V  
3.3V  
5.49k  
TO/FROM OTHER LTC2978s AND MICROCONTROLLER  
Figure 22. LTC2978 Application Circuit with 3.3V Chip Power  
2978fa  
ꢅꢁ  
LTC2978  
package DescripTion  
UP Package  
64-Lead Plastic QFN (9mm × 9mm)  
(Reference LTC DWG # 05-08-1705 Rev C)  
0.70 p0.05  
7.15 p0.05  
7.50 REF  
8.10 p0.05 9.50 p0.05  
(4 SIDES)  
7.15 p0.05  
PACKAGE OUTLINE  
0.25 p0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 p 0.05  
R = 0.10  
TYP  
R = 0.115  
TYP  
9 .00 p 0.10  
(4 SIDES)  
63 64  
0.40 p 0.10  
PIN 1 TOP MARK  
(SEE NOTE 5)  
1
2
PIN 1  
CHAMFER  
C = 0.35  
7.15 p 0.10  
7.50 REF  
(4-SIDES)  
7.15 p 0.10  
(UP64) QFN 0406 REV C  
0.200 REF  
0.25 p 0.05  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION WNJR-5  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
6. DRAWING NOT TO SCALE  
2978fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
ꢅꢂ  
LTC2978  
Typical applicaTion  
R
Q1  
SENSE  
0.007Ω  
Si4894BDY  
V
IN  
V
V
IN  
<15V  
C
BYPASS  
V
IN_SNS  
OUT  
V
V
PWR  
DACP0  
DC/DC  
CONVERTER  
100Ω  
68Ω  
V
V
SENSE  
GATE  
LTC4210-3  
SENSEP0  
CC  
0.1µF  
LTC2978*  
24.3k  
V
LOAD  
FB  
ON  
V
DACM0  
0.01µF  
TIMER GND  
V
10k  
SGND  
SENSEM0  
V
RUN/SS  
0.22µF  
OUT_EN0  
GND  
10k  
0.01µF  
2978 F23  
2907  
MCR12DC  
4.99k  
220Ω  
0.1µF  
BAT54  
REFP  
V
REFM  
IN_EN  
*SOME DETAILS OMITTED FOR CLARITY  
ONLY ONE OF EIGHT CHANNELS SHOWN  
V
V
V
GND  
DD33 DD33 DD25  
0.1µF  
0.1µF  
Figure 23. LTC2978 Application Circuit with Crowbar Protection on Intermediate Bus  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
2
LTC2970  
Dual I C Power Supply Monitor and Margining Controller  
14-Bit ∆Σ ADC with < 0.5% TUE, Dual 8-Bit IDACs with 1x Voltage  
Buffers  
2
LTC4151  
High Voltage I C Current and Voltage Monitor  
7V to 80V, 12-Bit Resolution  
LTC4210-3  
Hot Swap™ Controller in 6-Lead SOT-23 Package  
Low Loss PowerPath™ Controller in ThinSOT™  
Adjustable Analog Current Limit with Circuit Breaker, Fast Response  
Limits Peak Fault Current  
LTC4412  
Replaces Power Supply ORing Diodes, Minimal External Components,  
Automatic Switching Between DC Sources, Simplifies Load Sharing with  
Multiple Batteries, Low Quiescent Current: 11µA  
LTM®4601  
LTM4608  
8A, Low V DC/DC µModule® with PLL, Output Tracking  
Complete Switch Mode Power Supply, 4.5V to 20V Input Voltage, 0.6V  
to 5V Output Voltage, PLL Frequency Synchronization, 1.5% Regulation  
IN  
and Margining  
8A, Low V DC/DC µModule with Tracking, Margining,  
Complete Switch Mode Power Supply, 2.7V to 5.5V Input Voltage, 0.6V  
to 5V Output Voltage, Onboard Frequency Synchronization, 1.5%  
Regulation  
IN  
Multiphase and Frequency Synchronization  
µModule is a registered trademark of Linear Technology Corporation. PowerPath, ThinSOT and Hot Swap are trademarks of Linear Technology Corporation.  
2978fa  
LT 0909 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢅꢃ  
LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY