LTC3250 [Linear]

High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter; 高效率,低噪音,无电感器降压型DC / DC转换器
LTC3250
型号: LTC3250
厂家: Linear    Linear
描述:

High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter
高效率,低噪音,无电感器降压型DC / DC转换器

转换器 电感器
文件: 总12页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3250-1.5/LTC3250-1.2  
High Efficiency, Low Noise,  
Inductorless Step-Down  
DC/DC Converter  
U
FEATURES  
DESCRIPTIO  
The LTC®3250-1.5/LTC3250-1.2 are charge pump step-  
down DC/DC converters that produce a 1.5V or 1.2V  
regulated output from a 2.7V to 5.5V input. The parts use  
switched capacitor fractional conversion to achieve typi-  
cal efficiency two times higher than that of a linear regu-  
lator. No inductors are required.  
2.7V to 5.5V Input Voltage Range  
No Inductors  
Li-Ion (3.6V) to 1.5V with 81% Efficiency  
Low Noise Constant Frequency Operation  
Output Voltages: 1.5V ±4%, 1.2V ±4%  
Output Current: 250mA  
Shutdown Disconnects Load from VIN  
A unique constant frequency architecture provides a low  
noise regulated output as well as lower input noise  
than conventional charge pump regulators.* High  
frequency operation (fOSC = 1.5MHz) simplifies filtering  
to further reduce conducted noise. The part also uses  
BurstMode® operationtoimproveefficiencyatlightloads.  
Low Operating Current: IQ = 35µA  
Low Shutdown Current: ISD < 1µA  
Oscillator Frequency = 1.5MHz  
Soft-Start Limits Inrush Current at Turn-On  
Short-Circuit and Overtemperature Protected  
Low Profile (1mm) SOT-23 Package  
Low operating current (35µA with no load, <1µA in  
shutdown) and low external parts count (three small  
ceramic capacitors) make the LTC3250-1.5/LTC3250-1.2  
ideallysuitedforspaceconstrainedbatterypoweredappli-  
cations. The parts are short-circuit and overtemperature  
protected, and are available in a low profile (1mm) 6-pin  
ThinSOTTM package.  
U
APPLICATIO S  
Handheld Computers  
Cellular Phones  
Digital Cameras  
Handheld Medical Instruments  
Low Power DSP Supplies  
, LTC and LT are registered trademarks of Linear Technology Corporation  
Burst Mode is a registered trademark of Linear Technology Corporation  
ThinSOT is a trademark of Linear Technology Corporation.  
*U.S. Patent #6, 411, 531  
U
TYPICAL APPLICATIO  
Efficiency vs Input Voltage  
(IOUT = 100mA)  
100  
Li-Ion to 1.5V Output with Shutdown  
90  
1µF  
80  
LTC3250-1.5  
70  
60  
50  
+
V
C
C
IN  
V
= 1.5V ± 4%  
OUT  
3.2V TO 4.2V  
V
V
IN  
OUT  
100mA  
40  
Li-Ion  
1µF  
LDO  
LTC3250-1.5  
SHDN  
4.7µF  
30  
20  
10  
0
OFF  
GND  
ON  
3250 TA1a  
3.0  
3.5  
4.0  
4.5  
(V)  
5.0  
5.5  
V
IN  
3250 TA01b  
3250fa  
1
LTC3250-1.5/LTC3250-1.2  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
VIN to GND...................................................0.3V to 6V  
SHDN to GND ............................... –0.3V to (VIN + 0.3V)  
IOUT (Note 2)....................................................... 350mA  
Operating Ambient Temperature Range (Note 3)  
........................................................... – 40°C to 85°C  
Storage Temperature Range ................ – 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
LTC3250ES6-1.5  
LTC3250ES6-1.2  
+
V
1
6 C  
5 V  
4 C  
IN  
GND 2  
OUT  
SHDN 3  
S6 PACKAGE  
6-LEAD PLASTIC SOT-23  
S6 PART MARKING  
LTZE  
LTAGJ  
TJMAX = 150°C, θJA = 230°C/W,  
θJC = 102°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V, CFLY = 1µF, CIN = 1µF, COUT = 4.7µF unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
3.1  
TYP  
MAX  
5.5  
UNITS  
V
V
LTC3250-1.5 Operating Voltage Range  
LTC3250-1.2 Operating Voltage Range  
LTC3250-1.5 Output Voltage Range  
V
V
IN  
2.7  
5.5  
I
I
I
50mA 3.1V V 5.5V  
100mA 3.2V V 5.5V  
250mA 3.5V V 5V  
1.44  
1.44  
1.44  
1.5  
1.5  
1.5  
1.56  
1.56  
1.56  
V
V
V
OUT  
OUT  
OUT  
OUT  
IN  
IN  
IN  
LTC3250-1.2 Output Voltage Range  
I
I
150mA 2.7V < V < 5.5V  
1.15  
1.15  
1.2  
1.2  
1.25  
1.25  
V
V
OUT  
OUT  
IN  
250mA 2.9V V 5V  
IN  
I
Operating Current  
I
= 0mA  
35  
0.01  
12  
60  
1
µA  
µA  
IN  
OUT  
Shutdown Current  
SHDN = 0V  
V
V
Burst Mode Operation Output Ripple  
Continuous Mode Output Ripple  
Switching Frequency  
mV  
mV  
RB  
RC  
P-P  
4
P-P  
f
1.2  
1.2  
1.5  
0.8  
0.8  
1.8  
MHz  
V
OSC  
V
V
SHDN Input Hi Voltage  
SHDN Input Low Voltage  
SHDN Input Current  
IH  
IL  
0.4  
1
V
I
I
t
SHDN = V  
–1  
–1  
µA  
IH  
IN  
SHDN Input Current  
SHDN = 0V  
= 6Ω  
1
µA  
IL  
Turn On Time  
R
0.8  
0.15  
0.12  
0.2  
ms  
ON  
LOAD  
LTC3250-1.5 Load Regulation  
LTC3250-1.2 Load Regulation  
Line Regulation  
0 I  
0 I  
250mA  
mV/mA  
mV/mA  
%/V  
OUT  
OUT  
250mA  
I
I
= 250mA  
OUT  
OUT  
R
Open-Loop Output Impedance  
= 250mA (Note 4)  
1.0  
OL  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 4: Output not in regulation; R = (V /2 - V )/I  
.
OL  
IN  
OUT OUT  
of a device may be impaired.  
Note 2: Based on long term current density limitations.  
Note 3: The LTC3250-1.5E/LTC3250-1.2E are guaranteed to meet  
specified performance from 0°C to 70°C. Specifications over the –40°C  
and 85°C operating temperature range are assured by design  
characterization and correlation with statistical process controls.  
Note 5: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
3250fa  
2
LTC3250-1.5/LTC3250-1.2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Oscillator Frequency vs  
Supply Voltage  
VSHDN Threshold Voltage vs  
Supply Voltage  
No Load Supply Current vs  
Supply Voltage  
1200  
1100  
1000  
900  
50  
45  
40  
35  
30  
25  
20  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
3.1V < V < 5.5V (LTC3250-1.5)  
IN  
2.7V < V < 5.5V (LTC3250-1.2)  
IN  
3.1V < V < 5.5V (LTC3250-1.5)  
IN  
2.7V < V < 5.5V (LTC3250-1.2)  
IN  
3.1V < V < 5.5V (LTC3250-1.5)  
IN  
2.7V < V < 5.5V (LTC3250-1.2)  
IN  
T
T
= 85°C  
= 25°C  
A
A
T
= –40°C  
A
T
= 85°C  
A
T
= 25°C  
800  
A
T
= –40°C  
T
= –40°C  
A
A
700  
T
= 25°C  
T
= 85°C  
A
A
600  
500  
400  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
V
V
IN  
IN  
IN  
3250 G03  
3250 G01  
3250 G02  
(LTC3250-1.5)  
Output Voltage vs Load Current  
Efficiency vs Output Current  
Output Voltage vs Supply Voltage  
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.60  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
T
= 25°C  
T
= 25°C  
V
A
= 3.6V  
A
A
IN  
V
= 3.3V  
IN  
T
= 25°C  
V
= 3.6V  
IN  
V
= 4V  
IN  
I
= 0mA  
OUT  
V
= 5V  
I
= 100mA  
IN  
OUT  
I
= 250mA  
OUT  
0.1  
1
10  
(mA)  
100  
1000  
0
50  
150  
(mA)  
200  
250  
300  
3.0  
3.5  
4.0  
V
4.5  
(V)  
5.0  
5.5  
100  
I
I
OUT  
OUT  
IN  
3250 G05  
3250 G04  
3250 G06  
(LTC3250-1.2)  
Output Voltage vs Load Current  
Efficiency vs Output Current  
Output Voltage vs Supply Voltage  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
T
= 25°C  
T
= 25°C  
V
T
= 3.6V  
A
A
IN  
A
V
= 2.7V  
= 25°C  
IN  
V
= 3V  
IN  
I
= 0mA  
OUT  
V
= 3.5V  
IN  
I
= 100mA  
OUT  
V
= 4.5V  
IN  
I
= 250mA  
OUT  
0.1  
1
10  
(mA)  
100  
1000  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
0
50  
150  
(mA)  
200  
250  
300  
100  
I
I
OUT  
V
OUT  
IN  
3250 G13  
3250 G14  
3250 G12  
3250fa  
3
LTC3250-1.5/LTC3250-1.2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage Soft-Start and  
Shutdown (LTC3250-1.5)  
Output Current Transient  
Response (LTC3250-1.5)  
HI  
250mA  
15mA  
I
SHDN  
OUT  
LOW  
V
OUT  
20mV/DIV  
AC  
V
OUT  
500mV/DIV  
3250 G07  
3250 G08  
R
IN  
= 6  
V
= 3.6V  
L
IN  
V
= 3.6V  
Input Voltage Ripple vs Input  
Capacitor (LTC3250-1.5)  
Line Transient Response  
(LTC3250-1.5)  
4.5V  
V
IN  
V
IN  
3.5V  
50mV/DIV  
AC  
C = 1µF  
I
V
V
OUT  
C = 10µF  
IN  
I
20mV/DIV  
AC  
50mV/DIV  
AC  
3250 G10  
3250 G09  
I
= 250mA  
SOURCE  
I
= 200mA  
OUT  
OUT  
R
= 0.2Ω  
Output Voltage Ripple  
(LTC3250-1.5)  
V
OUT  
20mV/DIV  
AC  
3250 G11  
C
= 4.7µF 1X5R16.3V  
OUT  
OUT  
IN  
I
= 250mA  
V
= 3.6V  
3250fa  
4
LTC3250-1.5/LTC3250-1.2  
U
U
U
PI FU CTIO S  
C(Pin 4): Flying Capacitor Negative Terminal  
VIN (Pin 1): Input Supply Voltage. Bypass VIN with a 1µF  
low ESR ceramic capacitor.  
V
OUT (Pin 5): Regulated Output Voltage. VOUT is discon-  
GND (Pin 2): Ground. Connect to a ground plane for best  
performance.  
nected from VIN during shutdown. Bypass VOUT with a  
4.7µF low ESR ceramic capacitor (2.5µF min, ESR  
<100m).  
SHDN (Pin 3): Active Low Shutdown Input. A low voltage  
on SHDN disables the LTC3250-1.5/LTC3250-1.2. SHDN  
must not be allowed to float.  
C+ (Pin 6): Flying Capacitor Positive Terminal.  
W
BLOCK DIAGRA  
LTC3250-1.5/  
LTC3250-1.2  
THERMAL  
SHUTDOWN  
(>160°C)  
SWITCH  
CONTROL  
AND  
1.5MHz  
3
1
SHDN  
OSCILLATOR  
SOFT-START  
CHARGE  
PUMP  
V
IN  
+
6
5
C
V
OUT  
4
C
+
BURST  
DETECT  
CIRCUIT  
V
REF  
2
3250 BD  
GND  
3250fa  
5
LTC3250-1.5/LTC3250-1.2  
U
OPERATIO  
(Refer to Simplified Block Diagram)  
The LTC3250-1.5/LTC3250-1.2 use a switched capacitor temperatureexceedsapproximately160°C.Itwillreenable  
charge pump to step down VIN to a regulated 1.5V ±4% or the charge pump once the junction temperature drops  
1.2V ±4% (respectively) output voltage. Regulation is backtoapproximately150°C.TheLTC3250-1.5/LTC3250-  
achievedbysensingtheoutputvoltagethroughaninternal 1.2willcycleinandoutofthermalshutdownwithoutlatch-  
resistor divider and modulating the charge pump output up or damage until the short-circuit on VOUT is removed.  
currentbasedontheerrorsignal.A2-phasenonoverlapping Long term overstress (IOUT > 350mA, and/or TJ > 140°C)  
clock activates the charge pump switches. On the first shouldbeavoidedasitcandegradetheperformanceofthe  
phase of the clock current is transferred from VIN, through part.  
the flying capacitor, to VOUT. Not only is current being  
Soft-Start  
delivered to VOUT on the first phase, but the flying capaci-  
tor is also being charged up. On the second phase of the  
clock the flying capacitor is connected from VOUT to  
ground, deliveringthechargestoredduringthefirstphase  
of the clock to VOUT. Using this method of switching, only  
half of the output current is delivered from VIN, thus  
achieving twice the efficiency over a conventional LDO.  
The sequence of charging and dis-charging the flying  
capacitor continues at a free running frequency of 1.5MHz  
(typ). This constant frequency architecture provides a low  
noise regulated output as well as lower input noise than  
conventional switch-capacitor charge pump regulators.  
The part also has a low current Burst Mode operation to  
improve efficiency even at light loads.  
To prevent excessive current flow at VIN during start-up,  
the LTC3250-1.5/LTC3250-1.2 have a built-in soft-start  
circuitry. Soft-start is achieved by increasing the amount  
of current available to the output charge storage capacitor  
linearly overa periodofapproximately 500µs. Soft-start is  
enabled whenever the device is brought out of shutdown,  
and is disabled shortly after regulation is achieved.  
Low Current “Burst Mode” Operation  
To improve efficiency at low output currents, Burst Mode  
operation was included in the design of the LTC3250-1.5/  
LTC3250-1.2. An output current sense is used to detect  
when the required output current drops below an inter-  
nallysetthreshold(30mAtyp.). Whenthisoccurs, thepart  
shuts down the internal oscillator and goes into a low  
current operating state. The LTC3250-1.5/LTC3250-1.2  
will remain in the low current operating state until the  
output has dropped enough to require another burst of  
current. Unlike traditional charge pumps whose burst  
current is dependant on many factors (i.e. supply voltage,  
switchresistance, capacitorselection, etc.), theLTC3250-  
1.5/LTC3250-1.2’sburstcurrentissetbytheburstthresh-  
oldandhysteresis.ThismeansthattheVOUT ripplevoltage  
in Burst Mode will be fixed and is typically 12mV for a  
4.7µF output capacitor.  
In shutdown mode all circuitry is turned off and the  
LTC3250-1.5/LTC3250-1.2drawonlyleakagecurrentfrom  
the VIN supply. Furthermore, VOUT is disconnected from  
VIN. The SHDN pin is a CMOS input with a threshold  
voltageofapproximately0.8V.TheLTC3250-1.5/LTC3250-  
1.2 are in shutdown when a logic low is applied to the  
SHDN pin. Since the SHDN pin is a high impedance CMOS  
input it should never be allowed to float. To ensure that its  
state is defined it must always be driven with a valid logic  
level.  
Short-Circuit/Thermal Protection  
The LTC3250-1.5/LTC3250-1.2 have built-in short-circuit  
current limiting as well as overtemperature protection.  
During short-circuit conditions, the parts will automati-  
cally limit the output current to approximately 500mA. At  
higher temperatures, or if the input voltage is high enough  
to cause excessive selfheating onchip, thermalshutdown  
circuitrywillshutdownthechargepumponcethejunction  
Power Efficiency  
The power efficiency (η) of the LTC3250-1.5/LTC3250-  
1.2 are approximately double that of a conventional linear  
regulator. This occurs because the input current for a 2 to  
1step-downchargepumpisapproximatelyhalftheoutput  
3250fa  
6
LTC3250-1.5/LTC3250-1.2  
U
OPERATIO  
(Refer to Simplified Block Diagram)  
current. For an ideal 2 to 1 step-down charge pump the  
power efficiency is given by:  
0.15for the LTC3250-1.5 and 0.12for the  
LTC3250-1.2.Fora250mAloadcurrentchangetheoutput  
voltage will change by about 37mV for the LTC3250-1.5  
andby30mVfortheLTC3250-1.2. IftheESRoftheoutput  
capacitor is greater than the closed-loop-output imped-  
ance the part will cease to roll-off in a simple one-pole  
fashion and poor load transient response or instability  
could result. Ceramic capacitors typically have excep-  
tional ESR performance and combined with a tight board  
layout should yield excellent stability and load transient  
performance.  
POUT  
P
IN  
VOUT IOUT 2VOUT  
η ≡  
=
=
1
V
IN  
V • IOUT  
IN  
2
The switching losses and quiescent current of the  
LTC3250-1.5/LTC3250-1.2 are designed to minimize effi-  
ciency loss over the entire output current range, causing  
only a couple % error from the theoritical efficiency. For  
example with VIN = 3.6V, IOUT = 100mA and VOUT regulat-  
ing to 1.5V the measured efficiency is 80.6% which is in  
close agreement with the theoretical 83.3% calculation.  
Furtheroutputnoisereductioncanbeachievedbyfiltering  
theLTC3250-1.5/LTC3250-1.2outputthroughaverysmall  
series inductor as shown in Figure 1. A 10nH inductor will  
VOUT Capacitor Selection  
10nH  
(TRACE INDUCTANCE)  
V
V
The ESR and value of capacitors used with the LTC3250-  
1.5/LTC3250-1.2determineseveralimportantparameters  
such as regulator control loop stability, output ripple, and  
charge pump strength.  
OUT  
OUT  
LTC3250-1.5/  
LTC3250-1.2  
4.7µF  
0.22µF  
GND  
3250 F01  
The value of COUT directly controls the amount of output  
ripple for a given load current. Increasing the size of COUT  
will reduce the output ripple.  
Figure 1. 10nH Inductor Used for  
Additional Output Noise Reduction  
reject the fast output transients, thereby presenting a  
nearly constant output voltage. For economy the 10nH  
inductorcanbefabricatedonthePCboardwithabout1cm  
(0.4") of PC board trace.  
To reduce output noise and ripple, it is suggested that a  
low ESR (<0.1) ceramic capacitor (4.7µF or greater) be  
used for COUT. Tantalum and aluminum capacitors are not  
recommended because of their high ESR.  
Both ESR and value of the COUT can significantly affect the  
stability of the LTC3250-1.5/LTC3250-1.2. As shown in  
the block diagram, the LTC3250-1.5/LTC3250-1.2 use a  
control loop to adjust the strength of the charge pump to  
match the current required at the output. The error signal  
of this loop is stored directly on the output charge storage  
capacitor. Thus the charge storage capacitor also serves  
to form the dominant pole for the control loop. To prevent  
ringingorinstabilityitisimportantfortheoutputcapacitor  
to maintain at least 2.5µF of capacitance over all condi-  
tions (see “Ceramic Capacitor Selection Guidelines” sec-  
tion).  
VIN Capacitor Selection  
The constant frequency architecture used by the  
LTC3250-1.5/LTC3250-1.2 makes input noise filtering  
much less demanding than conventional charge pump  
regulators. On a cycle by cycle basis, the LTC3250-1.5/  
LTC3250-1.2 input current will go from IOUT/2 to 0mA.  
Lower ESR will reduce the voltage steps caused by chang-  
ing input current, while the absolute capacitor value will  
determine the level of ripple. For optimal input noise and  
ripple reduction, it is recommended that a low ESR 1µF or  
greater ceramic capacitor be used for CIN (see “Ceramic  
Capacitor Selection Guidelines” section). Aluminum and  
tantalum capacitors are not recommended because of  
their high ESR.  
Likewise excessive ESR on the output capacitor will tend  
todegradetheloopstabilityoftheLTC3250-1.5/LTC3250-  
1.2. The closed-loop output resistance is designed to be  
3250fa  
7
LTC3250-1.5/LTC3250-1.2  
U
OPERATIO  
(Refer to Simplified Block Diagram)  
Flying Capacitor Selection  
Below is a list of ceramic capacitor manufacturers and  
how to contact them:  
Warning: A polarized capacitor such as tantalum or  
aluminum should never be used for the flying capacitor  
since its voltage can reverse upon start-up of the  
LTC3250-1.5/LTC3250-1.2. Ceramic capacitors should  
always be used for the flying capacitor.  
AVX  
1-(803)-448-1943  
1-(864)-963-6300  
1-(800)-831-9172  
1-(800)-348-2496  
1-(800)-487-9437  
www.avxcorp.com  
www.kemet.com  
www.murata.com  
www.t-yuden.com  
www.vishay.com  
Kemet  
Murata  
Taiyo Yuden  
Vishay  
The flying capacitor controls the strength of the charge  
pump. In order to achieve the rated output current it is  
necessary for the flying capacitor to have at least 0.4µF of  
capacitance over operating temperature with a 2V bias  
(see “Ceramic Capacitor Selection Guidelines” section). If  
only 100mA or less of output current is required for the  
application the flying capacitor minimum can be reduced  
to 0.15µF.  
Layout Considerations  
Duetothehighswitchingfrequencyandtransientcurrents  
producedbytheLTC3250-1.5/LTC3250-1.2carefulboard  
layoutisnecessaryforoptimalperformance.Atrueground  
plane and short connections to all capacitors will improve  
performance and ensure proper regulation under all con-  
ditions. Figure 2 shows the recommended layout configu-  
ration.  
Ceramic Capacitor Selection Guidelines  
Capacitors of different materials lose their capacitance  
with higher temperature and voltage at different rates. For  
example, a ceramic capacitor made of X7R material will  
retainmostofitscapacitancefrom40°Cto85°Cwhereas  
a Z5U or Y5V style capacitor will lose considerable capaci-  
tanceoverthatrange(60%to80%losstyp.).Z5UandY5V  
capacitors may also have a very strong voltage coefficient  
causing them to lose an additional 60% or more of their  
capacitance when the rated voltage is applied. Therefore,  
when comparing different capacitors it is often more  
appropriate to compare the amount of achievable capaci-  
tance for a given case size rather than discussing the  
specified capacitance value. For example, over rated volt-  
age and temperature conditions, a 4.7µF, 10V, Y5V  
ceramic capacitor in a 0805 case may not provide any  
more capacitance than a 1µF, 10V, X7R available in the  
same 0805 case. In fact over bias and temperature range,  
the 1µF, 10V, X7R will provide more capacitance than the  
4.7µF, 10V, Y5V. The capacitor manufacturer’s data sheet  
should be consulted to determine what value of capacitor  
is needed to ensure minimum capacitance values are met  
over operating temperature and bias voltage.  
1µF  
V
V
OUT  
IN  
1µF  
4.7µF  
GND  
SHDN  
3250 F02  
LTC3250-1.5/LTC3250-1.2  
VIA TO GROUND PLANE  
Figure 2. Recommended Layout  
The flying capacitor pins, C+ and Cwill have very high  
edge rate wave forms. The large dv/dt on these pins can  
coupleenergycapacitivelytoadjacentprintedcircuitboard  
runs. Magnetic fields can also be generated if the flying  
capacitors are not close to the LTC3250-1.5/LTC3250-1.2  
(i.e. the loop area is large). To decouple capacitive energy  
transfer, a Faraday shield may be used. This is a grounded  
PCtracebetweenthesensitivenodeandtheLTC3250-1.5/  
LTC3250-1.2 pins. For a high quality AC ground it should  
bereturnedtoasolidgroundplanethatextendsalltheway  
to the LTC3250-1.5/LTC3250-1.2.  
3250fa  
8
LTC3250-1.5/LTC3250-1.2  
U
OPERATIO  
(Refer to Simplified Block Diagram)  
Thermal Management  
dissipation. The power dissipated in the LTC3250-1.5/  
LTC3250-1.2 should always fall under the line shown (i.e.  
within the safe region) for a given ambient temperature.  
The power dissipated in the LTC3250-1.5/LTC3250-1.2 is  
given by the expression:  
For higher input voltages and maximum output current  
there can be substantial power dissipation in the  
LTC3250-1.5/LTC3250-1.2. If the junction temperature  
increases above approximately 160°C the thermal shut-  
down circuitry will automatically deactivate the output. To  
reduce the maximum junction temperature, a good ther-  
mal connection to the PC board is recommended. Con-  
necting the GND pin (Pin 2) to a ground plane, and  
maintaining a solid ground plane under the device can  
reducethethermalresistanceofthepackageandPCboard  
considerably.  
V
2
IN  
PD =  
VOUT IOUT  
This derating curve assumes a maximum thermal resis-  
tance, θJA , of 175°C/W for the 6-pin ThinSOT-23. This  
thermal resistances can be achieved from a printed circuit  
board layout with a solid ground plane (2000mm2)on at  
least one layer with a good thermal connection to the  
ground pin of the LTC3250-1.5/LTC3250-1.2. Operation  
outsideofthiscurvewillcausethejunctiontemperatureto  
exceed 140°C which may trigger the thermal shutdown  
circuitry and ultimately reduce the life of the device.  
Derating Power at Higher Temperatures  
To prevent an overtemperature condition in high power  
applications Figure 3 should be used to determine the  
maximumcombinationofambienttemperatureandpower  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
θ
T
= 175°C/W  
JA  
J
= 140°C  
–50  
0
25  
50  
75  
100  
–25  
AMBIENT TEMPERATURE (°C)  
3250 • F03  
Figure 3. Maximum Power Dissipation vs Ambient Temperature  
3250fa  
9
LTC3250-1.5/LTC3250-1.2  
U
TYPICAL APPLICATIO S  
Efficiency vs Output Current  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Fixed 3.3V Input to 1.5V Output with Shutdown  
T
= 25°C  
A
V
= 3.3V  
IN  
1µF  
4
6
+
C
C
5
2
1
3
V
= 3.3V  
V
V
= 1.5V ±4%  
OUT  
V
IN  
OUT  
IN  
1µF  
LTC3250-1.5  
SHDN  
4.7µF  
OFF  
GND  
ON  
3250 TA02a  
0.1  
1
10  
(mA)  
100  
1000  
I
OUT  
3250 TA02b  
Efficiency vs Output Current  
Li-Ion or 3-Cell NiMH to 1.5V Output with Shutdown  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
A
1µF  
V
= 3.6V  
IN  
4
6
V
= 4V  
IN  
+
C
C
5
2
1
3
V
= 1.5V ±4%  
V
V
OUT  
IN  
OUT  
V
= 5V  
IN  
1-CELL Li-Ion OR  
3-CELL NiMH  
1µF  
LTC3250-1.5  
SHDN  
4.7µF  
OFF  
GND  
ON  
3250 TA03a  
0.1  
1
10  
(mA)  
100  
1000  
I
OUT  
3250 TA03b  
Efficiency vs Input Voltage  
(IOUT = 100mA)  
3-Cell NiMH to 1.2V Output with Shutdown  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C  
A
1µF  
4
6
+
C
C
5
2
LTC3250  
LDO  
1
3
V
IN  
= 2.7V TO 5V  
3-CELL NiMH  
V
= 1.2V ±4%  
V
V
OUT  
IN  
LTC3250-1.2  
SHDN  
OUT  
1µF  
4.7µF  
OFF  
GND  
ON  
3250 TA05a  
2.7  
3.2  
3.7  
4.2  
(V)  
4.7  
5.2  
V
IN  
3250 TA05b  
3250fa  
10  
LTC3250-1.5/LTC3250-1.2  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
2.80 BSC  
3.85 MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3250fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC3250-1.5/LTC3250-1.2  
U
TYPICAL APPLICATIO  
Multiple High Efficiency Outputs from Single Li-Ion Battery  
5
3
2
1
6
4
5V  
100mA  
V
V
IN  
LTC3200-5  
OUT  
Li-Ion  
1µF  
1µF  
+
SHDN  
C
C
1µF  
GND  
7
2
8
1
5
6
3.3V  
500mA  
V
OUT  
SW1  
SW2  
FB  
IN  
22µF  
3
10µF  
MODE  
LTC3440  
10µH  
4
SHDN  
340k  
200k  
60k  
9
RT  
10  
GND  
V
C
120k  
300pF  
1
8
2
3
6
7
5
4
1.8V  
250mA  
V
OUT  
IN  
LTC1911-1.8  
10µF  
10µF  
+
SHDN  
C1  
C1  
1µF  
+
C2  
1µF  
C2  
GND  
1
3
5
6
1.5V  
250mA  
V
OUT  
IN  
+
SHDN  
C
OFF  
ON  
4.7µF  
LTC3250-1.5  
1µF  
1µF  
2
4
GND  
C
3250-1.5 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 2.7V to 10V, V : 3V/5V,  
LTC1514  
50mA, 650kHz, Step Up/Down Charge Pump  
with Low Battery Comparator  
IN  
OUT  
Regulated Output, I : 60µA, I : 10µA, S8 Package  
Q
SD  
LTC1515  
LT1776  
50mA, 650kHz, Step Up/Down Charge Pump  
with Power On Reset  
V : 2.7V to 10V, V : 3.3V or 5V,  
IN OUT  
Regulated Output, I : 60µA, I : <1µA, S8 Package  
Q
SD  
500mA (I ), 200kHz, High Efficiency Step-Down  
90% Efficiency, V : 7.4V to 40V, V  
: 1.24V,  
OUT(MIN)  
OUT  
IN  
DC/DC Converter  
I : 3.2mA, I : 30µA, N8,S8 Packages  
Q SD  
LTC1911-1.5/LTC1911-1.8 250mA,1.5MHz, High Efficiency Step-Down  
Charge Pump  
75% Efficiency, V : 2.7V to 5.5V, V : 1.5V/1.8V,  
IN OUT  
Regulated Output, I : 180µA, I : 10µA, MS8 Package  
Q
SD  
LTC3251  
500mA, Spread Spectrum, High Efficiency  
Step-Down Charge Pump  
Up to 90% Efficiency, V : 2.7V to 5.5V, V : 0.9V to 1.6V,  
IN OUT  
Regulated Output, I : 9µA, I : <1µA, MS Package  
Q
SD  
LTC3252  
Dual 250mA (I ), Spread Spectrum, Inductorless (CS), Up to 90% Efficiency, V : 2.7V to 5.5V, V : 0.9V to 1.6V,  
OUT IN OUT  
Step-Down DC/DC Converter  
I : 60µA, I : <1µA, DFN Package  
Q SD  
LTC3405/LTC3405A  
LTC3406/LTC3406B  
LTC3411  
300mA (I ), 1.5MHz, Synchronous Step-Down  
DC/DC Converter  
95% Efficiency, V : 2.7V to 6V, V : 0.8V,  
OUT(MIN)  
I : 20µA, I : <1µA, ThinSOT Package  
Q SD  
OUT  
IN  
600mA (I ), 1.5MHz, Synchronous Step-Down  
95% Efficiency, V : 2.5 to 5.5V, V  
: 0.6V,  
OUT(MIN)  
OUT  
IN  
DC/DC Converter  
I : 20µA, I : <1µA, ThinSOT Package  
Q SD  
1.25A (I ), 4MHz, Synchronous Step-Down  
95% Efficiency, V : 2.5V to 5.5V, V  
I : 60µA, I : <1µA, MS Package  
Q SD  
: 0.8V,  
: 0.8V,  
OUT  
IN  
OUT(MIN)  
DC/DC Converter  
LTC3412  
2.5A (I ), 4MHz, Synchronous Step-Down  
95% Efficiency, V : 2.5V to 5.5V, V  
IN  
OUT  
OUT(MIN)  
DC/DC Converter  
I : 60µA, I : <1µA, TSSOP16E Package  
Q SD  
LTC3440  
600mA (I ), 2MHz, Synchronous Buck-Boost  
DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V : 2.5V to 5.5V,  
IN OUT  
I : 25µA, I : <1µA, MS Package  
Q SD  
OUT  
LTC3441  
1.2A (I ), 1MHz, Synchronous Buck-Boost  
DC/DC Converter  
95% Efficiency, V : 2.4V to 5.5V, V : 2.4V to 5.25V,  
IN OUT  
I : 25µA, I : <1µA, DFN Package  
Q SD  
OUT  
3250fa  
LT/TP 1203 1K REV A • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2001  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3250-1

Switched-Capacitor Voltage Converter with Regulator
Linear

LTC3250-1.2

High Voltage, Low Quiescent Current Inverting Charge Pump
Linear System

LTC3250-1.2

High Voltage Boost Charge Pump
ADI

LTC3250-1.2_15

High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter
Linear

LTC3250-1.5

High Voltage, Low Quiescent Current Inverting Charge Pump
Linear System

LTC3250-1.5

High Voltage Boost Charge Pump
ADI

LTC3250-1.5_15

High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter
Linear

LTC3250ES6-1.2

High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter
Linear

LTC3250ES6-1.2#TR

LTC3250 - High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3250ES6-1.2#TRM

LTC3250 - High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear
Linear

LTC3250ES6-1.2#TRPBF

LTC3250 - High Efficiency, Low Noise, Inductorless Step-Down DC/DC Converter; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear