LTC2992HMS-1#PBF [Linear]

LTC2992 - Dual Wide Range Power Monitor; Package: MSOP; Pins: 16; Temperature Range: -40°C to 125°C;
LTC2992HMS-1#PBF
型号: LTC2992HMS-1#PBF
厂家: Linear    Linear
描述:

LTC2992 - Dual Wide Range Power Monitor; Package: MSOP; Pins: 16; Temperature Range: -40°C to 125°C

文件: 总46页 (文件大小:1935K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2992  
Dual Wide Range  
Power Monitor  
FeaTures  
DescripTion  
The LTC®2992 is a rail-to-rail system monitor that mea-  
sures current, voltage, and power of two supplies. It  
features an operating range of 2.7V to 100V and includes  
a shunt regulator for supplies above 100V. The voltage  
measurement range of 0V to 100V is independent of the  
input supply. Two ADCs simultaneously measure each  
supply’s current. A third ADC monitors the input voltages  
and four auxiliary external voltages. Each supply’s current  
and power is added for total system consumption. Mini-  
mum and maximum values are stored and an overrange  
alert with programmable thresholds minimizes the need  
n
Rail-to-Rail Input Range: 0V to 100V  
n
Wide Input Supply Range: 2.7V to 100V  
n
Measures Current, Voltage, and Power  
Shunt Regulator for Supplies >100V  
n
n
8-/12-Bit ADCs with Less Than 0.ꢀ3 Total Unad-  
justed Error  
n
Four General Purpose Inputs/Outputs Configurable  
as ADC Inputs  
Continuous Scan and Snapshot Modes  
n
n
Stores Minimum and Maximum Measurements  
n
Alerts When Alarm Thresholds Exceeded  
2
n
Shutdown Mode with I < 50μA  
for software polling. Data is reported via a standard I C  
interface. Shutdown mode reduces current consumption  
to 25μA typically.  
Q
n
Split SDA Pin Eases Opto-Isolation  
n
Available in 16-Lead 4mm × 3mm DFN and MSOP  
Packages  
2
The LTC2992 I C interface includes separate data input  
2
and output pins for use with standard or opto-isolated I C  
applicaTions  
connections. The LTC2992-1 has an inverted data output  
for use with inverting opto-isolator configurations.  
n
Telecom Infrastructure  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Analog  
Devices, Inc. All other trademarks are the property of their respective owners.  
Industrial Equipment  
n
Automotive  
Computer Systems and Servers  
n
Typical applicaTion  
Dual Wide Range Power Monitor  
ADC Error (GPIO)  
0.01Ω  
0.50  
V
IN2  
0V TO 100V  
V
12-BIT MODE  
OUT2  
0.01Ω  
V
IN1  
3V TO 100V  
0.25  
V
OUT1  
MAX ERROR  
+
+
SENSE1 SENSE1  
SENSE2 SENSE2  
0
MEASURED  
VOLTAGE 1  
TYPICAL  
V
DD  
GPIO1  
SDAI  
MEASURED  
VOLTAGE 2  
LTC2992  
GPIO2  
2
I C  
–0.25  
SDAO  
SCL  
INTERFACE  
DATAREADY  
GPIO3  
GPIO4  
2992 TA01a  
ALERT  
INTV  
CC  
GND ADR0 ADR1  
–0.50  
0
1024  
2048  
3072  
4096  
CODE  
2992 TA01b  
0.1μF  
2992f  
1
For more information www.linear.com/LTC2992  
LTC2992  
absoluTe MaxiMuM raTings  
(Notes 1, 2)  
Average Pin Currents  
Supply Voltages  
INTV .............................................. –10mA to 35mA  
V
...................................................... –0.3V to 100V  
CC  
DD  
SCL, SDAI............................................................5mA  
SDAO, SDAO, GPIO1-4.......................................20mA  
Operating Junction Temperature Range  
INTV (Note 3) .....0.3V to Lesser of 5.8V, V + 0.3V  
CC  
DD  
Analog Input Voltages  
+
+
SENSEn , SENSEn .................................–1V to 100V  
LTC2992C................................................ 0°C to 70°C  
LTC2992I .............................................–40°C to 85°C  
LTC2992H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10sec)  
SENSEn to SENSEn ..................................–1V to 1V  
ADR0, ADR1 ............................................ –0.3V to 7V  
GPIO1-4................................................... –0.3V to 7V  
Digital Input/Output Voltages  
SCL, SDAI (Note 4)............................... –0.3V to 5.9V  
SDAO, SDAO, GPIO1-4............................. –0.3V to 7V  
MS Package Only..............................................300°C  
pin conFiguraTion  
LTC2992  
LTC2992  
TOP VIEW  
+
+
SENSE1  
SENSE1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SENSE2  
SENSE2  
GPIO2  
GPIO4  
GND  
TOP VIEW  
+
+
1
2
3
4
5
6
7
8
SENSE1  
SENSE1  
16 SENSE2  
15 SENSE2  
14 GPIO2  
13 GPIO4  
12 GND  
GPIO1  
GPIO3  
ADR1  
ADR0  
GPIO1  
GPIO3  
ADR1  
ADR0  
17  
11 SDAO  
10 SDAI  
SDAO  
SDAI  
INTV  
V
CC  
DD  
INTV  
CC  
9
SCL  
V
SCL  
DD  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
DE PACKAGE  
T
= 150°C, θ = 120°C/W, θ = 21°C/W  
16-LEAD (4mm × 3mm) PLASTIC DFN  
JMAX  
JA  
JC  
T
= 150°C, θ = 43°C/W, θ = 5.5°C/W  
JMAX  
JA JC  
EXPOSED PAD (PIN 17) PCB GND CONNECTION IS OPTIONAL  
LTC2992-1  
LTC2992-1  
TOP VIEW  
+
+
SENSE1  
SENSE1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
SENSE2  
SENSE2  
GPIO2  
GPIO4  
GND  
TOP VIEW  
+
+
1
2
3
4
5
6
7
8
SENSE1  
SENSE1  
16 SENSE2  
GPIO1  
GPIO3  
ADR1  
ADR0  
15 SENSE2  
14 GPIO2  
13 GPIO4  
12 GND  
GPIO1  
GPIO3  
ADR1  
ADR0  
17  
11 SDAO  
10 SDAI  
SDAO  
SDAI  
INTV  
V
CC  
DD  
INTV  
CC  
9
SCL  
V
SCL  
DD  
MS PACKAGE  
16-LEAD PLASTIC MSOP  
= 150°C, θ = 120°C/W, θ = 21°C/W  
JA JC  
DE PACKAGE  
T
16-LEAD (4mm × 3mm) PLASTIC DFN  
JMAX  
T
= 150°C, θ = 43°C/W, θ = 5.5°C/W  
JMAX  
JA JC  
EXPOSED PAD (PIN 17) PCB GND CONNECTION IS OPTIONAL  
2992f  
2
For more information www.linear.com/LTC2992  
LTC2992  
http://www.linear.com/product/LTC2992#orderinfo  
orDer inForMaTion  
TUBE  
TAPE AND REEL  
PART MARKING*  
2992  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2992CDE#PBF  
LTC2992IDE#PBF  
LTC2992HDE#PBF  
LTC2992CDE-1#PBF  
LTC2992IDE-1#PBF  
LTC2992HDE-1#PBF  
LTC2992CMS#PBF  
LTC2992IMS#PBF  
LTC2992HMS#PBF  
LTC2992CMS-1#PBF  
LTC2992IMS-1#PBF  
LTC2992HMS-1#PBF  
LTC2992CDE#TRPBF  
LTC2992IDE#TRPBF  
LTC2992HDE#TRPBF  
LTC2992CDE-1#TRPBF  
LTC2992IDE-1#TRPBF  
LTC2992HDE-1#TRPBF  
LTC2992CMS#TRPBF  
LTC2992IMS#TRPBF  
LTC2992HMS#TRPBF  
LTC2992CMS-1#TRPBF  
LTC2992IMS-1#TRPBF  
LTC2992HMS-1#TRPBF  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead (4mm × 3mm) Plastic DFN  
16-Lead Plastic MSOP  
2992  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
2992  
29921  
29921  
29921  
2992  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
2992  
16-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
2992  
16-Lead Plastic MSOP  
29921  
29921  
29921  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
16-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VDD is from ꢀV to 100V unless otherwise noted. (Note 2)  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
DD  
V
CC  
V
Input Supply Voltage  
DD  
3
100  
5.8  
V
V
INTV Input Supply Voltage  
2.7  
CC  
l
l
I
DD  
V
Supply Current  
V
= 48V, INTV Open  
1.2  
25  
1.6  
50  
mA  
µA  
DD  
DD  
CC  
Shutdown  
l
l
I
CC  
INTV Supply Current  
INTV = V = 5V  
1.0  
25  
1.4  
50  
mA  
µA  
CC  
CC  
DD  
Shutdown  
l
V
INTV Linear Regulator Voltage  
8V < V < 100V  
LOAD  
4.6  
5.8  
5
5.4  
V
CC(LDO)  
CC  
DD  
= 0mA  
I
l
ΔV  
INTV Linear Regulator Load Regulation  
8V < V < 100V  
100  
6.2  
250  
mV  
CC(LDO)  
CC  
DD  
I
= 0mA to 10mA  
LOAD  
l
l
l
l
l
l
V
CCZ  
Shunt Regulator Voltage at INTV  
V
DD  
V
DD  
= 48V, I = 1.5mA  
6.7  
250  
2.69  
3
V
mV  
V
CC  
CC  
ΔV  
Shunt Regulator Load Regulation  
INTV Supply Undervoltage Lockout  
= 48V, I = 1.5mA to 35mA  
CC  
CCZ  
V
V
V
V
INTV Rising, V = INTV  
CC  
2.2  
2.4  
1.7  
1.7  
2.5  
2.7  
2.1  
2.1  
CC(UVL)  
CC  
CC  
DD  
V
Supply Undervoltage Lockout  
V
Rising, INTV Open  
V
DD(UVL)  
CCI2C(RST)  
DDI2C(RST)  
DD  
DD  
CC  
2
INTV I C Logic Reset  
INTV Falling, V = INTV  
CC  
V
CC  
CC  
DD  
2
V
I C Logic Reset  
V
Falling, INTV Open  
V
DD  
DD  
CC  
SENSE Inputs  
+
+
l
l
+
I
48V SENSE Input Current  
SENSE , SENSE , V = 48V  
120  
170  
2
µA  
µA  
SENSE (HI)  
DD  
Shutdown  
+
l
l
I
48V SENSE Input Current  
SENSE , SENSE , V = 48V  
20  
1
µA  
µA  
SENSE (HI)  
DD  
Shutdown  
2992f  
3
For more information www.linear.com/LTC2992  
LTC2992  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VDD is from ꢀV to 100V unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
+
+
l
l
I
0V SENSE Source Current  
SENSE , SENSE = 0V, V = 48V  
–10  
–1  
µA  
µA  
SENSE (LO)  
DD  
Shutdown  
+
l
l
I
0V SENSE Source Current  
SENSE , SENSE = 0V, V = 48V  
–5  
–1  
µA  
µA  
SENSE (LO)  
DD  
Shutdown  
ADC  
l
l
RES  
Resolution (No Missing Codes)  
(Note 5)  
NADC[7] = 1  
NADC[7] = 0  
8
12  
Bits  
Bits  
l
l
l
V
FS  
Full-Scale Voltage  
ΔSENSE (Note 6)  
50.9  
102  
2.042  
51.2  
102.4  
2.048  
51.5  
102.8  
2.054  
mV  
V
V
+
SENSE  
GPIO  
LSB  
TUE  
LSB Step Size  
8-Bit Mode  
ΔSENSE  
200  
400  
8
µV  
mV  
mV  
+
SENSE  
GPIO  
LSB Step Size  
12-Bit Mode  
ΔSENSE  
12.5  
25  
0.5  
µV  
mV  
mV  
+
SENSE  
GPIO  
l
l
l
Total Unadjusted Error (Note 7)  
8-Bit Mode  
ΔSENSE  
±0.8  
±0.8  
±0.8  
%
%
%
+
SENSE  
GPIO  
l
l
l
Total Unadjusted Error  
12-Bit Mode  
ΔSENSE  
±0.6  
±0.4  
±0.3  
%
%
%
+
SENSE  
GPIO  
+
l
V
OS  
Offset Error  
8-Bit Mode  
ΔSENSE, SENSE , GPIO  
±1  
LSB  
l
l
l
l
Offset Error  
12-Bit Mode  
ΔSENSE (C-, I-Grade)  
ΔSENSE (H-Grade)  
±2.1  
±3.1  
±1.5  
±1.1  
LSB  
LSB  
LSB  
LSB  
+
SENSE  
GPIO  
+
l
INL  
Integral Nonlinearity  
8-Bit Mode  
ΔSENSE, SENSE , GPIO  
±1  
LSB  
l
l
Integral Nonlinearity  
12-Bit Mode  
ΔSENSE  
±3.5  
±2  
LSB  
LSB  
+
SENSE , GPIO  
Transition Noise  
ΔSENSE  
0.5  
0.3  
5
µV  
RMS  
RMS  
σ
T
RMS  
+
SENSE  
mV  
µV  
GPIO  
l
l
t
Conversion Time (Snapshot Mode)  
8-Bit Mode  
ΔSENSE  
3.9  
0.97  
4.1  
1.02  
4.3  
1.08  
ms  
ms  
CONV  
+
SENSE , GPIO  
l
l
Conversion Time (Snapshot Mode)  
12-Bit Mode  
ΔSENSE  
62.4  
15.6  
65.6  
16.4  
68.8  
17.2  
ms  
ms  
+
SENSE , GPIO  
GPIO  
l
l
l
V
V
GPIO Pin Input Threshold  
GPIO Pin Output Low Voltage  
GPIO Pin Input Current  
V
Rising  
= 8mA  
1.13  
1.23  
0.15  
0
1.33  
0.4  
±1  
V
V
GPIO(TH)  
GPIO(OL)  
GPIO  
I
GPIO  
I
V
DD  
= 48V, GPIO = 3V  
μA  
GPIO  
2
I C Interface (V = 48V)  
DD  
l
l
l
l
V
V
ADR0, ADR1 Input High Threshold  
ADR0, ADR1 Input Low Threshold  
ADR0, ADR1 Input Current  
1.8  
0.3  
2.4  
0.6  
2.7  
0.9  
±13  
±7  
V
V
ADR(H)  
ADR(L)  
I
I
ADR0, ADR1 = 0V, 3V  
μA  
μA  
ADR(IN)  
ADR(IN,Z)  
Allowable Leakage When Open  
2992f  
4
For more information www.linear.com/LTC2992  
LTC2992  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VDD is from ꢀV to 100V unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
, I = 8mA  
MIN  
TYP  
0.15  
0
MAX  
0.4  
±1  
UNITS  
l
l
l
l
V
SDAO, SDAO, Output Low Voltage  
SDAI, SDAO, SDAO, SCL Leakage Current  
SDAI, SCL Input Threshold  
SDAI, SCL Clamp Voltage  
I
V
μA  
V
OD(OL)  
SDAO SDAO  
I
SDAI, SDAO, SDAO, SCL = 5V  
SDA,SCL(IN)  
V
V
1.5  
5.9  
1.8  
2.1  
6.9  
SDA,SCL(TH)  
I
, I  
= 0.5mA, 5mA  
V
SDA,SCL(CL)  
SDAI SCL  
2
I C Interface Timing  
l
l
l
l
f
t
t
t
Maximum SCL Clock Frequency  
SCL Low Period  
400  
kHz  
μs  
SCL(MAX)  
LOW  
0.65  
50  
1.3  
600  
1.3  
SCL High Period  
ns  
HIGH  
Bus Free Time Between STOP/START  
Condition  
0.12  
μs  
BUF(MIN)  
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
Hold Time after (Repeated) START Condition  
Repeated START Condition Setup Time  
STOP Condition Setup Time  
Data Hold Time Input  
140  
30  
600  
600  
600  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
pF  
HD, STA(MIN)  
SU, STA(MIN)  
SU, STO(MIN)  
HD, DATI(MIN)  
HD, DATO(MIN)  
SU, DAT(MIN)  
SP(MAX)  
30  
−100  
600  
30  
Data Hold Time Output  
300  
900  
100  
250  
Data Setup Time  
Maximum Suppressed Spike Pulse Width  
Stuck Bus Reset Time  
50  
25  
110  
33  
SCL or SDAI Held Low  
RST  
C
SCL, SDAI Input Capacitance (Note 5)  
5
10  
X
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Internal clamps limit the SCL and SDAI pins to a minimum of  
5.9V. Driving these pins to voltages beyond the clamp may damage the  
part. The pins can be safely tied to higher voltages through resistors that  
limit the current below 5mA.  
Note 2: All currents into pins are positive. All voltages are referenced to  
ground, unless otherwise noted.  
Note 5: Guaranteed by design and not subjected to test.  
+
Note 6: ΔSENSE is defined as V  
– V  
SENSE  
SENSE  
Note ꢀ: An internal shunt regulator limits the INTV pin to a minimum of  
CC  
Note 7: TUE is the maximum ADC error for any code expressed as a  
percentage of full-scale.  
5.8V. Driving this pin to voltages beyond 5.8V may damage the part. This  
pin can be safely tied to higher voltages through a resistor that limits the  
current below 35mA.  
2992f  
5
For more information www.linear.com/LTC2992  
LTC2992  
Typical perForMance characTerisTics  
VDD Supply Current  
INTVCC Supply Current  
INTVCC Load Regulation  
1.4  
1.2  
1.0  
0.8  
1.4  
1.2  
1.0  
5.2  
5.1  
5.0  
4.9  
4.8  
NORMAL  
NORMAL  
0.8  
30  
26  
22  
18  
45  
35  
25  
15  
SHUTDOWN  
SHUTDOWN  
0
20  
40  
60  
80  
100  
2
3
4
5
6
0
2
4
6
8
10  
V
DD  
SUPPLY VOLTAGE (V)  
INTV SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
CC  
2992 G01  
2992 G02  
2992 G03  
INTVCC Shunt Regulator  
Load Regulation  
INTVCC Line Regulation  
SENSE Input Current  
6.30  
6.25  
6.20  
6.15  
6.10  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
250  
200  
150  
100  
50  
+
SENSE  
SENSE  
0
–50  
0
10  
20  
30  
40  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
INTV SHUNT CURRENT (mA)  
V
DD  
SUPPLY VOLTAGE (V)  
SENSE VOLTAGE (V)  
CC  
2992 G05  
2992 G04  
2992 G06  
ADR Voltage with Current  
Source or Sink  
SCL/SDAI Loaded Clamp Voltage  
vs Load Current  
GPIO, SDAO, SDAO Loaded Output  
Low Voltage vs Load Current  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.4  
0.3  
0.2  
0.1  
0
6.40  
6.30  
6.20  
6.10  
6.00  
5.90  
5.80  
–10  
–5  
0
5
10  
0
2
4
6
8
10  
0.01  
0.1  
1
10  
I
(µA)  
I
(mA)  
OD  
I
(mA)  
ADR  
LOAD  
2992 G07  
2992 G09  
2992 G08  
2992f  
6
For more information www.linear.com/LTC2992  
LTC2992  
Typical perForMance characTerisTics  
ADC Differential Nonlinearity  
ADC Error (GPIO)  
ADC Integral Nonlinearity (GPIO)  
(GPIO)  
0.50  
0.25  
0
0.3  
0.2  
0.3  
0.2  
12–BIT MODE  
12–BIT MODE  
12–BIT MODE  
0.1  
0.1  
MAX ERROR  
0.0  
0.0  
TYPICAL  
–0.1  
–0.2  
–0.3  
–0.1  
–0.2  
–0.3  
–0.25  
–0.50  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
CODE  
CODE  
CODE  
2992 G10  
2992 G11  
2992 G12  
ADC Integral Nonlinearity  
(ΔSENSE)  
ADC Differential Nonlinearity  
(ΔSENSE)  
ADC Error (ΔSENSE)  
0.75  
0.50  
0.25  
0
2.0  
1.0  
1.0  
0.5  
12–BIT MODE  
12–BIT MODE  
12–BIT MODE  
MAX ERROR  
TYPICAL  
0
0
–0.25  
–0.50  
–0.75  
–1.0  
–2.0  
–0.5  
–1.0  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
CODE  
CODE  
CODE  
2992 G13  
2992 G14  
2992 G15  
ADC Input Signal Attenuation  
(GPIO)  
ADC Input Signal Attenuation  
(GPIO, Low Frequencies)  
ADC Input Signal Attenuation  
(ΔSENSE)  
0
–20  
0
–20  
–40  
–60  
–80  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–100  
0
62.5  
125  
187.5  
250  
0
62.5  
125  
187.5  
250  
0
60  
120  
180  
240  
FREQUENCY (kHz)  
FREQUENCY (Hz)  
FREQUENCY (kHz)  
2992 G16  
2992 G17  
2992 G18  
2992f  
7
For more information www.linear.com/LTC2992  
LTC2992  
Typical perForMance characTerisTics  
ADC Input Signal Attenuation  
(ΔSENSE, Low Frequencies)  
Current Sense Amplifier Offset  
Drift Over Temperature  
Current Sense Amplifier Offset  
Drift Over Input Common Mode  
0
–20  
–40  
–60  
–80  
25  
15  
10  
8
INITIAL CALIBRATION DONE AT V = 48V  
INITIAL CALIBRATION DONE AT 25°C  
NO CALIBRATION THEREAFTER  
12–BIT MODE  
CM  
NO CALIBRATION THEREAFTER  
12–BIT MODE  
CALIBRATION  
OFF  
6
CALIBRATION  
OFF  
CALIBRATION  
ON  
5
4
–5  
2
CALIBRATION  
ON  
–15  
0
–25  
–2  
0
60  
120  
180  
240  
–50 –25  
0
25  
50  
75 100 125  
0
25  
50  
75  
100  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
COMMON MODE VOLTAGE (V)  
2992 G19  
2992 G20  
2992 G21  
pin FuncTions  
2
ADR1,ADR0:I CDeviceAddressInputs.Connectingthese  
GPIO4: General Purpose Input/Output (Open Drain).  
Configurable to general purpose output, logic input, data  
converter input or SMBus alert (ALERT). As ALERT, it is  
pulled to ground when a fault occurs to alert the host con-  
troller. A fault alert is enabled by setting the corresponding  
bit in the ALERT registers as shown in Tables 7, 11, 13  
and 15. Tie to ground if unused. See Tables 18 and 19 in  
Applications Information section for details.  
pins to INTV , GND or leaving the pins open configures  
CC  
oneofninepossibleaddresses.SeeTable3inApplications  
Information section for details.  
EXPOSEDPAD:ExposedPadmaybeleftopenorconnected  
to device ground. For best thermal performance, connect  
to a copper plane with an array of vias.  
GND: Device Ground.  
INTV : Internal Low Voltage Supply Input/Output. This  
CC  
GPIO1, GPIO2: General Purpose Input/Output (Open  
Drain). Configurable to general purpose output, logic in-  
put, or data converter input. Tie to ground if unused. See  
Table 18 in Applications Information section for details.  
pin is used to power internal circuitry. It can be configured  
as a direct input for a low voltage supply, as linear regula-  
tor from a higher voltage supply connected to V , or as  
DD  
a shunt regulator. Connect this pin directly to a 2.7V to  
5.8V supply if available. When INTV is powered from an  
CC  
GPIO3: General Purpose Input/Output (Open Drain).  
Configurable to general purpose output, logic input, data  
converter input or data ready signal (DATAREADY). As  
DATAREADY, it is latched low or pulses low for 16µs or  
128µs when any of the ADC’s data becomes available. Tie  
to ground if unused. See Table 18 in Applications Informa-  
tion section for details.  
external supply, connect the V pin to INTV . If V is  
DD  
CC  
DD  
connected to a 8V to 100V supply, INTV becomes the  
CC  
5V output of an internal series regulator that can supply  
up to 10mA to external circuitry. For even higher supply  
voltages or if a floating topology is desired, INTV can  
CC  
be used as a 6.2V shunt regulator. Connect the supply to  
2992f  
8
For more information www.linear.com/LTC2992  
LTC2992  
pin FuncTions  
2
INTV through a resistor or current source that limits the  
SDAO (LTC2992-1 only): Inverted I C Bus Data Output.  
Open-drain output used for sending data back to the  
master controller or acknowledging a write operation.  
Data is inverted for convenience of opto-isolation. An  
external pull-up resistor or current source is required. The  
CC  
currenttolessthan35mA. Anundervoltagelockoutcircuit  
disables the ADC when the voltage at this pin drops below  
2.5V. Connect a bypass capacitor of 0.1µF or greater from  
this pin to ground. If an external load is present, for loop  
stability, use a bypass capacitor of 1µF or greater. See  
Flexible Power Supply section.  
2
LTC2992-1cannotbeusedinnonisolatedI Capplications  
without additional components.  
2
+
+
SCL: I C Bus Clock Input. Data at the SDAI pin is shifted  
SENSE1 , SENSE2 : Supply Voltage and Current Sense  
Input. Used as a voltage supply and current sense input  
for internal current sense amplifier. The voltage at this pin  
is monitored by the onboard ADC with a full-scale input  
range of 102.4V. See Figure 19 for recommended Kelvin  
connection.  
in or out on rising edges of SCL. This pin is driven by an  
open-collectoroutputfromamastercontroller.Anexternal  
pull-up resistor or current source is required and can be  
placed between SCL and V or INTV . The voltage at  
SCL is internally clamped to 6.3V typically.  
DD  
CC  
2
SDAI: I C Bus Data Input. Used for shifting in address,  
SENSE1 , SENSE2 : Current Sense Input. Connect an  
+
command or data bits. This pin is driven by an open-  
collector output from a master controller. An external  
pull-up resistor or current source is required and can be  
external sense resistor between SENSE and SENSE .  
The differential voltage between SENSE and SENSE is  
monitored by the onboard ADC with a full-scale sense  
voltage of 51.2mV. Tie both SENSE and SENSE together  
to a voltage between 0V and 100V if current measurement  
is unused.  
+
+
placed between SDAI and V or INTV . The voltage at  
DD  
CC  
SDAI is internally clamped to 6.3V typically. Tie to SDAO  
2
for normal I C operation.  
2
SDAO (LTC2992 only): I C Bus Data Output. Open-drain  
V :HighVoltageSupplyInput.Thispinpowersaninternal  
DD  
output used for sending data back to the master controller  
or acknowledging a write operation. An external pull-up  
resistor or current source is required. Tie to SDAI for  
series regulator with input voltages ranging from 3V to  
100V and produces 5V at INTV when V is above 8V.  
CC  
DD  
Connect a bypass capacitor of 0.1µF or greater from this  
2
normal I C operation.  
pin to ground if external load is present on the INTV pin.  
CC  
See Flexible Power Supply section.  
2992f  
9
For more information www.linear.com/LTC2992  
LTC2992  
FuncTional DiagraM  
10  
9
6
5
11  
SDAI  
SCL  
ADR0  
ADR1  
SDAO (LTC2992)  
SDAO (LTC2992-1)  
6.3V  
6.3V  
DECODER  
SENSE1  
1
40X  
V
REF  
2.048V  
+
2
I C  
+
SENSE1  
2
12  
12  
12  
I1  
IADC1  
P1  
SENSE2  
16  
1.23V  
40X  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
+
3
14  
4
+
I2  
IADC2  
VADC  
+
P2  
SENSE2  
15  
V
735k  
15k  
735k  
15k  
DD  
S1  
S2  
G1  
G2  
G3  
G4  
8
7
INTV  
13  
CC  
5V  
LDO  
6.2V  
4
I1 + I2  
P1 + P2  
GND  
12  
2992 FD  
TiMing DiagraM  
SDA  
t
SP  
t
t
SU, STA  
t
SU, DAT  
t
t
BUF  
HD, DATO,  
HD, DATI  
t
HD, STA  
t
SU, STO  
t
SP  
2992 TD  
SCL  
t
HD, STA  
REPEATED START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
2992f  
10  
For more information www.linear.com/LTC2992  
LTC2992  
operaTion  
The LTC2992 accurately monitors current, voltage and  
power of two 0V to 100V supplies. An internal linear  
regulatorallowstheLTC2992tooperatedirectlyfroma3V  
to 100V rail, or from an external supply voltage between  
2.7V and 5.8V. Quiescent current is less than 1.6mA in  
normal operation. Enabling shutdown mode via the I C  
interface reduces the quiescent current to below 50µA.  
The GPIO1 to GPIO4 pins are also general purpose inputs  
orgeneralpurposeopen-drainoutputs.Inaddition,GPIO3  
may be configured as DATAREADY output while GPIO4  
is also an SMBus alert (ALERT) output. DATAREADY in-  
dicates availability of the most recent conversion results  
from any of the ADCs while ALERT indicates one or more  
faults have occurred.  
2
There are three onboard 8-/12-bit ADCs as shown in the  
Functional Diagram. Each supply’s load current is mea-  
sured with an external current sense resistor connected  
Onboard memory stores the minimum and maximum  
values for each ADC measurement and calculates power  
data by digitally multiplying the stored current and voltage  
data. When the ADC measured value falls outside its pro-  
grammed window thresholds, a fault event is logged and  
the ALERT (GPIO4) may optionally pull low. The LTC2992  
also calculates the total current and power consumption  
of the two monitored supplies.  
+
between SENSE and SENSE . Internal amplifiers gain up  
the voltage drop across the sense resistor for monitoring  
bytheIADCs(full-scale51.2mV).VADCisusedforvoltage  
measurements and its input is selectively connected to  
+
+
SENSE1 , SENSE2 (full-scale 102.4V) or any of the four  
GPIOpins(full-scale2.048V).Eachconversiontakes33ms  
for the IADCs and 16ms for the VADC in 12-bit mode. The  
conversion time can be shortened by a factor of 16 when  
8-bit mode is selected.  
2
The LTC2992 includes an I C interface to access the  
onboard data registers and to program the alert thresh-  
old, configuration and control registers. Two three-state  
pins, ADR1 and ADR0, are decoded to allow nine device  
addresses (see Table 3). The SDA pin is split into SDAI  
(input) and SDAO (output, LTC2992) or SDAO (output,  
LTC2992-1)tofacilitateopto-isolation.TieSDAIandSDAO  
TheADCscanbeconfiguredtoruncontinuously(continu-  
ous scan) or on demand (snapshot mode). In continuous  
scan mode, the VADC measures selected voltages of the  
six inputs in round robin fashion. See the Applications  
Information section for more details. Status bits in the  
ADC STATUS register signal new conversion results from  
the ADCs have been written into onboard registers.  
2
together for normal, nonisolated I C operation.  
2992f  
11  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
The LTC2992 offers a compact and complete solution to  
monitor power from two supply rails in high side and/or  
low side current sensing applications. With an input com-  
mon mode range of 0V to 100V and a wide input supply  
operating voltage range from 2.7V to 100V, this device is  
ideal for a wide variety of power management applications  
includingautomotive,industrialandtelecominfrastructure.  
The basic application circuit shown in Figure 1 provides  
monitoringofhighsidecurrents(5.12A/10.24Afull-scale),  
input voltages (102.4V full-scale) and two external volt-  
ages (2.048V full-scale), all using internal 12-bit ADCs.  
ers connected to the GPIO1 and GPIO2 pins. See Flexible  
Power Supply section for details.  
TheoperationandconversionsequenceoftheADCs, mul-  
tiplier operand and VADC input selections are controlled  
by the settings in the CTRLA register as shown in Table 1.  
The timing sequence for some of these configurations are  
shown in Figure 2 (2a to 2f). The timing diagram shown  
in Figure 2a illustrates the conversion sequence in the  
defaultconfiguration(CTRLA[7:0]=0x00).Uponpower-up  
(t ), the IADCs will always measure their corresponding  
1
current sense amplifier’s offset (calibration) and then the  
loadcurrent(ΔSENSE1/2).Meanwhile,VADCbeginsmea-  
Data Converters  
+
+
surement of SENSE1 , SENSE2 , GPIO1, GPIO2, GPIO3  
and GPIO4 successively.  
The LTC2992 features three Δ∑ A/D converters (ADC)  
that can be configured to 8- or 12-bit. The Δ∑ architec-  
ture inherently averages input signals and noise during  
the measurement period. Two ADCs (IADC1 and IADC2)  
At t a new IADC conversion begins. To generate power,  
3
the most recent voltage data (S1 at t , S2 at t ) from VADC  
2
3
+
is stored in a latch as an operand to the adder as shown  
in Figure 3. IMOD1 represents IADC1’s modulator which  
converts the load current into a 1-bit data stream. Each  
1 in the bitstream adds to the accumulators the voltage  
data such that they contain the power values I1 × S1 and  
monitor the differential voltages between SENSE and  
SENSE (ΔSENSE)with51.2mVfull-scaletoallowaccurate  
measurement of load currents across low value shunt  
+
+
resistors. The third ADC (VADC) monitors two SENSE  
and four GPIO pins with full-scale of 102.4V for SENSE  
I2 × S2 at the end of the IADC conversions at t . Voltage  
5
and 2.048V for GPIO.  
latch content is then updated to the corresponding data  
registers. I1 is added to I2 to generate total current and  
P1 is added to P2 to generate total power. In the summing  
process,theleastsignificantbitoftheresultsaretruncated.  
Consequently, the summing results need to be shifted one  
bit to the left to restore the correct quantity. Note that the  
+
The supply voltage data are derived from SENSE1 and  
+
SENSE2 or GPIO1 and GPIO2 depending on the external  
+
+
application circuit. SENSE1 and SENSE2 are selected  
by default as these are normally connected to the supply  
voltages. In negative supply voltage systems, the supply  
voltagescanbemeasuredthroughexternalresistivedivid-  
3.3V  
R
SENSE1  
0.01Ω  
V
V
IN1  
OUT1  
5A  
3V TO 100V  
R1  
2k  
R2  
2k  
R3  
2k  
R4  
2k  
+
V
DD  
SENSE1 SENSE1  
V
DD  
SDAI  
SDA  
MEASURED  
VOLTAGE 1  
GPIO1  
SDAO  
SCL  
MEASURED  
VOLTAGE 2  
LTC2992  
µP  
GPIO2  
SCL  
ALERT  
DATAREADY  
GPIO4  
GPIO3  
INT0  
INT1  
+
INTV  
GND ADR0 ADR1 SENSE2 SENSE2  
GND  
CC  
2992 F01  
0.1μF  
V
V
IN2  
OUT2  
10A  
0V TO 100V  
R
SENSE2  
0.005Ω  
Figure 1. Dual High Side Power Monitor  
2992f  
12  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
calculated LSB (see Design Example section) for current  
and power of both supplies have to match. Otherwise,  
external µP can be used to first compute physical amount  
of current and power for each supply and then perform  
the summing.  
input. Therefore, inputsignalssuchassupplyrailvoltages  
with average value that varies at less than 5Hz can be ac-  
curately monitored. Otherwise, the input update rate can  
be increased by reducing the number of inputs monitored  
+
via CTRLA[4:3]. Figure 2c shows only the SENSE pins  
being monitored in continuous scan mode with an effec-  
tive update rate of 30Hz. The remaining inputs may be  
monitored by switching to snapshot mode when needed.  
The LTC2992 measures the current sense amplifier’s  
input offset to calibrate subsequent IADC measurements.  
During offset measurement, IADC cannot capture load  
current information. By default, such calibration is done  
for every IADC conversion as shown in Figure 2a. In most  
applications, the calibration frequency can be reduced by  
writing to CTRLA register with its CTRLA[7] bit set to 1.  
A one-off calibration is then performed immediately after  
A snapshot mode is available to make on-demand mea-  
surement of a single selected voltage without power data  
+
+
update (SENSE1 , SENSE2 , GPIO1, GPIO2, GPIO3 or  
+
GPIO4) or two selected voltages (either SENSE1 and  
SENSE2 ,orGPIO1andGPIO2).Tomakeasnapshotmea-  
+
2
the I C write operation as shown in Figure 2b.  
surement, write the 3-bit code of the desired voltage input  
to CTRLA[2:0] and 01 to CTRLA[6:5]. After completion of  
the conversion, the ADCs will halt and the corresponding  
VADC by default monitors six input voltages sequentially  
as shown in Figure 2a with an update rate of 10Hz for each  
Table 1. ADC Configuration Via CTRLA Register  
BIT  
NAME  
OPERATION  
CTRLA[7]  
Offset Calibration Offset Calibration for Current Measurements  
[1] = Calibrate on Demand  
[0] = Every Conversion (Default)  
CTRLA[6:5]  
Measurement  
Mode  
[11] = Shutdown  
[10] = Single Cycle mode  
+
+
The VADC converts SENSE1 , SENSE2 , GPIO1, GPIO2, GPIO3, GPIO4 once and stops. The IADCs stop after  
one conversion.  
+
+
P1 = SENSE1 × ΔSENSE1; P2 = SENSE2 × ΔSENSE2  
[01] = Snapshot Mode  
Snapshot Initializes Conversion on All 3 ADCs Simultaneously.  
VADC Converts the Channel(s) per CTRLA[2:0]  
[00] = Continuous Scan Mode (Default)  
The Selected Channels for VADC are Defined by CTRLA[4:3]  
CTRLA[4:3]  
CTRLA[2:0]  
Voltage Selection CTRLA[4:3]  
VADC  
P1  
P2  
for Continuous  
11  
GPIO1, GPIO2,  
GPIO3, GPIO4  
GPIO1 × ΔSENSE1  
GPIO2 × ΔSENSE2  
Scan Mode  
10  
GPIO1, GPIO2  
GPIO1 × ΔSENSE1  
GPIO2 × ΔSENSE2  
+
+
+
+
+
01  
SENSE1 , SENSE2  
SENSE1 × ΔSENSE1  
SENSE2 × ΔSENSE2  
+
+
+
00 (Default)  
SENSE1 , SENSE2 ,  
GPIO1, GPIO2,  
GPIO3, GPIO4  
SENSE1 × ΔSENSE1  
SENSE2 × ΔSENSE2  
Voltage Selection CTRLA[2:0]  
VADC  
P1  
P2  
for Snapshot  
Mode  
111  
GPIO1, GPIO2  
GPIO1 × ΔSENSE1  
GPIO2 × ΔSENSE2  
+
+
+
+
110  
SENSE1 , SENSE2  
SENSE1 × ΔSENSE1  
SENSE2 × ΔSENSE2  
101  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
ΔSENSE1/2 without P1/P2 updates  
100  
011  
010  
+
001  
SENSE2  
+
000 (Default)  
SENSE1  
2992f  
13  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
t
t
t
t
4
t
5
t
t
t
t
t
1
2
3
6
7
8
9
10  
16.4ms 16.4ms 16.4ms 16.4ms 16.4ms 16.4ms 16.4ms 16.4ms 16.4ms  
POWER UP  
S1 S2 G1 G2 G3 G4 S1 S2 G1  
G2  
VADC  
IADC1  
IADC2  
CAL  
CAL  
I1 AND P1  
CAL  
CAL  
I1 AND P1  
CAL  
CAL  
I2 AND P2  
I2 AND P2  
(2a) Continuous Scan Mode with Calibration Every Cycle (Default)  
+
+
S1, S2, G1, G2, G3, G4: SENSE1 , SENSE2 , GPIO1, GPIO2, GPIO3, and GPIO4  
CAL: Calibration of Current Sense Amplifier  
I1, I2: ∆SENSE1, ∆SENSE2  
P1, P2: POWER1, POWER2  
WRITE 0x80 TO  
CTRLA REGISTER  
WRITE 0x80 TO  
CTRLA REGISTER  
S1  
S2  
G1  
G2  
G3  
G4  
S1  
S2  
S1  
S2  
G1  
G2  
VADC  
IADC1  
IADC2  
CAL  
CAL  
I1 AND P1  
I1 AND P1  
I1 AND P1  
CAL  
CAL  
I1 AND P1  
I2 AND P2  
I2 AND P2  
I2 AND P2  
I2 AND P2  
(2b) Continuous Scan Mode with On-Demand Calibration. CTRLA[7:0] = 0x80  
WRITE 0x88 TO  
CTRLA REGISTER  
WRITE 0x20 TO  
CTRLA REGISTER  
S1  
S2  
S1  
S2  
S1  
S2  
S1  
IDLE  
VADC  
IADC1  
IADC2  
VADC  
IADC1  
IADC2  
CAL  
I1 AND P1  
I1 AND P1  
CAL  
I1  
I2  
IDLE  
IDLE  
CAL  
I2 AND P2  
I2 AND P2  
CAL  
(2c) Continuous Scan Mode with On-Demand  
Calibration. CTRLA[7:0] = 0x88  
(2d) Snapshot Mode for Single Voltage. CTRLA[7:0] = 0x20  
WRITE 0x40 TO  
WRITE 0x27 TO  
CTRLA REGISTER  
CTRLA REGISTER  
t
1
t
2
t
3
t
4
t
5
t
6
t
7
G1  
G2  
IDLE  
S1  
S2  
G1  
G2  
G3  
G4  
IDLE  
VADC  
IADC1  
IADC2  
VADC  
IADC1  
IADC2  
CAL  
CAL  
I1 AND P1  
I2 AND P2  
IDLE  
IDLE  
CAL  
CAL  
I1 AND P1  
I2 AND P2  
IDLE  
IDLE  
2992 F02  
(2e) Snapshot Mode for Two Voltages. CTRLA[7:0] = 0x27  
(2f) Single Cycle Mode. CTRLA[7:0] = 0x40  
Figure 2  
2992f  
14  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
junction temperature rises above 150°C, and the output  
is protected against accidental shorts. Bypass capacitors  
DATA  
VOLTAGE  
LATCH  
VADC  
of 0.1μF, or greater, at both the V and INTV pins are  
DD  
CC  
+
POWER1  
recommendedforoptimaltransientperformance.Notethat  
ACCUMULATOR  
LATCH  
operation with high V voltages can result in significant  
DD  
IMOD1  
power dissipation, and care is required to ensure that the  
maximum operating junction temperature stays below  
125°C. For improved thermal resistance, use the DFN  
package and solder the exposed pad to a large copper  
region on the PCB.  
2992 F03  
Figure 3. POWER1 Generator Blocks  
bits in ADC STATUS register (Table 10) are set to indicate  
the availability of new data. An alert may be generated at  
the end of a snapshot conversion by setting bit AL4[7:6]  
in the ALERT4 register (Table 15). To make another snap-  
shot measurement, rewrite the CTRLA register. Figure 2d  
Figure 4a shows the LTC2992 being used to monitor input  
suppliesthatrangefrom4Vto100V.Noseparatesupplyis  
needed since V can be connected to either of the input  
DD  
supplies. To prevent loss of operation from either supply’s  
+
failure, V is connected to V and V via diodes. If  
DD  
IN1  
IN2  
shows a snapshot operation of SENSE1 with no updates  
the LTC2992 is used to monitor input supplies of 0V to  
100V, it can derive power from a wide range separate sup-  
to power data since only single voltage is selected while  
Figure 2e shows combo snapshot operation of GPIO1 and  
GPIO2 with new power data.  
ply connected to the V pin as shown in Figure 4b. The  
DD  
R
A single cycle mode allows all six voltages to be measured  
SENSE1  
BAV23CLT1G  
0.01Ω  
2
V
IN1  
4V TO 100V  
once with a single I C command. To initiate such mode,  
V
OUT1  
+
write 10 to CTRLA[6:5] as shown in Figure 2f. SENSE1 ,  
+
SENSE2 are updated together with current and power  
values at t . At t the conversions are done and the ADCs  
5
7
+
V
DD  
SENSE1 SENSE1  
are halted.  
INTV  
CC  
2
C2  
LTC2992  
IfthereisanextendedperiodofI Ccommunicationbetween  
the LTC2992 and the controller, some of the ADC result  
GND  
+
SENSE2 SENSE2  
2
may be lost. This is because during the I C communica-  
tion, the ADCs are prevented from updating the internal  
registers to avoid corrupting the data. This problem can  
be overcome by breaking the I C communication into  
blocks of less than one conversion period (16.4ms for  
12-bit mode and 1ms for 8-bit mode).  
V
IN2  
4V TO 100V  
V
OUT2  
R
SENSE2  
0.005Ω  
2992 F04a  
2
(4a) Derives Power from the Supplies Being Monitored  
R
SENSE1  
0.01Ω  
V
IN1  
Flexible Power Supply  
V
OUT1  
0V TO 100V  
TheLTC2992canbeexternallyconfiguredtoderivepower  
from a wide range of supplies. The LTC2992 includes an  
onboard linear regulator to power the low voltage inter-  
+
SENSE1 SENSE1  
V
3V TO 100V  
DD  
INTV  
CC  
LTC2992  
C2  
nal circuitry connected to the INTV pin from high V  
CC  
DD  
GND  
+
SENSE2 SENSE2  
voltages. The linear regulator operates with V voltages  
DD  
from 3V to 100V, and a shunt regulator is available for  
voltages above 100V. The linear regulator produces a 5V  
V
IN2  
V
OUT2  
0V TO 100V  
R
SENSE2  
0.005Ω  
2992 F04b  
output capable of supplying 10mA at the INTV pin when  
CC  
(4b) Derives Power from a Separate Wide Range Supply  
V
is greater than 8V. The regulator is disabled when the  
DD  
2992f  
15  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
R
SENSE1  
MBR10100  
0.01Ω  
V
IN1  
RTN1  
RTN  
V
OUT1  
0V TO 100V  
MBR10100  
+
SENSE1 SENSE1  
RTN2  
V
DD  
2.7V TO 5.8V  
R8  
R9  
1M  
1M  
LTC2992  
INTV  
V
CC  
DD  
INTV  
CC  
GPIO1  
GND  
C2  
+
SENSE2 SENSE2  
GPIO2  
GND  
LTC2992  
V
IN2  
0V TO 100V  
R10  
20k  
R11  
20k  
V
OUT2  
+
+
R
SENSE1 SENSE1  
SENSE2 SENSE2  
SENSE2  
2992 F04c  
0.005Ω  
(4c) Derives Power from a Separate Low Voltage Supply  
MBR10100  
V
IN2  
–5V TO –100V  
+/–  
SENSE pins can be biased independently of the part’s  
R
SENSE2  
0.01Ω  
MBR10100  
supply voltage. Alternatively, if a low voltage supply is  
V
V
5A  
IN1  
–5V TO –100V  
OUT  
present it can be connected to the INTV pin, as shown  
CC  
R
SENSE1  
0.01Ω  
2992 F05b  
inFigure4c, tominimizeon-chippowerdissipation. When  
(5b) Derives Power from the Supply Monitored in a Low  
Side Current Sense Topology  
INTV is powered from a separate supply, connect V  
CC  
DD  
to INTV .  
CC  
R
SENSE1  
TOP LAYER  
MBR10100  
R
SENSE2  
0.01Ω  
V
IN1  
0V TO 100V  
V
OUT1  
V
IN2  
+
R
SHUNT  
SENSE1 SENSE1  
> 100V  
INTV  
CC  
BOTTOM LAYER  
V
DD  
LTC2992  
C2  
GND  
+
SENSE2 SENSE2  
V
OUT  
V
IN2  
0V TO 100V  
V
OUT2  
R
SENSE2  
0.005Ω  
2992 F05a  
(5a) Derives Power Through a Low Side Shunt  
Regulator in a High Side Current Sense Topology  
V
IN1  
2992 F05c  
MBR10100  
R
SENSE1  
Figure5ashowsahighsiderail-to-railpowermonitorwhich  
derives power from a separate supply greater than 100V.  
(5c) Recommended Layout for Figure 5b’s SENSE Pins  
Connection  
The voltage at INTV is clamped at 6.3V above ground in  
CC  
a low side shunt regulator configuration to power the part.  
+
(V ) close to the SENSE terminal of the sense resistors  
OUT  
Indualfeed,lowsidepowermonitorapplications,thedevice  
ground and the current sense inputs are connected to the  
diode-ORedoutputoftheinputsuppliesnegativeterminal  
with a wide track to prevent excessive potential difference  
+
between the SENSE pins when load current is supplied  
entirely by V or V  
.
IN1  
IN2  
as shown in Figure 5b. Note that the SENSE pins operate  
at a voltage more negative than the device ground. It is  
Supply Undervoltage Lockout  
+
highly recommended that the SENSE pins be operating  
2
During power-up, the internal I C logic and the ADCs  
are enabled when either V or INTV rises above its  
at as close to device ground potential as possible so that  
DD  
CC  
at full-scale the SENSE pins are limited to 80mV below  
under-voltage lockout threshold (2.7V for V and 2.5V  
DD  
device ground for accurate measurements. A recom-  
mended layout for Figure 5b’s SENSE pins connection  
is shown in Figure 5c. Layout the common connection  
for INTV typically). During power-down, the ADCs are  
CC  
disabled when V and INTV fall below their respective  
DD  
CC  
2992f  
16  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
undervoltagelockoutthresholds.IfV orINTV remains  
Configuring the GPIO Pins  
DD  
CC  
2
2
abovetheirtypical2.1VI Cresetthreshold,theinternalI C  
The LTC2992 has four GPIO pins configurable through  
the GPIO IO CONTROL register (Table 18) to be used as  
general purpose input/output pins. By configuring the  
CTRLA register, the voltage at the four GPIO pins can  
be measured by the VADC. GPIO1 through GPIO4 have  
comparators monitoring the voltage on these pins with a  
threshold of 1.23V typically, the results of which may be  
read from bits GS[3:0] in the GPIO STATUS register, as  
showninTable17.Analertmaybegenerated,whenGPIO1,  
GPIO2 or GPIO3 cross the comparator threshold voltage  
(1.23V typical), by setting bits AL4[3:1], respectively, in  
the ALERT4 register.  
logicretainsthestatebeforepower-down.IfV orINTV  
DD  
CC  
is then increased as in a normal power-up, the ADCs will  
run according to CTRLA register’s setting at that point in  
2
time. The internal I C logic is reset when V and INTV  
DD  
CC  
2
fall below their respective I C reset thresholds.  
Shutdown Mode  
The LTC2992 includes a low quiescent current shutdown  
mode,controlledbybitsCTRLA[6:5]intheCTRLAregister  
(Table1).SettingCTRLA[6:5]=11putsthepartinshutdown  
mode, powering down the ADC, internal reference and on-  
2
board linear regulator. The internal I C bus remains active,  
GPIO1, GPIO2, GPIO3 and GPIO4 can be pulled low as  
general purpose outputs, which are otherwise high im-  
pedance. GPIO3 can also be used as a data ready output  
(DATAREADY) to indicate new data from any of the three  
ADCs by configuring GIO[5:4] in the GPIO IO CONTROL  
register. The output can be in the form of a low pulse with  
duration of 16µs or 128µs or a latched low state. The ADC  
STATUS register (Table 10) indicates which of the moni-  
tored voltages has been recently updated. This register is  
cleared-on-read, which will also release the GPIO3 from  
its latched low state.  
and although the ADR1 and ADR0 pins are disabled, the  
2
device will retain the most recently programmed I C bus  
address.Allonboardregistersretaintheircontentsandcan  
2
be accessed through the I C interface. To re-enable ADC  
conversions, reset bit CTRLA[6:5] in the CTRLA register.  
The analog circuitry will power up and all registers will  
retain their contents.  
Theonboardlinearregulatorisdisabledinshutdownmode  
to conserve power. If the onboard linear regulator is used  
2
to power external I C bus related circuitry such as opto-  
2
couplers or pull-ups, I C communication will be lost when  
GPIO4 is by default an SMBus alert (ALERT) output that  
pulls low when an alert event is present. To pull GPIO4  
(ALERT) low in the absence of an alert event, set GC[7]  
of the GPIO4 CONTROL register (Table 19). Clearing this  
bit will release the GPIO4 (ALERT). GC[7] is set whenever  
an alert event occurs. Setting GC[6] will similarly pull  
GPIO4 low.  
the part is shut down. The LTC2992 would then have to  
be reset by cycling its power to come out of shutdown. If  
low I mode is not required, ensure 11 cannot be written  
Q
to CTRLA[6:5] in the CTRLA register during software de-  
velopment. It is recommended that external regulators be  
used in such applications if powering down the LTC2992  
is desirable. As an added layer of protection against this  
scenario, bit CTRLB[4] in the CTRLB register can be set  
during system configuration to enable the LTC2992 to  
2
I C Reset  
2
To avoid the need of power-cycling the part for a reset,  
LTC2992 features a software reset which is enabled by  
setting CTRLB[0] of CTRLB register (Table 6). This bit  
is self-cleared. All internal registers except the present  
value data registers are reset to their default states. The  
ADCs will sample continuously after reset without any  
reconfiguration since this is the default behavior.  
automatically exit shutdown mode when the I C lines  
are low for more than 33ms (which can be a result of  
accidental shutdown of the LTC2992’s linear regulator  
2
powering the I C). The user can elect to be alerted of this  
event by setting bit AL4[4] in the ALERT4 register (Table  
15). Quiescent current drops below 50μA in shutdown  
mode with the internal regulator disabled.  
2992f  
17  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
2
Storing Minimum and Maximum Values  
if the V and INTV fall below their respective I C logic  
DD  
CC  
reset threshold.  
The LTC2992 compares each measurement including the  
calculated power with the stored values in the respective  
MIN and MAX registers for each parameter (Table 4). If  
the new conversion is beyond the stored minimum or  
maximum values, the MIN or MAX registers are updated  
with the new values. The MIN and MAX registers are  
refreshed only when ADCs update the internal registers.  
ADC Resolution and Conversion Rate  
The resolution of the ADCs can be configured to 8-bit by  
setting bit NADC[7] of NADC register (Table 9) through an  
I C write command to speed up ADC conversions.  
2
Table 2. ADC Resolution and Conversion Rate  
2
Writing via I C to the ADC registers does not affect the  
RESOLUTION  
12-BIT  
0
8-BIT  
1
MIN and MAX registers. To initiate a new peak hold cycle  
for all measurements, set CTRLB[3] of CTRLB register  
(Table 6). This bit is self-cleared. For new peak hold cycle  
of selective measurement, write all 1’s to its MIN regis-  
NADC[7]  
+
Conversion Time SENSE , GPIO  
16.4ms  
65.6ms  
25mV  
0.5mV  
12.5μV  
1.02ms  
4.1ms  
400mV  
8mV  
ΔSENSE*  
+
LSB Step Size  
SENSE  
GPIO  
2
ter and all 0’s to its MAX register via the I C bus. These  
registers will be updated when the next respective ADC  
conversion is done.  
ΔSENSE  
200μV  
*Snapshot mode  
The LTC2992 also includes MIN and MAX threshold reg-  
isters (Table 4) for the measured parameters including the  
If the resolution is changed while an ADC conversion is  
in progress, that conversion will be aborted. In continu-  
ous scan mode, a new conversion of the same quantity  
will be started with the new resolution and continues in  
the original sequence. Otherwise, a new snapshot of one,  
two or multiple quantities (single cycle) will take place.  
Resetting the peak hold registers by setting CTRLB[3] in  
2
calculated power. At power-up or reset by I C command,  
the MAX threshold registers are set to all 1’s, and MIN  
threshold registers are set to all 0’s, effectively disabling  
them. The MIN and MAX threshold registers can be repro-  
2
grammed to any desired value via the I C bus.  
2
the CTRLB register via I C bus prior to changing the ADC  
Fault Alert and Resetting Faults  
resolution is recommended to ensure integrity of the peak  
hold values.  
As soon as a measured quantity falls below the minimum  
thresholdorexceedsthemaximumthreshold,theLTC2992  
setsthecorrespondingflagintheFAULT1(Table8),FAULT2  
(Table 12) and FAULT3 registers (Table 14). Other events  
such as GPIO state change have their present status in  
the GPIO STATUS (Table 17) register and any fault is  
latched in the FAULT4 (Table 16) register. The GPIO4 pin  
is pulled low if the appropriate bit in the ALERT1 (Table 7),  
ALERT2 (Table 11), ALERT3 (Table 13) and ALERT4 (Table  
15) registers is set when the fault occurs. More details  
on the alert behavior can be found in the Alert Response  
Protocol section.  
Theformatfordatain8-bitmodeisleftjustifiedbyfourbits  
with respect to the 12-bit’s format as shown in Figure 6.  
POWER REGISTER VALUE  
MODE  
BIT  
23:20  
Data  
Data  
19:16  
Data  
Data  
15:12  
Data  
Data  
11:8  
Data  
Data  
7:4  
Data  
0x0  
3:0  
Data  
0x0  
12-bit  
8-bit  
VOLTAGE/CURRENT REGISTER VALUE  
BIT  
MODE  
15:12  
Data  
Data  
11:8  
Data  
Data  
7:4  
Data  
0x0  
3:0  
0x0  
0x0  
An active fault indication can be reset by writing zeros  
to the corresponding FAULT register bits or setting bit  
CTRLB[5] in the CTRLB register. If bit CTRLB[5] is set,  
reading the fault register will cause the corresponding  
register to reset. All FAULT register bits are also cleared  
12-bit  
8-bit  
Figure 6. Data Format in 12-Bit and 8-Bit Mode  
2992f  
18  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
ADC Status and Data Ready Signal  
2. If adjacent GPIO pins have to be used, then decouple  
the analog signal to device ground near the GPIO pin  
with an external capacitor. Typically, a capacitance of  
0.1µF should suffice.  
ADC STATUS register (Table 10) indicates availability of  
new measurement results in the internal registers and is  
2
reset after it is read via I C bus. Details on configuring  
GPIO3 as DATAREADY can be found in Configuring the  
GPIOPinssection.ToillustratethebehaviorofDATAREADY  
as new data becomes available, an example in which the  
ADCs are continuously converting is shown in Figure 7.  
GPIO3 is initially configured to output a 16µs low pulse  
3. Shield the sensitive signal with ground.  
4. In a multi-layer PCB, the sensitive signal should be  
routed mostly sandwiched between two ground layers  
and exit next to the part for connection to the pin.  
AlayoutexampleisgiveninLayoutConsiderationssection  
for two-layered board design.  
with new data as is seen at t and t . As S1 and S2 data  
4
5
are updated together with I1 and I2 at t , no GPIO3 pulse  
5
is seen at t and t . GPIO3 is then reconfigured to latch  
2
2
3
I C Interface  
low with new data—this happens at t . GPIO3 is released  
6
2
2
TheLTC2992includesanI C/SMBus-compatibleinterface  
from its latched state when an I C read command to ADC  
toprovideaccesstotheonboardregisters. Figure8shows  
STATUS register is done.  
2
a general data transfer format using the I C bus.  
Crosstalk Mitigation  
The LTC2992 is a read/write slave device and supports the  
SMBus read byte, write byte, read word and write word  
protocols. The LTC2992 also supports extended read  
and write commands that allow reading or writing more  
than two bytes of data. When using the read/write word  
or extended read and write commands, the bus master  
issues an initial register address and the internal register  
address pointer automatically increments by 1 after each  
byte of data is read or written. After the register address  
reaches 0x97, it will roll over to 0x00 and continue incre-  
menting. A STOP condition resets the register address  
pointerto0x00.Thedataformatsfortheabovecommands  
are shown in Figure 8 through Figure 14. Note that only  
The GPIO pins are general purpose pins that can be used  
tomonitordigitaloranalogsignals.Evenwithanaveraging  
architecture of the Δ∑ ADCs, crosstalk may still be prob-  
lematic if an application requires monitoring of precision  
analogsignalsandnoisydigitalsignalswiththeGPIOpins.  
To preserve measurement accuracy of the analog signals,  
a few measures can be taken:  
1. Physically separate the clean and noisy signals. For ex-  
ample, thecleansignalmaybemonitoredwithGPIO1/3  
while the noisy signal is monitored with GPIO2/4 on  
the other side of the part.  
POWER UP  
t
t
t
t
t
5
t
t
t
8
1
2
3
4
6
7
VADC  
IADC1  
IADC2  
S1  
S2  
G1  
G2  
G3  
G4  
S1  
S2  
CAL  
CAL  
I1 AND P1  
I2 AND P2  
CAL  
CAL  
I1 AND P1  
I2 AND P2  
WRITE  
READ  
REG: 0x32  
DATA: 0x00  
READ  
REG: 0x32  
DATA: 0x00  
WRITE  
REG: 0x96  
DATA: 0x33  
READ  
REG: 0x32  
DATA: 0xFF  
2
I C BUSES  
REG: 0x96  
IDLE  
IDLE  
IDLE  
IDLE  
IDLE  
DATA: 0x13  
GPIO3  
2992 F07  
16µs PULSE  
Figure 7. Configuring GPIO3 as DATAREADY  
2992f  
19  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
the read byte command is available to the 0xE7 and 0xE8  
(MFR_SPECIAL_ID) registers (Table 4).  
to several LTC2992s simultaneously, regardless of their  
individualaddresssettings.TheLTC2992willalsorespond  
to the standard SMBus ARA address (0001100)b if the  
GPIO4 (ALERT) pin is asserted. See the Alert Response  
Protocol section for more details. The LTC2992 will not  
respond to the ARA address if no alerts are pending.  
2
I C Device Addressing  
2
Nine distinct I C bus addresses are configurable using  
the three-state pins ADR0 and ADR1, as shown in Table  
3. ADR0 and ADR1 should be tied to INTV , to GND, or  
CC  
Start and Stop Conditions  
left floating (NC) to configure the lower four address bits.  
During low power shutdown, the address select state  
is latched into memory powered from standby supply.  
Address bits a6, a5 and a4 are permanently set to 110  
and the least significant bit is the R/W bit. In addition, all  
LTC2992 devices will respond to a common mass write  
address (1100110)b; this allows the bus master to write  
2
When the I C bus is idle, both SCL and SDA are in the high  
state. A bus master signals the beginning of a transmis-  
sion with a START condition by transitioning SDA from  
high to low while SCL stays high. When the master has  
finished communicating with the slave, it issues a STOP  
SDA  
SCL  
a6 - a0  
1 - 7  
b7 - b0  
b7 - b0  
8
9
1 - 7  
8
9
1 - 7  
8
9
S
P
START  
CONDITION  
STOP  
CONDITION  
ADDRESS  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
2992 F08  
Figure 8. General Data Transfer Over I2C  
S
ADDRESS W A  
COMMAND  
A
DATA  
A
P
S
ADDRESS W A  
COMMAND  
A
DATA  
b7:b0  
A
DATA  
b7:b0  
A
P
1 1 0 a3:a0  
0
0
b7:b0  
0
0
0
1 1 0 a3:a0  
0
0
b7:b0  
0
b7:b0  
0
2992 F09  
2992 F10  
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
A: ACKNOWLEDGE (LOW)  
A: NOT ACKNOWLEDGE (HIGH) S: START CONDITION  
R: READ BIT (HIGH) P: STOP CONDITION  
W: WRITE BIT (LOW)  
Figure 10. Serial Bus SDA Write Word Protocol  
Figure 9. Serial Bus SDA Write Byte Protocol  
S
ADDRESS W A  
1 1 0 a3:a0  
COMMAND  
A
DATA  
A
DATA  
A
...  
DATA  
A
P
S
ADDRESS W A  
1 1 0 a3:a0  
COMMAND  
A
S
ADDRESS  
R
A
DATA  
A
P
0
0
b7:b0  
0
b7:b0  
0
b7:b0  
0
...  
b7:b0  
0
0
0
b7:b0  
0
1 1 0 a3:a0  
1
0
b7:b0  
1
2992 F11  
2992 F12  
Figure 11. Serial Bus SDA Write Page Protocol  
Figure 12. Serial Bus SDA Read Byte Protocol  
S
ADDRESS W A  
1 1 0 a3:a0  
COMMAND  
A
S
ADDRESS  
R
A
DATA  
A
DATA  
A
P
0
0
b7:b0  
0
1 1 0 a3:a0  
1
0
b7:b0  
0
b7:b0  
1
2992 F13  
Figure 13. Serial Bus SDA Read Word Protocol  
S
ADDRESS W A  
COMMAND  
A
S
ADDRESS  
R
A
DATA  
A
DATA  
...  
DATA  
A
P
1 1 0 a3:a0  
0
0
b7:b0  
0
1 1 0 a3:a0  
1
0
b7:b0  
0
b7:b0  
...  
b7:b0  
1
2992 F14  
Figure 14. Serial Bus SDA Read Page Protocol  
2992f  
20  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
condition by transitioning SDA from low to high while SCL  
stays high. The bus is then free for another transmission.  
bytes will be acknowledged by the LTC2992, the register  
address pointer will automatically increment by one, and  
data will be written as previously stated. The write opera-  
tion terminates and the register address pointer resets to  
0x00 when the master sends a STOP condition.  
Stuck-Bus Reset  
2
TheLTC2992I Cinterfacefeaturesastuck-busresettimer  
to prevent it from holding the bus lines low indefinitely if  
the SCL signal is interrupted during a transfer. The timer  
starts when either SCL or SDAI is low, and resets when  
both SCL and SDAI are pulled high. If either SCL or SDAI  
are low for over 33ms, the stuck-bus timer will expire, and  
Read Protocol  
The master begins a read operation with a START condi-  
tion followed by the 7-bit slave address and the R/W bit  
set to zero. After the addressed LTC2992 acknowledges  
the address byte, the master then sends a command byte  
that indicates which internal register the master wishes to  
read.TheLTC2992acknowledgesthisandthenlatchesthe  
command byte into its internal register address pointer.  
The master then sends a repeated START condition fol-  
lowed by the same 7-bit address with the R/W bit now set  
to 1. The LTC2992 acknowledges and sends the contents  
of the requested register. The transmission terminates  
when the master sends a STOP condition. If the master  
acknowledges the transmitted data byte, as in a read word  
command, the LTC2992 will send the contents of the next  
register. If the master keeps acknowledging, the LTC2992  
will keep incrementing the register address pointer and  
sending out data bytes. The read operation terminates  
and the register address pointer resets to 0x00 when the  
master sends a STOP condition.  
2
theinternalI CinterfaceandtheSDAOpinpull-downlogic  
will be reset to release the bus. Normal communication  
will resume at the next START command.  
Acknowledge  
The acknowledge signal is used for handshaking between  
the master and the slave to indicate that the last byte of  
data was received. The master always releases the SDA  
lineduringtheacknowledgeclockpulse.TheLTC2992will  
pulltheSDAlinelowonthe9thclockcycletoacknowledge  
receipt of the data. If the slave fails to acknowledge by  
leaving SDA high, then the master can abort the transmis-  
sion by generating a STOP condition. When the master is  
receivingdatafromtheslave,themastermustacknowledge  
the slave by pulling down the SDA line during the 9th clock  
pulse to indicate receipt of a data byte. After the last byte  
has been received by the master, it will leave the SDA line  
high (not acknowledge) and issue a STOP condition to  
terminate the transmission.  
Alert Response Protocol  
When any of the fault bits in the fault registers (FAULT1,  
FAULT2, FAULT3 and FAULT4) are set, a bus alert is gener-  
ated if the appropriate bit in the ALERT1, ALERT2, ALERT3  
or ALERT4 registers has been set. This allows the bus  
mastertoselectwhichfaultswillgeneratealerts.Atpower-  
up, all ALERT registers are cleared (no alerts enabled) and  
the GPIO4 (ALERT) pin is high. If an alert is enabled, the  
corresponding fault causes the GPIO4 (ALERT) pin to pull  
low. The bus master responds to the alert in accordance  
with the SMBus alert response protocol by broadcasting  
the alert response address (0001100)b, and the LTC2992  
replieswithitsownaddressandreleasesitsGPIO4(ALERT)  
pin, as shown in Figure 15. The GPIO4 (ALERT) line is also  
released if CTRLB[7] is set and the LTC2992 is addressed  
(see Table 6) by any message. The GPIO4 (ALERT) signal  
Write Protocol  
The master begins a write operation with a START condi-  
tion followed by the 7-bit slave address and the R/W bit  
set to zero. After the addressed LTC2992 acknowledges  
the address byte, the master then sends a command byte  
that indicates which internal register the master wishes to  
write. The LTC2992 acknowledges this and then latches  
thecommandbyteintoitsinternalregisteraddresspointer.  
The master then delivers the data byte and the LTC2992  
acknowledges once more and writes the data into the in-  
ternal register pointed to by the register address pointer. If  
the master continues sending additional data bytes with a  
writewordorextendedwritecommand,theadditionaldata  
2992f  
21  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
is not pulled low again until the fault registers indicate a  
different fault has occurred or the original fault is cleared  
and it occurs again. Note that this means repeated or  
continuing faults will not generate additional alerts until  
the associated fault register bits have been cleared.  
open-drain opto-isolators can use the LTC2992 with the  
SDAI and SDAO pins separated, as shown in Figure 16.  
Connect SDAI to the output of the incoming opto-isolator  
with a pull-up resistor to INTV or a local 5V supply; con-  
CC  
nect SDAO to the cathode of the outgoing opto-isolator  
with a current-limiting resistor in series with the anode.  
The input and output must be connected together on the  
isolatedsideofthebustoallowtheLTC2992toparticipate  
ALERT  
RESPONSE  
ADDRESS  
DEVICE  
ADDRESS  
S
R
A
A
P
2
2
0 0 0 1 1 0 0  
1
0
a7:a0  
1
in I C arbitration. Note that maximum I C bus speed will  
generally be limited by the speed of the opto-couplers  
used in this application.  
2992 F15  
Figure 15. Serial Bus SDA Alert Response Protocol  
If two or more LTC2992s on the same bus are generat-  
ing alerts when the ARA is broadcast, the bus master  
will repeat the alert response protocol until the GPIO4  
Figure 17 shows an alternate connection for use with low  
speedopto-couplersandtheLTC2992-1. Thiscircuituses  
a limited-current pull-up on the internally clamped SDAI  
pin and clamps the SDAO pin with the input diode of the  
2
(ALERT) line is released. Standard I C arbitration causes  
the device with the highest priority (lowest address) to  
reply first and the device with the lowest priority (highest  
address) to reply last.  
outgoing opto-isolator, removing the need to use INTV  
CC  
for biasing in the absence of a separate low voltage sup-  
ply. For proper clamping:  
2
V
IN(MAX) – VSDA,SCL(MIN)  
VIN(MIN) – VSDA,SCL(MAX)  
Opto-Isolating the I C Bus  
(1)  
≤R4≤  
ISDA,SCL(MAX)  
ISDA,SCL(MIN)  
2
Opto-isolating a standard I C device is complicated by the  
VIN(MAX) 5.9V  
VIN(MIN) 6.9V  
bidirectional SDA pin. The LTC2992/LTC2992-1 minimize  
≤R4≤  
2
thisproblembysplittingthestandardI CSDAlineintoSDAI  
5mA  
0.5mA  
(input) and SDAO (output, LTC2992) or SDAO (inverted  
output,LTC2992-1).TheSCLisaninput-onlypinanddoes  
not require special circuitry to isolate. For conventional  
As an example, a supply that operates from 36V to 72V  
would require the value of R4 to be between 13k and  
58k. The LTC2992-1 must be used in this application  
to ensure that SDAO signal polarity is correct. R4 may  
2
nonisolated I C applications, use the LTC2992 and tie  
2
the SDAI and SDAO pins together to form a standard I C  
SDA pin. Low speed isolated interfaces that use standard  
3.3V  
V
48V  
IN  
3.3V  
5V  
R4  
R5  
R6  
R7  
R8  
R10  
R4  
20k  
R5  
5.1k  
4.7k 4.7k 0.82k  
0.47k 0.47k 2k  
R6  
0.51k  
R7  
2k  
SCL  
LTC2992  
V
DD  
SDAI  
SCL  
V
DD  
SDAI  
LTC2992-1  
µP  
µP  
1/2 MOCD207M  
MOCD207M  
SDAO  
GND  
SDA  
SDA  
GND  
GND  
2992 F17  
2992 F16  
SDAO  
GND  
1/2 MOCD207M  
1/2 MOCD207M  
Figure 16. Opto-Isolation of a 10kHz I2C Interface Between  
LTC2992 and Microcontroller  
Figure 17. Opto-Isolation of a 1.5kHz I2C Interface Between  
LTC2992-1 and Microcontroller (SCL Omitted for Clarity)  
2992f  
22  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
be split into two or more series connected units to meet  
thermal requirements.  
Layout Considerations  
A Kelvin connection between the sense resistor R  
and  
SNS  
The LTC2992 can also be used with high speed optocou-  
plers with push-pull outputs and inverted logic as shown  
inFigure18.Theincomingopto-isolatordrawspowerfrom  
the LTC2992 is recommended to achieve accurate current  
sensing (Figure 19). The recommended minimum trace  
width for 1oz copper foil is 0.02˝ per amp to ensure the  
trace stays at a reasonable temperature. Using 0.03˝ per  
amp or wider is preferred. Note that 1oz copper exhibits  
a sheet resistance of about 530μΩ per square. In very  
high current applications where the sense resistor can  
dissipate significant power, the PCB layout should include  
good thermal management techniques such as extra vias  
and wide metal area. 2oz or thicker copper should be  
considered for such applications. The trace from sense  
INTV , and the data output is connected directly to the  
CC  
SDAI pin with no pull-up required. Ensure current drawn  
does not exceed the 10mA maximum capability of the  
INTV pin. The SDAO pin is connected to the cathode of  
CC  
the outgoing opto-coupler with a current limiting resistor  
connected back to INTV . An additional discrete diode  
CC  
is required at the output of the outgoing opto-coupler to  
2
provide the open-drain pull-down that the I C requires.  
+
Finally,theinputoftheincomingopto-isolatorisconnected  
back to the output as in the low speed case.  
resistors to SENSE pins should be as short as possible  
to minimize IR drop due to pin current.  
V
IN  
48V  
V
DD  
INTV  
CC  
3.3V  
C1  
C2  
1µF  
R5  
2k  
1/2 ACPL-064L*  
1µF  
V
CC  
LTC2992  
R6  
2k  
R7  
2k  
GND  
BAT54  
SDAO  
1/2 ACPL-064L*  
V
DD  
V
CC  
µP  
SDAI  
ISO_SDA  
GND  
GND  
SDA  
GND  
*:CMOS OUTPUT  
2992 F18  
Figure 18. Opto-Isolation of a I2C Interface with Low Power, High Speed Opto-Couplers (SCL Omitted for Clarity)  
BOTTOM LAYER  
V
IN1  
V
IN2  
TOP LAYER  
R
SNS1  
R
SNS2  
1
2
3
16  
15  
TO LOAD1  
TO LOAD2  
14  
13  
4
17  
5
12  
GND  
6
7
8
11  
10  
VIA  
9
2992 F19  
Figure 19. Recommended PCB Layout  
2992f  
23  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
Design Example  
Choose R10,11 = 1MΩ, and R12,13 = 20kΩ to allow a  
input voltage measurement range from 0V to 104.4V.  
As a design example, consider a –36V to –72V Advanced  
2
R11+R13  
R13  
R10+R12  
25.5mV  
LSB  
TCA system with I C current, voltage and power monitors  
Voltage of V  
Voltage of V  
=
=
V  
=
IN1  
GPIO1  
(See Figure 20).  
25.5mV  
The load current is either supplied by V  
or V  
or  
IN2  
IN1  
V  
=
IN2  
GPIO2  
R12  
LSB  
both depending on their voltages. Choose similar values  
for R  
and R  
in accordance to the following  
SENSE1  
SENSE2  
An error term can be added to the voltage results above  
to account for the voltage drop across the N-channel  
MOSFET and sense resistor:  
equation:  
V
FS(ΔSENSE1,2)  
RSENSE1,2  
RSENSE1,2  
<
<
ILOAD(MAX)  
V
= ΔV of FDS3672 + ΔSENSE  
DS  
ERROR  
51.2mV  
The maximum error occurs when the load current is at  
its maximum of 5A. Using the above equation, this works  
out to be 160mV with 110mV contribution (see below for  
calculation)fromtheFDS3672.Withoutcompensation,this  
=10.24mΩ  
5A  
R
and R  
are chosen to be 10mΩ.  
12.5µV  
SENSE1  
SENSE2  
would cause measurement error of 0.45% for V = 36V.  
IN  
Current of V or V  
=
= 1.25mA /LSB  
IN1  
IN2  
RSENSE  
LTC4354 and LTC4355 low side and high side ideal diode-  
OR controllers drive N-channel MOSFETs to minimize the  
diode power consumption. The 100V, N-channel MOSFET  
Total Current = 2.5mA/LSB  
FDS3672 in the SO-8 package with R  
= 22mΩ  
DS(ON)  
We also have to consider the power dissipated in the  
sense resistors which can be calculated with the follow-  
ing equation:  
(max) is chosen as switches. The maximum voltage drop  
across it is:  
2
ΔV = 5A × 22mΩ = 110mV  
DS  
P = (I  
) R  
LOAD  
2
SENSE  
Since external resistive dividers are used for supply volt-  
age measurement, CTRLA register 0x00 is set to 0x10 to  
continuously monitor GPIO1 and GPIO2.  
P = (5A) 10mΩ = 0.25W  
Use at least 0.5W rated sense resistors to ensure thermal  
compliance.  
POWER1 = V Current of V  
IN1  
IN1  
Next, select the resistive dividers that measure the supply  
POWER1 = 25.5mV 1.25mA/LSB = 31.875µW/LSB  
POWER2 = 31.875µW/LSB  
voltages V and V  
Note that the voltage drop across  
IN1  
IN2.  
the N-channel MOSFET and sense resistor is not included  
in the derivation for the following equations.  
Total Power = 63.75µW/LSB  
V
V
FS(GPIO1)  
R12  
R13  
R11+R13  
FS(GPIO2)  
<
<
,
<
R10+R12  
V
V
IN1  
IN2  
R12  
R10+R12  
R13  
2.048V  
72V  
2.048V  
= 0.028  
= 0.028  
<
R11
+
R13  
72V  
2992f  
24  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
2992f  
25  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
Table 3. Device Addressing  
ADDRESS  
DESCRIPTION  
HEX DEVICE  
ADDRESS*  
BINARY DEVICE ADDRESSING  
ADDRESS PINS  
7-BIT  
66  
8-BIT  
CC  
19  
a6  
1
0
1
1
1
1
1
1
1
1
1
a5  
1
0
1
1
1
1
1
1
1
1
1
a4  
0
0
0
0
0
0
0
0
0
0
0
a3  
0
a2  
1
1
1
0
0
0
0
1
1
1
1
a1  
1
0
1
0
0
1
1
0
0
1
1
a0  
0
0
1
0
1
0
1
0
1
0
1
R/W  
0
ADR1  
X
ADR0  
X
Mass Write  
Alert Response  
0C  
67  
1
1
X
X
0
1
2
3
4
5
6
7
8
CE  
0
0
H
L
68  
D0  
D2  
D4  
D6  
D8  
DA  
DC  
DE  
1
0
NC  
H
H
69  
1
0
H
6A  
6B  
6C  
6D  
6E  
1
0
NC  
NC  
L
NC  
L
1
0
1
0
H
1
0
H
NC  
NC  
L
1
0
L
6F  
1
0
L
H = Tie to INTV , NC = No Connect = Open, L = Tie to GND, X = Don’t Care  
CC  
*8-Bit hexadecimal address with LSB R/W bit = 0  
7-Bit hexadecimal address with MSB a7 = 0  
Table 4. Register Addresses and Contents  
REGISTER  
READ/  
WRITE  
NUMBER  
OF BYTES* DEFAULT  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
CTRLA  
0x00  
Operation Control Register A  
Operation Control Register B  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
3
3
3
3
0x00  
0x00  
0x00  
0x00  
0x00  
NA  
CTRLB  
0x01  
ALERT1  
FAULT1  
NADC  
0x02  
Selects Which CHANNEL 1 Faults Generate Alerts  
CHANNEL 1 Fault Log  
0x03  
0x04  
ADC Resolution  
P1  
0x05-0x07  
0x08-0x0A  
0x0B-0x0D  
0x0E-0x10  
POWER1 Data  
MAX P1  
MIN P1  
Maximum POWER1 Data  
NA  
Minimum POWER1 Data  
NA  
MAX P1  
THRESHOLD  
Maximum POWER1 Threshold to Generate Alert  
0xFFFFFF  
MIN P1  
THRESHOLD  
0x11-0x13  
Minimum POWER1 Threshold to Generate Alert  
R/W  
3
0x000000  
I1  
0x14-0x15  
0x16-0x17  
0x18-0x19  
0x1A-0x1B  
ΔSENSE1 Data  
R/W  
R/W  
R/W  
R/W  
2
2
2
2
NA  
MAX I1  
MIN I1  
Maximum ΔSENSE1 Data  
NA  
Minimum ΔSENSE1 Data  
NA  
MAX I1  
THRESHOLD  
Maximum ΔSENSE1 Threshold to Generate Alert  
0xFFF0  
MIN I1  
THRESHOLD  
0x1C-0x1D  
Minimum ΔSENSE1 Threshold to Generate Alert  
R/W  
2
0x0000  
+
S1  
0x1E-0x1F  
0x20-0x21  
0x22-0x23  
SENSE1 Data  
R/W  
R/W  
R/W  
2
2
2
NA  
NA  
NA  
+
MAX S1  
MIN S1  
Maximum SENSE1 Data  
+
Minimum SENSE1 Data  
2992f  
26  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
Table 4. Register Addresses and Contents (continued)  
REGISTER  
READ/  
WRITE  
NUMBER  
OF BYTES DEFAULT  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
+
MAX S1  
THRESHOLD  
0x24-0x25  
Maximum SENSE1 Threshold to Generate Alert  
R/W  
2
0xFFF0  
+
MIN S1  
THRESHOLD  
0x26-0x27  
Minimum SENSE1 Threshold to Generate Alert  
R/W  
2
0x0000  
G1  
0x28-0x29  
0x2A-0x2B  
0x2C-0x2D  
0x2E-0x2F  
GPIO1 Data  
R/W  
R/W  
R/W  
R/W  
2
2
2
2
NA  
MAX G1  
MIN G1  
Maximum GPIO1 Data  
NA  
Minimum GPIO1 Data  
NA  
MAX G1  
THRESHOLD  
Maximum GPIO1 Threshold to Generate Alert  
0xFFF0  
MIN G1  
THRESHOLD  
0x30-0x31  
Minimum GPIO1 Threshold to Generate Alert  
R/W  
2
0x0000  
ADC STATUS  
RESERVED  
ALERT2  
FAULT2  
0x32  
0x33  
ADC Status Information  
R
1
1
1
1
1
3
3
3
3
NA  
Manufacturer Reserved  
R
0x00  
0x00  
0x00  
0x00  
NA  
0x34  
Selects Which CHANNEL 2 Faults Generate Alerts  
CHANNEL 2 Fault Log  
R/W  
R/W  
R
0x35  
RESERVED  
P2  
0x36  
Manufacturer Reserved  
0x37-0x39  
0x3A-0x3C  
0x3D-0x3F  
0x40-0x42  
POWER2 Data  
R/W  
R/W  
R/W  
R/W  
MAX P2  
MIN P2  
Maximum POWER2 Data  
NA  
Minimum POWER2 Data  
NA  
MAX P2  
THRESHOLD  
Maximum POWER2 Threshold to Generate Alert  
0xFFFFFF  
MIN P2  
THRESHOLD  
0x43-0x45  
Minimum POWER2 Threshold to Generate Alert  
R/W  
3
0x000000  
I2  
0x46-0x47  
0x48-0x49  
0x4A-0x4B  
0x4C-0x4D  
ΔSENSE2 Data  
R/W  
R/W  
R/W  
R/W  
2
2
2
2
NA  
MAX I2  
MIN I2  
Maximum ΔSENSE2 Data  
NA  
Minimum ΔSENSE2 Data  
NA  
MAX I2  
THRESHOLD  
Maximum ΔSENSE2 Threshold to Generate Alert  
0xFFF0  
MIN I2  
THRESHOLD  
0x4E-0x4F  
Minimum ΔSENSE2 Threshold to Generate Alert  
R/W  
2
0x0000  
+
S2  
0x50-0x51  
0x52-0x53  
0x54-0x55  
0x56-0x57  
SENSE2 Data  
R/W  
R/W  
R/W  
R/W  
2
2
2
2
NA  
+
MAX S2  
MIN S2  
Maximum SENSE2 Data  
NA  
+
Minimum SENSE2 Data  
NA  
+
MAX S2  
THRESHOLD  
Maximum SENSE2 Threshold to Generate Alert  
0xFFF0  
+
MIN S2  
THRESHOLD  
0x58-0x59  
Minimum SENSE2 Threshold to Generate Alert  
R/W  
2
0x0000  
G2  
0x5A-0x5B  
0x5C-0x5D  
0x5E-0x5F  
0x60-0x61  
GPIO2 Data  
R/W  
R/W  
R/W  
R/W  
2
2
2
2
NA  
MAX G2  
MIN G2  
Maximum GPIO2 Data  
NA  
Minimum GPIO2 Data  
NA  
MAX G2  
THRESHOLD  
Maximum GPIO2 Threshold to Generate Alert  
0xFFF0  
2992f  
27  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
Table 4. Register Addresses and Contents  
REGISTER  
(continued)  
READ/  
WRITE  
NUMBER  
OF BYTES DEFAULT  
REGISTER NAME  
ADDRESS  
DESCRIPTION  
MIN G2  
THRESHOLD  
0x62-0x63  
Minimum GPIO2 Threshold to Generate Alert  
R/W  
2
0x0000  
G3  
0x64-0x65  
0x66-0x67  
0x68-0x69  
0x6A-0x6B  
GPIO3 Data  
R/W  
R/W  
R/W  
R/W  
2
2
2
2
NA  
MAX G3  
MIN G3  
Maximum GPIO3 Data  
NA  
Minimum GPIO3 Data  
NA  
MAX G3  
THRESHOLD  
Maximum GPIO3 Threshold to Generate Alert  
0xFFF0  
MIN G3  
THRESHOLD  
0x6C-0x6D  
Minimum GPIO3 Threshold to Generate Alert  
R/W  
2
0x0000  
G4  
0x6E-0x6F  
0x70-0x71  
0x72-0x73  
0x74-0x75  
GPIO4 Data  
R/W  
R/W  
R/W  
R/W  
2
2
2
2
NA  
MAX G4  
MIN G4  
Maximum GPIO4 Data  
NA  
Minimum GPIO4 Data  
NA  
MAX G4  
THRESHOLD  
Maximum GPIO4 Threshold to Generate Alert  
0xFFF0  
MIN G4  
THRESHOLD  
0x76-0x77  
Minimum GPIO4 Threshold to Generate Alert  
R/W  
2
0x0000  
ISUM  
0x78-0x79  
0x7A-0x7B  
0x7C-0x7D  
0x7E-0x7F  
(ΔSENSE1 + ΔSENSE2) Data  
R/W  
R/W  
R/W  
R/W  
2
2
2
2
NA  
MAX ISUM  
MIN ISUM  
Maximum (ΔSENSE1 + ΔSENSE2) Data  
Minimum (ΔSENSE1 + ΔSENSE2) Data  
Maximum (ΔSENSE1 + ΔSENSE2) Threshold to Generate Alert  
NA  
NA  
MAX ISUM  
THRESHOLD  
0xFFF0  
MIN ISUM  
THRESHOLD  
0x80-0x81  
Minimum (ΔSENSE1 + ΔSENSE2) Threshold to Generate Alert  
R/W  
2
0x0000  
PSUM  
0x82-0x84  
0x85-0x87  
0x88-0x8A  
0x8B-0x8D  
(POWER1 + POWER2) Data  
R/W  
R/W  
R/W  
R/W  
3
3
3
3
NA  
MAX PSUM  
MIN PSUM  
Maximum (POWER1 + POWER2) Data  
Minimum (POWER1 + POWER2) Data  
Maximum (POWER1 + POWER2) Threshold to Generate Alert  
NA  
NA  
MAX PSUM  
THRESHOLD  
0xFFFFFF  
MIN PSUM  
0x8E-0x90  
0x91  
Minimum (POWER1 + POWER2) Threshold to Generate Alert  
R/W  
R/W  
3
1
0x000000  
0x00  
THRESHOLD  
ALERT3  
Selects Which GPIO or Total Current/Power Faults Generate  
Alerts  
FAULT3  
0x92  
0x93  
0x94  
0x95  
0x96  
GPIO and Total Current/Power Fault Log  
Selects Which Additional Faults Generate Alerts  
Additional Fault Log  
R/W  
R/W  
R/W  
R
1
1
1
1
1
0x00  
0x00  
0x00  
NA  
ALERT4  
FAULT4  
GPIO STATUS  
GPIO Status Information  
GPIO IO  
CONTROL  
GPIO1,2,3 Input/Output Control Command  
R/W  
0x03  
GPIO4 CONTROL  
0x97  
0xE7  
GPIO4 Control Command  
R/W  
R
1
1
0x00  
0x00  
MFR_SPECIAL_ID  
MSB  
Manufacturer Special ID MSB Data  
MFR_SPECIAL_ID  
LSB  
0xE8  
Manufacturer Special ID LSB Data  
R
1
0x62  
* For the 2-/3-byte data registers, the MSB value is at the lowest address  
2992f  
28  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
Table 5. CTRLA Register (0x00) – Read/Write  
BIT  
NAME  
OPERATION  
CTRLA[7]  
Offset Calibration Offset Calibration for Current Measurements  
[1] = Calibrate on Demand  
[0] = Every Conversion (Default)  
CTRLA[6:5]  
Measurement  
Mode  
[11] = Shutdown  
[10] = Single Cycle mode  
+
+
The VADC converts SENSE1 , SENSE2 , GPIO1, GPIO2, GPIO3, GPIO4 once and stops. The IADCs stop after  
one conversion.  
+
+
P1 = SENSE1 × ΔSENSE1; P2 = SENSE2 × ΔSENSE2  
[01] = Snapshot Mode  
Snapshot Initializes Conversion on All 3 ADCs Simultaneously.  
VADC Converts the Channel(s) per CTRLA[2:0]  
[00] = Continuous Scan Mode (Default)  
The Selected Channels for VADC are Defined by CTRLA[4:3]  
CTRLA[4:3]  
Voltage Selection CTRLA[4:3]  
VADC  
P1  
P2  
for Continuous  
11  
GPIO1, GPIO2,  
GPIO3, GPIO4  
GPIO1 × ΔSENSE1  
GPIO2 × ΔSENSE2  
Scan Mode  
10  
GPIO1, GPIO2  
GPIO1 × ΔSENSE1  
GPIO2 × ΔSENSE2  
+
+
+
+
+
01  
SENSE1 , SENSE2  
SENSE1 × ΔSENSE1  
SENSE2 × ΔSENSE2  
+
+
+
00 (Default)  
SENSE1 , SENSE2 ,  
GPIO1, GPIO2,  
SENSE1 × ΔSENSE1  
SENSE2 × ΔSENSE2  
GPIO3, GPIO4  
CTRLA[2:0]  
Voltage Selection CTRLA[2:0]  
VADC  
P1  
P2  
for Snapshot  
111  
GPIO1, GPIO2  
GPIO1 × ΔSENSE1  
GPIO2 × ΔSENSE2  
Mode  
+
+
+
+
110  
SENSE1 , SENSE2  
SENSE1 × ΔSENSE1  
SENSE2 × ΔSENSE2  
101  
GPIO4  
GPIO3  
GPIO2  
GPIO1  
ΔSENSE1/2 without P1/P2 updates  
100  
011  
010  
+
001  
SENSE2  
+
000 (Default)  
SENSE1  
Table 6. CTRLB Register (0x01) – Read/Write  
BIT  
NAME  
OPERATION  
CTRLB[7]  
ALERT Clear Enable  
Clear ALERT if Device is Addressed by the Master  
[1] = Enable  
[0] = Disable (Default)  
CTRLB[6]  
CTRLB[5]  
Reserved  
Always Returns 0, Not Writable  
Cleared on Read Control  
FAULT Registers Cleared on Read  
[1] = Cleared on Read  
[0] = Registers Not Affected by Reading (Default)  
CTRLB[4]  
CTRLB[3]  
Stuck Bus Timeout Auto Wake Up  
Peak Hold Values Reset  
Allows Part to Exit Shutdown Mode when Stuck Bus Timer is Reached  
[1] = Enable  
[0] = Disable (Default)  
Reset of Min and Max Registers  
[1] = Reset All Min and Max Registers  
[0] = Disable Reset of Min and Max Registers (Default)  
CTRLB[2:1]  
CTRLB[0]  
Reserved  
Reset  
Always Returns 00, Not Writable  
[1] = Reset All Registers  
[0] = Disable Reset (Default)  
2992f  
29  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
Table 7. ALERT1 Register (0x02) – Read/Write  
BIT  
NAME  
OPERATION  
AL1[7]  
Maximum POWER1 Alert  
Enables Alert When POWER1 > Maximum POWER1 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
AL1[6]  
AL1[5]  
AL1[4]  
AL1[3]  
AL1[2]  
AL1[1]  
AL1[0]  
Minimum POWER1 Alert  
Maximum ΔSENSE1 Alert  
Minimum ΔSENSE1 Alert  
Enables Alert When POWER1 < Minimum POWER1 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Enables Alert When ΔSENSE1 > Maximum ΔSENSE1 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Enables Alert When ΔSENSE1 < Minimum ΔSENSE1 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
+
+
+
Maximum SENSE1 Alert  
Enables Alert When SENSE1 > Maximum SENSE1 Threshold  
[1] = Enable Alert  
[0] = Disable Alert(Default)  
+
+
+
Minimum SENSE1 Alert  
Enables Alert When SENSE1 < Minimum SENSE1 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Maximum GPIO1 Alert  
Minimum GPIO1 Alert  
Enables Alert When GPIO1 > Maximum GPIO1 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Enables Alert When GPIO1 < Minimum GPIO1 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Table 8. FAULT1 Register (0x03) – Read/Write  
BIT  
NAME  
OPERATION  
F1[7]  
POWER1 Overvalue Fault  
POWER1 > Maximum POWER1 Threshold  
[1] = POWER1 Overvalue Fault Occurred  
[0] = No POWER1 Overvalue Fault Occurred (Default)  
F1[6]  
F1[5]  
F1[4]  
F1[3]  
F1[2]  
F1[1]  
F1[0]  
POWER1 Undervalue Fault  
ΔSENSE1 Overvalue Fault  
ΔSENSE1 Undervalue Fault  
POWER1 < Minimum POWER1 Threshold  
[1] = POWER1 Undervalue Fault Occurred  
[0] = No POWER1 Undervalue Fault Occurred (Default)  
ΔSENSE1 > Maximum ΔSENSE1 Threshold  
[1] = ΔSENSE1 Overvalue Fault Occurred  
[0] = No ΔSENSE1 Overvalue Fault Occurred (Default)  
ΔSENSE1 < Minimum ΔSENSE1 Threshold  
[1] = ΔSENSE1 Undervalue Fault Occurred  
[0] = No ΔSENSE1 Undervalue Fault Occurred (Default)  
+
+
+
SENSE1 Overvalue Fault  
SENSE1 > Maximum SENSE1 Threshold  
+
[1] = SENSE1 Overvalue Fault Occurred  
[0] = No SENSE1 Overvalue Fault Occurred (Default)  
+
+
+
+
SENSE1 Undervalue Fault  
SENSE1 < Minimum SENSE1 Threshold  
+
[1] = SENSE1 Undervalue Fault Occurred  
[0] = No SENSE1 Undervalue Fault Occurred (Default)  
+
GPIO1 Overvalue Fault  
GPIO1 Undervalue Fault  
GPIO1 > Maximum GPIO1 Threshold  
[1] = GPIO1 Overvalue Fault Occurred  
[0] = No GPIO1 Overvalue Fault Occurred (Default)  
GPIO1 < Minimum GPIO1 Threshold  
[1] = GPIO1 Undervalue Fault Occurred  
[0] = No GPIO1 Undervalue Fault Occurred (Default)  
2992f  
30  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
Table 9. NADC Register (0x04) – Read/Write  
BIT  
NAME  
OPERATION  
NADC[7]  
ADC Resolution  
Selects ADC Resolution for All ADCs  
[1] = 8-Bit  
[0] = 12-Bit (Default)  
NADC[6:0]  
Reserved  
Always Returns 0000000, Not Writable  
Table 10. ADC STATUS Register (0x32) – Read Only (Clear-On-Read)  
BIT  
NAME  
OPERATION  
AS[7]  
IADCs Data Ready  
[1] = Ready  
[0] = Not ready  
AS[6]  
VADC Data Ready  
[1] = Ready  
[0] = Not ready  
Check AS[5:0] for the channel information  
AS[5]  
AS[4]  
AS[3]  
AS[2]  
AS[1]  
AS[0]  
GPIO4 Data Ready  
GPIO3 Data Ready  
GPIO2 Data Ready  
GPIO1 Data Ready  
[1] = New Data Available  
[0] = New Data Not Available  
[1] = New Data Available  
[0] = New Data Not Available  
[1] = New Data Available  
[0] = New Data Not Available  
[1] = New Data Available  
[0] = New Data Not Available  
+
SENSE2 Data Ready  
[1] = New Data Available  
[0] = New Data Not Available  
+
SENSE1 Data Ready  
[1] = New Data Available  
[0] = New Data Not Available  
Table 11. ALERT2 Register (0x34) – Read/Write  
BIT  
NAME  
OPERATION  
AL2[7]  
Maximum POWER2 Alert  
Enables Alert When POWER2 > Maximum POWER2 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
AL2[6]  
AL2[5]  
AL2[4]  
AL2[3]  
AL2[2]  
AL2[1]  
AL2[0]  
Minimum POWER2 Alert  
Maximum ΔSENSE2 Alert  
Minimum ΔSENSE2 Alert  
Enables Alert When POWER2 < Minimum POWER2 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Enables Alert When ΔSENSE2 > Maximum ΔSENSE2 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Enables Alert When ΔSENSE2 < Minimum ΔSENSE2 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
+
+
+
Maximum SENSE2 Alert  
Enables Alert When SENSE2 > Maximum SENSE2 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
+
+
+
Minimum SENSE2 Alert  
Enables Alert When SENSE2 < Minimum SENSE2 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Maximum GPIO2 Alert  
Minimum GPIO2 Alert  
Enables Alert When GPIO2 > Maximum GPIO2 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Enables Alert When GPIO2 < Minimum GPIO2 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
2992f  
31  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
Table 12. FAULT2 Register (0x35) – Read/Write  
BIT  
NAME  
OPERATION  
F2[7]  
POWER2 Overvalue Fault  
POWER2 > Maximum POWER2 Threshold  
[1] = POWER2 Overvalue Fault Occurred  
[0] = No POWER2 Overvalue Fault Occurred (Default)  
F2[6]  
F2[5]  
F2[4]  
F2[3]  
F2[2]  
F2[1]  
F2[0]  
POWER2 Undervalue Fault  
ΔSENSE2 Overvalue Fault  
ΔSENSE2 Undervalue Fault  
POWER2 < Minimum POWER2 Threshold  
[1] = POWER2 Undervalue Fault Occurred  
[0] = No POWER2 Undervalue Fault Occurred (Default)  
ΔSENSE2 > Maximum ΔSENSE2 Threshold  
[1] = ΔSENSE2 Overvalue Fault Occurred  
[0] = No ΔSENSE2 Overvalue Fault Occurred (Default)  
ΔSENSE2 < Minimum ΔSENSE2 Threshold  
[1] = ΔSENSE2 Undervalue Fault Occurred  
[0] = No ΔSENSE2 Undervalue Fault Occurred (Default)  
+
+
+
SENSE2 Overvalue Fault  
SENSE2 > Maximum SENSE2 Threshold  
+
[1] = SENSE2 Overvalue Fault Occurred  
+
[0] = No SENSE2 Overvalue Fault Occurred (Default)  
+
+
+
SENSE2 Undervalue Fault  
SENSE2 < Minimum SENSE2 Threshold  
+
[1] = SENSE2 Undervalue Fault Occurred  
+
[0] = No SENSE2 Undervalue Fault Occurred (Default)  
GPIO2 Overvalue Fault  
GPIO2 Undervalue Fault  
GPIO2 > Maximum GPIO2 Threshold  
[1] = GPIO2 Overvalue Fault Occurred  
[0] = No GPIO2 Overvalue Fault Occurred (Default)  
GPIO2 < Minimum GPIO2 Threshold  
[1] = GPIO2 Undervalue Fault Occurred  
[0] = No GPIO2 Undervalue Fault Occurred (Default)  
Table 13. ALERT3 Register (0x91) – Read/Write  
BIT  
NAME  
OPERATION  
AL3[7]  
Maximum GPIO3 Alert  
Enables Alert When GPIO3 > Maximum GPIO3 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
AL3[6]  
AL3[5]  
AL3[4]  
AL3[3]  
Minimum GPIO3 Alert  
Enables Alert When GPIO3 < Minimum GPIO3 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Maximum GPIO4 Alert  
Enables Alert When GPIO4 > Maximum GPIO4 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Minimum GPIO4 Alert  
Enables Alert When GPIO4 < Minimum GPIO4 Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Maximum (ΔSENSE1 + ΔSENSE2) Alert  
Enables Alert When (ΔSENSE1 + ΔSENSE2) > Maximum (ΔSENSE1 +  
ΔSENSE2) Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
AL3[2]  
AL3[1]  
AL3[0]  
Minimum (ΔSENSE1 + ΔSENSE2) Alert  
Maximum (POWER1 + POWER2) Alert  
Minimum (POWER1 + POWER2) Alert  
Enables Alert When (ΔSENSE1 + ΔSENSE2) < Minimum (ΔSENSE1 +  
ΔSENSE2) Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Enables Alert When (POWER1 + POWER2) > Maximum (POWER1 +  
POWER2) Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
Enables Alert When (POWER1 + POWER2) < Minimum (POWER1 +  
POWER2) Threshold  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
2992f  
32  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
Table 14. FAULT3 Register (0x92) – Read/Write  
BIT  
NAME  
OPERATION  
F3[7]  
GPIO3 Overvalue Fault  
GPIO3 > Maximum GPIO3 Threshold  
[1] = GPIO3 Overvalue Fault Occurred  
[0] = No GPIO3 Overvalue Fault Occurred (Default)  
F3[6]  
F3[5]  
F3[4]  
F3[3]  
F3[2]  
F3[1]  
F3[0]  
GPIO3 Undervalue Fault  
GPIO3 < Minimum GPIO3 Threshold  
[1] = GPIO3 Undervalue Fault Occurred  
[0] = No GPIO3 Undervalue Fault Occurred (Default)  
GPIO4 Overvalue Fault  
GPIO4 > Maximum GPIO4 Threshold  
[1] = GPIO4 Overvalue Fault Occurred  
[0] = No GPIO4 Overvalue Fault Occurred (Default)  
GPIO4 Undervalue Fault  
GPIO4 < Minimum GPIO4 Threshold  
[1] = GPIO4 Undervalue Fault Occurred  
[0] = No GPIO4 Undervalue Fault Occurred (Default)  
(ΔSENSE1 + ΔSENSE2) Overvalue Fault  
(ΔSENSE1 + ΔSENSE2) Undervalue Fault  
(POWER1 + POWER2) Overvalue Fault  
(POWER1 + POWER2) Undervalue Fault  
(ΔSENSE1 + ΔSENSE2) > Maximum (ΔSENSE1 + ΔSENSE2) Threshold  
[1] = Summed Current Overvalue Fault Occurred  
[0] = No Summed Current Overvalue Fault Occurred (Default)  
(ΔSENSE1 + ΔSENSE2) < Minimum (ΔSENSE1 + ΔSENSE2) Threshold  
[1] = Summed Current Undervalue Fault Occurred  
[0] = No Summed Current Undervalue Fault Occurred (Default)  
(POWER1 + POWER2) > Maximum (POWER1 + POWER2) Threshold  
[1] = Summed Power Overvalue Fault Occurred  
[0] = No Summed Power Overvalue Fault Occurred (Default)  
(POWER1 + POWER2) < Minimum (POWER1 + POWER2) Threshold  
[1] = Summed Power Undervalue Fault Occurred  
[0] = No Summed Power Undervalue Fault Occurred (Default)  
Table 15. ALERT4 Register (0x93) – Read/Write  
BIT  
NAME  
OPERATION  
AL4[7]  
VADC Data Ready Alert  
Alert when VADC Data Ready  
[1] = Enable  
[0] = Disable (Default)  
AL4[6]  
IADC Data Ready Alert  
Alert when IADCs Data Ready  
[1] = Enable  
[0] = Disable (Default)  
AL4[5]  
AL4[4]  
Reserved  
Always Returns 0, Not Writable  
Stuck Bus Time-Out Wakeup Alert  
Alert if Part Exits Shutdown Mode After Stuck Bus Timer Expires with CTRLB[4] = 1  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
AL4[3]  
AL4[2]  
AL4[1]  
AL4[0]  
GPIO1 Input Alert  
GPIO2 Input Alert  
GPIO3 Input Alert  
Reserved  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
[1] = Enable Alert  
[0] = Disable Alert (Default)  
[1] = Enable Alert  
[0] = Disable Alert(Default)  
Always Returns 0, Not Writable  
2992f  
33  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
Table 16. FAULT4 Register (0x94) – Read/Write  
BIT  
NAME  
OPERATION  
F2[7:5]  
F4[4]  
Reserved  
Always Returns 000, Not Writable  
Stuck Bus Time-Out Wakeup Fault  
With CTRLB[4] = 1  
[1] = Part Exited Shutdown Mode After Stuck Bus Timer Expired  
[0] = No Stuck Bus Time-Out Wakeup Fault Occurred (Default)  
F4[3]  
F4[2]  
F4[1]  
F4[0]  
GPIO1 Input Fault  
GPIO2 Input Fault  
GPIO3 Input Fault  
Reserved  
[1] = GPIO1 Input was at Alert Level  
[0] = GPIO1 Input was not at Alert Level (Default)  
Alert Polarity is set in GIO[3] (Table 18)  
[1] = GPIO2 Input was at Alert Level  
[0] = GPIO2 Input was not at Alert Level (Default)  
Alert Polarity is set in GIO[2] (Table 18)  
[1] = GPIO3 Input was at Alert Level  
[0] = GPIO3 Input was not at Alert Level (Default)  
Alert Polarity is set in GIO[1] (Table 18)  
Always Returns 0, Not Writable  
Table 17. GPIO STATUS Register (0x95) – Read Only  
BIT  
NAME  
OPERATION  
GS[7:4]  
GS[3]  
Reserved  
GPIO1 State  
Always Returns 0000, Not Writable  
[1] = GPIO1 High  
[0] = GPIO1 Low  
GS[2]  
GS[1]  
GS[0]  
GPIO2 State  
GPIO3 State  
GPIO4 State  
[1] = GPIO2 High  
[0] = GPIO2 Low  
[1] = GPIO3 High  
[0] = GPIO3 Low  
[1] = GPIO4 High  
[0] = GPIO4 Low  
Table 18. GPIO IO CONTROL Register (0x96) – Read/Write  
BIT  
NAME  
OPERATION  
GIO[7]  
GPIO1 Output  
[1] = Pulls Low  
[0] = Hi-Z (Default)  
GIO[6]  
GPIO2 Output  
[1] = Pulls Low  
[0] = Hi-Z (Default)  
GIO[5:4]  
GPIO3 Configuration  
[11] = Pulls Low when Any of the ADCs Data Becomes Ready, Resets to High  
by Reading ADC STATUS Register 0x32  
[10] = 128µs Low Pulse when Any of the ADCs Data Becomes Available  
[01] = 16µs Low Pulse when Any of the ADCs Data Becomes Available  
[00] = General Purpose Input/Output (Default)  
GIO[3]  
GIO[2]  
GIO[1]  
GIO[0]  
GPIO1 Alert Polarity Configuration  
GPIO2 Alert Polarity Configuration  
GPIO3 Alert Polarity Configuration  
GPIO3 Output  
[1] = Alert on GPIO1 Input High  
[0] = Alert on GPIO1 Input Low (Default)  
[1] = Alert on GPIO2 Input High  
[0] = Alert on GPIO2 Input Low (Default)  
[1] = Alert on GPIO3 Input High (Default)  
[0] = Alert on GPIO3 Input Low  
[1] = Pulls Low (Default)  
[0] = Hi-Z  
2992f  
34  
For more information www.linear.com/LTC2992  
LTC2992  
applicaTions inForMaTion  
Table 19. GPIO4 CONTROL Register (0x97) – Read/Write  
BIT  
NAME  
OPERATION  
GC[7]  
Alert Generated  
[1] = Alert Generated  
[0] = No Alert Generated  
2
Latched to 1 when an Alert is generated and can be cleared via I C by writing a 0 to it  
or setting CTRLB[7] (Table 6) to 1  
GC[6]  
GPIO4 Output  
Reserved  
[1] = Pulls Low  
[0] = Hi-Z (Default)  
GC[5:0]  
Always Returns 000000, Not Writable  
Table 20. Register Data Format – Read/Write: ADC, Min/Max ADC, Min/Max ADC Threshold, ISUM, Min/Max ISUM, Min/Max ISUM  
Threshold  
12-Bit Mode:  
BIT(7)  
Data(11)  
Data(3)  
BIT(6)  
Data(10)  
Data(2)  
BIT(5)  
Data(9)  
Data(1)  
BIT(4)  
Data(8)  
Data(0)  
BIT(3)  
Data(7)  
0
BIT(2)  
Data(6)  
0
BIT(1)  
Data(5)  
0
BIT(0)  
Data(4)  
0
MSB Register  
LSB Register  
8-Bit Mode:  
BIT(7)  
Data(7)  
0
BIT(6)  
Data(6)  
0
BIT(5)  
Data(5)  
0
BIT(4)  
Data(4)  
0
BIT(3)  
Data(3)  
0
BIT(2)  
Data(2)  
0
BIT(1)  
Data(1)  
0
BIT(0)  
Data(0)  
0
MSB Register  
LSB Register  
Table 21. Register Data Format – Read/Write: Power, Min/Max Power, Min/Max Power Threshold, PSUM, Min/Max PSUM, Min/Max  
PSUM Threshold  
12-Bit Mode:  
BIT(7)  
Data(23)  
Data(15)  
Data(7)  
BIT(6)  
Data(22)  
Data(14)  
Data(6)  
BIT(5)  
Data(21)  
Data(13)  
Data(5)  
BIT(4)  
Data(20)  
Data(12)  
Data(4)  
BIT(3)  
Data(19)  
Data(11)  
Data(3)  
BIT(2)  
Data(18)  
Data(10)  
Data(2)  
BIT(1)  
Data(17)  
Data(9)  
Data(1)  
BIT(0)  
Data(16)  
Data(8)  
Data(0)  
MSB2 Register  
MSB1 Register  
LSB Register  
8-Bit Mode:  
BIT(7)  
Data(15)  
Data(7)  
0
BIT(6)  
Data(14)  
Data(6)  
0
BIT(5)  
Data(13)  
Data(5)  
0
BIT(4)  
Data(12)  
Data(4)  
0
BIT(3)  
Data(11)  
Data(3)  
0
BIT(2)  
Data(10)  
Data(2)  
0
BIT(1)  
Data(9)  
Data(1)  
0
BIT(0)  
Data(8)  
Data(0)  
0
MSB2 Register  
MSB1 Register  
LSB Register  
2992f  
35  
For more information www.linear.com/LTC2992  
LTC2992  
Typical applicaTions  
–48V Redundant Feed with Transient Protection to 200V (1.5kHz I2C Interface)  
MBR20200*  
Q1, PZTA42  
RTN1  
R
9.1k  
1W  
SHUNT1  
MBR20200*  
RTN2  
R14  
100Ω  
R
9.1k  
1W  
SHUNT2  
R3  
1k  
R4  
0.51k  
R1  
2k  
R2  
2k  
3.3V  
C1  
1µF  
R9  
R10  
R11 R12 R13  
2k 10k  
R5  
1M  
R6  
1M  
V
INTV  
CC  
DD  
0.51k 0.51k 2k  
MOCD207M  
V
DD  
SCL  
GPIO1  
GPIO2  
SCL  
SDAI  
ADR1  
ADR0  
LTC2992-1  
µP  
MOCD207M  
R7  
R8  
20k  
20k  
SDAO  
SDA  
TEMPERATURE  
GPIO3  
SENSOR  
ALERT  
INT  
GPIO4  
GND  
GND  
+
+
SENSE2 SENSE2  
SENSE1 SENSE1  
2992 TA02  
MBR20200*  
V
–48V  
IN1  
R
SENSE1  
0.01Ω  
MBR20200*  
V
–48V  
V
5A  
IN2  
OUT  
R
SENSE2  
0.01Ω  
*APPROPRIATELY SIZED HEAT SINK IS REQUIRED  
2992f  
36  
For more information www.linear.com/LTC2992  
LTC2992  
Typical applicaTions  
High Side and Low Side Current Sensing on a Wide Range Supply  
R
SENSE1  
0.01Ω  
+
SENSE1 SENSE1  
V
DD  
INTV  
CC  
VISHAY  
NTCS0402E3104*HT  
100k AT 25°C  
1%  
C1  
1µF  
LTC2992  
ADR0  
ADR1  
GND  
SDAI  
SDAO  
SCL  
2
I C  
INTERFACE  
+
V
IN  
R3  
19.1k  
1%  
R1  
40.2k  
1%  
7V TO  
100V  
LOAD  
5A  
GPIO1  
GPIO4  
ALERT  
GPIO2  
GPIO3  
GP OUTPUT  
R4  
20k  
1%  
R2  
10k  
1%  
+
SENSE2 SENSE2  
2992 TA03  
R
SENSE2  
0.01Ω  
CODE  
GPIO1  
TEMPERATURE T(°C) = 41.51 • (  
– 0.1233), 20°C < T < 60°C  
CODE  
GPIO2  
2992f  
37  
For more information www.linear.com/LTC2992  
LTC2992  
Typical applicaTions  
Dual 12V High Power Monitor with One Negative Voltage Monitor  
R
= RESISTOR ARRAY  
SENSE1  
10 × 5mΩ PARALLEL SENSE RESISTORS  
10 × PAIRS OF 1Ω RESISTORS  
R
SENSE1_1  
5mΩ  
R
SP1_1  
1Ω  
R
SM1_1  
1Ω  
R
SENSE1_10  
5mΩ  
R
R
SP1_10  
1Ω  
SM1_10  
1Ω  
R
SENSE1  
0.5mΩ  
V
12V  
V
OUT1  
100A  
IN1  
V
NEG  
+
SENSE1 SENSE1  
V
DD  
0V TO –60V  
SDAI  
R1  
640k  
1%  
2
I C  
SDAO  
INTERFACE  
LTC2992  
GPIO1  
SCL  
R2  
17.8k  
1%  
GPIO2  
GPIO4  
ALERT  
GPIO3  
DATAREADY  
+
INTV  
GND ADR0 ADR1 SENSE2 SENSE2  
CC  
C1  
1µF  
V
12V  
V
100A  
IN2  
OUT2  
R
SENSE2  
0.5mΩ  
4mV/K  
V
CC  
+
V
PTAT  
D
C2  
470pF  
MEASURES BOARD  
TEMPERATURE  
LTC2997  
1.8V  
V
REF  
D
GND  
MMBT3904  
TEMPERATURE T(°C) = CODE  
/8 – 273.15  
GPIO2  
V
(V) = 36.955 × CODE  
× GPIO LSB STEP SIZE – 64.7191, –60V < V  
< 0V  
NEG  
GPIO1  
NEG  
2992 TA04  
2992f  
38  
For more information www.linear.com/LTC2992  
LTC2992  
Typical applicaTions  
Power Monitor for 48V, 500W Electric Bike/Scooter  
R
SENSE2  
0.005Ω  
10A  
DC BRUSHLESS MOTOR  
R
SENSE1  
0.2Ω  
200mA  
+
3.3V  
48V  
V
DD  
+
+
R3  
R4  
R5  
R6  
SENSE1 SENSE1  
SENSE2 SENSE2  
330k 10k 10k 10k  
SDA  
V
DD  
SDAI  
SDAO  
SCL  
MCU  
SCL  
LTC2992  
ALERT  
GPIO4  
INT  
2992 TA05  
HEADLIGHT  
GPIO3  
RELAY CONTROL  
GPIO2 INTV  
GND ADR0 ADR1  
GPIO1  
CC  
C1, 1µF  
4mV/K  
GND  
+
V
PTAT  
V
D
CC  
C2  
470pF  
MEASURE BOARD  
TEMPERATURE  
R2  
10k  
LTC2997  
D
GND  
MMBT3904  
GP OUTPUT  
PIN NOT USED IN LTC2997 CIRCUIT: V  
REF  
TEMPERATURE T(°C) = CODE  
/8 – 273.15  
GPI01  
2992f  
39  
For more information www.linear.com/LTC2992  
LTC2992  
Typical applicaTions  
Four Quadrant Power Monitor (10kHz I2C Interface)  
+
3.3V  
Q1  
PZTA42  
SEPARATE  
5V SUPPLY  
R10  
R11  
R12 R13 R14  
R8  
R9  
V
DD  
0.47k 0.47k 2k  
2k  
10k  
MOCD207M  
V
DD  
4.7k 4.7k  
R1  
SCL  
1M  
R16  
100k  
GPIO1  
SCL  
SDAI  
R3  
20k  
µP  
Q4*  
MMBT2222L  
LTC2992-1  
R6  
R7  
NC  
ORGND  
(GND PIN  
OF LTC2992-1)  
33k 0.82k  
MOCD207M  
NC  
Q5*  
SDAO  
SDA  
R2  
20k  
MMBT2222L  
ALERT  
R17  
100k  
INT  
GPIO4  
ADR1  
ADR0  
GND  
GPIO2  
INTV  
CC  
R4  
1M  
C1  
1µF  
ORGND  
GND  
TEMPERATURE  
SENSOR  
GPIO3  
V
V
Z
V
DD  
SS  
SB  
SA  
C2  
1nF  
C3  
1nF  
LTC4371  
Q2  
BSP297  
Q3  
BSP297  
GB  
GA  
R15, 10k  
+
+
SENSE1 SENSE2  
SENSE2 SENSE1  
DB  
DA  
V
IN  
V
OUT  
5A  
PIN NOT USED IN LTC4371 CIRCUIT: FAULTB  
–95V TO  
100V  
R
SENSE  
NC: NO CONNECT  
0.01Ω  
*MAX EMITTER-BASE BREAKDOWN VOLTAGE OF Q4, Q5 SHOULD BE LESS THAN 7V  
|V | – |V  
IN  
|–|V  
|
1
RSENSE  
DS,Q2  
CODE  
=
=
×
GPIO1  
GPIO2  
51  
GPIO LSB STEP SIZE  
2992 TA06  
|V | – |V  
IN  
|
1
DS,Q3  
CODE  
×
51  
GPIO LSB STEP SIZE  
IF CODE  
IF CODE  
> CODE  
< CODE  
, MEASURED V = –[CODE  
× GPIO LSB STEP SIZE × 51]  
GPIO1  
GPIO1  
GPIO2  
GPIO2  
IN  
GPIO1  
× GPIO LSB STEP SIZE × 51  
, MEASURED V = CODE  
IN  
GPIO2  
V
V
, V  
ARE DRAIN TO SOURCE VOLTAGE OF Q2 AND Q3  
IS VOLTAGE ACROSS R  
DS,Q2 DS,Q3  
RSENSE  
SENSE  
2992f  
40  
For more information www.linear.com/LTC2992  
LTC2992  
Typical applicaTions  
Power Efficiency Meter  
SDAI  
SENSE2  
2
I C  
+
SDAO  
SENSE2  
INTERFACE  
SCL  
INTV  
CC  
C
0.1µF  
A
LTC2992  
ADR1  
ADR0  
R
PU1  
100k  
R
PU4  
100k  
GND  
V
DD  
+
SENSE1  
GPIO1  
SENSE1  
GPIO4  
ALERT  
GPIO2 GPIO3  
V
IN  
14V TO 100V  
R
SENSE1  
C
+
INB  
C
10mΩ  
INA  
100µF  
0.47µF  
×4  
RUN  
MTOP  
×2  
V
TG  
IN  
MODE  
BOOST  
R
C
0.1µF  
SENSE2  
6mΩ  
B
L1, 33µH  
V
ILIM  
OUT  
12V  
5A  
SW  
R
R
PU2  
100k  
PU3  
100k  
LTC3895  
MBOT  
BG  
+
C
C
OUTA  
150µF  
×2  
INTV  
OUTB  
22µF  
CC  
C
INTVCC  
0.1µF  
CRUMP_EN  
+
SENSE  
C
1nF  
C
SNS  
SS  
0.1µF  
SS  
SENSE  
EXTV  
CC  
R , 140k  
B
NDRV  
V
FB  
DRV  
CC  
ITH  
C
DRVCC  
4.7µF  
DRVSET  
DRVUV  
OVLO  
FREQ  
GND  
GND  
GND  
GND  
R
ITH  
10k  
R
A
10k  
R
80.6k  
DRV  
C
C
EXT  
1µF  
ITHB  
100pF  
R
C
ITHA  
4.7nF  
FREQ  
30.1k  
2992 TA07  
PINS NOT USED IN LTC3895 CIRCUIT:  
CLKOUT, PLLIN, PHASMD, PGOOD, VPRG  
MTOP, MBOT: BSC520N15NS3G  
D : DIODES INC. SMAZ12-13-F  
EXT  
L1: WURTH 7443633300  
: SUNCON 35CE68LX  
C
OUTA  
2992f  
41  
For more information www.linear.com/LTC2992  
LTC2992  
Typical applicaTions  
Bidirectional 30V to 300V High Side Power Monitor  
R
SENSE  
0.01Ω  
V
5A  
OUT  
V
IN  
3.3V  
R11  
2k  
R1  
2k  
+
+
SENSE2 SENSE1  
SENSE1 SENSE2  
R8  
1k  
R9  
1k  
R10  
10k  
C2  
R3 R4 R7  
Z1*  
5.1V  
V
DD  
0.1µF 5k  
2k 2k  
V
DD  
INTV  
CC  
V
V
DD1  
SDAI  
SDAO  
SCL  
DD2  
µP  
SDA  
ADUM1251  
C1  
NST30010MXV6  
SDA  
SDA  
SCL  
GND  
2
1
1
1
0.1µF  
LTC2992  
GPIO1  
GPIO2  
ADR1  
ADR0  
SCL  
SCL  
2
GND  
2
R12  
374k  
R2  
5.1k  
FODM217C  
R13  
374k  
INT  
GND  
ALERT  
GPIO4  
FAN ON  
OUTPUT  
GPIO3  
GND  
R11  
100Ω  
M1  
BSP135  
Q1  
2N3904  
Q2  
USE GPIO TO MEASURE INPUT VOLTAGE  
SEE TABLE 5  
*DDZ9689, DIODES INC.  
MMBT6520L  
M3  
BSP135  
Q3  
2N3904  
R5  
10k  
R6  
10k  
2992 TA08  
2992f  
42  
For more information www.linear.com/LTC2992  
LTC2992  
Typical applicaTions  
Bipolar Supply Power Monitor (1.5kHz I2C Interface)  
R
SENSE1  
0.01Ω  
V
POS  
10V TO 20V  
5A  
3.3V  
R4  
15k  
R5  
R6  
R7  
+
R9  
0.2k  
R10 R11 R12  
R8  
0.2k  
SENSE1 SENSE1  
V
DD  
3.3k 15k 15k  
2k  
2k  
10k  
MOCD207M  
V
DD  
TEMPERATURE  
SENSOR  
GPIO1  
SCL  
BAT54*  
SCL  
SDAI  
LTC2992-1  
µP  
R1  
118k  
GPIO2  
MOCD207M  
R2  
10k  
BAT54*  
SDAO  
SDA  
GND  
C1  
1µF  
ALERT  
INT  
INTV  
CC  
GPIO4  
ADR1  
ADR0  
R3  
10k  
GND  
GPIO3  
+
SENSE2 SENSE2  
V
NEG  
–10V TO –20V  
5A  
R
SENSE2  
0.01Ω  
2992 TA09  
*DIODES ENSURE LTC2992-1’S OPERATION WHEN EITHER SUPPLY FAILS OPEN  
2992f  
43  
For more information www.linear.com/LTC2992  
LTC2992  
package DescripTion  
Please refer to http://www.linear.com/product/LTC2992#packaging for the most recent package drawings.  
DE Package  
16-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-ꢀ732 Rev Ø)  
0.70 0.05  
3.30 0.05  
ꢀ.70 0.05  
3.60 0.05  
2.20 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.45 BSC  
3.ꢀ5 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.ꢀꢀ5  
TYP  
0.40 0.ꢀ0  
4.00 0.ꢀ0  
(2 SIDES)  
9
ꢀ6  
R = 0.05  
TYP  
3.30 0.ꢀ0  
3.00 0.ꢀ0  
(2 SIDES)  
ꢀ.70 0.ꢀ0  
PIN ꢀ NOTCH  
R = 0.20 OR  
PIN ꢀ  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DEꢀ6) DFN 0806 REV Ø  
8
0.23 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
3.ꢀ5 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WGED-3) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2992f  
44  
For more information www.linear.com/LTC2992  
LTC2992  
package DescripTion  
Please refer to http://www.linear.com/product/LTC2992#packaging for the most recent package drawings.  
MS Package  
16-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev A)  
0.889 ±0.127  
(.035 ±.005)  
5.10  
3.20 – 3.45  
(.201)  
(.126 – .136)  
MIN  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
0.50  
(.0197)  
BSC  
0.305 ±0.038  
(.0120 ±.0015)  
TYP  
0.280 ±0.076  
(.011 ±.003)  
REF  
16151413121110  
9
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
DETAIL “A”  
0.254  
4.90 ±0.152  
(.193 ±.006)  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1 2 3 4 5 6 7 8  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MS16) 0213 REV A  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
2992f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
reil
tion that the interconnection of its circuits as described he inw l not infringe on existing patent rights.  
45  
LTC2992  
Typical applicaTion  
Bidirectional Wide Range Power Monitor  
R
SENSE  
0.01Ω  
V
IN  
V
OUT  
3V TO 100V  
+
+
SENSE2 SENSE1 SENSE1 SENSE2  
SDAI  
SDAO  
SCL  
V
DD  
2
I C  
BOARD  
TEMPERATURE  
GPIO1  
INTERFACE  
LTC2992  
µP  
GPIO2  
TEMPERATURE  
ALERT  
GPIO4  
DATAREADY  
GPIO3  
INTV  
CC  
GND ADR0 ADR1  
2992 TA10  
0.1μF  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LT®2940  
LTC2941  
LTC2942  
LTC2943  
LTC294±  
LTC2947  
LTC2990  
LTC41±0  
LTC41±1  
LTC421±  
Power and Current Monitor  
4-Quadrant Multiplication, ±±5 Power ꢀccuracy, 4V to 80V Operation  
2.7V to ±.±V Operation, 15 Charge ꢀccuracy  
2
I C Battery Gas Gauge  
2
I C Battery Gas Gauge  
2.7V to ±.±V Operation, 15 Charge, Voltage and Temperature  
3.6V to 20V Operation, 15 Charge, Voltage, Current and Temperature  
0V to 80V Operation, 12-Bit ꢀDC with ±0.7±5 TꢁU  
High Voltage Battery Gas Gauge  
2
Wide Range I C Power Monitor  
Power/Unergy Monitor with Integrated Sense Resistor ±30ꢀ Current Range with 9mꢀ Offset  
2
Quad I C Temperature, Voltage and Current Monitor  
Coulomb Counter/Battery Gas Gauge  
3V to ±.±V Operation, 14-Bit ꢀDC  
2.7V to 8.±V Operation, Voltage-to-Frequency Converter  
7V to 80V Operation, 12-Bit Resolution with ±1.2±5 TꢁU  
8-Bit ꢀDC, ꢀdjustable Current Limit and Inrush, 2.9V to 1±V Operation  
2
High Voltage I C Current and Voltage Monitor  
2
Single Channel, Hot Swap Controller with I C  
Monitoring  
2
LTC4222  
LTC4260  
LTC4261  
Dual Channel, Hot Swap Controller with I C  
10-Bit ꢀDC, ꢀdjustable Current Limit and Inrush, 2.9V to 29V Operation  
8-Bit ꢀDC, ꢀdjustable Current Limit and Inrush, 8.±V to 80V Operation  
10-Bit ꢀDC, Floating Topology, ꢀdjustable Inrush  
Monitoring  
2
Positive High Voltage Hot Swap Controller with I C  
Monitoring  
2
Negative High Voltage Hot Swap Controller with I C  
Monitoring  
2992f  
LT 1017 • PRINTED IN USA  
www.linear.com/LTC2992  
46  
LINEAR TECHNOLOGY CORPORATION 2017  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY