LTC3204B-5 [Linear]

Low Noise Regulated Charge Pump in 2 X 2 DFN; 低噪声稳压电荷泵的2× 2 DFN
LTC3204B-5
型号: LTC3204B-5
厂家: Linear    Linear
描述:

Low Noise Regulated Charge Pump in 2 X 2 DFN
低噪声稳压电荷泵的2× 2 DFN

文件: 总12页 (文件大小:608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
Low Noise Regulated  
Charge Pump in 2 × 2 DFN  
FEATURES  
DESCRIPTIO  
TheLTC®3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5  
are low noise, constant frequency (1.2MHz) switched ca-  
pacitorvoltagedoublers.TheLTC3204-3.3/LTC3204B-3.3  
can produce a regulated output voltage of 3.3V  
from a minimum input voltage of 1.8V (2 alkaline cells)  
whereastheLTC3204-5/LTC3204B-5canproduce5Vfrom  
a minimum of 2.7V (Li-Ion battery) input.  
Fixed 3.3V or 5V Outputs  
IN  
V Range:  
1.8V to 4.5V (LTC3204-3.3/LTC3204B-3.3)  
2.7V to 5.5V (LTC3204-5/LTC3204B-5)  
Output Current:  
Up to 150mA (LTC3204-5/LTC3204B-5)  
Up to 50mA (LTC3204-3.3/LTC3204B-3.3)  
Automatic Burst Mode® Operation with I = 48µA  
LTC3204-3.3/LTC3204-5 feature automatic Burst Mode®  
operation at light loads to maintain low supply current  
whereas LTC3204B-3.3/LTC3204B-5 feature constant  
frequencyoperationatanyload.Built-insoft-startcircuitry  
preventsexcessiveinrushcurrentduringstart-up.Thermal  
shutdown and current-limit circuitry allow the parts to  
Q
(LTC3204-3.3/LTC3204-5)  
Constant Frequency Operation at All Loads  
(LTC3204B-3.3/LTC3204B-5)  
Low Noise Constant Frequency (1.2MHz) Operation*  
Built-In Soft-Start Reduces Inrush Current  
Shutdown Disconnects Load from Input  
Shutdown Current <1µA  
survive a continuous short-circuit from V  
to GND.  
OUT  
High switching frequency minimizes overall solution  
footprint by allowing the use of tiny ceramic capaci-  
tors. In shutdown, the load is disconnected from the  
input and the quiescent current is reduced to <1µA. The  
LTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5 are  
available in a low profile (0.75mm) 6-lead 2mm × 2mm  
DFN package.  
Short-Circuit/Thermal Protection  
Available in Low UProfile 6-Lead DFN Package  
APPLICATIO S  
2 AA Cell to 3.3V  
Li-Ion to 5V  
USB On-The-Go Devices  
White LED Drivers  
Handheld Devices  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
*Protected by U.S. Patents including 6411531.  
TYPICAL APPLICATIO  
Output Ripple vs Load Current  
30  
OUTPUT CAPACITANCE = 2.2µF  
IN  
2.2µF  
V
= 3.6V  
25  
20  
15  
10  
5
4
5
+
C
C
2
3
2.7V TO 5.5V  
V
V
OUT  
5V  
IN  
2.2µF  
LTC3204-5/  
LTC3204B-5  
2.2µF  
LTC3204-5  
1, 7  
6
GND  
LTC3204B-5  
OFF ON  
SHDN  
3204 TA01a  
0
0
50  
75  
100  
125  
150  
25  
OUTPUT CURRENT (mA)  
3204 TA01b  
3204fa  
1
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
V to GND...................................................0.3V to 6V  
IN  
V
OUT  
to GND .............................................0.3V to 5.5V  
LTC3204EDC-3.3  
TOP VIEW  
SHDN to GND...............................................0.3V to 6V  
Short-Circuit Duration............................. Indefinite  
LTC3204EDC-5  
V
LTC3204BEDC-3.3  
OUT  
GND  
1
2
3
6
5
4
SHDN  
Operating Temperature Range (Note 2) ...40°C to 85°C  
Storage Temperature Range.................. 65°C to 125°C  
Maximum Junction Temperature .......................... 125°C  
LTC3204BEDC-5  
DC PART  
MARKING  
LBJV  
7
V
C
IN  
V
C+  
OUT  
DC PACKAGE  
6-LEAD (2mm × 2mm) PLASTIC DFN  
LBNK  
T
= 125°C, θ = 80°C/W  
JMAX  
JA  
LBVF  
EXPOSED PAD IS GND (PIN 7)  
MUST BE SOLDERED TO PCB  
LBVG  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the full operating  
temperature range. Specifications are at T = 25°C, V = 2.4V (LTC3204-3.3/LTC3204B-3.3) or 3.6V (LTC3204-5/LTC3204B-5),  
A
IN  
SHDN = V , C = 2.2µF, C = 2.2µF, C  
= 2.2µF unless otherwise noted.  
IN FLY  
IN  
OUT  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Voltage Range  
(LTC3204-3.3/LTC3204B-3.3)  
(LTC3204-5/LTC3204B-5)  
1.8  
2.7  
4.5  
5.5  
V
V
IN  
V
Output Voltage Range  
No Load Input Current  
1.8V < V < 4.5V, I  
< 40mA  
OUT  
IN  
OUT  
OUT  
1.9V < V < 4.5V, I  
< 50mA (LTC3204-3.3/LTC3204B-3.3)  
3.168  
4.8  
3.3  
5
3.432  
5.2  
V
V
IN  
2.7V < V < 5.5V, I  
< 65mA  
IN  
OUT  
OUT  
3.1V < V < 5.5V, I  
< 150mA (LTC3204-5/LTC3204B-5)  
IN  
I
IN  
I
I
I
I
= 0 (LTC3204-3.3)  
= 0 (LTC3204-5)  
= 0 (LTC3204B-3.3)  
= 0 (LTC3204B-5)  
48  
60  
1.25  
3.6  
µA  
µA  
mA  
mA  
OUT  
OUT  
OUT  
OUT  
I
I
Shutdown Current  
SHDN = 0V, V  
= 0V  
OUT  
1
µA  
SHDN  
Burst Mode Threshold  
(LTC3204-3.3)  
(LTC3204-5)  
15  
20  
mA  
mA  
BURST  
V
Output Ripple  
I
= 100mA  
20  
82  
mV  
P-P  
R
OUT  
η
Efficiency  
V
= 3V, I  
= 100mA (LTC3204-5/LTC3204B-5)  
OUT  
%
IN  
f
Switching Frequency  
SHDN Input Threshold  
SHDN Input Threshold  
SHDN Input Current  
SHDN Input Current  
0.6  
1.3  
1.2  
1.8  
MHz  
V
OSC  
V
V
IH  
IL  
0.4  
1
V
I
IH  
I
IL  
–1  
–1  
µA  
µA  
SHDN = 0V  
1
R
OL  
Effective Open-Loop Output  
Resistance (Note 3)  
V
IN  
V
IN  
= 1.8V, V  
= 2.7V, V  
= 3V (LTC3204-3.3/LTC3204B-3.3)  
= 4.5V (LTC3204-5/LTC3204B-5)  
7
6
Ω
Ω
OUT  
OUT  
I
Output Current Limit  
Soft-Start Time  
V
= OV  
300  
mA  
ms  
LIM  
OUT  
T
From the Rising Edge of SHDN to 90% of V  
0.75  
SS  
OUT  
Note 1: Absolute Maximum Ratings are those beyond which the life of a  
device may be impaired.  
Note 2: The LTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5 are  
Specifications over the 40°C to 85°C operating temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
guaranteed to meet performance specifications from 0°C to 70°C.  
Note 3: R (2V – V )/I  
OL IN OUT OUT  
3204fa  
2
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
TYPICAL PERFOR A CE CHARACTERISTICS  
(T = 25°C, C = C = C = 2.2µF unless otherwise specified)  
OUT  
A
FLY  
IN  
Oscillator Frequency vs  
Supply Voltage  
Oscillator Frequency vs  
Temperature  
SHDN Threshold Voltage vs  
Supply Voltage  
1.50  
1.4  
0.9  
0.8  
0.7  
0.6  
0.5  
V
= 4.5V  
IN  
1.25  
1.00  
0.75  
0.50  
0.25  
0
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
LOW-TO-HIGH THRESHOLD  
V
V
= 2.4V  
= 1.8V  
IN  
IN  
HIGH-TO-LOW THRESHOLD  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
–50  
–20  
10  
40  
70  
100  
130  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
3204 G01  
3204 G02  
3204 G03  
SHDN LO-to-HI Threshold vs  
Temperature  
SHDN HI-to-LO Threshold vs  
Temperature  
Short-Circuit Current vs Supply  
0.9  
0.8  
0.7  
0.6  
0.5  
0.8  
0.7  
0.6  
0.5  
0.4  
350  
300  
250  
200  
150  
100  
50  
V
= 3.2V  
IN  
V
V
= 3.2V  
IN  
IN  
V
= 2.4V  
IN  
V
= 2.4V  
IN  
DEVICE CYCLES  
IN AND OUT OF  
THERMAL SHUTDOWN  
= 1.8V  
50  
V
= 1.8V  
IN  
0
100  
150  
–50  
50  
TEMPERATURE (°C)  
100  
150  
–50  
0
0
1.5  
2.5  
3.0  
3.5  
4.0  
4.5  
2.0  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
3204 G06  
3204 G04  
3204 G05  
3204fa  
3
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
(LTC3204-3.3/LTC3204B-3.3 ONLY)  
(T = 25°C, C = C = C = 2.2µF unless otherwise specified)  
OUT  
A
FLY  
IN  
Output Load Capability at 4%  
Below Regulation  
Effective Open-Loop Output  
Resistance vs Temperature  
Load Regulation  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
400  
350  
300  
250  
200  
150  
100  
50  
9
V
= 3.168V  
V
V
= 1.8V  
OUT  
OUT  
IN  
= 3V  
T
= 25°C  
A
8
7
T
= 90°C  
A
V
= 3.2V  
IN  
T
= 45°C  
A
V
= 1.8V  
IN  
6
V
= 2.4V  
300  
IN  
5
0
0
100  
200  
400  
500  
–50  
50  
0
TEMPERATURE (°C)  
100  
1.5  
2.5  
3.0  
3.5  
2.0  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
3204 G09  
3204 G08  
3204 G07  
Extra Input Current vs Load Current  
(I -2I  
No-Load Input Current vs  
Supply Voltage  
)
IN LOAD  
Efficiency vs Supply Voltage  
10  
64  
62  
60  
58  
56  
54  
52  
50  
48  
46  
44  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 2.4V  
IN  
LTC3204B-3.3  
(NON-BURST MODE  
OPERATION)  
THEORETICAL MAX  
LTC3204B-3.3  
1
0.1  
I
= 30mA  
OUT  
I
= 1mA  
OUT  
LTC3204-3.3  
(BURST MODE  
OPERATION)  
LTC3204-3.3  
0.01  
1.8  
2.2 2.4 2.6  
2.8  
3
3.2  
1.8  
2.2 2.4 2.6  
2.8 3.0 3.2  
2
2.0  
0.01  
0.1  
1
10  
100  
1000  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
3204 G12  
3204 G11  
3204 G10  
Load Transient Response  
V
Soft-Start Response  
Output Ripple  
OUT  
V
OUT  
20mV/DIV  
V
OUT  
2V/DIV  
V
OUT  
20mV/DIV  
(AC COUPLED)  
(AC COUPLED)  
SHDN  
2V/DIV  
50mA  
I
OUT  
30mA  
500µs/DIV  
3204 G13  
500ns/DIV  
3204 G14  
10µs/DIV  
= 30mA TO 50mA STEP  
3204 G15  
V
LOAD  
= 2.4V  
V
LOAD  
= 2.4V  
V
OUT  
= 2.4V  
IN  
IN  
IN  
I
= 50mA  
I
= 50mA  
I
3204fa  
4
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
W U  
(LTC3204-5/LTC3204B-5 ONLY)  
TYPICAL PERFOR A CE CHARACTERISTICS  
(T = 25°C, C = C = C = 2.2µF unless otherwise specified)  
OUT  
A
FLY  
IN  
Effective Open-Loop Output  
Resistance vs Temperature  
Output Load Capability at 4%  
Below Regulation  
Load Regulation  
5.20  
5.10  
5.00  
4.90  
4.80  
4.70  
4.60  
4.50  
8
7
6
5
4
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 4.8V  
OUT  
V
V
= 2.7V  
IN  
OUT  
= 4.5V  
T
= 90°C  
A
T
= 25°C  
A
V
= 4.2V  
IN  
V
= 3.6V  
IN  
T
A
= 45°C  
V
= 2.7V  
IN  
0
2.7  
100  
200  
400  
500  
0 50  
TEMPERATURE (°C)  
0
300  
–50  
100  
3.0  
3.3  
3.6  
3.9  
4.2  
LOAD CURRENT (mA)  
SUPPLY VOLTAGE (V)  
3204 G18  
3204 G17  
3204 G16  
Extra Input Current vs Load Current  
(I -2I  
No-Load Input Current vs  
Supply Voltage  
)
Efficiency vs Supply Voltage  
IN LOAD  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
V
= 3.6V  
IN  
LTC3204-5  
68  
66  
64  
62  
60  
58  
56  
54  
52  
50  
THEORETICAL MAX  
LTC3204B-5  
(N0N-BURST MODE  
OPERATION)  
1
0.1  
I
= 100mA  
OUT  
LTC3204-5  
(BURST-MODE  
OPERATION)  
I
= 10mA  
OUT  
I
= 1mA  
OUT  
LTC3204B-5  
0.01  
3.3  
3.6  
3.9  
4.2  
2.7  
4.5  
3.0  
2.7  
3
3.6  
3.9  
4.2  
4.5  
3.3  
0.01  
0.1  
1
10  
100  
1000  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
3204 G21  
3204 G20  
3204 G19  
V
Soft-Start  
Output Ripple  
Load Transient Response  
OUT  
V
OUT  
2V/DIV  
V
OUT  
50mV/DIV  
V
OUT  
20mV/DIV  
(AC COUPLED)  
(AC COUPLED)  
100mA  
I
SHDN  
5V/DIV  
OUT  
60mA  
3204 G22  
3204 G23  
3204 G24  
500µs/DIV  
500ns/DIV  
10µs/DIV  
= 60mA TO 100mA STEP  
V
OUT  
= 3.6V  
V
OUT  
= 3.6V  
V
OUT  
= 3.6V  
IN  
IN  
IN  
I
= 100mA  
I
= 100mA  
I
3204fa  
5
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
U U  
U
PI FU CTIO S  
+
GND (Pin 1, 7): Ground. These pins should be tied to a  
groundplaneforbestperformance.Theexposedpadmust  
be soldered to PCB ground to provide electrical contact  
and optimum thermal performance.  
C (Pin 4): Flying Capacitor Positive Terminal.  
C (Pin 5): Flying Capacitor Negative Terminal.  
SHDN (Pin 6): Active Low Shutdown Input. A low on  
SHDNdisablestheLTC3204-3.3/LTC3204-5/LTC3204B-3.3/  
LTC3204B-5. This pin must not be allowed to float.  
V (Pin 2): Input Supply Voltage. V should be bypassed  
IN  
IN  
with a 1µF to 4.7µF low ESR ceramic capacitor.  
V
(Pin 3): Regulated Output Voltage. V should be  
OUT  
OUT  
bypassed with a low ESR ceramic capacitor providing at  
least 2µF of capacitance as close to the pin as possible  
for best performance.  
W
BLOCK DIAGRA  
SOFT-START  
6
SHDN  
AND  
SWITCH CONTROL  
V
3
OUT  
1.2MHz  
OSCILLATOR  
+
CHARGE  
PUMP  
+
4
5
C
V
2
IN  
C
3204 BD  
1, 7  
GND  
3204fa  
6
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
U
(Refer to the Block Diagram)  
OPERATIO  
TheLTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5  
Burst Mode operation is initiated, the part shuts down  
the internal oscillator to reduce the switching losses and  
goes into a low current state. This state is referred to as  
the sleep state in which the IC consumes only about 40µA  
from the input. When the output voltage droops enough  
to overcome the burst comparator hysteresis, the part  
wakes up and commences normal fixed frequency opera-  
tion. The output capacitor recharges and causes the part  
to reenter the sleep state if the output load still remains  
less than the Burst Mode threshold. This Burst Mode  
use a switched capacitor charge pump to boost V to a  
IN  
regulatedoutputvoltage.Regulationisachievedbysensing  
the output voltage through an internal resistor divider and  
modulating the charge pump output current based on the  
errorsignal. A2-phasenonoverlappingclockactivatesthe  
chargepumpswitches.Theyingcapacitorischargedfrom  
V on the first phase of the clock. On the second phase  
IN  
of the clock it is stacked in series with V and connected  
IN  
to V . This sequence of charging and discharging the  
OUT  
flying capacitor continues at a free running frequency of  
1.2MHz (typ).  
threshold varies with V , V  
and the choice of output  
IN OUT  
storage capacitor.  
Shutdown Mode  
Soft-Start  
In shutdown mode, all circuitry is turned off and the  
LTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5  
TheLTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5  
havebuilt-insoft-startcircuitrytopreventexcessivecurrent  
flowduringstart-up.Thesoft-startisachievedbycharging  
an internal capacitor with a very weak current source. The  
voltageonthiscapacitor, inturn, slowlyrampstheamount  
of current available to the output storage capacitor from  
zero to a value of 300mA over a period of approximately  
0.75ms. The soft-start circuit is reset in the event of a  
commanded shutdown or thermal shutdown.  
draws only leakage current from the V supply. Further-  
IN  
more, V  
is disconnected from V . The SHDN pin is a  
OUT  
IN  
CMOSinputwithathresholdvoltageofapproximately0.7V.  
TheLTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5  
are in shutdown when a logic low is applied to the SHDN  
pin. Since the SHDN pin is a very high impedance CMOS  
input, it should never be allowed to float. To ensure that  
its state is defined, it must always be driven with a valid  
logic level.  
Short-Circuit/Thermal Protection  
TheLTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5  
havebuilt-inshort-circuitcurrentlimitaswellasover-tem-  
perature protection. During a short-circuit condition, they  
willautomaticallylimittheiroutputcurrenttoapproximately  
300mA. At higher temperatures, or if the input voltage is  
high enough to cause excessive self-heating of the part,  
the thermal shutdown circuitry will shutdown the charge  
pumponcethejunctiontemperatureexceedsapproximately  
160°C. It will enable the charge pump once the junction  
temperature drops back to approximately 150°C. The  
LTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5will  
cycle in and out of thermal shutdown indefinitely without  
latchup or damage until the short-circuit condition on  
Since the output voltages of these devices can go above  
the input voltage, special circuitry is required to control  
theinternallogic.Detectionlogicwilldrawaninputcurrent  
of 5µA when the devices are in shutdown. However, this  
current will be eliminated if the output voltage (V ) is  
OUT  
less than approximately 0.8V.  
Burst Mode Operation  
The LTC3204-3.3/LTC3204-5 provide automatic Burst  
Mode operation to reduce supply current at light loads.  
Burst Mode operation is initiated if the output load current  
falls below an internally programmed threshold. Once  
V
is removed.  
OUT  
3204fa  
7
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
U U  
W U  
APPLICATIO S I FOR ATIO  
Power Efficiency  
(f ), value of the flying capacitor (C ), the nonoverlap  
OSC FLY  
time, the internal switch resistances (R ), and the ESR of  
S
The power efficiency (η) of the LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5 is similar to that of a linear  
regulator with an effective input voltage of twice the actual  
input voltage. This occurs because the input current for a  
voltage doubling charge pump is approximately twice the  
output current. In an ideal regulating voltage doubler the  
power efficiency would be given by:  
the external capacitors. A first order approximation for  
R
OL  
is given below:  
1
ROL 2 R +  
S
f
OSCCFLY  
S=1 TO 4  
Typical R values as a function of temperature are shown  
OL  
in Figure 2.  
POUT VOUT IOUT VOUT  
η =  
=
=
P
V 2IOUT  
2V  
IN  
8
IN  
IN  
V
V
= 2.7V  
IN  
OUT  
= 4.5V  
At moderate to high output power, the switching losses  
and the quiescent current of the LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5 are negligible and the expres-  
7
6
5
4
sion above is valid. For example, with V = 3V, I  
=
IN  
OUT  
100mA and V  
regulating to 5V, the measured efficiency  
OUT  
is 81.8% which is in close agreement with the theoretical  
83.3% calculation.  
Maximum Available Output Current  
0
50  
–50  
100  
TEMPERATURE (°C)  
For the LTC3204-3.3/LTC3204-5/LTC3204B-3.3/  
LTC3204B-5,the maximum available output current and  
voltage can be calculated from the effective open-loop  
3204 F02  
Figure 2. Typical R vs Temperature  
OL  
output resistance, R , and the effective input voltage,  
OL  
V , V  
IN OUT  
Capacitor Selection  
2V  
.
IN(MIN)  
R
OL  
ThestyleandvalueofcapacitorsusedwiththeLTC3204-3.3/  
LTC3204-5/LTC3204B-3.3/LTC3204B-5determineseveral  
important parameters such as regulator control loop sta-  
bility, output ripple, charge pump strength and minimum  
start-up time.  
+
+
2V  
IN  
I
V
OUT  
OUT  
3204 F01  
Figure 1. Equivalent Open-Loop Circuit  
To reduce noise and ripple, it is recommended that low  
ESR (<0.1Ω) ceramic capacitors be used for both C and  
IN  
From Fig. 1, the available current is given by:  
C
OUT  
. These capacitors should be 1µF or greater. Tantalum  
2V – VOUT  
IN  
and aluminum capacitors are not recommended because  
of their high ESR.  
IOUT  
=
ROL  
The value of C  
directly controls the amount of output  
OUT  
Effective Open Loop Output Resistance (R )  
OL  
ripple for a given load current. Increasing the size of C  
OUT  
Theeffectiveopenloopoutputresistance(R )ofacharge  
will reduce the output ripple at the expense of higher  
minimum turn-on time. The peak-to-peak output ripple  
is approximately given by the expression:  
OL  
pump is a very important parameter which determines the  
strength of the charge pump. The value of this parameter  
depends on many factors such as the oscillator frequency  
IOUT  
VRIPPLE(PP)  
2fOSCCOUT  
3204fa  
8
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
U U  
W U  
APPLICATIO S I FOR ATIO  
through a very small series inductor as shown in Figure 3.  
A 10nH inductor will reject the fast current notches,  
thereby presenting a nearly constant current load to the  
input power supply. For economy, the 10nH inductor can  
be fabricated on the PC board with about 1cm (0.4") of  
PC board trace.  
where f  
1.2MHz) and C  
capacitor.  
is the oscillator frequency (typically  
OUT  
OSC  
is the value of output charge storage  
Also,thevalueandstyleoftheoutputcapacitorcansignifi-  
cantly affect the stability of the LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5. As shown in the Block  
Diagram, the LTC3204-3.3/LTC3204-5/LTC3204B-  
3.3/LTC3204B-5 use a linear control loop to adjust  
the strength of the charge pump to match the current  
required at the output. The error signal of this loop is  
stored directly on the output storage capacitor. This out-  
put capacitor also serves to form the dominant pole of  
the control loop. To prevent ringing or instability on the  
LTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5,  
it is important to maintain at least 1µF of capacitance over  
all conditions.  
1cm OF WIRE  
10nH  
2
V
IN  
LTC3204-3.3/  
LTC3204-5  
V
IN  
2.2µF  
0.22µF  
1
GND  
32005 F03  
Figure 3. 10nH Inductor Used for  
Additional Input Noise Reduction  
Flying Capacitor Selection  
ExcessiveESRontheoutputcapacitorcandegradetheloop  
stability of the LTC3204-3.3/LTC3204-5/LTC3204B-3.3/  
LTC3204B-5. The closed loop output resistance of the  
LTC3204-5 is designed to be 0.5Ω. For a 100mA load  
current change, the output voltage will change by about  
50mV. If the output capacitor has 0.5Ω or more of ESR,  
the closed loop frequency response will cease to roll  
off in a simple one-pole fashion and poor load transient  
response or instability could result. Ceramic capacitors  
typicallyhaveexceptionalESRperformanceandcombined  
with a good board layout should yield very good stability  
and load transient performance.  
Warning: A polarized capacitor such as tantalum or  
aluminum should never be used for the flying capaci-  
tor since its voltage can reverse upon start-up of the  
LTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5.  
Low ESR ceramic capacitors should always be used for  
the flying capacitor.  
The flying capacitor controls the strength of the charge  
pump. In order to achieve the rated output current, it is  
necessary to have at least 1µF of capacitance for the fly-  
ing capacitor.  
Forverylightloadapplications,theyingcapacitormaybe  
reducedtosavespaceorcost.Fromtherstorderapproxi-  
As the value of C  
controls the amount of output ripple,  
OUT  
the value of C controls the amount of ripple present at  
mation of R in the section “Effective Open-Loop Output  
IN  
OL  
the input pin (V ). The input current to the LTC3204-3.3/  
Resistance,” the theoretical minimum output resistance  
of a voltage doubling charge pump can be expressed by  
the following equation:  
IN  
LTC3204-5/LTC3204B-3.3/LTC3204B-5 will be relatively  
constant during the input charging phase or the output  
chargingphasebutwilldroptozeroduringthenonoverlap  
times. Since the nonoverlap time is small (~25ns), these  
missing notches will result in only a small perturbation  
on the input power supply line. Note that a higher ESR  
capacitor such as tantalum will have higher input noise  
due to the voltage drop in the ESR. Therefore, ceramic  
capacitors are again recommended for their exceptional  
ESR performance.  
2V – VOUT  
1
IN  
R0L(MIN)  
=
IOUT  
fOSCCFLY  
where f  
is the switching frequency (1.2MHz) and C  
OSC  
FLY  
is the value of the flying capacitor. The charge pump  
will typically be weaker than the theoretical limit due to  
additional switch resistance. However, for very light load  
applications, theaboveexpressioncanbeusedasaguide-  
line in determining a starting capacitor value.  
Furtherinputnoisereductioncanbeachievedbypowering  
the LTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5  
3204fa  
9
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
U U  
W U  
APPLICATIO S I FOR ATIO  
Ceramic Capacitors  
Ceramiccapacitorsofdifferentmaterialslosetheircapaci-  
tancewithhighertemperatureandvoltageatdifferentrates.  
For example, a capacitor made of X5R or X7R material  
will retain most of its capacitance from 40°C to 85°C  
whereasaZ5UorY5Vstylecapacitorwillloseconsiderable  
capacitance over that range. Z5U and Y5V capacitors may  
also have a poor voltage coefficient causing them to lose  
60% or more of their capacitance when the rated voltage  
isapplied.Thereforewhencomparingdifferentcapacitors,  
it is often more appropriate to compare the amount of  
achievable capacitance for a given case size rather than  
discussing the specified capacitance value. For example,  
over rated voltage and temperature conditions, a 1µF 10V  
Y5V ceramic capacitor in a 0603 case may not provide any  
more capacitance than a 0.22µF 10V X7R capacitor avail-  
able inthesame0603 case. Infact, formost LTC3204-3.3/  
LTC3204-5/LTC3204B-3.3/LTC3204B-5applications,these  
capacitors can be considered roughly equivalent. The  
capacitor manufacturer’s data sheet should be consulted  
to ensure the desired capacitance at all temperatures and  
voltages.  
C
0603  
IN  
GND  
SHDN  
C–  
V
IN  
V
OUT  
C
FLY  
0603  
C
C+  
OUT  
0603  
3204 F04  
Figure 4. Recommended Layout  
Thermal Management  
For higher input voltages and maximum output cur-  
rent, there can be substantial power dissipation in the  
LTC3204-3.3/LTC3204-5/LTC3204B-3.3/LTC3204B-5. If  
the junction temperature increases above approximately  
160°C, the thermal shutdown circuitry will automatically  
deactivate the output. To reduce the maximum junction  
temperature, a good thermal connection to the PC board  
is recommended. Connecting the GND pin (Pin 1) and  
the exposed pad of the DFN package (Pin 7) to a ground  
plane under the device on two layers of the PC board  
can reduce the thermal resistance of the package and PC  
board considerably.  
Below is a list of ceramic capacitor manufacturers and  
how to contact them:  
AVX  
www.avxcorp.com  
www.kemet.com  
Kemet  
Murata  
Taiyo Yuden  
Vishay  
TDK  
www.murata.com  
www.t-yuden.com  
www.vishay.com  
Derating Power at High Temperatures  
To prevent an overtemperature condition in high power  
applications, Figure 5 should be used to determine the  
maximumcombinationofambienttemperatureandpower  
dissipation.  
www.component.tdk.com  
Layout Considerations  
The power dissipated in the LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5 should always fall under the  
line shown for a given ambient temperature. The power  
dissipationintheLTC3204-3.3/LTC3204-5/LTC3204B-3.3/  
LTC3204B-5 is given by the expression:  
Due to the high switching frequency and high transient  
currentsproducedbyLTC3204-3.3/LTC3204-5/LTC3204B-  
3.3/LTC3204B-5, careful board layout is necessary for  
optimum performance. A true ground plane and short  
connectionstoalltheexternalcapacitorswillimproveper-  
formanceandensureproperregulationunderallconditions.  
Figure 4 shows an example layout for the LTC3204-3.3/  
LTC3204-5/LTC3204B-3.3/LTC3204B-5.  
PD = (2V – VOUT )•IOUT  
IN  
This derating curve assumes a maximum thermal resis-  
tance, θ , of 80°C/W for the 2mm × 2mm DFN package.  
JA  
3204fa  
10  
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
U U  
W U  
APPLICATIO S I FOR ATIO  
Operation out of this curve will cause the junction tem-  
perature to exceed 160°C which may trigger the thermal  
shutdown.  
This can be achieved from a printed circuit board layout  
with a solid ground plane and a good connection to the  
ground pins of LTC3204-3.3/LTC3204-5/LTC3204B-3.3/  
LTC3204B-5 and the exposed pad of the DFN package.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–50  
50  
100 125  
150  
–25  
0
25  
75  
AMBIENT TEMPERATURE (C)  
3204 G05  
Figure 5. Maximum Power Dissipation  
vs Ambient Temperature  
PACKAGE DESCRIPTIO  
DC Package  
6-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1703)  
R = 0.115  
TYP  
0.56 ± 0.05  
(2 SIDES)  
0.38 ± 0.05  
4
6
0.675 ±0.05  
2.50 ±0.05  
1.15 ±0.05  
0.61 ±0.05  
(2 SIDES)  
2.00 ±0.10  
(4 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
PACKAGE  
OUTLINE  
CHAMFER OF  
EXPOSED PAD  
(DC6) DFN 1103  
3
1
0.25 ± 0.05  
0.25 ± 0.05  
0.50 BSC  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
1.37 ±0.05  
(2 SIDES)  
1.42 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WCCD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3204fa  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC3204-3.3/LTC3204-5/  
LTC3204B-3.3/LTC3204B-5  
U
TYPICAL APPLICATIO S  
Regulated 3.3V Output  
2.2µF  
4
5
+
C
C
2
V
3
V
IN  
OUT  
V
V
OUT  
IN  
1.8V TO 4.5V  
3.3V  
LTC3204-3.3/  
LTC3204B-3.3  
2.2µF  
2.2µF  
1, 7  
6
GND  
OFF ON  
SHDN  
3204 TA02  
Lithium-Ion Battery to 5V White or Blue LED Driver  
2.2µF  
5
4
+
C
C
V
DRIVE UP TO 5 LEDS  
100100Ω  
2
6
3
V
IN  
OUT  
3V TO 4.4V  
Li-Ion  
BATTERY  
100Ω  
100Ω  
100Ω  
2.2µF  
2.2µF  
LTC3204-5/  
LTC3204B-5  
1, 7  
SHDN  
GND  
ON OFF  
(APPLY PWM WAVEFORM FOR  
ADJUSTABLE BRIGHTNESS CONTROL)  
V
SHDN  
3200-5 TA03  
t
USB Port to Regulated 5V Power Supply  
2.2µF  
5
4
+
C
C
2
6
3
V
V
IN  
OUT  
LTC3204-5  
V
OUT  
2.2µF  
2.2µF  
5V ±4%  
SHDN  
GND  
1, 7  
32005 TA05  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 2V to 5V, V  
LTC1751-3.3/  
LTC1751-5  
100mA, 800kHz Regulated Doubler  
= 3.3V/5V, I = 20µA,  
OUT(MAX) Q  
IN  
I
<2µA, MS8 Package  
SD  
LTC1983-3/  
LTC1983-5  
100mA, 900kHz Regulated Inverter  
V : 3.3V to 5.5V, V  
= –3V/–5V, I = 25µA,  
Q
IN  
OUT(MAX)  
I
<1µA, ThinSOT Package  
SD  
LTC3200-5  
100mA, 2MHz Low Noise, Doubler/  
White LED Driver  
V : 2.7V to 4.5V, V  
= 5V, I = 3.5mA,  
Q
IN  
OUT(MAX)  
I
<1µA, ThinSOT Package  
SD  
LTC3202  
125mA, 1.5MHz Low Noise, Fractional  
White LED Driver  
V : 2.7V to 4.5V, V  
= 5.5V, I = 2.5mA,  
OUT(MAX) Q  
IN  
I
<1µA, DFN, MS Packages  
SD  
3204fa  
LT/LT 0605 • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY