LTC3255HMSE#PBF [Linear]

LTC3255 - Wide VIN Range Fault Protected 50mA Step-Down Charge Pump; Package: MSOP; Pins: 10; Temperature Range: -40°C to 125°C;
LTC3255HMSE#PBF
型号: LTC3255HMSE#PBF
厂家: Linear    Linear
描述:

LTC3255 - Wide VIN Range Fault Protected 50mA Step-Down Charge Pump; Package: MSOP; Pins: 10; Temperature Range: -40°C to 125°C

光电二极管
文件: 总16页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3255  
Wide V Range  
IN  
Fault Protected 50mA  
Step-Down Charge Pump  
FEATURES  
DESCRIPTION  
The LTC®3255 is a switched-capacitor step-down DC/DC  
converter that produces a regulated output (2.4V to 12.5V  
adjustable) from a 4V to 48V input. In applications where  
the input voltage exceeds twice the output voltage, 2:1  
capacitivechargepumpingextendsoutputcurrentcapabil-  
ity beyond input supply current limits. At no load, Burst  
n
Input Voltage Range: 4V to 48V  
n
Adjustable Regulated Output: 2.4V to 12.5V  
n
Output Current: 50mA Maximum  
n
16μA Quiescent Current in Regulation at No Load  
n
Input Fault Protection from –52V to 60V  
n
Multimode Charge Pump (2:1, 1:1) with Automatic  
Mode Switching Maintains Regulation Over Wide  
Mode® operation cuts V quiescent current to 16µA.  
IN  
V Range  
IN  
With its integrated V shunt regulator, the LTC3255  
IN  
n
n
n
n
n
Input Voltage Shunt Mode for Current-Fed Applications  
excels in 4mA to 20mA current loop applications. The  
device enables current multiplication; a 4mA input current  
can power a 7.4mA load continuously. Alternatively, the  
LTC3255 serves as a higher efficiency replacement for  
linear regulators and provides a space-saving inductor-  
free alternative to buck DC/DC converters.  
Power Good Output  
Overtemperature and Short-Circuit Protection  
Operating Junction Temperature: 150°C Maximum  
Thermally Enhanced 10-Lead MSOP and 10-Lead  
(3mm × 3mm) DFN packages  
APPLICATIONS  
The LTC3255 withstands reverse-polarity input supplies  
and output short-circuits without damage. Safety features  
including current limit and overtemperature protection  
further enhance robustness. The LTC3255 is available in  
thermally enhanced 10-lead MSOP and low profile 3mm  
× 3mm 10-lead DFN packages.  
n
Industrial Control, Factory Automation, Sensors, and  
SCADA Systems  
n
Housekeeping Power Supplies  
n
Current-Boosting Voltage Regulators for 4mA to  
20mA Current Loops  
L, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks  
and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
TYPICAL APPLICATION  
Available Output Current  
vs Input Current  
7.4mA DC Supply from 4mA to 20mA Current Loop  
40  
37  
34  
1µF  
OUTPUT  
+
31  
C
C
+
3.3V  
V
V
OUT  
IN  
28  
7.4mA  
AVAILABLE  
EN  
LTC3255  
220k  
PGOOD  
25  
22  
19  
16  
13  
10  
7
INCREASED  
CAPABILITY  
I
OUT  
I
OUT  
PGOOD  
FB  
4mA TO 20mA INPUT  
>10V COMPLIANCE  
1µF  
10µF  
SHUNT  
BIAS  
2.15M  
1.21M  
GND  
INPUT  
CURRENT  
0.1µF  
3255 TA01a  
4
4
6
8
10 12 14 16 18 20  
INPUT CURRENT (mA)  
3255 TA01b  
3255f  
1
For more information www.linear.com/LTC3255  
LTC3255  
ABSOLUTE MAXIMUM RATINGS (Notes 1, 2)  
V , EN........................................................ –52V to 60V  
I
When V  
< 0V (Note 5) .....................100µA  
PGOOD  
IN  
PGOOD  
V
OUT  
V
OUT  
..........................................................................15V  
Short-Circuit Duration (Note 6) ............... Indefinite  
Operating Junction Temperature  
Range (Notes 3, 6)................................. –55°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
I
When V  
< 0V (Note 4).............................50mA  
VOUT  
OUT  
FB ............................................................................. 6V  
PGOOD......................................................................15V  
MSE Only..........................................................300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
+
+
C
1
2
3
4
5
10  
9
V
C
IN  
C
1
2
3
4
5
10  
9
V
C
GND  
BIAS  
EN  
IN  
V
OUT  
FB  
V
OUT  
FB  
SHUNT  
PGOOD  
11  
11  
GND  
8
8
GND  
BIAS  
EN  
GND  
7
6
SHUNT  
PGOOD  
7
6
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
DD PACKAGE  
T
= 150°C, θ = 40°C/W  
JA  
JMAX  
10-LEAD (3mm × 3mm) PLASTIC DFN  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
T
= 150°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3255EDD#PBF  
LTC3255IDD#PBF  
LTC3255HDD#PBF  
LTC3255MPDD#PBF  
LTC3255EMSE#PBF  
LTC3255IMSE#PBF  
LTC3255HMSE#PBF  
LTC3255MPMSE#PBF  
TAPE AND REEL  
PART MARKING*  
LGHD  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3255EDD#TRPBF  
LTC3255IDD#TRPBF  
LTC3255HDD#TRPBF  
LTC3255MPDD#TRPBF  
LTC3255EMSE#TRPBF  
LTC3255IMSE#TRPBF  
LTC3255HMSE#TRPBF  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 150°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–55°C to 150°C  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
LGHD  
LGHD  
LGHD  
LTGHF  
LTGHF  
10-Lead Plastic MSOP  
LTGHF  
10-Lead Plastic MSOP  
LTC3255MPMSE#TRPBF LTGHF  
10-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3255f  
2
For more information www.linear.com/LTC3255  
LTC3255  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V unless otherwise noted. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
48  
UNITS  
l
l
V
V
V
Input Voltage Range (Note 7)  
Output Voltage Range  
V
V
IN  
2.4  
12.5  
2.7  
OUT  
V
Undervoltage Lockout Threshold  
V Rising, SHUNT = GND  
IN  
Hysteresis, SHUNT = GND  
2.4  
50  
V
mV  
UVLO_BK  
IN  
with Shunt Disabled  
V
V
Undervoltage Lockout Threshold  
V Rising, SHUNT= BIAS  
IN  
5
5.7  
V
UVLO_SH  
VIN  
IN  
with Shunt Enabled  
V Quiescent Current  
IN  
Hysteresis, SHUNT= BIAS  
200  
mV  
I
EN Low  
EN High, SHUNT = GND  
EN High, SHUNT = BIAS  
Shutdown  
Enabled, Output in Regulation  
Enabled, Output in Regulation  
3
16  
30  
6
35  
45  
µA  
µA  
µA  
I
Available Output Current  
Shunt Disabled  
Shunt Enabled  
VOUT  
l
l
SHUNT = GND  
50  
7.4  
mA  
mA  
SHUNT = BIAS, I = 4mA, V  
= 3.3V  
OUT  
7.8  
VIN  
l
V
Regulated Feedback Voltage  
FB Pin Leakage  
1.176  
1.200  
1.224  
10  
V
nA  
V
FB  
I
FB  
V
= 1.3V  
FB  
l
l
V
V
EN High Level Input Voltage  
EN Low Level Input Voltage  
EN Pin Input Current  
1.4  
EN_VIH  
0.4  
V
EN_VIL  
I
EN  
V
V
= 12V  
= 0V  
0
0
1
1
µA  
µA  
EN  
EN  
I
f
V
Current Limit  
OUT  
120  
500  
94  
mA  
kHz  
%
LIM  
Oscillator Frequency  
OSC  
l
l
V
V
PGOOD Rising Threshold  
PGOOD Output Low Voltage  
PGOOD High Impedance Leakage  
% of Final Regulation Voltage  
90  
98  
0.4  
1
PGTHRESH  
I
= 200µA  
= 12V  
0.1  
V
PG(LOW)  
PGOOD  
V
µA  
PGOOD  
Note 4: The LTC3255 has an internal diode that conducts whenever V  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
OUT  
is pulled below GND. When so pulled, absolute maximum current out of  
is 50mA.  
V
OUT  
Note 5: The LTC3255 has an internal diode that conducts whenever  
PGOOD is pulled below GND. When so pulled, absolute maximum current  
out of PGOOD is 100µA.  
Note 2: All voltages are referenced to GND unless otherwise specified.  
Note 3: The LTC3255E is guaranteed to meet performance specifications  
from 0°C to 85°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LTC3255I is guaranteed over the –40°C to 125°C operating junction  
temperature range. The LTC3255H is guaranteed over the –40°C to 150°C  
operating junction temperature range. The LTC3255MP is guaranteed over  
the –55°C to 150°C operating junction temperature range. High junction  
temperatures degrade operating lifetimes; operating lifetime is derated  
for junction temperatures greater than 125°C. Note that the maximum  
ambient temperature consistent with these specifications is determined by  
specific operating conditions in conjunction with board layout, the rated  
package thermal resistance and other environmental factors.  
Note 6: This IC has overtemperature protection that is intended to protect  
the device during momentary overload conditions. Junction temperatures  
will exceed 150°C when overtemperature protection is active. Continuous  
operation above the specified maximum operating junction temperature  
may impair device reliability.  
Note 7: This IC has input overvoltage protection that shuts down the  
device whenever V exceeds the specified input voltage range. Shutdown  
IN  
typically occurs when V exceeds 52V. V subsequently must fall below  
IN  
IN  
50V (typical) for the IC to re-enable.  
The junction temperature (T , in °C) is calculated from the ambient  
J
temperature (T , in °C) and power dissipation (P , in Watts) according to  
A
D
the formula:  
T = T + (P • θ )  
JA  
J
A
D
where θ (in °C/W) is the package thermal impedance.  
JA  
3255f  
3
For more information www.linear.com/LTC3255  
LTC3255  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Input Operating Current  
vs Input Voltage  
Input Operating Current  
vs Temperature  
Input Shutdown Current  
vs Input Voltage  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
EN = GND  
SHUNT = GND  
V
V
= 12V  
= 5V  
IN  
OUT  
SHUNT = GND  
V
T
= 5V  
OUT  
A
= 25°C  
150°C  
125°C  
25°C  
–55°C  
40  
0
0
0
0
20  
30  
(V)  
50  
60  
60  
90 120 150  
10  
–60  
0
30  
–30  
5
10 15 20 25 30 35 40 45 50  
V
TEMPERATURE (°C)  
V
(V)  
IN  
IN  
3255 G03  
3255 G02  
3255 G01  
FB Pin Regulation Voltage  
vs Input Voltage (IOUT = 1mA)  
FB Pin Regulation Voltage  
vs Input Voltage (IOUT = 50mA)  
FB Pin Regulation Voltage  
vs Temperature  
1.224  
1.220  
1.216  
1.212  
1.208  
1.204  
1.200  
1.196  
1.192  
1.188  
1.184  
1.180  
1.176  
1.224  
1.220  
1.216  
1.212  
1.208  
1.204  
1.200  
1.196  
1.192  
1.188  
1.184  
1.180  
1.176  
1.224  
1.220  
1.216  
1.212  
1.208  
1.204  
1.200  
1.196  
1.192  
1.188  
1.184  
1.180  
1.176  
I
= 1mA  
= 5V  
I
= 50mA  
= 5V  
V
I
OUT  
= 12V  
OUT  
OUT  
OUT  
IN  
V
V
OUT  
= 1mA  
OUT  
SHUNT = GND  
SHUNT = GND  
V
= 5V  
–60°C  
–60°C  
25°C  
105°C  
25°C  
105°C  
150°C  
5
10 15 20 25 30 35 40 45 50  
(V)  
5
10 15 20 25 30 35 40 45 50  
(V)  
–60  
0
30  
60  
90 120 150  
–30  
V
V
IN  
TEMPERATURE (°C)  
IN  
3255 G04  
3255 G05  
3255 G06  
Operating Mode Transition  
Voltage vs Input Voltage  
(IOUT = 5mA)  
Operating Mode Transition  
Voltage vs Input Voltage  
(IOUT = 50mA)  
Typical Minimum VIN – 2 • VOUT  
Compliance Required for Shunt  
Mode Operation  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
25  
23  
21  
19  
17  
15  
13  
11  
9
25  
23  
21  
19  
17  
15  
13  
11  
9
I
= 20mA  
SHUNT = GND  
SHUNT = GND  
VIN  
2:1 MODE  
2:1 MODE  
1:1 MODE  
1:1 MODE  
TRANSITION  
REGION  
TRANSITION  
REGION  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 2.5V  
= 3.3V  
= 5V  
7
7
= 12V  
5
5
2
3
4
5
6
7
8
9
10 11 12  
2
3
4
5
6
7
8
9
10 11 12  
–60  
0
30  
60  
90 120 150  
–30  
TEMPERATURE (°C)  
V
(V)  
V
(V)  
OUT  
OUT  
3255 G07  
3255 G08  
3255 G09  
3255f  
4
For more information www.linear.com/LTC3255  
LTC3255  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
3.3VOUT Efficiency  
vs Input Voltage at 50mA Load  
5VOUT Efficiency  
vs Input Voltage at 50mA Load  
5VOUT Efficiency  
vs Output Current  
90  
80  
70  
60  
50  
40  
30  
120  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 12V  
SHUNT = GND  
SHUNT = GND  
IN  
EFFICIENCY  
100  
80  
60  
40  
20  
0
LTC3255  
LTC3255  
IDEAL LDO  
IDEAL LDO  
POWER LOSS  
0.1  
1
10  
100  
12 14  
INPUT VOLTAGE (V)  
4
6
8
10  
16 18 20  
5
7
9
11 13 15  
25  
17 19 21 23  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
3255 G18  
3255 G16  
3255 G17  
2.5V Output Voltage  
vs Falling Input Voltage  
Output Ripple  
Load Transient  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
SHUNT = GND  
I
= 50mA  
OUT  
V
OUT  
V
OUT  
50mV/DIV  
20mV/DIV  
AC-COUPLED  
AC-COUPLED  
50mA  
I
OUT  
5mA  
–60°C  
25°C  
125°C  
3255 G10  
V
V
I
= 12V  
40µs/DIV  
IN  
3255 G11  
V
V
= 12V  
40µs/DIV  
= 3.3V  
OUT  
= 5mA  
IN  
OUT  
= 3.3V  
OUT  
2
6
8
9
3
4
5
7
10  
V
(V)  
IN  
3255 G12  
3.3V Output Voltage  
vs Falling Input Voltage  
5V Output Voltage  
vs Falling Input Voltage  
12V Output Voltage  
vs Falling Input Voltage  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
5.10  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
12.25  
SHUNT = GND  
OUT  
SHUNT = GND  
OUT  
SHUNT = GND  
OUT  
12.20  
12.15  
12.10  
12.05  
12.00  
11.95  
11.90  
11.85  
11.80  
11.75  
I
= 50mA  
I
= 50mA  
I
= 50mA  
–60°C  
25°C  
–60°C  
25°C  
–60°C  
25°C  
125°C  
125°C  
125°C  
2
6
8
9
3
4
5
7
10 11 12  
4
8
10 11  
(V)  
5
6
7
9
12 13 14 15  
10  
18  
V
22 24  
26 28 30  
12 14 16  
20  
(V)  
V
(V)  
V
IN  
IN  
IN  
3255 G13  
3255 G14  
3255 G15  
3255f  
5
For more information www.linear.com/LTC3255  
LTC3255  
PIN FUNCTIONS  
C (Pin 1): Flying Capacitor Positive Connection. This pin  
must not be driven externally.  
+
EN (Pin 6): Logic Input. A logic high on the EN pin will  
enable the charge pump. A logic low shuts down the  
LTC3255. Do not float this pin.  
V
(Pin 2): Charge Pump Output Voltage.  
OUT  
BIAS (Pin 7): Connect this pin to a 0.1µF bypass capaci-  
tor to GND. A ceramic capacitor of at least 10V rating is  
recommended.  
FB (Pin 3): Feedback pin for setting the regulated output  
voltage, usually connected to V through an external  
OUT  
resistor divider. In operation, the LTC3255 servos the FB  
pin to 1.2V by transferring charge from V to V  
.
OUT  
GND(Pin8andExposedPadPin11):GroundConnection.  
Exposedpad(Pin11)mustbesolderedtothecircuitboard  
groundplaneforproperthermalandelectricalconduction.  
IN  
SHUNT (Pin 4): Configuration pin that must connect to  
either the BIAS or GND pins to enable or defeat, respec-  
tively,theLTC3255’sshuntregulatorfeature.Connectthis  
pin to either BIAS or GND on the circuit board layout. Do  
not float this pin.  
C (Pin 9): Flying Capacitor Negative Connection. This pin  
must not be driven externally.  
V (Pin 10):Input SupplyVoltage. Bypass thispin to GND  
IN  
PGOOD (Pin 5): Power Good Open-Drain Logic Output.  
This pin becomes high impedance when the feedback  
voltage on the FB pin rises above 94% (typical) of the  
regulation voltage.  
with at least 1µF capacitance.  
3255f  
6
For more information www.linear.com/LTC3255  
LTC3255  
SIMPLIFIED BLOCK DIAGRAM  
V
IN  
10  
BIAS  
INTERNAL  
BIASING  
7
2
+
V
C
C
OUT  
1
9
SHUNT  
CONTROL  
SHUNT  
EN  
4
6
FB  
+
3
CHARGE  
PUMP  
CONTROL  
1.2V  
PGOOD  
+
5
1.13V  
GND  
GND  
11  
8
3255 BD  
3255f  
7
For more information www.linear.com/LTC3255  
LTC3255  
APPLICATIONS INFORMATION  
General Operation  
Regulation Loop  
The LTC3255 uses switched-capacitor-based DC/DC  
conversion to provide efficiency advantages associated  
with inductor-based circuits together with the cost and  
simplicity advantages of linear regulators. No inductors  
arerequired.TheLTC3255usesaninternalswitchnetwork  
and fractional conversion ratios to achieve high efficiency  
Regulation is achieved via a Burst Mode control loop that  
allows the LTC3255 to achieve high efficiency even at  
light loads. As shown in the Block Diagram, a comparator  
monitors the output voltage via a feedback pin, FB, which  
receives a fraction of V  
via an external resistor divider.  
OUT  
WhileV isbelowregulation, theLTC3255transfersfixed  
FB  
and regulation over widely varying V and output load  
packets of charge from V to V , paced by an internal  
IN  
IN  
OUT  
OUT  
conditions. A defeatable V shunt regulator allows the  
oscillator. This causes V  
FB  
and hence FB to rise. When  
IN  
LTC3255 to operate with current-fed V supplies, such  
V
enters regulation, the LTC3255 stops charge transfer  
IN  
as 4mA to 20mA current loops.  
and enters a low quiescent current sleep state. During this  
sleepstate,theoutputloadissuppliedentirelybytheoutput  
capacitor. The LTC3255 remains in sleep until the output  
drops enough to require another burst of charge. As load  
current decreases, the output capacitor takes longer to  
discharge, so sleep time increases.  
Automatic 2:1/1:1 Mode Switching with V Shunt  
IN  
Disabled (SHUNT Pin Connected to GND)  
Connecting the SHUNT pin to GND defeats the V shunt  
IN  
regulator. With the shunt regulator defeated, the LTC3255  
functions as a general purpose step-down charge pump  
offering two conversion modes: 2:1 and 1:1. Internal cir-  
cuitry automatically chooses the optimal conversion ratio  
Shutdown and Undervoltage Lockout (UVLO)  
Driving the EN pin low puts the LTC3255 in shutdown,  
based on V , V , and output load conditions, generally  
which disables all circuitry except the internal bias. V  
IN OUT  
IN  
preferring 2:1 mode when V exceeds twice V , but  
supply current is minimized. When the EN pin is high, the  
IN  
OUT  
falling back to 1:1 mode as needed to maintain regulation.  
charge pump will enable if V satisfies the V undervolt-  
IN IN  
age lockout (UVLO) threshold. If the shutdown feature is  
Forced 2:1 Mode Operation When V Shunt Regulator  
not needed, the EN pin can be connected to V , as both  
IN  
IN  
is Enabled (SHUNT Pin Connected to BIAS)  
pins share the same Absolute Maximum rating.  
With the SHUNT pin connected to BIAS, the V shunt  
IN  
Reverse Polarity Input Protection  
regulator is enabled, and the LTC3255 expects a high  
impedance power source at V , such as a 4mA to 20mA  
The V and EN pins are designed to withstand connection  
IN  
IN  
current loop, or a resistor to a DC supply. With the shunt  
regulatorenabled,thechargepumprunsin2:1conversion  
mode only, extending its output current capability beyond  
to voltages below ground without damage. When V is  
IN  
belowground,theLTC3255preventsV fromgoingmore  
OUT  
than a diode drop below GND to protect the load circuit.  
that of the V source. For example, the LTC3255 can  
IN  
Short-Circuit/Thermal Protection  
typically boost the current capability of a 4mA source to  
power a 7.4mA load continuously. See V Shunt Regula-  
IN  
The LTC3255 has built-in short-circuit current limiting as  
well as overtemperature protection. During short-circuit  
conditions output current is automatically limited by the  
output current limit circuitry.  
tor in the Operation section for V compliance and other  
IN  
operating information.  
3255f  
8
For more information www.linear.com/LTC3255  
LTC3255  
APPLICATIONS INFORMATION  
The LTC3255 has thermal protection that will shut  
down the device if the junction temperature exceeds the  
overtemperature threshold (typically 175°C). Thermal  
shutdown is included to protect the IC in cases of exces-  
sivelyhighambienttemperatures, or incases ofexcessive  
power dissipation inside the IC. The charge transfer will  
reactivate once the junction temperature drops back to  
approximately 165°C.  
2:1 Step-Down Charge Pump Operation  
In 2:1 step-down mode, charge transfer from V to V  
IN  
OUT  
happens in two phases. On the first phase, the flying ca-  
pacitor (C ) is connected between V and V . On this  
FLY  
IN  
OUT  
phase C is charged up and current is delivered to V  
.
FLY  
OUT  
and  
Onthesecondphase, C isconnectedbetweenV  
FLY  
OUT  
GND. The charge stored on C during the first phase is  
FLY  
transferred to V  
on the second phase. When in 2:1  
OUT  
When the thermal protection is active, the junction tem-  
perature is beyond the specified operating range. Thermal  
protection is intended for momentary overload conditions  
outsidenormaloperation.Continuousoperationabovethe  
specified maximum operating junction temperature may  
impair device reliability.  
step-down mode, the input current will be approximately  
half of the total output current. The efficiency (η) and chip  
power dissipation (P ) in 2:1 mode are approximately:  
D
POUT VOUT •IOUT 2VOUT  
η =  
=
=
1
P
V
IN  
IN  
V • I  
IN  
OUT  
2
V
2
Programming the Output Voltage (FB Pin)  
IN  
P =  
– V  
I
D
OUT  
OUT   
The LTC3255 output voltage is set by connecting its FB  
pin to a resistor divider between V  
in Figure 1.  
and GND as shown  
OUT  
1:1 Step-Down Charge Pump Operation  
1:1 step-down mode is similar to how a linear regulator  
works.ChargeisdelivereddirectlyfromV toV through  
The desired adjustable output voltage is programmed by  
solving the following equation for R and R :  
IN  
OUT  
A
B
most of the internal oscillator period. The charge transfer  
is briefly interrupted at the end of the period. When in 1:1  
step-down mode the input current will be approximately  
equal to the total output current. Thus efficiency (η) and  
RA VOUT  
=
–1  
RB 1.2V  
Select a value for R in the range of 20k to 2M and solve  
B
chippowerdissipation(P )in1:1modeareapproximately:  
D
for R . Note that the resistor divider current adds to the  
A
POUT VOUT •IOUT VOUT  
total no-load operating current. Thus a larger value for R  
B
η =  
=
=
will result in lower operating current.  
P
V •I  
V
IN  
IN  
IN  
OUT  
P = V – V  
I
(
)
D
IN  
OUT OUT  
R
R
A
B
V
V
=
1.2V 1 +  
OUT  
LTC3255  
FB  
OUT  
(
)
R
R
A
B
C
OUT  
GND  
3255 F01  
Figure 1. Setting the Output Voltage  
3255f  
9
For more information www.linear.com/LTC3255  
LTC3255  
APPLICATIONS INFORMATION  
Power Good Output Operation (PGOOD)  
where I is the time-averaged current being fed into V  
IN  
IN  
by the current loop, V  
is the output voltage, and I  
OUT  
OUT  
TheLTC3255includesanopen-drainpowergood(PGOOD)  
output pin. If the chip is in shutdown or undervoltage  
lockout, or if the FB pin voltage is less than 90% (typi-  
cal) of its regulation voltage, PGOOD is low impedance  
is the output load current. Notice that the largest power  
dissipation occurs when output load current is zero. This  
is because any power fed into V must be dissipated in  
IN  
either the load or the LTC3255. If the load is not drawing  
any current, then the LTC3255 must dissipate all of the  
input power.  
to ground. PGOOD becomes high impedance when V  
OUT  
rises to 94% (typical) of its regulation voltage. PGOOD  
stays high impedance until V is shut down or drops  
OUT  
below the PGOOD falling threshold (90% typical). A pull-  
When the shunt regulator is enabled, the LTC3255 charge  
pump is locked in 2:1 mode. To achieve output regulation,  
the input current to the part must have sufficient voltage  
up resistor can be inserted between PGOOD and V to  
OUT  
signal a valid power good condition. The use of a large  
value pull-up resistor on PGOOD and a capacitor placed  
betweenPGOODandGNDcanbeusedtodelaythePGOOD  
signal if desired.  
complianceabovetwiceV .ThegraphinFigure2shows  
OUT  
the typical minimum compliance required at the V pin  
IN  
for correct operation. For V  
≤ 5.5V, a V compliance  
OUT  
IN  
of 2V  
+ 3.5V is recommended. For V  
> 5.5V, a V  
OUT IN  
OUT  
V Shunt Regulator Operation  
IN  
compliance of 2V  
+ 4V is recommended.  
OUT  
TheV shuntregulatorfeatureoftheLTC3255isintended  
IN  
3.5  
I
= 20mA  
VIN  
for applications where V is current-fed, such as in 4mA  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
IN  
to 20mA current loops. A circuit powered by a current  
loop must limit the voltage drop it presents to the loop to  
avoid exceeding the loop compliance, which would break  
thecurrentloop.TheLTC3255’sV shuntregulatormoni-  
IN  
tors V and V , drawing V current as necessary to  
IN  
OUT  
IN  
keep V from rising much beyond 3V above twice V  
.
IN  
OUT  
V
V
V
V
= 2.5V  
OUT  
OUT  
OUT  
OUT  
= 3.3V  
= 5V  
The shunt regulator is enabled by connecting the SHUNT  
pin to the BIAS pin in the circuit board layout. The shunt  
is disabled by connecting the SHUNT pin to GND.  
= 12V  
–60  
0
30  
60  
90 120 150  
–30  
TEMPERATURE (°C)  
3255 F02  
The shunt regulator dissipates power which must be ac-  
counted for in thermal budgeting. Total power dissipation  
Figure 2. Typical Minimum VIN – 2 • VOUT Compliance Required  
for Shunt Mode Operation  
(P  
) in the LTC3255 with shunt regulator enabled is  
DSHUNT  
equal to the input power minus the output power of the  
LTC3255, or approximately:  
PD(SHUNT) = P –P  
IN  
OUT  
= V •I – VOUT •IOUT  
IN IN  
2•V + 2V •I VOUT •IOUT  
(
)
IN  
OUT  
3255f  
10  
For more information www.linear.com/LTC3255  
LTC3255  
APPLICATIONS INFORMATION  
Flying Capacitor Selection  
V
OUT  
Ripple and Capacitor Selection  
The flying capacitor should always be a ceramic type.  
Polarizedcapacitorssuchastantalumoraluminumelectro-  
lytics are not recommended. The flying capacitor controls  
the strength of the charge pump. In order to achieve the  
rated output current, it is necessary for the flying capaci-  
tor to have at least 0.4μF of capacitance over operating  
temperature with a bias voltage equal to the programmed  
The type and value of capacitors used with the LTC3255  
determine several important parameters such as output  
ripple and charge pump strength. The value of C  
OUT  
directly controls the amount of output ripple for a given  
load current. Increasing the size of C  
output ripple.  
will reduce the  
OUT  
To reduce output noise and ripple, it is suggested that a  
low ESR (equivalent series resistance < 0.1Ω) ceramic  
V
(see Ceramic Capacitor Selection Guidelines). The  
OUT  
voltage rating of the ceramic capacitor should be V  
1V or greater.  
+
OUT  
capacitor (10μF or greater) be used for C . Ceramic  
OUT  
capacitors typically have exceptionally low ESR which,  
combined with a tight board layout, should yield excellent  
performance. Tantalum and aluminum capacitors can be  
used in parallel with a ceramic capacitor to increase the  
total capacitance but are not recommended to be used  
alone because of their high ESR.  
Ceramic Capacitor Selection Guidelines  
Capacitors of different materials lose their capacitance  
with higher temperature and voltage at different rates.  
For example, a ceramic capacitor made of X5R or X7R  
material will retain most of its capacitance from –40°C  
to 85°C, whereas a Z5U or Y5V style capacitor will lose  
considerable capacitance over that range (60% to 80%  
loss typical). Z5U and Y5V capacitors may also have a  
very strong voltage coefficient, causing them to lose an  
additional60%ormoreoftheircapacitancewhentherated  
voltage is applied. Therefore, when comparing different  
capacitors, it is often more appropriate to compare the  
amount of achievable capacitance for a given case size  
ratherthandiscussingthespecifiedcapacitancevalue.For  
example, over rated voltage and temperature conditions,  
a 4.7μF, 10V, Y5V ceramic capacitor in an 0805 case may  
not provide any more capacitance than a 1μF, 10V, X5R  
or X7R available in the same 0805 case. In fact, over bias  
and temperature range, the 1μF, 10V, X5R or X7R will  
provide more capacitance than the 4.7μF, 10V, Y5V. The  
capacitor manufacturer’s data sheet should be consulted  
to determine what value of capacitor is needed to ensure  
minimum capacitance values are met over operating  
temperature and bias voltage. Table 1 is a list of ceramic  
capacitor manufacturers in alphabetical order:  
V Capacitor Selection  
IN  
The total amount and type of capacitance necessary for  
input bypassing is very dependent on the impedance of  
the input power source as well as existing bypassing al-  
ready on the V node. For optimal input noise and ripple  
IN  
reduction, it is recommended that a low ESR ceramic  
capacitor be used for C bypassing. Low ESR will reduce  
IN  
the voltage steps caused by changing input current, while  
the absolute capacitor value will determine the level of  
ripple. An electrolytic or tantalum capacitor may be used  
in parallel with the ceramic capacitor on C to increase  
IN  
the total capacitance, but due to the higher ESR, it is not  
recommendedthatanelectrolyticortantalumcapacitorbe  
used alone for input bypassing. The LTC3255 will operate  
withcapacitorslessthan1μF,butdependingonthesource  
impedance, input noise can feed through to the output  
causing degraded performance. For best performance,  
1μF or greater total capacitance is suggested for C .  
IN  
3255f  
11  
For more information www.linear.com/LTC3255  
LTC3255  
APPLICATIONS INFORMATION  
Table 1  
largegroundplaneunderthedevicecanreducethethermal  
resistanceofthepackageandPCboardconsiderably.Poor  
board layout and failure to connect the die paddle (Pin  
11) to a large ground plane can result in thermal junction  
to ambient impedance well in excess of 40°C/W (MSE  
package) or in excess of 43°C/W (DD package). Thermal  
junction to ambient impedance is specified per JEDEC  
standard JESD 51-5.  
CERAMIC CAPACITOR MANUFACTURER WEBSITE  
AVX  
www.avxcorp.com  
www.kemet.com  
www.murata.com  
www.t-yuden.com  
www.tdk.com  
Kemet  
Murata  
Taiyo Yuden  
TDK  
Layout Considerations  
Because of the wide input operating range it is possible to  
exceed the specified operating junction temperature and  
even reach thermal shutdown. It is the responsibility of  
the user of the LTC3255 to calculate worst-case operat-  
ing conditions (temperature and power) to make sure  
the LTC3255’s specified operating junction temperature  
is not exceeded for extended periods of time. The 2:1  
Due to the high switching frequency and transient cur-  
rents produced by the LTC3255, careful board layout is  
necessary for optimal performance. A true ground plane  
and short connections to all capacitors will optimize  
performance, reduce noise and ensure proper regulation  
over all conditions.  
Step-Down, 1:1 Step-Down, and V Shunt Regulator  
IN  
When using the LTC3255 with an external resistor divider  
it is important to minimize any stray capacitance to the FB  
node. Stray capacitance from FB to C or C can degrade  
performance significantly and should be minimized and/  
or shielded if necessary.  
Operation sections provide equations for calculating the  
power dissipation (P ) in each mode.  
+
D
For example, if it is determined that the maximum power  
dissipation (P ) is 1.2W under normal operation, then  
D
the maximum junction to ambient temperature rise in the  
Thermal Management  
MSE package will be:  
The on chip power dissipation in the LTC3255 will cause  
the junction to ambient temperature to rise at a rate of  
40°C/W or more in the MSE package, or 43°C/W or more  
in the DD package. To reduce the maximum junction  
temperature, a good thermal connection to the PC board  
is recommended. Connecting the die paddle (Pin 11) to a  
Junction to Ambient = 1.2W • 40°C/W = 48°C  
Thus, the ambient temperature under this condition can  
not exceed 102°C if the junction temperature is to remain  
below150°C.Forambienttemperaturesexceedingroughly  
127°C, the device will cycle in and out of the thermal  
shutdown.  
3255f  
12  
For more information www.linear.com/LTC3255  
LTC3255  
TYPICAL APPLICATIONS  
Wide Input Range 5V Microcontroller Supply (with Power-On Reset Delay)  
1µF  
V
= 5V  
OUT  
+
C
C
INPUT  
6V TO 48V  
V
DD  
V
V
IN  
OUT  
EN  
LTC3255  
383k  
121k  
10µF  
1µF  
510k  
µCONTROLLER  
BIAS  
FB  
0.1µF  
RESET  
PGOOD  
SHUNT  
1µF  
GND  
GND  
3255 TA02  
7mA 5V Supply from 4mA to 20mA Current Loop  
1µF  
OUTPUT  
5V  
7mA  
+
C
C
+
V
V
IN  
OUT  
FB  
220k  
EN  
LTC3255  
383k  
121k  
10µF  
4mA TO 20mA INPUT  
13.5V COMPLIANCE  
1µF  
BIAS  
PGOOD  
PGOOD  
SHUNT  
GND  
0.1µF  
3255 TA03  
3255f  
13  
For more information www.linear.com/LTC3255  
LTC3255  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 ± 0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3255f  
14  
For more information www.linear.com/LTC3255  
LTC3255  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MSE Package  
10-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1664 Rev I)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.88  
(.074)  
1.88 ±0.102  
(.074 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
1
0.29  
REF  
1.68  
(.066)  
0.05 REF  
5.10  
(.201)  
MIN  
1.68 ±0.102  
3.20 – 3.45  
DETAIL “B”  
(.066 ±.004) (.126 – .136)  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
10  
NO MEASUREMENT PURPOSE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ±.0015)  
TYP  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 3)  
0.497 ±0.076  
(.0196 ±.003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
4.90 ±0.152  
(.193 ±.006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0213 REV I  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD  
SHALL NOT EXCEED 0.254mm (.010") PER SIDE.  
3255f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
15  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC3255  
TYPICAL APPLICATION  
Wide Input Range 12V Supply  
1µF  
OUTPUT  
12V  
50mA  
+
C
C
INPUT  
13V TO 48V  
V
V
IN  
OUT  
FB  
220k  
EN  
LTC3255  
1.1M  
121k  
10µF  
1µF  
BIAS  
0.1µF  
PGOOD  
PGOOD  
SHUNT  
GND  
3255 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1751-3.3/LTC1751-5  
100mA, 800kHz Regulated Doubler  
V : 2V to 5V, V  
= 3.3V/5V, I = 20μA, I < 2μA,  
OUT(MAX) Q SD  
IN  
MS8 Package  
LTC1983-3/LTC1983-5  
LTC3200-5  
100mA, 900kHz Regulated Inverter  
V : 3.3V to 5.5V, V  
= –3V/–5V, I = 25μA, I < 2μA,  
Q SD  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
ThinSOT™ Package  
100mA, 2MHz Low Noise, Doubler/White LED Driver  
V : 2.7V to 4.5V, V  
= 5V, I = 3.5mA, I < 1μA,  
Q SD  
IN  
ThinSOT Package  
LTC3202  
125mA, 1.5MHz Low Noise, Fractional White LED Driver V : 2.7V to 4.5V, V  
= 5.5V, I = 2.5mA, I < 1μA,  
Q SD  
IN  
DFN, MS Packages  
LTC3204-3.3/LTC3204B-3.3  
LTC3204-5/LTC3204B-5  
V : 1.8V to 4.5V (LTC3204B-3.3), 2.7V to 5.5V (LTC3204B-5),  
Low Noise, Regulated Charge Pumps in (2mm × 2mm)  
DFN Package  
IN  
I = 48μA, LTC3204B Version without Burst Mode Operation,  
Q
6-Lead (2mm × 2mm) DFN Package  
LTC3440  
LTC3441  
LTC3443  
600mA (I ) 2MHz Synchronous Buck-Boost DC/DC  
95% Efficiency, V : 2.5V to 5.5V, V  
= 2.5V, I = 25μA,  
Q
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
Converter  
I
≤ 1μA, 10-Lead MS Package  
SD  
High Current Micropower 1MHz Synchronous  
Buck-Boost DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V  
= 2.5V, I = 25μA,  
Q
IN  
I
≤ 1μA, DFN Package  
SD  
High Current Micropower 600kHz Synchronous  
Buck-Boost DC/DC Converter  
96% Efficiency, V : 2.4V to 5.5V, V  
= 2.4V, I = 28μA,  
Q
IN  
I
< 1μA, DFN Package  
SD  
LTC3240-3.3/  
LTC3240-2.5  
3.3V/2.5V Step-Up/Step-Down Charge Pump DC/DC  
Converter  
V : 1.8V to 5.5V, V  
= 3.3V/2.5V, I = 65μA, I < 1μA,  
OUT(MAX) Q SD  
IN  
(2mm × 2mm) DFN Package  
LTC3245  
Wide V Range Low Noise 250mA Buck-Boost  
V : 2.7V to 38V, V  
= 5V, I = 20µA, I = 4µA,  
IN  
IN  
OUT(MAX) Q SD  
Charge Pump  
12-Lead MS and (3mm × 4mm) DFN Packages  
LTC3260  
Low Noise Dual Supply Inverting Charge Pump  
Inverting Charge Pump With Integrated Dual Polarity 50mA LDO  
Post-Regulated Outputs. V : 4.5V to 32V, Charge Pump V  
:
IN  
OUT  
–0.94 • V , 100mA  
IN  
LTC3261  
High Voltage, Low Quiescent Current Inverting  
Charge Pump  
V : 4.5V to 32V, V  
= –V , I = 100mA, MSOP-12 Package  
IN OUT  
IN  
OUT  
3255f  
LT 0813 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC3255  
LINEAR TECHNOLOGY CORPORATION 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY