LTC3203EDD-1#TRPBF [Linear]

LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 - 500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C;
LTC3203EDD-1#TRPBF
型号: LTC3203EDD-1#TRPBF
厂家: Linear    Linear
描述:

LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 - 500mA Output Current Low Noise Dual Mode Step-Up Charge Pumps; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C

文件: 总16页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
500mA Output Current  
Low Noise Dual Mode  
Step-Up Charge Pumps  
U
FEATURES  
DESCRIPTIO  
TheLTC®3203/LTC3203-1/LTC3203B/LTC3203B-1arelow  
noise, high efficiency charge pump DC/DC converters  
capable of driving loads up to 500mA from a 2.7V to 5.5V  
input. Low external parts count (two flying capacitors and  
bypass capacitors at VIN and VOUT) make the LTC3203  
family ideally suited for small, battery-powered applica-  
tions.  
Selectable Dual Mode Operation: 1:1.5 or 1:2  
High Output Current: Up to 500mA  
Low Noise Constant Frequency (1MHz/0.9MHz)  
Operation*  
VIN Range: 2.7V to 5.5V  
Adjustable Output Voltage (LTC3203/LTC3203B)  
User Selectable Fixed Output Voltages: 4.5V or 5V  
(LTC3203-1 and LTC3203B-1)  
Built-in soft-start circuitry prevents excessive inrush  
current during start-up. High switching frequency enables  
the use of small external capacitors. The LTC3203/  
LTC3203-1 feature Burst Mode operation at light load to  
achieve high efficiency whereas the LTC3203B/  
LTC3203B-1 operate at constant frequency to achieve  
lowest noise operation.  
Burst Mode® Operation with  
IQ ~ 120µA (LTC3203/LTC3203-1)  
Constant Freqency Operation at All Loads  
(LTC3203B/LTC3203B-1)  
Soft-Start Limits Inrush Current at Turn-On  
Short-Circuit/Thermal Protection  
Shutdown Disconnects Load from Input  
The LTC3203-1/LTC3203B-1 have a user selectable fixed  
output voltage of 4.5V or 5V to power LEDs or logic  
circuits.TheFBpinoftheLTC3203/LTC3203Bcanbeused  
toprogramthedesiredoutputvoltage.Thepartsareshort-  
circuit and overtemperature protected and are available in  
a low profile (3mm × 3mm) DFN package.  
Shutdown Current: < 1µA  
Available in a 10-pin (3mm × 3mm) DFN Package  
U
APPLICATIO S  
High Current LED Backlight Supply for  
Cellphones/PDAs  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
*Protected by U.S. Patents including 6411531.  
Cellphone Camera Light Supply  
General Purpose 3.3V or Li-Ion to 5V Supply  
USB ON THE GO(OTG) Devices  
U
TYPICAL APPLICATIO  
Efficiency vs V at 300mA Load Current  
100  
IN  
OUTPUT PROGRAMMING  
ON/OFF  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 5V  
OUT  
SHDN  
SEL  
LTC3203-1  
V
V
= 4.5V  
OUT  
V
OUT  
V
IN  
V
IN  
OUT  
500mA  
10µF  
+
+
2.2µF  
C1  
C1  
C2  
2.2µF  
2.2µF  
C2  
GND  
R1*  
MODE  
3203 F02  
100k  
I
V
V
*R1  
OUT(MAX)  
SEL  
OUT  
300mA LOW 4.5V 316k  
300mA HIGH 5V 357k  
500mA LOW 4.5V 357k  
500mA HIGH 5V 402k  
2.5  
3
4
(V)  
4.5  
5
5.5  
3.5  
V
IN  
3203 G05  
32031fa  
1
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
VIN, VOUT to GND ......................................... –0.3V to 6V  
MODE, VSEL/FB, SHDN ..................... –0.3V to VIN +0.3V  
+
C2  
1
2
3
4
5
10 C1  
V
9
8
7
6
GND  
OUT  
V
OUT Short Circuit Duration ............................. Indefinite  
+
C1  
C2  
11  
IOUT (Note 2)....................................................... 500mA  
Operating Temperature Range (Note 3) ... –40°C to 85°C  
Storage Temperature Range .................. –65°C to 125°C  
SHDN  
/FB*  
V
IN  
V
SEL  
MODE  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C,θJA = 44°C/W,θJC = 3°C/W  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
*VSEL ON LTC3203-1/LTC3203B-1. FB ON LTC3203/LTC3203B  
ORDER PART NUMBER  
DD PART MARKING  
LTC3203EDD  
LTC3203EDD-1  
LBQK  
LCFH  
LCGY  
LCGX  
LTC3203BEDD-1  
LTC3203BEDD  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full specified temperature  
range, otherwise specifications are at 25°C. V = 3.6V, C1 = C2 = 2.2µF unless otherwise specified.  
IN  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LTC3203/LTC3203-1/LTC3203B/LTC3203B-1  
V
Input Voltage Range  
Shutdown Current  
2.7  
5.5  
1
V
IN  
I
SHDN = 0V, V  
= 0V  
µA  
SHDN  
OUT  
R
OL  
Open Loop Output  
Impedance  
2x Mode (Note 4), V = 2.7V, V = 4.5V  
OUT  
2.0  
1.5  
3.0  
2.6  
IN  
1.5x Mode (Note 4), V = 3.6V, V  
= 4.5V  
IN  
OUT  
f
CLK Frequency  
Oscillator Free Running, 2x Mode  
Oscillator Free Running, 1.5x Mode  
1.0  
0.9  
MHz  
MHz  
OSC  
V
V
V
V
MODE Input High Voltage  
MODE Input Low Voltage  
SHDN Input High Voltage  
SHDN Input Low Voltage  
MODE Input High Current  
MODE Input Low Current  
SHDN Input High Current  
SHDN Input Low Current  
0.874  
0.788  
1.3  
0.91  
0.82  
0.946  
0.852  
V
V
MODEH  
MODEL  
SHDNH  
SHDNL  
MODEH  
MODEL  
SHDNH  
SHDNL  
V
0.4  
1
V
I
I
I
I
–1  
–1  
–1  
–1  
µA  
µA  
µA  
µA  
1
1
1
32031fa  
2
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full specified temperature  
range, otherwise specifications are at 25°C. V = 3.6V, C1 = C2 = 2.2  
µF unless otherwise specified.  
IN  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LTC3203-1/LTC3203B-1  
V
4.5V Output Voltage Range  
SEL  
V
IN  
V
IN  
V
IN  
> 3.1V, I  
> 2.9V, I  
> 2.7V, I  
< 500mA  
< 350mA  
< 250mA  
4.32  
4.32  
4.32  
4.5  
4.5  
4.5  
4.68  
4.68  
4.68  
V
V
V
OUT  
OUT  
OUT  
OUT  
(V = 0V) (Note 5)  
5V Output Voltage Range  
V
IN  
V
IN  
V
IN  
> 3.1V, I  
> 3.1V, I  
> 2.7V, I  
< 500mA  
< 400mA  
< 150mA  
4.8  
4.8  
4.8  
5
5
5
5.2  
5.2  
5.2  
V
V
V
OUT  
OUT  
OUT  
(V = V ) (Note 5)  
SEL  
IN  
V /I  
OUT OUT  
V
Load Regulation  
V
IN  
V
IN  
= 3.6V, I  
= 100mA to 500mA, 2x Mode,  
0.37  
0.27  
mV/mA  
mV/mA  
OUT  
OUT  
= 4V, I  
= 100mA to 500mA, 1.5x Mode  
OUT  
I
No Load Operating Current  
(LTC3203-1)  
I
I
= 0mA, 2x Mode  
= 0mA, 1.5x Mode  
120  
100  
300  
300  
µA  
µA  
CC  
OUT  
OUT  
No Load Operating Current  
(LTC3203B-1)  
I
I
= 0mA, 2x Mode  
= 0mA, 1.5x Mode  
9
7
mA  
mA  
OUT  
OUT  
V
V
V
V
V
V
Input High Voltage  
Input Low Voltage  
Input High Current  
Input Low Current  
1.3  
V
V
VSELH  
VSELL  
VSELH  
VSELL  
SEL  
SEL  
SEL  
SEL  
0.4  
1
I
I
–1  
–1  
µA  
µA  
1
LTC3203/LTC3203B  
V
Feedback Servo Voltage  
FB Input Current  
I
= 0mA, 2.7V V 5.5V  
0.88  
–50  
0.91  
0.94  
50  
V
FB  
OUT  
IN  
I
V
= 0.95V  
nA  
FB  
FB  
V /I  
FB OUT  
Load Regulation  
(Refer to FB Pin)  
I
I
= 100mA to 500mA, 2x Mode, V = 3.6V  
0.08  
0.06  
mV/mA  
mV/mA  
OUT  
OUT  
IN  
= 100mA to 500mA, 1.5x Mode, V = 4V  
IN  
I
No Load Operating Current  
(LTC3203)  
I
I
= 0mA, 2x Mode, 5V V Setting  
OUT  
120  
100  
300  
300  
µA  
µA  
CC  
OUT  
OUT  
= 0mA, 1.5x Mode, 5V V  
Setting  
OUT  
No Load Operating Current  
(LTC3203B)  
I
I
= 0mA, 2x Mode, 5V V  
= 0mA, 1.5x Mode, 5V V  
Setting  
9
7
mA  
mA  
OUT  
OUT  
OUT  
Setting  
OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Output not in regulation (based on wafer sort):  
R
OL  
R
OL  
(2 V – V )/I , 2x Mode  
IN OUT OUT  
(1.5 V – V )/I , 1.5x Mode  
IN  
OUT OUT  
Note 5: Proper conversion mode, 1.5x or 2x, has to be chosen based on  
to ensure output regulation.  
Note 2: Based on long-term current density limitations.  
R
OL  
Note 3: The LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 are guaranteed  
to meet performance specifications from 0°C to 85°C. Specifications over  
the –40°C to 85°C operating temperature range are assured by design,  
characterization and correlation with statistical process controls.  
32031fa  
3
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
T = 25  
A
°
C, V = 3.6V, C1 = C2 = 2.2  
µF unless otherwise specified  
IN  
V
vs Load Current  
V
vs Supply Voltage  
V
vs Load Current  
OUT  
OUT  
OUT  
(4.5V Output Setting)  
(4.5V Output Setting)  
(5V Output Setting)  
4.65  
4.60  
4.55  
4.50  
4.45  
4.40  
4.35  
4.30  
4.25  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
4.3  
4.1  
3.9  
3.7  
3.5  
4.8  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
I
= 0mA  
LOAD  
V
= 3V  
IN  
I
= 500mA  
LOAD  
V
= 3.6V  
IN  
I
= 250mA  
LOAD  
V
= 3.3V  
IN  
V
IN  
= 3V  
IN  
V
= 2.7V  
V
V
= 3.6V  
= 2.7V  
IN  
IN  
V
= 3.3V  
IN  
1.5x MODE  
2x MODE  
1.5x MODE  
1.5x MODE  
2x MODE  
2x MODE  
5.5  
5
3.0  
0
50 100 150 200 250 300 350 400 450 500  
(mA)  
0
50 100 150 200 250 300 350 400 450 500  
2.5  
3
3.5  
4
4.5  
I
I
(mA)  
V
(V)  
IN  
LOAD  
LOAD  
3203 G02  
3203 G01  
3203 G03  
V
vs Supply Voltage  
Open-Loop Output Resistance  
vs Temperature  
OUT  
(5V Output Setting)  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2x MODE  
I
= 0mA  
LOAD  
V
= 2.7V  
IN  
OUT  
V
= 4.5V  
I
= 500mA  
LOAD  
I
= 250mA  
LOAD  
1.5x MODE  
V
= 3.6V  
IN  
OUT  
V
= 4.5V  
1.5x MODE  
2x MODE  
4.5  
5.5  
–40  
–15  
10  
35  
60  
85  
2.5  
3
3.5  
4
5
TEMPERATURE (°C)  
V
(V)  
IN  
3203 G06  
3203 G04  
Oscillator Frequency  
vs Supply Voltage  
Short-Circuit Current  
vs Supply Voltage  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
2x MODE  
1.5x MODE  
1.5x MODE  
2x MODE  
4.5  
5.5  
2.5  
3
3.5  
4
5
4.5  
5.5  
2.5  
3
3.5  
4
5
V
(V)  
V
(V)  
IN  
IN  
3203 G07  
3203 G08  
32031fa  
4
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Burst Mode Current Threshold  
vs Supply Voltage  
No-Load Input Current vs Supply  
Voltage (LTC3203/LTC3203-1)  
Extra Input Current vs Load  
Current (LTC3203/LTC3203-1)  
(LTC3203/LTC3203-1)  
160  
140  
120  
100  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
100  
2x MODE  
10  
1.5x MODE  
2x MODE  
I
– 2 • I  
IN  
LOAD  
80  
60  
1
0.1  
1.5x MODE  
– 1.5 • I  
I
IN  
LOAD  
1.5x MODE  
40  
20  
0
2x MODE  
5
0
0.01  
0.01  
3
3.5  
4.5  
2.5  
5
5.5  
4
2.5  
3
4
4.5  
5.5  
3.5  
0.1  
1
I
10  
(mA)  
100  
1000  
V
IN  
(V)  
V
IN  
(V)  
LOAD  
3209 G12  
3203 G10  
3203 G11  
Input and Output Ripple  
(2x Mode)  
Input and Output Ripple  
(1.5x Mode)  
Load Transient (1.5x Mode)  
V
V
OUT  
IN  
100mV/DIV  
V
20mV/DIV  
IN  
AC-COUPLED  
20mV/DIV  
AC-COUPLED  
AC-COUPLED  
V
OUT  
V
OUT  
20mV/DIV  
500mA  
I
20mV/DIV  
OUT  
AC-COUPLED  
100mA  
AC-COUPLED  
3203 G15  
3203 G14  
3203 G13  
V
C
C
= 4V  
20µs/DIV  
V
C
C
I
= 3.6V  
= 2.2µF  
= 10µF  
500ns/DIV  
V
C
C
I
= 4V  
500ns/DIV  
IN  
IN  
IN  
IN  
OUT  
IN  
IN  
= 2.2µF  
= 10µF  
= 2.2µF  
= 10µF  
OUT  
= 300mA  
OUT  
1.5x MODE  
= 300mA  
OUT  
2x MODE  
OUT  
1.5x MODE  
V
Set Point vs Supply Voltage  
V
vs Load Current  
FB  
FB  
Load Transient (2x Mode)  
(LTC3203/LTC3203B)  
(LTC3203/LTC3202B)  
0.94  
0.93  
0.92  
0.91  
0.90  
0.89  
0.88  
0.96  
0.94  
V
OUT  
100mV/DIV  
AC-COUPLED  
0.92  
V
= 4V  
IN  
1.5x MODE  
T
= –40°C  
T
T
= 25°C  
= 85°C  
A
A
0.90  
0.88  
0.86  
0.84  
0.82  
500mA  
V
= 3.6V  
IN  
I
OUT  
A
2x MODE  
100mA  
3203 G16  
V
C
C
= 3.6V  
20µs/DIV  
IN  
IN  
= 2.2µF  
= 10µF  
OUT  
2x MODE  
2.5  
3.5  
4
4.5  
5
5.5  
3
500  
0
150  
250 300 350 400 450  
(mA)  
50 100  
200  
I
V
(V)  
IN  
LOAD  
3203 G17  
3203 G18  
32031fa  
5
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
U
U
U
PI FU CTIO S  
C2+ (Pin 1): Flying Capacitor 2 Positive Terminal (C2).  
MODE (Pin 6): Mode Selection Input. The LTC3203/  
LTC3203-1/LTC3203B/LTC3203B-1 operates in 1.5x  
mode if the MODE pin is greater than VMODEH, which  
gives higher charge pump efficiency. If the MODE pin is  
less than VMODEL, the LTC3203/LTC3203-1/LTC3203B/  
LTC3203B-1 operates in 2x mode, which gives a higher  
charge pump boost voltage.  
VOUT (Pin 2): Regulated Output Voltage. VOUT should be  
bypassedwithalowESRceramiccapacitorasclosetothe  
pinaspossibleforbestperformance.Thecapacitorshould  
have greater than 4.7µF capacitance under all conditions.  
C1+ (Pin 3): Flying Capacitor 1 Positive Terminal (C1).  
SHDN(Pin4):ActiveLowShutdownInput. AlowonSHDN  
puts the LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 in  
low current shutdown mode. Do not float the SHDN pin.  
VIN (Pin 7): Input Supply Voltage. VIN should be bypassed  
withamorethan2.2µFlowESRceramiccapacitortoGND.  
C2(Pin 8): Flying Capacitor 2 Negative Terminal (C2).  
VSEL (Pin 5) (LTC3203-1/LTC3203B-1): Output Voltage  
Selection Input. A logic 0 at VSEL sets the regulated VOUT  
to 4.5V; and a logic 1 sets the regulated VOUT to 5V. Do not  
float the VSEL pin.  
GND (Pin 9): Ground. This pin should be connected  
directly to a low impedance ground plane.  
C1(Pin 10): Flying Capacitor 1 Negative Terminal (C1).  
FB (Pin 5) (LTC3203/LTC3203B): Feedback. The voltage  
on this pin is compared to the internal reference voltage  
(0.91V) by the error amplifier to keep the output in  
regulation. An external resistor divider is required  
between VOUT and FB to program the output voltage.  
Exposed Pad (Pin 11): Ground. This pin must be sol-  
dered to the PCB for electrical contact and rated thermal  
performance.  
32031fa  
6
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
S W  
BLOCK DIAGRA  
LTC3203/LTC3203B  
LTC3203-1/LTC3203B-1  
+
+
0.91V  
0.91V  
2x/1.5x  
2x/1.5x  
6
5
6
4
MODE  
MODE  
SHDN  
V
SEL  
SOFT-START AND  
SHUTDOWN  
SOFT-START AND  
SHUTDOWN  
CONTROL  
0.91V  
0.82V  
4
SHDN  
5
2
FB  
V
CONTROL  
OUT  
V
OUT  
2
+
0.91V  
+
OSCILLATOR  
+
SWITCH CONTROL  
OSCILLATOR  
+
SWITCH CONTROL  
+
C1  
+
3
3
C1  
S
S
V
7
V
IN  
IN  
7
10 C1  
10 C1  
+
1
8
+
C2  
C2  
1
C2  
C2  
S
S
8
9, 11  
GND  
9, 11  
GND  
3203 F02  
3203 F01  
32031fa  
7
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
U
OPERATIO  
The LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 use  
a switched capacitor charge pump to boost VIN to a  
regulated output voltage. Regulation is achieved by sens-  
ing the output voltage through a resistor divider and  
modulating the charge pump output current based on the  
error signal. A two-phase non-overlapping clock activates  
thechargepumpswitches.Thetypicalfrequencyofcharg-  
ing and discharging the flying capacitors is 1MHz  
(2x mode) or 0.9MHz (1.5x mode). A unique architecture  
maintains relatively constant input current for the lowest  
possible input noise.  
pin the MODE input allows the user to accurately program  
the VIN threshold at which the charge pump will switch  
from 1.5x mode to 2x mode when VIN starts to fall and  
vice versa. Hysteresis on the MODE pin prevents the  
LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 from  
switching continuously between the two modes.  
Output Voltage Programming  
The LTC3203-1/LTC3203B-1 has a VSEL input pin that  
allows the user to program the regulated output voltage to  
either 4.5V or 5V. 4.5V VOUT is useful for driving white  
LEDs while a regulated VOUT of 5V is useful for powering  
logic circuits.  
Mode of Operation  
TheLTC3203/LTC3203-1/LTC3203B/LTC3203B-1charge  
pump can operate in two modes of voltage conversion:  
1.5x or 2x.  
The LTC3203/LTC3203B has a FB pin in place of the VSEL  
pinthatallowstheoutputvoltagetobeprogrammedusing  
an external resistive divider.  
Inthe1.5xmodetheflyingcapacitorsarechargedinseries  
during the first clock phase, and stacked in parallel on top  
of VIN on the second clock phase. Alternatively, in the 2x  
mode the flying capacitors are charged on alternate clock  
phases from VIN. While one capacitor is being charged  
from VIN, the other is stacked on top of VIN and connected  
to the output. The two flying capacitors operate out of  
phase to minimize both input and output ripple. At light  
load the LTC3203/LTC3203-1 go into Burst Mode opera-  
tion to reduce quiescent current.  
Shutdown Mode  
When SHDN is asserted low, the LTC3203/LTC3203-1/  
LTC3203B/LTC3203B-1entershutdownmode.Thecharge  
pump is first disabled, but the LTC3203/LTC3203-1/  
LTC3203B/LTC3203B-1 continue to draw 5µA of supply  
current. This current will drop to less than 1µA when VOUT  
is fully discharged to 0V. Furthermore, VOUT is discon-  
nected from VIN. Since the SHDN pin is a high impedance  
CMOS input, it should never be allowed to float.  
The conversion mode should be chosen based on consid-  
erations of efficiency, available output current and VOUT  
ripple. With a given VIN, the 1.5x mode gives a higher  
efficiency but lower available output current. The 2x mode  
gives a higher available output current but lower effi-  
ciency. Moreover, the output voltage ripple in the 2x mode  
is lower due to the out-of-phase operation of the two  
flying capacitors.  
Burst Mode Operation  
The LTC3203/LTC3203-1 provide automatic Burst Mode  
operation to reduce quiescent current of the power con-  
verteratlightloads. BurstModeoperationisinitiatedifthe  
output load current falls below an internally programmed  
threshold. Once Burst Mode operation is initiated, the part  
shuts down the internal oscillator to reduce the switching  
losses and goes into a low current state. This state is  
referred to as the Sleep state in which the chip consumes  
only about 120µA from the input.  
Generally, at low VIN, the 2x mode should be selected, and  
at higher VIN, the 1.5x mode should be selected. By  
connecting a resistive divider from VIN to the MODE input  
32031fa  
8
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
U
OPERATIO  
When the output voltage drops enough to overcome the  
burst comparator hysteresis, the part wakes up and com-  
mences normal fixed frequency operation. The output  
capacitor recharges and causes the part to re-enter the  
Sleep state if the output load still remains less than the  
Burst Mode threshold. This Burst Mode threshold varies  
with VIN, VOUT and the choice of output storage capacitor.  
thermal shutdown circuitry will shut down the charge  
pump once the junction temperature exceeds approxi-  
mately 150°C. It will enable the charge pump once the  
junction temperature drops back to approximately 135°C.  
The LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 will  
cycle in and out of thermal shutdown indefinitely without  
latch-up or damage until the short circuit condition on  
V
OUT is removed.  
Short-Circuit/Thermal Protection  
Soft-Start  
The LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 have  
built-inshort-circuitcurrentlimitaswellasover-tempera-  
ture protection. During a short-circuit condition, the chip  
willautomaticallylimittheoutputcurrenttoapproximately  
1A. At higher temperatures, or if the input voltage is high  
enough to cause excessive self-heating of the part, the  
To prevent excessive current flow at VIN during start-up,  
the LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 have  
built-in soft-start circuitry. Soft-start is achieved by in-  
creasing the amount of current available to the output  
charge storage capacitor linearly over a period of approxi-  
mately 250µs.  
32031fa  
9
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
W U U  
U
APPLICATIO S I FOR ATIO  
2
Power Efficiency  
V
OUT  
LTC3203/  
LTC3203B  
C
FB  
R1  
R2  
The power efficiency (η) of the LTC3203/LTC3203-1/  
LTC3203B/LTC3203B-1 in 1.5x mode is similar to that of  
a linear regulator with an effective input voltage of 1.5  
times the actual input voltage. This occurs because the  
input current for a 1.5x fractional charge pump is approxi-  
mately 1.5 times the load current. In an ideal regulating  
1.5x charge pump the power efficiency would be given by:  
5
C
FB  
OUT  
9, 11  
3203 F01  
GND  
Figure 1. Programming the LTC3203/LTC3203B Output Voltage  
The voltage divider ratio is given by the expression:  
POUT  
VOUT IOUT  
VOUT  
VOUT  
R2 0.91V  
η1.5XIdeal  
=
=
=
R1  
R1  
R2  
=
1 or VOUT  
=
+ 1 0.91V  
P
V 1.5IOUT 1.5V  
IN  
IN IN  
Similarly, in 2x mode, the efficiency is similar to that of a  
linear regulator with an effective input voltage of twice the  
actual input voltage. In an ideal regulating voltage doubler  
the power efficiency would be given by:  
Typical values for total voltage divider resistance can  
range from several ks up to 1M. The compensation  
capacitor (CFB) is necessary to counteract the pole caused  
by the large valued resistors R1 and R2, and the input  
capacitance of the FB pin. For best results, CFB should be  
5pF for all R1 or R2 greater than 10k and can be omitted  
if both R1 and R2 are less than 10k.  
POUT VOUT IOUT VOUT  
η2XIdeal  
=
=
=
P
V 2IOUT  
2V  
IN  
IN  
IN  
TheLTC3203/LTC3203Bcanalsobeconfiguredtocontrol  
a current. In white LED applications the LED current is  
programmed by the ratio of the feedback set point voltage  
and a sense resistor as shown in Figure 2. The current of  
the remaining LEDs is controlled by virtue of their similar-  
ity to the reference LED and the ballast voltage across the  
sense resistor.  
At moderate to high output power the switching losses  
and quiescent current of the LTC3203/LTC3203-1/  
LTC3203B/LTC3203B-1 are negligible and the expression  
above is valid.  
As evident from the above two equations, with the same  
VIN, the 1.5x mode will give higher efficiency than the  
2x mode.  
V
R
FB  
I
=
LED  
Programming the LTC3203/LTC3203B Output Voltage  
(FB Pin)  
X
2
5
V
OUT  
LTC3203/  
LTC3203B  
While the LTC3203-1/LTC3203B-1 have internal resistive  
dividerstoprogramtheoutputvoltage, theprogrammable  
LTC3203/LTC3203B may be set to an arbitrary voltage via  
an external resistive divider. Since it operates as a voltage  
• • •  
FB  
GND  
R
R
X
C
X
OUT  
9, 11  
doubling charge pump when MODE is less than VMODEL  
,
3203 F02  
it is not possible to achieve output voltages greater than  
twice the available input voltage in this case. Similarly,  
whenMODEisgreaterthanVMODEH, theachievableoutput  
voltage is less than 1.5 times the available input voltage.  
Figure 1 shows the required voltage divider connection.  
Figure 2. Programming the LTC3203/LTC3203B Output Current  
In this configuration the feedback factor (VOUT/IOUT  
will be very near unity since the small signal LED imped-  
ance will be considerably less than the current setting  
)
32031fa  
10  
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
W U U  
APPLICATIO S I FOR ATIO  
U
resistor RX. Thus, this configuration will have the highest  
loop gain giving it the lowest closed-loop output resis-  
tance. Likewise it will also require the largest amount of  
output capacitance to preserve stability.  
Programming the MODE Pin  
By connecting a resistor divider to the MODE pin, the VIN  
voltage at which the chip switches modes can be accu-  
rately programmed.  
Effective Open Loop Output Resistance (ROL)  
When VIN ramps up, the voltage at the MODE pin crosses  
VMODEH andthechipswitchesfrom2xmodeto1.5xmode.  
When VIN starts to drop, the voltage at the MODE pin  
crosses VMODEL and the chip switches back to 2x mode.  
The MODE pin resistor ratio must be selected such that at  
the switch point the output is still able to maintain regula-  
The effective open loop output resistance (ROL) of a  
charge pump is a very important parameter, which deter-  
minesitsstrength.Thevalueofthisparameterdependson  
many factors such as the oscillator frequency (fOSC), the  
value of the flying capacitor (CFLY), the non-overlap time,  
the internal switch resistances (RS), and the ESR of the  
external capacitors.  
tion at maximum IOUT  
:
1.5 • VIN(1.5x) – VOUT > IOUT • ROL(1.5X)  
The minimum VIN operating in 1.5x mode occurs at the  
switch point where:  
Maximum Available Output Current  
Figure 3 shows how the LTC3203/LTC3203-1/LTC3203B/  
LTC3203B-1 can be modeled as a Thevenin-equivalent  
circuit.  
RMODE1  
V = VMODEL  
+ 1  
IN  
R
MODE2  
Thus the maximum available output current and voltage  
can be calculated from the effective open-loop output  
resistance, ROL, and the effective output voltage, 1.5VIN  
(in 1.5x mode) or 2VIN (in 2x mode). From Figure 3, the  
available current is given by:  
therefore:  
RMODE1  
1.5VMODEL  
+ 1  
R
MODE2  
1.5V VOUT  
IN  
> ROL(1.5X)(MAX) IOUT(MAX) + VOUT(MIN)  
IOUT  
=
=
In 1.5x mode  
ROL  
VOUT(MIN) + ROL(1.5x)(MAX) IOUT(MAX)  
RMODE1  
>
–1  
2V VOUT  
IN  
RMODE2  
1.5VMODEL  
IOUT  
In 2x mode  
ROL  
As evident from the above two equations, with the same  
VIN and ROL, the 2x mode will give more output current  
than the 1.5x mode.  
7
V
IN  
LTC3203/  
LTC3203B  
MODE  
R
R
MODE1  
6
C
IN  
MODE2  
9, 11  
R
OL  
GND  
3203 F04  
+
1.5V  
IN  
OR  
2V  
+
V
OUT  
Figure 4  
IN  
3203 F03  
Figure 3. Charge Pump Open-Loop Thevenin-Equivalent Circuit  
32031fa  
11  
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
U
W
U U  
APPLICATIO S I FOR ATIO  
the LTC3203/LTC3203-1/LTC3203B/LTC3203B-1 use a  
control loop to adjust the strength of the charge pump to  
match the current required at the output. The error signal  
of this loop is stored directly on the output charge storage  
capacitor. The charge storage capacitor also serves to  
form the dominant pole for the control loop. To prevent  
ringing or instability, it is important for the output capaci-  
tor to maintain at least 4.7µF of capacitance over all  
conditions. Note that the actual capacitance of ceramic  
capacitors usually drops when biased with DC voltage.  
Different capacitor types drop to different extents. Make  
sure that the selected ceramic capacitors have enough  
capacitance when biased with the required DC voltage.  
Fortheexamplegiven,a5Voutputsettingwith±4%output  
tolerance and maximum load current of 500mA, a resistor  
ratio of:  
RMODE1  
> 4  
RMODE2  
at the MODE pin allows the chip to switch modes while  
maintaining regulation.  
VIN, VOUT Capacitor Selection  
The style and value of capacitors used with the  
LTC3203/LTC3203-1/LTC3203B/LTC3203B-1determine  
several important parameters such as regulator control Likewise, excessive ESR on the output capacitor will tend  
loop stability, output ripple, charge pump strength and to degrade the loop stability of the LTC3203/LTC3203-1/  
minimum start-up time.  
LTC3203B/LTC3203B-1. The closed-loop output resis-  
tance of the LTC3203/LTC3203-1/LTC3203B/LTC3203B-  
1 are designed to be 0.27(at 1.5x mode). For a 100mA  
load current change, the output voltage will change by  
about 27mV. If the output capacitor has 0.27or more of  
ESR, the closed-loop frequency response will cease to  
roll-off in a simple one-pole fashion and poor load tran-  
sient response or instability could result. Multilayer ce-  
ramic chip capacitors typically have exceptional ESR per-  
formanceand, combinedwithagoodboardlayout, should  
yield very good stability and load transient performance.  
As the value of COUT controls the amount of output ripple,  
thevalueofCIN controlstheamountofripplepresentatthe  
input pin (VIN). The input current to the LTC3203/  
LTC3203-1/LTC3203B/LTC3203B-1willberelativelycon-  
stantwhilethechargepumpisoneithertheinputcharging  
phase or the output charging phase but will drop to zero  
duringtheclocknon-overlaptimes. Sincethenon-overlap  
time is small (~40ns) these missing “notches” will result  
inonlyasmallperturbationontheinputpowersupplyline.  
Note that a higher ESR capacitor such as tantalum  
will have higher input noise by the amount of the input  
current change times the ESR. Therefore ceramic  
capacitors are again recommended for their exceptional  
ESR performance. Further input noise reduction can be  
achievedbypoweringtheLTC3203/LTC3203-1/LTC3203B/  
LTC3203B-1 through a very small series inductor as  
shown in Figure 5.  
To reduce noise and ripple, it is recommended that low  
equivalent series resistance (ESR) multilayer ceramic chip  
capacitors (MLCCs) be used for both CIN and COUT. Tanta-  
lum and aluminum capacitors are not recommended be-  
cause of their high ESR.  
In 1.5x mode, the value of COUT directly controls the  
amountofoutputrippleforagivenloadcurrent.Increasing  
the size of COUT will reduce the output ripple at the expense  
of higher minimum turn-on time and higher start-up cur-  
rent. Thepeak-to-peakoutputripplefor1.5xmodeisgiven  
by the expression:  
IOUT  
3fOSC COUT  
VRIPPLE(PP)  
=
where fOSC is the LTC3203/LTC3203-1/LTC3203B/  
LTC3203B-1’s oscillator frequency (typically 0.9MHz) and  
C
OUT is the output charge storage capacitor.  
In 2x mode, the output ripple is very low due to the out-of-  
phase operation of the two flying capacitors. VOUT remains  
almostflatwheneitheroftheflyingcapacitorsisconnected  
to VOUT  
.
Both the type and value of the output capacitor can signifi-  
cantly affect the stability of the LTC3203/LTC3203-1/  
LTC3203B/LTC3203B-1. As shown in the Block Diagram,  
32031fa  
12  
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
U
W
U U  
APPLICATIO S I FOR ATIO  
10nH  
7
V
IN  
V
IN  
LTC3203*  
0.1µF  
2.2µF  
9, 11  
GND  
3203 F05  
Figure 5. 10nH Inductor Used for Input Noise Reduction  
A 10nH inductor will reject the fast current notches,  
or more of their capacitance when the rated voltage is  
applied. Therefore, when comparing different capacitors,  
it is often more appropriate to compare the amount of  
achievable capacitance for a given case size rather than  
comparing the specified capacitance value. For example,  
over rated voltage and temperature conditions, a 4.7µF,  
10V, Y5V ceramic capacitor in a 0805 case may not  
provide any more capacitance than a 1µF, 10V, X5R or  
X7R capacitor available in the same 0805 case. In fact,  
overbiasandtemperaturerangethe1µF, 10V, X5RorX7R  
will provide more capacitance than the 4.7µF, 10V, Y5V  
capacitor.Thecapacitormanufacturer’sdatasheetshould  
be consulted to determine what value of capacitor is  
needed to ensure minimum capacitance values are met  
over operating temperature and bias voltage.  
thereby presenting a nearly constant current load to the  
input power supply. For economy the 10nH inductor can  
be fabricated on the PC board with about 1cm (0.4") of PC  
board trace.  
Flying Capacitor Selection  
Warning: Polarized capacitors such as tantalum or  
aluminum should never be used for the flying capacitors  
since their voltage can reverse upon start-up of the  
LTC3203/LTC3203-1/LTC3203B/LTC3203B-1. Low ESR  
ceramic capacitors should always be used for the flying  
capacitors.  
The flying capacitors control the strength of the charge  
pump. In order to achieve the rated output current, it is  
necessary to have at least 2.2µF of capacitance for each of  
the flying capacitors.  
Below is a list of ceramic capacitor manufacturers and  
how to contact them:  
AVX  
www.avxcorp.com  
www.kemet.com  
Ceramic capacitors of different materials lose their ca-  
pacitance with higher temperature and voltage at different  
rates. For example, a capacitor made of X7R material will  
retainmostofitscapacitancefrom40°Cto85°Cwhereas  
Z5U or Y5V style capacitors will lose considerable capaci-  
tance over that range. Z5U and Y5V capacitors may also  
have a poor voltage coefficient causing them to lose 60%  
Kemet  
Murata  
Taiyo Yuden  
Vishay  
TDK  
www.murata.com  
www.t-yuden.com  
www.vishay.com  
www.component.tdk.com  
32031fa  
13  
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
U
W
U U  
APPLICATIO S I FOR ATIO  
Thermal Management  
iftheflyingcapacitorsarenotclosetothepart(i.e.theloop  
area is large). To decouple capacitive energy transfer, a  
Faraday shield may be used. This is a grounded PC trace  
between the sensitive node and the LTC3203/LTC3203-1/  
LTC3203B/LTC3203B-1pins.ForahighqualityACground  
it should be returned to a solid ground plane that extends  
all the way to the LTC3203/LTC3203-1/LTC3203B/  
LTC3203B-1. To prevent degraded performance, the FB  
trace should be kept away or be shielded from the flying  
capacitor traces.  
For higher input voltages and maximum output current,  
therecanbesubstantialpowerdissipationintheLTC3203/  
LTC3203-1/LTC3203B/LTC3203B-1. If the junction tem-  
perature increases above approximately 150°C, the ther-  
mal shutdown circuitry will automatically deactivate the  
output. To reduce the maximum junction temperature, a  
goodthermalconnectiontothePCboardisrecommended.  
Connecting GND (Pin 9) and the exposed pad (Pin 11) of  
theDFNpackagetoagroundplaneunderthedeviceontwo  
layers of the PC board can reduce the thermal resistance  
of the package and PC board considerably.  
GROUND PLANE  
C1  
Layout Considerations  
C
OUT  
Due to the high switching frequency and high transient  
currents produced by the LTC3203/LTC3203-1/  
LTC3203B/LTC3203B-1, careful board layout is neces-  
sary for optimum performance. A true ground plane and  
short connections to all the external capacitors will  
improve performance and ensure proper regulation  
under all conditions.  
C2  
1
2
3
4
5
10  
9
11  
8
7
6
C
IN  
The flying capacitor pins C1+, C2+, C1and C2will have  
very high edge rate waveforms. The large dV/dt on these  
pins can couple energy capacitively to adjacent printed  
circuit board runs. Magnetic fields can also be generated  
3206 F07  
LTC3203/LTC3203B COMPONENTS NOT USED  
IN LTC3203-1 OR LTC3203B-1  
Figure 6. Recommended Layouts  
32031fa  
14  
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
R = 0.115  
TYP  
6
0.38 ± 0.10  
10  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DD) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.10  
(2 SIDES)  
2.38 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
32031fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC3203/LTC3203-1  
LTC3203B/LTC3203B-1  
U
TYPICAL APPLICATIO  
7
2
5
V
V
OUT  
IN  
3
10  
1
2.2µF  
+
+
C1  
C1  
C2  
C2  
LTC3203/  
LTC3203B  
10µF  
332k  
100k  
FB  
8
6
MODE  
SHDN  
4
47  
47Ω  
47Ω  
47Ω  
47Ω  
47Ω  
GND  
ON OFF  
9, 11  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Up to 16 White LEDs, V : 1.6V to 18V, V  
LT®1618  
Constant Current, Constant Voltage, 1.4MHz High  
Efficiency Boost Regulator  
= 34V,  
OUT(MAX)  
IN  
I = 1.8mA, I 1µA, 10-Lead MS Package  
Q
SD  
LTC1911-1.5  
LT1932  
250mA (I ), 1.5MHz High Efficiency Step-Down  
75% Efficiency, V : 2.7V to 5.5V, V = 1.5V/1.8V,  
OUT(MIN)  
Q SD  
OUT  
IN  
Charge Pump  
I = 180µA, I 10µA, MS8 Package  
Constant Current, 1.2MHz High Efficiency White LED  
Boost Regulator  
Up to 8 White LEDs, V : 1V to 10V, V  
SD  
= 34V, I = 1.2mA,  
OUT(MAX) Q  
IN  
I
1µA, ThinSOT™ Package  
LT1937  
Constant Current, 1.2MHz High Efficiency White LED  
Boost Regulator  
Up to 4 White LEDs, V : 2.5V to 10V, V  
= 34V,  
IN  
OUT(MAX)  
I = 1.9mA, I 1µA, ThinSOT, SC70 Packages  
Q
SD  
LTC3200-5  
LTC3201  
LTC3202  
Low Noise, 2MHz Regulated Charge Pump White  
LED Driver  
Up to 6 White LEDs, V : 2.7V to 4.5V, V  
SD  
= 5V, I = 8mA,  
IN  
OUT(MAX)  
Q
I
1µA, ThinSOT Package  
Low Noise, 1.7MHz Regulated Charge Pump White  
LED Driver  
Up to 6 White LEDs, V : 2.7V to 4.5V, V  
= 5V,  
IN  
OUT(MAX)  
I = 6.5mA, I 1µA, 10-Lead MS Package  
Q
SD  
Low Noise, 1.7MHz Regulated Charge Pump White  
LED Driver  
Up to 8 White LEDs, V : 2.7V to 4.5V, V  
SD  
= 5V, I = 5mA,  
IN  
OUT(MAX) Q  
I
1µA, 10-Lead MS Package  
LTC3204-3.3/LTC3204B-3.3 Low Noise Regulated Charge Pumps in 2 × 2 DFN  
V : 1.8V to 4.5V (LTC3204/LTC3204B-3.3), 2.7V to 5.5V  
IN  
LTC3204-5/LTC3204B-5  
(“B” Version Defeats Burst Mode Operation)  
(LTC3204/LTC3204B-5), I  
= 50mA (LTC3204/LTC3204B-3.3),  
OUT  
150mA (LTC3204/LTC3204B-5) 6-Lead 2 × 2 DFN Package  
LTC3205  
Multi-Display LED Controller  
92% Efficiency, V : 2.8V to 4.5V, I = 50µA, I 1µA,  
IN  
Q
SD  
4mm x 4mm QFN Package  
LTC3206  
Highly Integrated Multi-Display LED Controller  
92% Efficiency, V : 2.7V to 4.5V, I = 180µA, I 1µA,  
IN  
Q
SD  
4mm x 4mm QFN Package  
LTC3251  
500mA (I ), 1MHz to 1.6MHz Spread Spectrum  
85% Efficiency, V : 3.1V to 5.5V, V : 0.9V to 1.6V, I = 9µA,  
SD  
OUT  
IN  
OUT  
Q
Step-Down Charge Pump  
I
1µA, 10-Lead MS Package  
LTC3405/LTC3405A  
LTC3406/LTC3406B  
LTC3440  
300mA (I ), 1.5MHz Synchronous Step-Down  
95% Efficiency, V : 2.7V to 6V, V  
= 0.8V, I = 20µA,  
OUT(MIN) Q  
OUT  
IN  
DC/DC Converter  
I
1µA, ThinSOT Package  
SD  
600mA (I ), 1.5MHz Synchronous Step-Down  
95% Efficiency, V : 2.5V to 5.5V, V  
= 0.6V, I = 20µA,  
Q
OUT  
IN  
OUT(MIN)  
DC/DC Converter  
I
1µA, ThinSOT Package  
SD  
600mA (I ), 2MHz Synchronous Buck-Boost  
95% Efficiency, V : 2.5V to 5.5V, V  
= 2.5V, I = 25µA,  
Q
OUT  
IN  
OUT(MIN)  
DC/DC Converter  
I
1µA, 10-Lead MS Package  
SD  
LT3465/LT3465A  
1.2MHz/2.7MHz with Internal Schottky  
Up to 6 White LEDs, V : 12.7V to 16V, V  
= 34V,  
IN  
OUT(MAX)  
I = 1.9mA, I < 1µA, ThinSOT Package  
Q
SD  
ThinSOT is a trademark of Linear Technology Corporation.  
32031fa  
LT/LWI 1006 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2006  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY