LTC2990IMS#TR [Linear]

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, PLASTIC, MSOP-10, Power Management Circuit;
LTC2990IMS#TR
型号: LTC2990IMS#TR
厂家: Linear    Linear
描述:

IC 1-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO10, PLASTIC, MSOP-10, Power Management Circuit

光电二极管
文件: 总24页 (文件大小:231K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2990  
2
Quad I C Voltage, Current  
and Temperature Monitor  
FEATURES  
DESCRIPTION  
The LTC®2990 is used to monitor system temperatures,  
n
Measures Voltage, Current and Temperature  
2
n
Measures Two Remote Diode Temperatures  
voltages and currents. Through the I C serial interface,  
n
±±0.5C ꢀAAuraAc, ±0±65C Resolution (Tcp)  
the device can be configured to measure many combi-  
nations of internal temperature, remote temperature,  
n
±ꢁ5C ꢂnternal Temperature Sensor (Tcp)  
n
14-Bit ADC Measures Voltage/Current  
remote voltage, remote current and internal V . The  
CC  
n
3V to 5.5V Supply Operating Voltage  
internal 10ppm/°C reference minimizes the number of  
supporting components and area required. Selectable  
address and configurable functionality give the LTC2990  
flexibility to be incorporated in various systems needing  
temperature, voltage or current data. The LTC2990 fits  
well in systems needing sub-millivolt voltage resolution,  
1% current measurement and 1°C temperature accuracy  
or any combination of the three.  
n
Four Selectable Addresses  
n
Internal 10ppm/°C Voltage Reference  
n
10-Lead MSOP Package  
APPLICATIONS  
n
Temperature Measurement  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and Easy  
Drive is a trademark of Linear Technology Corporation. All other trademarks are the property of  
their respective owners.  
Supply Voltage Monitoring  
n
Current Measurement  
n
Remote Data Acquisition  
n
Environmental Monitoring  
TYPICAL APPLICATION  
Voltage, Current, Temperature Monitor  
Temperature Total Unadjusted Error  
R
SENSE  
1.0  
2.5V  
I
LOAD  
5V  
0.5  
V
T
V1  
V2  
V3  
CC  
REMOTE  
SDA  
SCL  
ADR0  
ADR1  
0
–0.5  
–1.0  
LTC2990  
T
REMOTE  
V4  
2990 TA01a  
GND  
T
INTERNAL  
MEASURES: TWO SUPPLY VOLTAGES,  
SUPPLY CURRENT, INTERNAL AND  
REMOTE TEMPERATURES  
–25  
0
50  
75 100 125  
–50  
25  
T
(°C)  
AMB  
2990 TA01b  
2990fc  
1
LTC2990  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note ꢁ)  
TOP VIEW  
Supply Voltage V ................................... –0.3V to 6.0V  
CC  
V1  
V2  
1
2
3
4
5
10  
9
V
CC  
Input Voltages V1, V2, V3, V4, SDA, SCL,  
ADR1  
ADR0  
SCL  
V3  
8
ADR1, ADR2..................................–0.3V to (V + 0.3V)  
CC  
V4  
GND  
7
6
Operating Temperature Range  
SDA  
LTC2990C................................................ 0°C to 70°C  
LTC2990I.............................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
T
= 125°C, θ = 150°C/W  
JA  
JMAX  
ORDER INFORMATION  
LEꢀD FREE FꢂNꢂSH  
LTC2990CMS#PBF  
LTC2990IMS#PBF  
LEꢀD BꢀSED FꢂNꢂSH  
LTC2990CMS  
TꢀPE ꢀND REEL  
PꢀRT MꢀRKꢂNG*  
LTDSQ  
PꢀCKꢀGE DESCRꢂPTꢂON  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
PꢀCKꢀGE DESCRꢂPTꢂON  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
TEMPERTURE RꢀNGE  
0°C to 70°C  
LTC2990CMS#TRPBF  
LTC2990IMS#TRPBF  
TꢀPE ꢀND REEL  
LTDSQ  
–40°C to 85°C  
PꢀRT MꢀRKꢂNG*  
LTDSQ  
TEMPERTURE RꢀNGE  
0°C to 70°C  
LTC2990CMS#TR  
LTC2990IMS#TR  
LTC2990IMS  
LTDSQ  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Contact LTC Marketing for parts trimmed to ideality factors other than 1.004.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the speAifiAations whiAh applc over the full operating  
temperature range, otherwise speAifiAations are at T= 2.5C0 VCC = 303V, unless otherwise noted0  
SYMBOL  
General  
PꢀRꢀMETER  
CONDꢂTꢂONS  
MꢂN  
TYP  
MꢀX  
UNꢂTS  
l
l
l
l
V
Input Supply Range  
Input Supply Current  
Input Supply Current  
Input Supply Undervoltage Lockout  
2.9  
5.5  
1.8  
5
V
CC  
2
I
I
During Conversion, I C Inactive  
1.1  
1
2.1  
mA  
μA  
V
CC  
2
Shutdown Mode, I C Inactive  
SD  
V
1.3  
2.7  
CC(UVL)  
Measurement ꢀAAuraAc  
T
Internal Temperature Total Unadjusted  
Error  
0.5  
1
3.5  
1.5  
°C  
°C  
°C  
INT(TUE)  
T
T
= 0°C to 85°C  
= –40°C to 0°C  
AMB  
AMB  
3
l
T
Remote Diode Temperature Total  
Unadjusted Error  
0.5  
°C  
η = 1.004 (Note 4)  
RMT(TUE)  
l
l
l
V
V
V
V
Voltage Total Unadjusted Error  
CC  
0.1  
0.1  
0.2  
0.25  
0.25  
0.75  
%
%
%
CC(TUE)  
V1 Through V4 Total Unadjusted Error  
Differential Voltage Total Unadjusted Error –300mV ≤ V ≤ 300mV  
V1 – V2 or V3 – V4  
n(TUE)  
DIFF(TUE)  
D
l
l
V
V
V
V
V
Maximum Differential Voltage  
Differential Voltage Common Mode Range  
Differential Voltage LSB Weight  
Single-Ended Voltage LSB Weight  
Temperature LSB Weight  
Temperature Noise  
–300  
0
300  
mV  
V
μV  
μV  
Deg  
DIFF(MAX)  
DIFF(CMR)  
LSB(DIFF)  
V
CC  
19.42  
305.18  
0.0625  
0.2  
0.05  
LSB(SINGLE-ENDED)  
LSB(TEMP)  
NOISE  
Celsius or Kelvin  
Celsius or Kelvin  
T
°RMS  
°/√Hz  
T
= 46ms (Note 2)  
MEAS  
2990fc  
2
LTC2990  
ELECTRICAL CHARACTERISTICS The l denotes the speAifiAations whiAh applc over the full operating  
temperature range, otherwise speAifiAations are at T= 2.5C0 VCC = 303V, unless otherwise noted0  
SYMBOL  
Res  
INL  
PꢀRꢀMETER  
Resolution (No Missing Codes)  
Integral Nonlinearity  
CONDꢂTꢂONS  
(Note 2)  
MꢂN  
14  
TYP  
MꢀX  
UNꢂTS  
Bits  
l
l
2.9V ≤ V ≤ 5.5V, V  
= 1.5V  
CC  
IN(CM)  
(Note 2)  
Single-Ended  
Differential  
–2  
–2  
2
2
LSB  
LSB  
C
V1 Through V4 Input Sampling  
Capacitance  
V1 Through V4 Input Average Sampling  
Current  
(Note 2)  
0.35  
0.6  
pF  
μA  
nA  
IN  
I
I
0V ≤ V ≤ 3V (Note 2)  
N
IN(AVG)  
l
V1 Through V4 Input Leakage Current  
0V ≤ V ≤ V  
–10  
10  
DC_LEAK(VIN)  
N
CC  
Measurement Delac  
, T , T  
V1, V2, V3, V4  
l
l
l
l
l
T
Per Configured Temperature Measurement (Note 2)  
37  
1.2  
1.2  
1.2  
46  
1.5  
1.5  
1.5  
55  
1.8  
1.8  
1.8  
167  
ms  
ms  
ms  
ms  
ms  
INT R1 R2  
Single-Ended Voltage Measurement  
Differential Voltage Measurement  
(Note 2) Per Voltage, Two Minimum  
V1 – V2, V3 – V4  
(Note 2)  
(Note 2)  
(Note 2)  
V
V
Measurement  
CC  
CC  
Max Delay  
Mode[4:0] = 11101, T , T , T , V  
INT R1 R2 CC  
Vꢁ, V3 Output (Remote Diode Mode Onlc)  
l
l
I
V
Output Current  
Output Voltage  
Remote Diode Mode  
260  
350  
V
CC  
μA  
V
OUT  
0
OUT  
2
ꢂ C ꢂnterfaAe  
l
l
l
l
l
l
l
V
V
V
V
V
ADR0, ADR1 Input Low Threshold Voltage Falling  
ADR0, ADR1 Input High Threshold Voltage Rising  
0.3 • V  
V
V
V
V
V
ADR(L)  
ADR(H)  
OL1  
CC  
0.7 • V  
0.7 • V  
CC  
CC  
SDA Low Level Maximum Voltage  
Maximum Low Level Input Voltage  
Minimum High Level Input Voltage  
SDA, SCL Input Current  
I = –3mA, V = 2.9V to 5.5V  
SDA and SCL Pins  
SDA and SCL Pins  
0.4  
O
CC  
0.3 • V  
IL  
CC  
IH  
I
I
0 < V  
,
< V  
CC  
1
1
μA  
μA  
SDAI,SCLI  
SDA SCL  
Maximum ADR0, ADR1 Input Current  
ADR0 or ADR1 Tied to V or GND  
CC  
ADR(MAX)  
2
ꢂ C Timing (Note 2)  
f
t
t
t
Maximum SCL Clock Frequency  
Minimum SCL Low Period  
Minimum SCL High Period  
Minimum Bus Free Time Between Stop/  
Start Condition  
400  
kHz  
μs  
ns  
SCL(MAX)  
LOW  
1.3  
600  
1.3  
HIGH  
μs  
BUF(MIN)  
t
t
Minimum Hold Time After (Repeated)  
Start Condition  
Minimum Repeated Start Condition Set-Up  
Time  
600  
600  
ns  
ns  
HD,STA(MIN)  
SU,STA(MIN)  
t
t
t
t
t
Minimum Stop Condition Set-Up Time  
Minimum Data Hold Time Input  
Minimum Data Hold Time Output  
Minimum Data Set-Up Time Input  
Maximum Suppressed Spike Pulse Width  
SCL, SDA Input Capacitance  
600  
0
900  
100  
250  
10  
ns  
ns  
ns  
ns  
ns  
pF  
SU,STO(MIN)  
HD,DATI(MIN)  
HD,DATO(MIN)  
SU,DAT(MIN)  
SP(MAX)  
300  
50  
C
X
Note ꢁ: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Trimmed to an ideality factor of 1.004 at 25°C. Remote diode  
temperature drift (TUE) verified at diode voltages corresponding to  
the temperature extremes with the LTC2990 at 25°C. Remote diode  
temperature drift (TUE) guaranteed by characterization over the LTC2990  
operating temperature range.  
Note 2: Guaranteed by design and not subject to test.  
Note 3: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
2990fc  
3
LTC2990  
T= 2.5C, VCC = 303V unless otherwise noted  
TYPICAL PERFORMANCE CHARACTERISTICS  
Measurement Delac Variation  
Supplc Current vs Temperature  
Shutdown Current vs Temperature  
vs T Normalized to 303V, 2.5C  
1200  
1150  
1100  
1050  
1000  
950  
3.5  
3.0  
4
V
CC  
= 5V  
V
= 5V  
3
CC  
2.5  
V
CC  
= 5V  
2
1
2.0  
1.5  
1.0  
0.5  
V
= 3.3V  
CC  
V
CC  
= 3.3V  
V
CC  
= 3.3V  
0
0
–1  
–25  
0
150  
–50  
25 50 75 100 125  
(°C)  
–25  
0
150  
–50  
25 50 75 100 125  
(°C)  
–25  
0
150  
–50  
25 50 75 100 125  
(°C)  
T
T
T
AMB  
AMB  
AMB  
2990 G02  
2990 G01  
2990 G03  
VCC TUE  
Single-Ended VX TUE  
Differential Voltage TUE  
0.10  
0.05  
0
0.10  
0.05  
0
1.0  
0.5  
V
CC  
= 5V  
0
V
CC  
= 3.3V  
–0.05  
–0.10  
–0.05  
–0.10  
–0.5  
–1.0  
–25  
0
150  
–25  
0
150  
–50  
25 50 75 100 125  
(°C)  
–25  
0
150  
–50  
25 50 75 100 125  
–50  
25 50 75 100 125  
(°C)  
T
T
(°C)  
T
AMB  
AMB  
AMB  
2990 G05  
2990 G04  
2990 G06  
Remote Diode Error with LTC299±  
at 2.5C, 9±5C  
Remote Diode Error with LTC299±  
at Same Temperature as Diode  
TꢂNTERNꢀL Error  
4
3
1.00  
0.75  
0.50  
0.25  
0.6  
0.4  
LTC2990  
AT 25°C  
2
0.2  
1
0
LTC2990  
AT 90°C  
–0.25  
0
0
–0.2  
–0.4  
–0.6  
–1  
–2  
–0.50  
–0.75  
–1.00  
–3  
–25  
0
150  
–25  
0
150  
–50  
25 50 75 100 125  
–50  
25 50 75 100 125  
(°C)  
–25  
0
150  
–50  
25 50 75 100 125  
T
(°C)  
T
AMB  
BATH TEMPERATURE (°C)  
AMB  
2990 G07  
2990 G09  
2990 G08  
2990fc  
4
LTC2990  
TYPICAL PERFORMANCE CHARACTERISTICS T= 2.5C, VCC = 303V unless otherwise noted  
Single-Ended Noise  
Single-Ended Transfer FunAtion  
Single-Ended ꢂNL  
6
4000  
1.0  
0.5  
0
4800 READINGS  
3500  
3000  
5
4
3
2
1
V
CC  
= 5V  
V
CC  
= 3.3V  
V
CC  
= 3.3V  
2500  
2000  
1500  
1000  
500  
V
CC  
= 5V  
–0.5  
0
–1.0  
–1  
0
0
1
2
3
(V)  
4
5
–2  
–1  
1
2
3
3
5
6
–3  
0
–1 –0  
1
2
4
V
X
LSBs (305.18μV/LSB)  
V
(V)  
X
2990 G12  
2990 G10  
2990 G11  
LTC299± Differential Noise  
Differential Transfer FunAtion  
Differential ꢂNL  
2
1
500  
400  
300  
200  
100  
0
0.4  
0.3  
800 READINGS  
0.2  
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
0
0.2  
–0.4  
0.4  
0
–0.2  
–4 –3 –2 –1  
1
2
3
0
0.1  
–0.4 –0.3 –0.2 –0.1  
0.2 0.3 0.4  
V
IN  
(V)  
LSBs (19.42μV/LSB)  
V1-V2 (V)  
2990 G15  
2990 G13  
2990 G14  
TꢂNT Noise  
Remote Diode Noise  
POR Thresholds vs Temperature  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
1000 READINGS  
1000 READINGS  
V
CC  
RISING  
V
CC  
FALLING  
–0.75 –0.5 –0.25  
0
(°C)  
0.25 0.5 0.75  
–0.75 –0.5 –0.25  
0
0.25 0.5 0.75  
50 75  
(°C)  
–50 –25  
0
25  
T
100 125 150  
(°C)  
AMB  
2990 G16  
2990 G17  
2990 G18  
2990fc  
5
LTC2990  
PIN FUNCTIONS  
SDꢀ (Pin 6): Serial Bus Data Input and Output. In the  
transmitter mode (Read), the conversion result is output  
through the SDA pin, while in the receiver mode (Write),  
the device configuration bits are input through the SDA  
pin. At data input mode, the pin is high impedance; while  
at data output mode, it is an open-drain N-channel driver  
andthereforeanexternalpull-upresistororcurrentsource  
Vꢁ (Pin ꢁ): First Monitor Input. This pin can be config-  
ured as a single-ended input or the positive input for a  
differential or remote diode temperature measurement (in  
combination with V2). When configured for remote diode  
temperature, this pin will source a current.  
V2 (Pin 2): Second Monitor Input. This pin can be con-  
figured as a single-ended input or the negative input for a  
differential or remote diode temperature measurement (in  
combination with V1). When configured for remote diode  
temperature, this pin will have an internal termination,  
while the measurement is active.  
to V is needed.  
CC  
SCL (Pin 7): Serial Bus Clock Input. The LTC2990 can  
only act as a slave and the SCL pin only accepts external  
serial clock. The LTC2990 does not implement clock  
stretching.  
V3 (Pin 3): Third Monitor Input. This pin can be config-  
ured as a single-ended input or the positive input for a  
differential or remote diode temperature measurement (in  
combination with V4). When configured for remote diode  
temperature, this pin will source a current.  
ꢀDR±(Pin8):SerialBusAddressControlInput.TheADR0  
2
pin is an address control bit for the device I C address.  
See Table 2.  
ꢀDRꢁ (Pin 9): Serial Bus Address Control Input. The  
V4 (Pin 4): Fourth Monitor Input. This pin can be config-  
ured as a single-ended input or the negative input for a  
differential or remote diode temperature measurement (in  
combination with V3). When configured for remote diode  
temperature, this pin will have an internal termination,  
while the measurement is active.  
2
ADR1 pin is an address control bit for the device I C  
address. See Table 2.  
V
(Pin ꢁ±): Supply Voltage Input.  
CC  
GND (Pin .): Device Circuit Ground. Connect this pin to a  
ground plane through a low impedance connection.  
2990fc  
6
LTC2990  
FUNCTIONAL DIAGRAM  
REMOTE  
DIODE  
SENSORS  
V
10  
5
CC  
MODE  
V1  
GND  
1
V2  
SCL  
SDA  
2
CONTROL  
LOGIC  
7
6
8
9
V3  
3
MUX  
2
ADC  
ADR0  
ADR1  
I C  
V4  
4
UV  
INTERNAL  
SENSOR  
V
CC  
UNDERVOLTAGE  
DETECTOR  
REFERENCE  
2990 FD  
TIMING DIAGRAM  
SDAI/SDAO  
t
SP  
t
t
t
SU, DAT  
t
t
SU,STA  
BUF  
HD, DATO,  
HD, DATI  
t
HD, STA  
t
SU, STO  
t
SP  
2990 TD  
SCL  
t
HD, STA  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
2990fc  
7
LTC2990  
OPERATION  
The LTC2990 monitors voltage, current, internal and  
threshold. During an undervoltage condition, the part is in  
a reset state, and the data and control registers are placed  
in the default state of 00h.  
remote temperatures. It can be configured through an  
2
I C interface to measure many combinations of these pa-  
rameters. Single or repeated measurements are possible.  
Remote temperature measurements use a transistor as  
a temperature sensor, allowing the remote sensor to be a  
discreteNPN(ex.MMBT3904)oranembeddedPNPdevice  
in a microprocessor or FPGA. The internal ADC reference  
minimizes the number of support components required.  
Remotediodemeasurementsareconductedusingmultiple  
ADC conversions and source currents to compensate for  
sensor series resistance. During temperature measure-  
ments, the V2 or V4 terminal of the LTC2990 is terminated  
with a diode. The LTC2990 is calibrated to yield the correct  
temperature for a remote diode with an ideality factor of  
1.004. See the applications section for compensation of  
sensor ideality factors other than the factory calibrated  
value of 1.004.  
The Functional Diagram displays the main components of  
the device. The input signals are selected with an input  
MUX, controlled by the control logic block. The control  
logic uses the mode bits in the control register to manage  
the sequence and types of data acquisition. The control  
logic also controls the variable current sources during  
remote temperature acquisition. The order of acquisitions  
2
TheLTC2990communicatesthroughanI Cserialinterface.  
The serial interface provides access to control, status and  
2
data registers. I C defines a 2-wire open-drain interface  
supporting multiple slave devices and masters on a single  
bus. The LTC2990 supports 100kbits/s in the standard  
mode and up to 400kbit/s in fast mode. The four physical  
is fixed: T  
, V1, V2, V3, V4 then V . The ADC  
INTERNAL  
CC  
performs the necessary conversion(s) and supplies the  
data to the control logic for further processing in the case  
of temperature measurements, or routing to the appropri-  
ate data register for voltage and current measurements.  
Current and temperature measurements, V1 – V2 or V3  
– V4, are sampled differentially by the internal ADC. The  
2
addressessupportedarelistedinTable2.TheI Cinterface  
is used to trigger single conversions, or start repeated  
conversions by writing to a dedicated trigger register. The  
data registers contain a destructive-read status bit (data  
valid), which is used in repeated mode to determine if  
the register’s contents have been previously read. This  
bit is set when the register is updated with new data, and  
cleared when read.  
2
I C interface supplies access to control, status and data  
registers. The ADR1 and ADR0 pins select one of four  
2
possible I C addresses (see Table 2). The undervoltage  
2
detector inhibits I C communication below the specified  
APPLICATIONS INFORMATION  
Figure 1 is the basic LTC2990 application circuit.  
Power Up  
R
SENSE  
The V pin must exceed the undervoltage (UV) thresh-  
CC  
15mΩ  
2.5V  
5V  
old of 2.5V to keep the LTC2990 out of power-on reset.  
Power-on reset will clear all of the data registers and the  
control register.  
I
LOAD  
0.1μF  
2-WIRE  
MMBT3904  
V
V1  
V2  
V3  
CC  
SDA  
SCL  
ADR0  
ADR1  
2
I C  
INTERFACE  
LTC2990  
GND  
470pF  
Temperature Measurements  
V4  
2990 F01  
The LTC2990 can measure internal temperature and up  
to two external diode or transistor sensors. During tem-  
perature conversion, current is sourced through either  
the V1 or the V3 pin to forward bias the sensing diode.  
Figure ꢁ  
2990fc  
8
LTC2990  
APPLICATIONS INFORMATION  
Table ꢁ0 ReAommended Transistors to Be Used as Temperature  
Sensors  
The change in sensor voltage per degree temperature  
change is 275μV/°C, so environmental noise must be kept  
to a minimum. Recommended shielding and PCB trace  
considerations are illustrated in Figure 2.  
MꢀNUFꢀCTURER  
PꢀRT NUMBER  
PꢀCKꢀGE  
Fairchild Semiconductor  
MMBT3904  
FMMT3904  
SOT-23  
SOT-23  
The diode equation:  
Central Semiconductor  
CMPT3904  
CET3904E  
SOT-23  
SOT-883L  
⎛ ⎞  
k • T  
q
IC  
Diodes, Inc.  
On Semiconductor  
NXP  
MMBT3904  
MMBT3904LT1  
MMBT3904  
MMBT3904  
UMT3904  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC-70  
VBE = η•  
ln  
(1)  
⎜ ⎟  
I
⎝ ⎠  
S
can be solved for T, where T is Kelvin degrees, I is a  
S
Infineon  
process dependent factor on the order of 1E-13, η is the  
diode ideality factor, k is Boltzmann’s constant and q is  
the electron charge.  
Rohm  
the diode sensor can be considered a temperature scaling  
factor. The temperature error for a 1% accurate ideality  
factorerroris1%oftheKelvintemperature.Thus,at25°C,  
or298K, a+1%accurateidealityfactorerroryieldsa+2.98  
degree error. At 85°C or 358K, a +1% error yields a 3.6  
degree error. It is possible to scale the measured Kelvin  
or Celsius temperature measured using the LTC2990 with  
a sensor ideality factor other than 1.004, to the correct  
value. The scaling Equations (3) and (4) are simple, and  
can be implemented with sufficient precision using 16-bit  
fixed-point math in a microprocessor or microcontroller.  
VBE q  
T =  
(2)  
⎛ ⎞  
IC  
η•kIn  
⎜ ⎟  
I
⎝ ⎠  
S
The LTC2990 makes differential measurements of diode  
voltage to calculate temperature. Proprietary techniques  
allow for cancellation of error due to series resistance.  
0.1μF  
GND SHIELD  
LTC2990  
TRACE  
V1  
V2  
V3  
V4  
V
CC  
ADR1  
ADR0  
SCL  
Factory Ideality Calibration Value:  
η
CAL  
= 1.004  
470pF  
GND SDA  
Actual Sensor Ideality Value:  
NPN SENSOR  
2990 F02  
η
ACT  
Figure 20 ReAommended PCB Lacout  
Compensated Kelvin Temperature:  
ꢂdealitc FaAtor SAaling  
ηCAL  
(3)  
(4)  
T
=
• T  
K _MEAS  
K _COMP  
ηACT  
Compensated Celsius Temperature  
The LTC2990 is factory calibrated for an ideality factor of  
1.004, which is typical of the popular MMBT3904 NPN  
transistor. The semiconductor purity and wafer-level pro-  
cessing limits device-to-device variation, making these  
devicesinterchangeable(typically<0.5°C)fornoadditional  
cost. Several manufacturers supply suitable transistors,  
somerecommendedsourcesarelistedinTable1. Discrete  
2-terminal diodes are not recommended as temperature  
sensors. Whileanidealityfactorvalueof1.004istypicalof  
target sensors, small deviations can yield significant tem-  
perature errors. Contact LTC Marketing for parts trimmed  
to ideality factors other than 1.004. The ideality factor of  
ηCAL  
TC_COMP  
=
T  
+273 – 273  
(
)
C_MEAS  
η
ACT  
A 16-bit unsigned number is capable of representing the  
ratio η /η  
in a range of 0.00003 to 1.99997, by  
CAL ACT  
15  
multiplying the fractional ratio by 2 . The range of scal-  
ing encompasses every conceivable target sensor value.  
The ideality factor scaling granularity yields a worst-case  
temperatureerrorof0.01°at125°C.Multiplyingthis16-bit  
2990fc  
9
LTC2990  
APPLICATIONS INFORMATION  
R
unsigned number and the measured Kelvin (unsigned)  
temperature represented as a 16-bit number, yields a  
32-bit unsigned result. To scale this number back to a  
13-bit temperature (9-bit integer part, and a 4-bit frac-  
SENSE  
0V – V  
CC  
I
LOAD  
V1  
V2  
15  
LTC2990  
tional part), divide the number by 2 per Equation (5).  
Similarly, Celsius coded temperature values can be scaled  
using 16-bit fixed-point arithmetic, using Equation (6).  
In both cases, the scaled result will have a 9-bit integer  
(d[12:4]) and the 4LSBs (d[3:0]) representing the 4-bit  
fractional part. To convert the corrected result to decimal,  
2990 F03  
Figure 30 Simplified Current Sense SAhematiA  
ential input signal during a conversion is (V – 1.49V)  
IN  
• 0.34[μA/V]. The maximum source impedance to yield  
14-bit results with, 1/2LSB full-scale error is ~50Ω. In  
order to achieve high accuracy 4-point, or Kelvin con-  
nected measurements of the sense resistor differential  
voltage are necessary.  
4
divide the final result by 2 or 16, as you would the reg-  
ister contents. If ideality factor scaling is implemented  
in the target application, it is beneficial to configure the  
LTC2990 for Kelvin coded results to limit the number of  
math operations required in the target processor.  
In the case of current measurements, the external sense  
resistor is typically small, and determined by the full-scale  
input voltage of the LTC2990. The full-scale differential  
voltage is 0.300V. The external sense resistance is then a  
ηCAL  
Unsigned  
215  
T
(
)
K _MEAS  
η
ACT  
(5)  
(6)  
T
=
=
K _COMP  
215  
functionofthemaximummeasurablecurrent,orR  
EXT_MAX  
ηCAL  
Unsigned  
215 TC_MEAS +273.15 • 24  
(
)
(
)
= 0.300V/I  
. For example, if you wanted to measure a  
MAX  
η
ACT  
TC_COMP  
current range of 5A, the external shunt resistance would  
215  
equal 0.300V/5A = 60mΩ.  
– 273.15 • 24  
Thereexistsawaytoimprovethesenseresistor’sprecision  
usingtheLTC2990.TheLTC2990measuresbothdifferential  
voltage and remote temperature. It is therefore, possible  
to compensate for the absolute resistance tolerance of the  
senseresistorandthetemperaturecoefficientofthesense  
resistor in software. The resistance would be measured  
by running a calibrated test current through the discrete  
resistor. The LTC2990 would measure both the differential  
voltage across this resistor and the resistor temperature.  
Sampling Currents  
Single-ended voltage measurements are directly sampled  
by the internal ADC. The average ADC input current is a  
function of the input applied voltage as follows:  
I
= (V – 1.49V) • 0.17[μA/V]  
IN  
IN(AVG)  
Inputs with source resistance less than 200Ω will yield  
full-scalegainerrorsduetosourceimpedanceof<1/2LSB  
for 14-bit conversions. The nominal conversion time is  
1.5ms for single-ended conversions.  
From this measurement, R and T in the equation be-  
O
O
low would be known. Using the two equations, the host  
microprocessor could compensate for both the absolute  
tolerance and the TCR.  
Current Measurements  
R = R • [1 + α(T – T )]  
The LTC2990 has the ability to perform 14-bit current  
measurements with the addition of a current sense resis-  
tor (see Figure 3).  
T
O
O
where:  
α = +3930 ppm/°C for copper trace  
α = 2 to ~+200ppm/°C for discrete R  
In order to achieve accurate current sensing a few de-  
tails must be considered. Differential voltage or current  
measurements are directly sampled by the internal ADC.  
The average ADC input current for each leg of the differ-  
(7)  
(8)  
I = (V1 – V2)/R  
T
2990fc  
10  
LTC2990  
APPLICATIONS INFORMATION  
DeviAe Configuration  
accessed. Bit 6 of the register is a sensor-shorted alarm.  
This bit of the corresponding register will be high if the  
remote sensor diode differential voltage is below 0.14V.  
The LTC2990 internal bias circuitry maintains this voltage  
above this level during normal operating conditions. Bit 5  
of the register is a sensor open alarm. This bit of the cor-  
respondingregisterwillbehighiftheremotesensordiode  
The LTC2990 is configured by writing the control register  
through the serial interface. Refer to Table 5 for control  
register bit definition. The device is capable of many ap-  
plication configurations including voltage, temperature  
and current measurements. It is possible to configure the  
device for single or repeated acquisitions. For repeated  
acquisitions,onlytheinitialtriggerisrequiredandnewdata  
is written over the old data. Acquisitions are frozen during  
serial read data transfers to prevent the upper and lower  
data bytes for a particular measurement from becoming  
out of sync. Internally, both the upper and lower bytes  
are written at the same instant. Since serial data transfer  
timeout is not implemented, failure to terminate a read  
operation will yield an indefinitely frozen wait state. The  
device can also make single measurements, or with one  
trigger,allofthemeasurementsfortheconfiguration.When  
the device is configured for multiple measurements, the  
order of measurements is fixed. As each new data result  
is ready, the MSB of the corresponding data register is  
set, and the corresponding status register bit is set. These  
bits are cleared when the corresponding data register is  
addressed. The configuration register value at power-up  
yields the measurement of only the internal temperature  
sensor, if triggered. The four input pins V1 through V4 will  
be in a high impedance state, until configured otherwise,  
and a measurement triggered.  
differential voltage is above 1.0V . The LTC2990 internal  
DC  
biascircuitrymaintainsthisvoltagebelowthislevelduring  
normal operating conditions. The two sensor alarms are  
only valid after a completed conversion indicated by the  
data_valid bit being high. Bit 4 through Bit 0 of the MSB  
register are the conversion result bits D[12:8], in two’s  
compliment format. Note in Kelvin results, the result will  
alwaysbepositive. TheLSBregistercontainstemperature  
result bits D[7:0]. To convert the register contents to  
temperature, use the following equation:  
T = D[12:0]/16.  
See Table 10 for conversion value examples.  
Voltage/Current:Voltageresultsarereportedintworespec-  
tive registers, an MSB and LSB register. The Voltage MSB  
result register most significant bit (Bit 7) is the data_valid  
bit, which indicates whether the current register contents  
have been accessed since the result was written to the  
register. This bit will be set when the register contents are  
new, and cleared when accessed. Bit 6 of the MSB register  
is the sign bit, Bits 5 though 0 represent bits D[13:8] of  
the two’s complement conversion result. The LSB register  
holds conversion bits D[7:0]. The LSB value is different  
for single-ended voltage measurements V1 through V4,  
and differential (current measurements) V1 – V2 and V3  
– V4. Single-ended voltages are limited to positive values  
intherange0Vto3.5V. Differentialvoltagescanhaveinput  
values in the range of –0.300V to 0.300V.  
Data Format  
The data registers are broken into 8-bit upper and lower  
bytes. Voltage and current conversions are 14-bits. The  
upper bits in the MSB registers provide status on the  
resulting conversions. These status bits are different for  
temperature and voltage conversions:  
Temperature: Temperature conversions are reported as  
Celsius or Kelvin results described in Tables 8 and 9,  
each with 0.0625 degree-weighted LSBs. The format is  
controlled by the control register, Bit 7. All temperature  
Use the following equations to convert the register values  
(see Table 10 for examples):  
V
V
V
V
= D[14:0] • 305.18μV, if Sign = 0  
= (D[14:0] +1) • –305.18μV, if Sign = 1  
= D[14:0] • 19.42μV, if Sign = 0  
= (D[14:0] +1) • –19.42μV, if Sign = 1  
SINGLE-ENDED  
SINGLE-ENDED  
DIFFERENTIAL  
DIFFERENTIAL  
formats, T , T and T are controlled by this bit. The  
INT R1  
R2  
Temperature MSB result register most significant bit  
(Bit 7) is the DATA_VALID bit, which indicates whether  
the current register contents have been accessed since  
the result was written to the register. This bit will be set  
when new data is written to the register, and cleared when  
Current = D[13:0] • 19.42μV/R  
, if Sign = 0  
SENSE  
Current = (D[13:0] +1) • –19.42μV/R  
, if Sign = 1  
SENSE  
2990fc  
11  
LTC2990  
APPLICATIONS INFORMATION  
where R  
<1Ω.  
is the current sensing resistor, typically  
STꢀRT and STOP Conditions  
SENSE  
When the bus is idle, both SCL and SDA must be high. A  
bus master signals the beginning of a transmission with  
a START condition by transitioning SDA from high to low  
while SCL is high. When the bus is in use, it stays busy  
if a repeated START (SR) is generated instead of a STOP  
condition. The repeated START (SR) conditions are func-  
tionally identical to the START (S). When the master has  
finished communicating with the slave, it issues a STOP  
condition by transitioning SDA from low to high while SCL  
is high. The bus is then free for another transmission.  
V :TheLTC2990measuresV .Toconvertthecontentsof  
CC  
CC  
the V register to voltage, use the following equation:  
CC  
V
= 2.5 + D[13:0] • 305.18μV  
CC  
Digital ꢂnterfaAe  
The LTC2990 communicates with a bus master using a  
2
two-wire interface compatible with the I C Bus and the  
2
SMBus, an I C extension for low power devices.  
The LTC2990 is a read-write slave device and supports  
SMBusbusReadByteDataandWriteByteData,ReadWord  
Data and Write Word Data commands. The data formats  
for these commands are shown in Tables 3 though 10.  
2
ꢂ C DeviAe ꢀddressing  
Four distinct bus addresses are configurable using the  
ADR0-ADR1 pins. There is also one global sync address  
availableatEEhwhichprovidesaneasywaytosynchronize  
The connected devices can only pull the bus wires LOW  
and can never drive the bus HIGH. The bus wires are  
externally connected to a positive supply voltage via a  
current source or pull-up resistor. When the bus is free,  
2
multiple LTC2990s on the same I C bus. This allows write  
only access to all 2990s on the bus for simultaneous trig-  
gering. Table 2 shows the correspondence between ADR0  
and ADR1 pin states and addresses.  
2
bothlinesareHIGH. DataontheI Cbuscanbetransferred  
at rates of up to 100kbit/s in the standard mode and up to  
2
ꢀAknowledge  
400kbit/s in the fast mode. Each device on the I C bus is  
recognized by a unique address stored in that device and  
can operate as either a transmitter or receiver, depending  
on the function of the device. In addition to transmitters  
and receivers, devices can also be considered as masters  
or slaves when performing data transfers. A master is  
the device which initiates a data transfer on the bus and  
generates the clock signals to permit that transfer. At the  
same time any device addressed is considered a slave.  
The acknowledge signal is used for handshaking between  
thetransmitterandthereceivertoindicatethatthelastbyte  
of data was received. The transmitter always releases the  
SDA line during the acknowledge clock pulse. When the  
slave is the receiver, it must pull down the SDA line so that  
it remains LOW during this pulse to acknowledge receipt  
of the data. If the slave fails to acknowledge by leaving  
SDA HIGH, then the master can abort the transmission by  
generatingaSTOPcondition.Whenthemasterisreceiving  
data from the slave, the master must pull down the SDA  
line during the clock pulse to indicate receipt of the data.  
After the last byte has been received the master will leave  
the SDA line HIGH (not acknowledge) and issue a STOP  
condition to terminate the transmission.  
The LTC2990 can only be addressed as a slave. Once ad-  
dressed, it can receive configuration bits or transmit the  
last conversion result. Therefore the serial clock line SCL  
is an input only and the data line SDA is bidirectional. The  
device supports the standard mode and the fast mode for  
data transfer speeds up to 400kbit/s. The Timing Diagram  
shows the definition of timing for fast/standard mode  
Write ProtoAol  
2
devices on the I C bus. The internal state machine cannot  
2
updateinternaldataregistersduringanI Creadoperation.  
The master begins communication with a START condi-  
tion followed by the seven bit slave address and the R/W#  
bit set to zero. The addressed LTC2990 acknowledges  
the address and then the master sends a command byte  
which indicates which internal register the master wishes  
2990fc  
2
The state machine pauses until the I C read is complete.  
It is therefore, important not to leave the LTC2990 in this  
state for long durations, or increased conversion latency  
will be experienced.  
12  
LTC2990  
APPLICATIONS INFORMATION  
to write. The LTC2990 acknowledges the command byte  
and then latches the lower four bits of the command byte  
into its internal Register Address pointer. The master then  
delivers the data byte and the LTC2990 acknowledges  
once more and latches the data into its internal register.  
The transmission is ended when the master sends a STOP  
condition. If the master continues sending a second data  
byte, as in a Write Word command, the second data byte  
willbeacknowledgedbytheLTC2990andwrittentothenext  
register in sequence, if this register has write access.  
Control Register  
The control register (Table 5) determines the selected  
measurement mode of the device. The LTC2990 can be  
configured to measure voltages, currents and tempera-  
tures.Thesemeasurementscanbesingle-shotorrepeated  
measurements. Temperatures can be set to report in  
Celsius or Kelvin temperature scales. The LTC2990 can be  
configuredtorunparticularmeasurements, orallpossible  
measurementspertheconfigurationspecifiedbythemode  
bits. The power-on default configuration of the control  
register is set to 0x00, which translates to a repeated  
measurement of the internal temperature sensor, when  
triggered. This mode prevents the application of remote  
diode test currents on pins V1 and V3, and remote diode  
terminations on pins V2 and V4 at power-up.  
Read ProtoAol  
ThemasterbeginsareadoperationwithaSTARTcondition  
followed by the seven bit slave address and the R/W# bit  
settozero.TheaddressedLTC2990acknowledgesthisand  
then the master sends a command byte which indicates  
which internal register the master wishes to read. The  
LTC2990acknowledgesthisandthenlatchesthelowerfour  
bitsofthecommandbyteintoitsinternalRegisterAddress  
pointer.ThemasterthensendsarepeatedSTARTcondition  
followed by the same seven bit address with the R/W# bit  
now set to one. The LTC2990 acknowledges and sends  
the contents of the requested register. The transmission  
is ended when the master sends a STOP condition. The  
register pointer is automatically incremented after each  
byte is read. If the master acknowledges the transmitted  
data byte, as in a Read Word command, the LTC2990  
will send the contents of the next sequential register as  
the second data byte. The byte following register 0x0F is  
register 0x00, or the status register.  
Status Register  
The status register (Table 4) reports the status of a par-  
ticular conversion result. When new data is written into a  
particular result register, the corresponding DATA_VALID  
bit is set. When the register is addressed by the I  
face, the status bit (as well as the DATA_VALID bit in the  
respectiveregister)iscleared.Thehostcanthendetermine  
if the current available register data is new or stale. The  
busy bit, when high, indicates a single-shot conversion is  
in progress. The busy bit is always high during repeated  
mode, after the initial conversion is triggered.  
2
C inter-  
a6-a0  
b7-b0  
b7-b0  
1-7  
8
9
1-7  
8
9
1-7  
8
9
P
S
START  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
2990 F04  
Figure 40 Data Transfer Over ꢂ2C or SMBus  
S
ADDRESS W#  
10011a1:a0  
A
0
COMMAND  
A
0
DATA  
b7:b0  
A
0
P
0
XXXXXb3:b0  
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
A: ACKNOWLEDGE (LOW)  
A#: NOT ACKNOWLEDGE (HIGH)  
R: READ BIT (HIGH)  
W#: WRITE BIT (LOW)  
S: START CONDITION  
P: STOP CONDITION  
2990 F05  
Figure .0 LTC299± Serial Bus Write Bcte ProtoAol  
2990fc  
13  
LTC2990  
APPLICATIONS INFORMATION  
S
ADDRESS W#  
A
0
COMMAND  
A
0
DATA  
b7:b0  
A
0
DATA  
b7:b0  
A
0
P
10011a1:a0  
0
XXXXXb3:b0  
2990 F06  
Figure 60 LTC299± Serial Bus Repeated Write Bcte ProtoAol  
S
ADDRESS W#  
10011a1:a0  
A
0
COMMAND  
A
0
S
ADDRESS  
R
1
A
0
DATA A#  
b7:b0  
P
0
XXXXXb3:b0  
10011a1:a0  
1
2990 F07  
Figure 70 LTC299± Serial Bus Read Bcte ProtoAol  
S
ADDRESS W#  
10011a1:a0  
A
0
COMMAND  
A
0
S
ADDRESS  
R
1
A
0
DATA  
b7:b0  
A
0
DATA A#  
b7:b0  
P
0
XXXXXb3:b0  
10011a1:a0  
1
2990 F08  
Figure 80 LTC299± Serial Bus Repeated Read Bcte ProtoAol  
Table 20 ꢂ2C Base ꢀddress  
2
2
HEX ꢂ C BꢀSE ꢀDDRESS  
BꢂNꢀRY ꢂ C BꢀSE ꢀDDRESS  
ꢀDRꢁ  
ꢀDR±  
98h  
1001 100X*  
1001 101X*  
1001 110X*  
1001 111X*  
1110 1110  
0
0
1
1
0
1
0
1
9Ah  
9Ch  
9Eh  
EEh  
Global Sync Address  
*X = R/W Bit  
Table 30 LTC299± Register ꢀddress and Contents  
REGꢂSTER ꢀDDRESS*  
REGꢂSTER NꢀME  
STATUS  
REꢀD/WRꢂTE  
DESCRꢂPTꢂON  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
R
Indicates BUSY State, Conversion Status  
Controls Mode, Single/Repeat, Celsius/Kelvin  
Triggers an Conversion  
CONTROL  
TRIGGER**  
N/A  
R/W  
R/W  
Unused Address  
T
(MSB)  
(LSB)  
R
R
R
R
R
R
R
R
R
R
R
R
Internal Temperature MSB  
INT  
T
Internal Temperature LSB  
INT  
V1 (MSB)  
V1 (LSB)  
V2 (MSB)  
V2 (LSB)  
V3 (MSB)  
V3 (LSB)  
V4 (MSB)  
V4 (LSB)  
V1, V1 – V2 or T MSB  
R1  
V1, V1 – V2 or T LSB  
R1  
V2, V1 – V2 or T MSB  
R1  
V2, V1 – V2 or T LSB  
R1  
V3, V3 – V4 or T MSB  
R2  
V3, V3 – V4 or T LSB  
R2  
V4, V3 – V4 or T MSB  
R2  
V4, V3 – V4 or T LSB  
R2  
V
(MSB)  
(LSB)  
V
CC  
V
CC  
MSB  
LSB  
CC  
V
CC  
*Register Address MSBs b7-b4 are ignored.  
**Writing any value triggers a conversion. Data Returned reading this register address is the Status register.  
Power-on reset sets all registers to 00h.  
2990fc  
14  
LTC2990  
APPLICATIONS INFORMATION  
Table 40 STTUS Register (Default ±x±±)  
BꢂT  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
NꢀME  
OPERTꢂON  
0
Always Zero  
V
CC  
Ready  
1 = V Register Contains New Data, 0 = V Register Read  
CC CC  
V4 Ready  
1 = V4 Register Contains New Data, 0 = V4 Register Read  
1 = V3 Register Contains New Data, 0 = V3 Register Data Old  
1 = V2 Register Contains New Data, 0 = V2 Register Data Old  
1 = V1 Register Contains New Data, 0 = V1 Register Data Old  
V3, T , V3 – V4 Ready  
R2  
V2 Ready  
V1, T , V1 – V2 Ready  
R1  
T
Ready  
1 = T Register Contains New Data, 0 = T Register Data Old  
INT INT  
INT  
Busy*  
1= Conversion In Process, 0 = Acquisition Cycle Complete  
*In Repeat mode, Busy = 1 always  
Table .0 CONTROL Register (Default ±x±±)  
BꢂT  
b7  
NꢀME  
OPERTꢂON  
Temperature Format  
Temperature Reported In; Celsius = 0 (Default), Kelvin = 1  
Repeated Acquisition = 0 (Default), Single Acquisition = 1  
Reserved  
b6  
Repeat/Single  
b5  
Reserved  
b[4:3]  
Mode [4:3]  
Mode Description  
0
0
1
0
1
Internal Temperature Only (Default)  
0
T
T
, V1 or V1 – V2 Only per Mode [2:0]  
, V3 or V3 – V4 Only per Mode [2:0]  
R1  
1
1
R2  
All Measurements per Mode [2:0]  
Mode Description  
b[2:0]  
Mode [2:0]  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
V1, V2, T (Default)  
R2  
V1 – V2, T  
R2  
V1 – V2, V3, V4  
T
T
T
, V3, V4  
R1  
, V3 – V4  
R1  
, T  
R1 R2  
V1 – V2, V3 – V4  
V1, V2, V3, V4  
2990fc  
15  
LTC2990  
APPLICATIONS INFORMATION  
Table 60 Voltage/Current Measurement MSB Data Register  
Format  
BꢂT 7  
BꢂT 6  
BꢂT .  
BꢂT 4  
BꢂT 3  
BꢂT 2  
BꢂT ꢁ  
BꢂT ±  
DV*  
Sign  
D13  
D12  
D11  
D10  
D9  
D8  
*Data Valid is set when a new result is written into the register. Data Valid  
2
is cleared when this register is addressed (read) by the I C inteface.  
Table 70 Voltage/Current Measurement LSB Data Register  
Format  
BꢂT 7  
BꢂT 6  
BꢂT .  
BꢂT 4  
BꢂT 3  
BꢂT 2  
BꢂT ꢁ  
BꢂT ±  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Table 80 Temperature Measurement MSB Data Register Format  
BꢂT 7  
BꢂT 6  
BꢂT .  
BꢂT 4  
BꢂT 3  
BꢂT 2  
BꢂT ꢁ  
BꢂT ±  
DV*  
SS**  
SO  
D12  
D11  
D10  
D9  
D8  
*DATA_VALID is set when a new result is written into the register.  
2
DATA_VALID is cleared when this register is addressed (read) by the I C  
interface.  
**Sensor Short is high if the voltage measured on V1 is too low  
during temperature measurements. This signal is always low for T  
measurements.  
INT  
Sensor Open is high if the voltage measured on V1 is excessive  
during temperature measurements. This signal is always low for T  
measurements.  
INT  
Table 90 Temperature Measurement LSB Data Register Format  
BꢂT 7  
BꢂT 6  
BꢂT .  
BꢂT 4  
BꢂT 3  
BꢂT 2  
BꢂT ꢁ  
BꢂT ±  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
2990fc  
16  
LTC2990  
APPLICATIONS INFORMATION  
Table ꢁ±0 Conversion Formats  
VOLTGE FORMTS  
Single-Ended  
SꢂGN  
0
BꢂNꢀRY VꢀLUE D[ꢁ3:±]  
11111111111111  
10110011001101  
01111111111111  
00000000000000  
11110000101001  
11111111111111  
10110011001101  
10000000000000  
00000000000000  
10000000000000  
00001110101000  
00000000000000  
10110011001101  
10000000000000  
00001010001111  
VOLTGE  
>5  
LSB = 305.18μV  
0
3.500  
0
2.500  
0
0.000  
1
–0.300  
>0.318  
+0.300  
+0.159  
0.000  
Differential  
0
LSB = 19.42μV  
0
0
0
1
–0.159  
–0.300  
<–0.318  
1
1
V
= Result + 2.5V  
0
V
CC  
V
CC  
= 6V  
= 5V  
CC  
LSB = 305.18μV  
0
0
V
CC  
= 2.7V  
TEMPERTURE FORMTS  
FORMT  
Celsius  
Celsius  
Celsius  
Celsius  
Kelvin  
BꢂNꢀRY VꢀLUE D[ꢁ2:±]  
0011111010000  
0000110010001  
0000110010000  
1110110000000  
1100011100010  
1000100010010  
0111010010010  
TEMPERTURE  
+125.0000  
+25.0625  
+25.0000  
–40.0000  
398.1250  
273.1250  
233.1250  
Temperature Internal, T or T  
R1  
R2  
LSB = 0.0625 Degrees  
Kelvin  
Kelvin  
2990fc  
17  
LTC2990  
TYPICAL APPLICATIONS  
Computer Voltage and Temperature Monitoring  
High Voltage/Current and Temperature Monitoring  
R
1mΩ  
1%  
12V  
5V  
SENSE  
V
IN  
3.3V  
5V TO 105V  
10.0k  
1%  
30.1k  
1%  
I
R
20Ω  
1%  
LOAD  
IN  
0A TO 10A  
0.1μF  
10.0k  
1%  
10.0k  
1%  
0.1μF  
+IN  
–INS  
+
–INF  
V
+
MICROPROCESSOR  
V
V
V1  
V2  
V3  
CC  
2-WIRE  
V
REG  
SDA  
SCL  
ADR0  
ADR1  
2
I C  
LTC2990  
GND  
470pF  
INTERFACE  
V4  
OUT  
LTC6102HV  
0.1μF  
2990 TA03  
R
4.99k  
1%  
OUT  
200k  
1%  
0.1μF  
VOLTGE, CURRENT ꢀND TEMPERTURE CONFꢂGURTꢂON:  
CONTROL REGISTER: 0x58  
T
REG 4, 5  
REG 6, 7  
REG 8, 9  
REG A, B  
REG E, F  
0.0625°C/LSB  
0.61mVLSB  
4.75k  
1%  
AMB  
V1 (+5)  
V2(+12)  
1.22mV/LSB  
T
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
PROCESSOR  
V
CC  
5V  
0.1μF  
MMBT3904  
V
V1  
V2  
V3  
CC  
2-WIRE  
SDA  
SCL  
ADR0  
ADR1  
2
I C  
LTC2990  
GND  
470pF  
INTERFACE  
V4  
2990 TA02  
ALL CAPACITORS 20%  
VOLTGE, CURRENT ꢀND TEMPERTURE CONFꢂGURTꢂON:  
CONTROL REGISTER: 0x58  
T
REG 4, 5  
REG 6, 7  
REG 8, 9  
REG A, B  
REG E, F  
0.0625°C/LSB  
13.2mVLSB  
1.223mA/LSB  
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
AMB  
V
LOAD  
V2(I  
)
LOAD  
T
REMOTE  
V
CC  
Motor ProteAtion/Regulation  
LOAD  
= I • V  
0.1Ω  
1%  
PWR  
MOTOR CONTROL VOLTAGE  
0V TO 5V  
DC  
DC  
0A TO 2.2A  
5V  
0.1μF  
V
V1  
V2  
V3  
CC  
MMBT3904  
MOTOR  
2-WIRE  
SDA  
SCL  
ADR0  
ADR1  
2
I C  
LTC2990  
GND  
INTERFACE  
470pF  
MOTOR  
V4  
T
2990 TA04  
T
INTERNAL  
CURRENT ꢀND TEMPERTURE CONFꢂGURTꢂON:  
VOLTGE ꢀND TEMPERTURE CONFꢂGURTꢂON:  
CONTROL REGISTER: 0x59  
CONTROL REGISTER: 0x58  
T
REG 4, 5  
REG 6, 7  
REG A, B  
REG E, F  
0.0625°C/LSB  
194μA/LSB  
T
AMB  
REG 4, 5  
REG 8, 9  
REG A, B  
REG E, F  
0.0625°C/LSB  
305.18μVLSB  
0.0625°C/LSB  
AMB  
I
V
MOTOR  
MOTOR  
CC  
MOTOR  
T
MOTOR  
CC  
T
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
V
V
2.5V + 305.18μV/LSB  
2990fc  
18  
LTC2990  
TYPICAL APPLICATIONS  
Large Motor ProteAtion/Regulation  
LOAD  
ꢀꢁꢀ*ꢀtꢀ7  
PWR  
0.01Ω  
MOTOR CONTROL VOLTAGE  
0V TO 40V  
1W, 1%  
0A TO 10A  
71.5k  
1%  
71.5k  
1%  
10.2k  
1%  
10.2k  
1%  
5V  
0.1μF  
V
V1 V2  
CC  
MMBT3904  
MOTOR  
2-WIRE  
SDA  
SCL  
ADR0  
ADR1  
V3  
2
I C  
LTC2990  
INTERFACE  
470pF  
MOTOR  
V4  
GND  
T
2990 TA05  
T
INTERNAL  
VOLTGE ꢀND TEMPERTURE CONFꢂGURTꢂON:  
CURRENT ꢀND TEMPERTURE CONFꢂGURTꢂON:  
CONTROL REGISTER: 0x58  
CONTROL REGISTER: 0x59  
T
REG 4, 5  
REG 8, 9  
REG A, B  
REG E, F  
0.0625°C/LSB  
2.44mVLSB  
T
AMB  
REG 4, 5  
REG 6, 7  
REG A, B  
REG E, F  
0.0625°C/LSB  
15.54mA/LSB  
AMB  
V
I
MOTOR  
MOTOR  
MOTOR  
MOTOR  
CC  
T
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
T
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
V
V
CC  
Fan/ꢀir Filter/Temperature ꢀlarm  
3.3V  
MMBT3904  
FAN  
22Ω  
0.125W  
470pF  
3.3V  
0.1μF  
HEATER ENABLE  
V
MMBT3904  
FAN  
V1  
V2  
V3  
CC  
TEMPERATURE FOR:  
GOOD FAN  
2-WIRE  
SDA  
SCL  
ADR0  
ADR1  
2
I C  
LTC2990  
GND  
22Ω  
0.125W  
INTERFACE  
470pF  
BAD FAN  
V4  
HEATER  
T
INTERNAL  
NDS351AN  
HEATER ENABLE  
2 SECOND PULSE  
2990 TA06  
CONTROL REGISTER: 0x5D  
T
T
T
REG 4, 5  
REG 6, 7  
REG A, B  
REG E, F  
0.0625°C/LSB  
AMB  
R1  
R2  
0.0625°C/LSB  
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
V
CC  
2990fc  
19  
LTC2990  
TYPICAL APPLICATIONS  
Batterc Monitoring  
BATTERY I AND V MONITOR  
15mΩ*  
CHARGING  
CURRENT  
5V  
0.1μF  
V
V1  
V2  
V3  
CC  
MMBT3904  
2-WIRE  
SDA  
SCL  
ADR0  
ADR1  
2
V(t)  
T(t)  
I(t)  
+
I C  
LTC2990  
GND  
NiMH  
BATTERY  
INTERFACE  
470pF  
• • •  
100%  
100%  
100%  
V4  
T
BATT  
2990 TA07  
T
*IRC LRF3W01R015F  
INTERNAL  
VOLTGE ꢀND TEMPERTURE CONFꢂGURTꢂON:  
CURRENT ꢀND TEMPERTURE CONFꢂGURTꢂON:  
CONTROL REGISTER: 0x58  
CONTROL REGISTER: 0x59  
T
AMB  
REG 4, 5  
REG 8, 9  
REG A, B  
REG E, F  
0.0625°C/LSB  
305.18μVLSB  
T
REG 4, 5  
REG 6, 7  
REG A, B  
REG E, F  
0.0625°C/LSB  
1.295mA/LSB  
AMB  
BAT  
V
I
BAT  
BAT  
T
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
T
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
BAT  
V
V
CC  
CC  
Wet-Bulb PscAhrometer  
5V  
0.1μF  
MMBT3904  
V2  
MMBT3904  
V
CC  
V1  
SDA  
SCL  
V3  
μC  
LTC2990  
470pF  
470pF  
$T  
ADR0  
ADR1  
V4  
2990 TA08  
GND  
T
DRY  
T
WET  
T
INTERNAL  
FAN: SUNON  
KDE0504PFB2  
DAMP MUSLIN  
CONTROL REGISTER: 0x5D  
FAN  
T
AMB  
T
WET  
T
DRY  
REG 4, 5  
REG 6, 7  
REG A, B  
REG E, F  
0.0625°C/LSB  
0.0625°C/LSB  
0.0625°C/LSB  
WATER  
RESERVOIR  
5V  
V
CC  
2.5V + 305.18μV/LSB  
NDS351AN  
FAN ENABLE  
REFERENCES:  
http://en.wikipedia.org/wiki/Hygrometer  
http://en.wikipedia.org/wiki/Psychrometrics  
Wind DireAtion/ꢂnstrumentation  
3.3V  
μC  
0.1μF  
MMBT3904 3.3V MMBT3904  
V
V1  
V2  
V3  
CC  
SDA  
SCL  
ADR0  
ADR1  
LTC2990  
470pF  
470pF  
V4  
2990 TA11  
GND  
HEATER  
75Ω  
0.125W  
T
INTERNAL  
2N7002  
HEATER ENABLE  
2 SECOND PULSE  
CONTROL REGISTER: 0x5D  
T
T
T
REG 4, 5  
REG 8, 9  
REG A, B  
REG E, F  
0.0625°C/LSB  
AMB  
R1  
R2  
0.0625°C/LSB  
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
V
CC  
2990fc  
20  
LTC2990  
TYPICAL APPLICATIONS  
Liquid-Level ꢂndiAator  
3.3V  
3.3V  
SENSOR HI*  
0.1μF  
HEATER ENABLE  
V
V1  
V2  
V3  
V4  
CC  
470pF  
470pF  
SDA  
SCL  
ADR0  
ADR1  
SENSOR HI  
SENSOR LO  
μC  
LTC2990  
GND  
SENSOR LO*  
$T = ~2.0°C pp, SENSOR HI  
~0.2°C pp, SENSOR LO  
T
INTERNAL  
NDS351AN  
HEATER ENABLE  
2 SECOND PULSE  
HEATER: 75Ω 0.125W  
*SENSOR MMBT3904, DIODE CONNECTED  
2290 TA09  
CONTROL REGISTER: 0x5D  
T
T
T
REG 4, 5  
REG 6, 7  
REG A, B  
REG E, F  
0.0625°C/LSB  
AMB  
HI  
0.0625°C/LSB  
0.0625°C/LSB  
LO  
V
CC  
2.5V + 305.18μV/LSB  
OsAillator/ReferenAe Oven Temperature Regulation  
HEATER  
= I •V  
PWR  
0.1Ω  
HEATER  
VOLTAGE  
5V  
STYROFOAM  
INSULATION  
20°C  
AMBIENT  
0.1μF  
V
V1  
V2  
V3  
CC  
MMBT3904  
HEATER  
2-WIRE  
SDA  
SCL  
ADR0  
ADR1  
2
I C  
LTC2990  
GND  
INTERFACE  
470pF  
V4  
T
OVEN  
70°C  
OVEN  
2990 TA10  
T
INTERNAL  
HEATER CONSTRUCTION:  
HEATER POWER = A • (T  
– T  
) + B • ∫(T  
– T ) dt  
SET  
AMB  
OVEN SET  
5FT COIL OF #34 ENAMEL WIRE  
~1.6Ω AT 70°C  
FEED  
FEED  
BACK  
FORWARD  
P
= ~0.4W WITH T = 20°C  
HEATER  
A
A = 0.004W, B = 0.00005W/DEG-s  
VOLTGE ꢀND TEMPERTURE CONFꢂGURTꢂON:  
CURRENT ꢀND TEMPERTURE CONFꢂGURTꢂON:  
CONTROL REGISTER: 0x58  
CONTROL REGISTER: 0x59  
T
AMB  
REG 4, 5  
REG 8, 9  
REG A, B  
REG E, F  
0.0625°C/LSB  
305.18μVLSB  
T
REG 4, 5  
REG 6, 7  
REG A, B  
REG E, F  
0.0625°C/LSB  
269μVLSB  
AMB  
V1, V2  
I
HEATER  
HEATER  
T
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
T
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
OVEN  
V
V
CC  
CC  
2990fc  
21  
LTC2990  
PACKAGE DESCRIPTION  
Please refer to http://www0linear0Aom/designtools/paAkaging/ for the most reAent paAkage drawings0  
MS PaAkage  
ꢁ±-Lead PlastiA MSOP  
(Reference LTC DWG # 05-08-1661 Rev E)  
0.889 p 0.127  
(.035 p .005)  
5.23  
3.20 – 3.45  
(.206)  
(.126 – .136)  
MIN  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.497 p 0.076  
(.0196 p .003)  
REF  
0.50  
(.0197)  
BSC  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
DETAIL “A”  
0.254  
(.010)  
0o – 6o TYP  
GAUGE PLANE  
1
2
3
4 5  
0.53 p 0.152  
(.021 p .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
0.50  
(.0197)  
BSC  
MSOP (MS) 0307 REV E  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
2990fc  
22  
LTC2990  
REVISION HISTORY  
REV  
DTE  
DESCRꢂPTꢂON  
PꢀGE NUMBER  
2
A
6/11  
Revised title of data sheet from “I C Temperature, Voltage and Current Monitor”  
Revised Conditions and Values under Measurement Accuracy in Electrical Characteristics section  
Revised curve G05 labels in Typical Performance Characteristics section  
Revised Applications Information section and renumbered tables and table references  
Updated Features section  
1
2
4
9 to 17  
B
C
8/11  
1
10  
24  
2
Updated Current Measurements section  
Updated Related Parts  
12/11 Removed conditions for V  
Updated Pin 8 description  
in Electrical Characteristics  
CC(TUE)  
6
Removed ° symbol in reference to Kelvin measurements  
9
2
Revised Current Measurements, Voltage/Current, I C Device Addressing, Table 2, Table 5, and Table 10 in  
Applications Information  
10, 11, 12, 14,  
15, 17  
Revised Typical Applications drawings TA05 and TA11  
19, 20  
2990fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2990  
TYPICAL APPLICATION  
High Voltage/Current and Temperature Monitoring  
R
1mΩ  
1%  
SENSE  
V
IN  
5V TO 105V  
I
R
20Ω  
1%  
LOAD  
IN  
0A TO 10A  
0.1μF  
+IN  
–INS  
+
–INF  
V
+
V
V
REG  
OUT  
LTC6102HV  
0.1μF  
R
4.99k  
1%  
OUT  
200k  
1%  
0.1μF  
4.75k  
1%  
5V  
0.1μF  
MMBT3904  
V
V1  
V2  
V3  
CC  
2-WIRE  
SDA  
SCL  
ADR0  
ADR1  
2
I C  
LTC2990  
GND  
470pF  
INTERFACE  
V4  
2990 TA02  
ALL CAPACITORS 20%  
VOLTGE, CURRENT ꢀND TEMPERTURE CONFꢂGURTꢂON:  
CONTROL REGISTER: 0x58  
T
REG 4, 5  
REG 6, 7  
REG 8, 9  
REG A, B  
REG E, F  
0.0625°C/LSB  
13.2mVLSB  
1.223mA/LSB  
0.0625°C/LSB  
2.5V + 305.18μV/LSB  
AMB  
V
LOAD  
V2(I  
)
LOAD  
T
REMOTE  
V
CC  
RELATED PARTS  
PꢀRT NUMBER  
DESCRꢂPTꢂON  
COMMENTS  
2
LTC2991  
Octal I C Voltage, Current, Temperature Monitor  
Remote and Internal Temperatures, 14-Bit Voltages and  
Current, Internal 10ppm/°C Reference  
LTC2997  
Remote/Internal Temperature Sensor  
Temperature to Voltage with Integrated 1.8V Voltage Reference,  
1°C Accuracy  
LM134  
Constant Current Source and Temperature Sensor  
Can Be Used as Linear Temperature Sensor  
LTC1392  
Micropower Temperature, Power Supply and Differential Voltage Complete Ambient Temperature Sensor Onboard  
Monitor  
LTC2487  
Internal Temperature Sensor  
16-Bit, 2-/4-Channel Delta Sigma ADC with PGA, Easy Drive  
2
and I C Interface  
LTC6102/LTC6102HV Precision Zero Drift Current Sense Amplifier  
5V to 100V, 105V Absolute Maximum (LTC6102HV)  
2990fc  
LT 1211 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY