LTC3388IDD-3#PBF [Linear]

LTC3388 - 20V High Efficiency Nanopower Step-Down Regulator; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C;
LTC3388IDD-3#PBF
型号: LTC3388IDD-3#PBF
厂家: Linear    Linear
描述:

LTC3388 - 20V High Efficiency Nanopower Step-Down Regulator; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C

开关 光电二极管 输出元件
文件: 总22页 (文件大小:364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3388-1/LTC3388-3  
20V High Efficiency  
Nanopower  
Step-Down Regulator  
FEATURES  
DESCRIPTION  
TheLTC®3388-1/LTC3388-3arehighefficiencystep-down  
DC/DCconverterswithinternalhighsideandsynchronous  
powerswitchesthatdrawonly720nAtypicalDCsupplycur-  
rentatnoloadwhilemaintainingoutputvoltageregulation.  
n
720nA Input I in Regulation (No Load), V = 4V  
Q
IN  
n
n
n
n
n
820nA Input I in Regulation (No Load), V = 20V  
Q
IN  
400nA Input I in UVLO  
Q
2.7V to 20V Input Operating Range  
Up to 50mA of Output Current  
Pin Selectable Output Voltages:  
Capableofsupplying50mAofloadcurrent,theLTC3388-1/  
LTC3388-3 also incorporate an accurate undervoltage  
lockout (UVLO) feature to disable the converter and main-  
tain a low quiescent current state when the input voltage  
fallsbelow2.3V. Inregulation, theLTC3388-1/LTC3388-3  
enter a sleep state in which both input and output quies-  
cent currents are minimal. The buck converter turns on  
and off as needed to maintain regulation. An additional  
standby mode disables buck switching while the output is  
in regulation for short duration loads requiring low ripple.  
n
1.2V, 1.5V, 1.8V, 2.5V (LTC3388-1)  
2.8V, 3.0V, 3.3V, 5.0V (LTC3388-3)  
High Efficiency Hysteretic Synchronous  
DC/DC Conversion  
Standby Mode Disables Buck Switching  
n
n
n
n
Available in 10-Lead MSE and 3mm × 3mm  
DFN Packages  
APPLICATIONS  
Output voltages of 1.2V, 1.5V, 1.8V, 2.5V (LTC3388-1)  
and2.8V,3.0V,3.3V,5.0V(LTC3388-3)arepinselectable.  
n
n
n
n
Keep Alive Power for Portable Products  
Industrial Control Supplies  
TheLTC3388-1/LTC3388-3canoperatewithV upto20V  
IN  
while the no load quiescent current remains below 1µA.  
L, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
Distributed Power Systems  
Battery-Operated Devices  
TYPICAL APPLICATION  
Efficiency vs Load Current  
50mA Step-Down Converter  
100  
V
= 1.8V, L = 100µH  
OUT  
2.7V TO 20V  
V
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
IN  
1µF  
6V  
LTC3388-1/  
LTC3388-3  
100µH  
SW  
OUT  
V
OUT  
CAP  
2.2µF  
25V  
47µF  
6V  
V
V
IN2  
PGOOD  
D0, D1  
EN  
4.7µF  
6V  
2
OUTPUT  
VOLTAGE  
SELECT  
STBY  
GND  
338813 TA01a  
V
IN  
V
IN  
V
IN  
= 3.0V  
= 10V  
= 20V  
1µ  
10µ  
100µ  
1m  
10m  
LOAD CURRENT (A)  
338813 TA01b  
338813fa  
1
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
V ............................................................. –0.3V to 22V  
I
.......................................................................210mA  
IN  
SW  
D0, D1..............–0.3V to [Lesser of (V + 0.3V) or 6V]  
Operating Junction Temperature Range  
IN2  
CAP......................[Higher of –0.3V or (V – 6V)] to V  
(Notes 2, 3)............................................ –40°C to 125°C  
Storage Temperature Range .................. –65°C to 125°C  
Lead Temperature (Soldering, 10 sec)  
IN  
IN  
V
, V  
..........–0.3V to [Lesser of (V + 0.3V) or 6V]  
IN2 OUT IN  
EN, STBY ..................................................... –0.3V to 6V  
PGOOD......................................................... –0.3V to 6V  
MSE Only..............................................................300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
EN  
STBY  
CAP  
1
2
3
4
5
10 PGOOD  
EN  
STBY  
CAP  
IN  
SW  
1
2
3
4
5
10 PGOOD  
9
8
7
6
D0  
D1  
9
8
7
6
D0  
D1  
11  
11  
GND  
GND  
V
V
V
IN2  
OUT  
V
IN  
V
V
IN2  
SW  
OUT  
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
DD PACKAGE  
T
JMAX  
= 125°C, θ = 45°C/W, θ = 10°C/W  
JA JC  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
10-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 125°C, θ = 43°C/W, θ = 7.5°C/W  
JA JC  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3388EDD-1#PBF  
LTC3388IDD-1#PBF  
LTC3388EMSE-1#PBF  
LTC3388IMSE-1#PBF  
LTC3388EDD-3#PBF  
LTC3388IDD-3#PBF  
LTC3388EMSE-3#PBF  
LTC3388IMSE-3#PBF  
TAPE AND REEL  
PART MARKING*  
LFWN  
PACKAGE DESCRIPTION  
10-Lead (3mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 125°C  
LTC3388EDD-1#TRPBF  
LTC3388IDD-1#TRPBF  
LFWN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LTC3388EMSE-1#TRPBF LTFWM  
LTC3388IMSE-1#TRPBF LTFWM  
10-Lead Plastic MSOP  
LTC3388EDD-3#TRPBF  
LTC3388IDD-3#TRPBF  
LFWQ  
LFWQ  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead Plastic MSOP  
LTC3388EMSE-3#TRPBF LTFWP  
LTC3388IMSE-3#TRPBF LTFWP  
10-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
338813fa  
2
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are for TA = 25°C (Note 2). Unless otherwise noted, VIN = 5.5V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
IN  
Input Voltage Range  
2.7  
20  
V
I
Q
V
IN  
Quiescent Current When Enabled  
UVLO  
Sleep  
Sleep  
Active  
V
V
V
= 2V  
400  
720  
820  
150  
600  
1100  
1200  
250  
nA  
nA  
nA  
µA  
IN  
IN  
IN  
= 4V  
= 20V  
= 0A (Note 4)  
I
SW  
I
I
V
Quiescent Current Enabled, in Standby  
Q,STBY  
IN  
Sleeping  
V
V
= 4V  
= 4V  
720  
1100  
3000  
nA  
nA  
IN  
IN  
Not Sleeping  
2000  
V
V
Quiescent Current When Disabled  
Undervoltage Lockout Threshold  
V
IN  
V
IN  
= 4V  
= 20V  
520  
620  
800  
900  
nA  
nA  
Q,SD  
IN  
IN  
l
l
V
V
V
IN  
V
IN  
Rising  
Falling  
2.5  
2.3  
2.65  
V
V
UVLO  
2.15  
Regulated Output Voltage (LTC3388-1)  
1.2V Output Selected; D1 = 0, D0 = 0  
Sleep Threshold  
OUT  
l
l
1.208  
1.192  
1.260  
1.560  
1.863  
2.600  
V
V
Wake-Up Threshold  
1.140  
1.440  
1.737  
2.400  
1.5V Output Selected; D1 = 0, D0 = 1  
Sleep Threshold  
l
l
1.508  
1.492  
V
V
Wake-Up Threshold  
1.8V Output Selected; D1 = 1, D0 = 0  
Sleep Threshold  
l
l
1.808  
1.792  
V
V
Wake-Up Threshold  
2.5V Output Selected; D1 = 1, D0 = 1  
Sleep Threshold  
l
l
2.508  
2.492  
V
V
Wake-Up Threshold  
V
Regulated Output Voltage (LTC3388-3)  
2.8V Output Selected; D1 = 0, D0 = 0  
Sleep Threshold  
OUT  
l
l
2.816  
2.784  
2.912  
3.105  
3.399  
5.180  
V
V
Wake-Up Threshold  
2.688  
2.895  
3.201  
3.0V Output Selected; D1 = 0, D0 = 1  
Sleep Threshold  
l
l
3.016  
2.984  
V
V
Wake-Up Threshold  
3.3V Output Selected; D1 = 1, D0 = 0  
Sleep Threshold  
l
l
3.316  
3.284  
V
V
Wake-Up Threshold  
5.0V Output Selected; D1 = 1, D0 = 1  
Sleep Threshold  
l
l
5.016  
4.984  
V
V
Wake-Up Threshold  
4.820  
83  
PGOOD Threshold  
As a Percentage of the Selected V  
100µA Into Pin  
92  
%
V
OUT  
l
V
PGOOD Output Low Voltage  
Output Quiescent Current  
0.2  
OL, PGOOD  
I
LTC3388-1: V  
LTC3388-3: V  
= 2.5V  
= 5.0V  
60  
120  
nA  
nA  
VOUT  
OUT  
OUT  
l
l
I
I
PMOS Switch Peak Current  
Available Output Current  
PMOS Switch On-Resistance  
NMOS Switch On-Resistance  
Maximum Duty Cycle  
100  
50  
150  
210  
mA  
mA  
Ω
PEAK  
OUT  
R
R
1.1  
1.3  
P, BUCK  
Ω
N, BUCK  
l
100  
%
338813fa  
3
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are for TA = 25°C (Note 2). Unless otherwise noted, VIN = 5.5V.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
V
V
D0/D1/EN/STBY Input High Voltage  
D0/D1 Input Low Voltage  
1.2  
IH  
0.4  
150  
10  
V
IL(D0, D1)  
IL(EN,STBY)  
EN/STBY Input Low Voltage  
D0/D1/EN/STBY Input High Current  
D0/D1/EN/STBY Input Low Current  
mV  
nA  
nA  
nA  
nA  
I
IH  
I
IL  
10  
Additional I at V with EN at V  
V
V
= 1.2V, V = 4V  
40  
40  
Q
IN  
IH(MIN)  
EN  
IN  
Additional I at V with STBY at V  
= 1.2V, V = 4V  
IN  
Q
IN  
IH(MIN)  
STBY  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
over the –40°C to 125°C operating junction temperature range. Note that  
the maximum ambient temperature consistent with these specifications  
is determined by specific operating conditions in conjunction with board  
layout, the rated package thermal impedance and other environmental  
factors.  
Note 2: The LTC3388-1/LTC3388-3 are tested under pulsed load  
conditions such that T ≈ T . The LTC3388E-1/LTC3388E-3 are  
Note 3: The junction temperature (T , in °C) is calculated from the ambient  
temperature (T , in °C) and power dissipation (PD, in Watts) according  
A
J
A
J
guaranteed to meet specifications from 0°C to 85°C junction temperature.  
Specifications over the –40°C to 125°C operating junction temperature  
range are assured by design, characterization and correlation with  
statistical process controls. The LTC3388I-1/LTC3388I-3 are guaranteed  
to the formula: T = T + (P θ ), where θ (in °C/W) is the package  
J
A
D
JA  
JA  
thermal impedance.  
Note 4: Dynamic supply current is higher due to gate charge being  
delivered at the switching frequency.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input IQ vs VIN, UVLO  
Input IQ vs VIN, No Load  
Input IQ vs VIN, EN Low  
1600  
1400  
1200  
1000  
800  
800  
700  
600  
500  
400  
300  
200  
100  
0
1200  
1000  
800  
600  
400  
200  
0
D1 = D0 = 0  
125°C  
125°C  
85°C  
125°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
25°C  
–40°C  
–40°C  
600  
400  
200  
2
4
6
8
10 12 14 16 18 20  
(V)  
0
0.5  
1
1.5  
(V)  
2
2.5  
0
2
4
6
8
10 12 14 16 18 20  
V (V)  
IN  
V
V
IN  
IN  
338813 G02  
338813 G01  
338813 G03  
338813fa  
4
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
TYPICAL PERFORMANCE CHARACTERISTICS  
R
P,BUCK/RN,BUCK  
UVLO vs Temperature  
IPEAK vs Temperature  
vs Temperature  
180  
170  
160  
150  
140  
130  
120  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
2.8  
2.6  
2.4  
2.2  
2.0  
NMOS  
PMOS  
UVLO RISING  
UVLO FALLING  
–50 –25  
0
25 50 75 100 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–50 –25  
0
25 50 75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
338813 G05  
338813 G06  
338813 G04  
1.2V Output vs Temperature  
(LTC3388-1)  
1.5V Output vs Temperature  
(LTC3388-1)  
Operating Waveforms  
1.24  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.42  
1.40  
1.38  
1.36  
1.34  
V
OUT  
SLEEP THRESHOLD  
SLEEP THRESHOLD  
50mV/DIV  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
1.06  
AC-COUPLED  
WAKE-UP THRESHOLD  
V
SW  
WAKE-UP THRESHOLD  
2V/DIV  
0V  
INDUCTOR  
CURRENT  
100mA/DIV  
PGOOD FALLING  
PGOOD FALLING  
0mA  
338813 G07  
5µs/DIV  
V
LOAD  
= 5.5V, V = 1.8V  
IN  
OUT  
I
= 20mA  
–50 –25  
0
25 50 75 100 125  
–50 –25  
0
25 50 75 100 125  
L = 22µH, C = 47µF  
OUT  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
338813 G08  
338813 G09  
1.8V Output vs Temperature  
(LTC3388-1)  
2.5V Output vs Temperature  
(LTC3388-1)  
2.8V Output vs Temperature  
(LTC3388-3)  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
1.85  
1.80  
1.75  
1.70  
1.65  
1.60  
SLEEP THRESHOLD  
SLEEP THRESHOLD  
SLEEP THRESHOLD  
WAKE-UP THRESHOLD  
WAKE-UP THRESHOLD  
WAKE-UP THRESHOLD  
PGOOD FALLING  
PGOOD FALLING  
PGOOD FALLING  
–50 –25  
0
25 50 75 100 125  
–50 –25  
0
25 50 75 100 125  
–50 –25  
0
25 50 75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
338813 G11  
338813 G12  
338813 G10  
338813fa  
5
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
TYPICAL PERFORMANCE CHARACTERISTICS  
3.0V Output vs Temperature  
(LTC3388-3)  
3.3V Output vs Temperature  
(LTC3388-3)  
5.0V Output vs Temperature  
(LTC3388-3)  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
2.95  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
SLEEP THRESHOLD  
SLEEP THRESHOLD  
SLEEP THRESHOLD  
WAKE-UP THRESHOLD  
WAKE-UP THRESHOLD  
WAKE-UP THRESHOLD  
PGOOD FALLING  
PGOOD FALLING  
PGOOD FALLING  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
338813 G13  
338813 G14  
338813 G15  
VOUT Load Regulation  
(LTC3388-1)  
VOUT Load Regulation  
(LTC3388-3)  
VOUT Line Regulation  
(LTC3388-1)  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
1.44  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
L = 22µH, I  
= 30mA, D1 = 0, D0 = 1  
V
= 5.5V, L = 22µH, C  
= 100µF,  
V
= 5.5V, L = 22µH, C  
= 100µF,  
OUT  
LOAD  
IN  
OUT  
IN  
D1 = 0, D0 = 1  
D1 = 1, D0 = 0  
4
6
8
10 12 14 16 18 20  
(V)  
1µ  
10µ  
100µ  
1m  
10m  
1µ  
10µ  
100µ  
1m  
10m  
V
IN  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
338813 G18  
338813 G16  
338813 G17  
VOUT Line Regulation  
(LTC3388-3)  
IVOUT vs Temperature (LTC3388-  
1)  
IVOUT vs Temperature (LTC3388-  
3)  
80  
70  
60  
50  
40  
30  
20  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
160  
140  
120  
100  
80  
L = 22µH, I  
= 30mA, D1 = 0, D0 = 1  
V
V
V
V
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
V
V
V
V
= 5.0V  
= 3.3V  
= 3.0V  
= 2.8V  
LOAD  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
60  
40  
–50 –25  
0
25  
50  
75 100 125  
4
6
8
10 12 14 16 18 20  
(V)  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
V
IN  
TEMPERATURE (°C)  
338813 G20  
338813 G19  
338813 G21  
338813fa  
6
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs ILOAD, L = 22µH  
(LTC3388-1)  
Efficiency vs ILOAD, L = 100µH  
(LTC3388-1)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN  
= 3.0V  
V
IN  
= 3.0V  
V
V
V
V
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
V
V
V
V
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
1µ  
10µ  
100µ  
1m  
10m  
1µ  
10µ  
100µ  
1m  
10m  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
338813 G22  
338813 G23  
Efficiency vs VIN for ILOAD = 50mA,  
L = 22µH (LTC3388-1)  
Efficiency vs VIN for ILOAD = 50mA,  
L = 100µH (LTC3388-1)  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
V
V
V
V
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
V
V
V
V
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
2
4
6
8
10 12 14 16 18 20  
(V)  
2
4
6
8
10 12 14 16 18 20  
(V)  
V
V
IN  
IN  
338813 G24  
338813 G25  
Efficiency vs VIN for VOUT = 1.8V,  
L = 22µH (LTC3388-1)  
Efficiency vs VIN for VOUT = 1.8V,  
L = 100µH (LTC3388-1)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
I
I
I
I
I
= 50mA  
= 100µA  
= 50µA  
= 30µA  
= 10µA  
I
I
I
I
I
= 50mA  
= 100µA  
= 50µA  
= 30µA  
= 10µA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
2
4
6
8
10 12 14 16 18 20  
(V)  
2
4
6
8
10 12 14 16 18 20  
(V)  
V
V
IN  
IN  
338813 G26  
338813 G27  
338813fa  
7
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs ILOAD, L = 22µH  
(LTC3388-3)  
Efficiency vs ILOAD, L = 100µH  
(LTC3388-3)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN  
= 6.0V  
V
IN  
= 6.0V  
V
V
V
V
= 5.0V  
= 3.3V  
= 3.0V  
= 2.8V  
V
V
V
V
= 5.0V  
= 3.3V  
= 3.0V  
= 2.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
1µ  
10µ  
100µ  
1m  
10m  
1µ  
10µ  
100µ  
1m  
10m  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
338813 G29  
338813 G28  
Efficiency vs VIN for ILOAD = 50mA,  
L = 100µH (LTC3388-3)  
Efficiency vs VIN for ILOAD = 50mA,  
L = 22µH (LTC3388-3)  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
V
V
V
V
= 5.0V  
= 3.3V  
= 3.0V  
= 2.8V  
V
V
V
V
= 5.0V  
= 3.3V  
= 3.0V  
= 2.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
4
6
8
10 12 14 16 18 20  
(V)  
4
6
8
10 12 14 16 18 20  
(V)  
V
IN  
V
IN  
338813 G31  
338813 G30  
Efficiency vs VIN for VOUT = 3.3V,  
L = 22µH (LTC3388-3)  
Efficiency vs VIN for VOUT = 3.3V,  
L = 100µH (LTC3388-3)  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
I
I
I
I
I
= 50mA  
= 100µA  
= 50µA  
= 30µA  
= 10µA  
I
I
I
I
I
= 50mA  
= 100µA  
= 50µA  
= 30µA  
= 10µA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
4
6
8
10 12 14 16 18 20  
4
6
8
10 12 14 16 18 20  
V
IN  
(V)  
V
IN  
(V)  
338813 G32  
338813 G33  
338813fa  
8
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
PIN FUNCTIONS  
EN (Pin 1): Enable Input. Logic level input referenced to  
V
(Pin 6): Sense pin used to monitor the output volt-  
OUT  
V
. A logic high on EN will enable the buck converter.  
age and adjust it through internal feedback.  
IN2  
Driving EN to V will result in no additional quiescent  
IN2  
V
(Pin 7): Internal low voltage rail to serve as gate drive  
IN2  
current on V . However, if EN is driven near V or V  
40nA of additional quiescent current can appear on V .  
IN  
IH  
IL  
IN  
for buck NMOS switch. Also serves as a logic high rail for  
output voltage select bits D0 and D1. A 4.7µF capacitor  
STBY (Pin 2): Standby Input. Logic level input referenced  
should be connected from V to GND. This pin is not  
IN2  
to V . A logic high on STBY will place the part in standby  
intended for use as an external system rail.  
IN2  
mode. Driving STBY to V will result in no additional  
IN2  
D1 (Pin 8): Output Voltage Select Bit. D1 should be tied  
quiescent current on V . However, if STBY is driven  
IN  
high to V or low to GND to select desired V  
(see  
IN2  
OUT  
near V or V 40nA of additional quiescent current can  
IH  
IL  
Table 1).  
appear on V .  
IN  
D0 (Pin 9): Output Voltage Select Bit. D0 should be tied  
CAP (Pin 3): Internal rail referenced to V to serve as gate  
IN  
high to V or low to GND to select desired V  
(see  
IN2  
OUT  
drive for buck PMOS switch. A 1µF capacitor should be  
Table 1).  
connected between CAP and V . This pin is not intended  
IN  
PGOOD (Pin 10): Power Good Open-Drain NMOS Output.  
The PGOOD pin is Hi-Z when V  
target value.  
for use as an external system rail.  
is above 92% of the  
OUT  
V
(Pin 4): Input Voltage. A 2.2µF or larger capacitor  
IN  
should be connected from V to GND.  
IN  
GND (Exposed Pad Pin 11): Ground. The exposed pad  
should be connected to a continuous ground plane on the  
second layer of the printed circuit board by several vias  
directly under the LTC3388-1/LTC3388-3.  
SW (Pin 5): Switch Pin for the Buck Switching Regulator.  
A 22µH or larger inductor should be connected from SW  
to V  
.
OUT  
338813fa  
9
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
BLOCK DIAGRAM  
4
V
IN  
INTERNAL RAIL  
GENERATION  
V
IN2  
3
5
7
CAP  
SW  
40nA  
UVLO  
1
EN  
V
IN2  
V
IN2  
BUCK  
CONTROL  
40nA  
GND  
11  
STBY  
2
SLEEP  
V
OUT  
6
BANDGAP  
REFERENCE  
8, 9  
D1, D0  
10  
PGOOD  
2
PGOOD  
+
REF  
338813 BD  
338813fa  
10  
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
OPERATION  
The LTC3388-1/LTC3388-3 is an ultralow quiescent  
current power supply designed to maintain a regulated  
output voltage by means of a nanopower high efficiency  
synchronous buck regulator.  
Buck Operation  
The buck regulator uses a hysteretic voltage algorithm  
to control the output through internal feedback from the  
V
sense pin. The buck converter charges an output  
OUT  
capacitorthroughaninductortoavalueslightlyhigherthan  
the regulation point. It does this by ramping the inductor  
currentupto150mAthroughaninternalPMOSswitchand  
then ramping it down to 0mA through an internal NMOS  
switch. This efficiently delivers energy to the output ca-  
Undervoltage Lockout (UVLO)  
When the voltage on V rises above the UVLO rising  
IN  
threshold the buck converter is enabled and charge is  
transferred from the input capacitor to the output ca-  
pacitor. If V falls below the UVLO falling threshold the  
pacitor. The ramp rate is determined by V , V , and the  
IN  
IN OUT  
part will re-enter UVLO. In UVLO the quiescent current is  
inductor value. When the buck brings the output voltage  
intoregulationtheconverterentersalowquiescentcurrent  
sleep state that monitors the output voltage with a sleep  
comparator. During this operating mode load current is  
provided by the buck output capacitor. When the output  
voltage falls below the regulation point the buck regulator  
wakes up and the cycle repeats. This hysteretic method  
of providing a regulated output reduces losses associated  
with FET switching and maintains an output at light loads.  
The buck delivers a minimum of 50mA of average load  
current when it is switching.  
approximately 400nA and the buck converter is disabled.  
Internal Rail Generation  
Two internal rails, CAP and V , are generated from V  
IN2  
IN  
and are used to drive the high side PMOS and low side  
NMOSofthebuckconverter,respectively.Additionallythe  
V
rail serves as logic high for EN, STBY, and output  
IN2  
voltage select bits D0 and D1. The V rail is regulated  
IN2  
at 4.6V above GND while the CAP rail is regulated at 4.8V  
below V . The V and CAP rails are not intended to be  
IN  
IN2  
used as external rails. Bypass capacitors are connected  
When the sleep comparator signals that the output has  
reached the sleep threshold the buck converter may be  
in the middle of a cycle with current still flowing through  
the inductor. Normally both synchronous switches would  
turn off and the current in the inductor would freewheel  
to zero through the NMOS body diode. The LTC3388-1/  
LTC3388-3 keeps the NMOS switch on during this time to  
prevent the conduction loss that would occur in the diode  
if the NMOS were off. If the PMOS is on when the sleep  
comparator trips, the NMOS will turn on immediately in  
order to ramp down the current. If the NMOS is on it will  
be kept on until the current reaches zero.  
to the CAP and V pins to serve as energy reservoirs for  
IN2  
driving the buck switches. When V is below 4.6V, V  
IN  
IN2  
is equal to V . CAP is at GND until V rises above 4.8V.  
IN  
IN  
Figure 1 shows the ideal V , V and CAP relationship.  
IN IN2  
18  
16  
14  
V
IN  
12  
10  
8
6
V
IN2  
Though the quiescent current when the buck is switching  
is much greater than the sleep quiescent current, it is still  
a small percentage of the average inductor current which  
results in high efficiency over most load conditions. The  
buck operates only when the output voltage discharges  
to the sleep falling threshold. Thus, the buck operating  
quiescentcurrentisaveragedwiththelowsleepquiescent  
current. This allows the converter to remain very efficient  
at loads as low as 10µA.  
4
2
CAP  
0
0
5
10  
15  
V
IN  
(V)  
338813 F01  
Figure 1. Ideal VIN, VIN2 and CAP Relationship  
338813fa  
11  
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
OPERATION  
Four selectable voltages are available by tying the output  
select bits, D0 and D1, to GND or V . Table 1 shows the  
fourD0/D1codesandtheircorrespondingoutputvoltages  
as well as the difference in output voltages between the  
LTC3388-1 and LTC3388-3.  
output is in regulation. The PGOOD pin will remain Hi-Z  
until V  
falls to 92% of the desired regulation voltage.  
IN2  
OUT  
Additionally, if PGOOD is high and V falls below the  
IN  
UVLO falling threshold, PGOOD will remain high until  
V
falls to 92% of the desired regulation point. This  
OUT  
allows output energy to be used even if the input is lost.  
Table 1. LTC3388-1/LTC3388-3 Output Voltage Selection  
Figure 2 shows the behavior for V  
= 1.8V and a 10µA  
OUT  
D1  
0
D0  
0
V
V
OUT  
Quiescent Current (I  
28nA/66nA  
)
VOUT  
OUT  
load. At t = 2s V becomes high impedance and is dis-  
IN  
1.2V/2.8V  
1.5V/3.0V  
1.8V/3.3V  
2.5V/5.0V  
charged by the quiescent current of the LTC3388-1 and  
0
1
36nA/72nA  
through servicing V . V crosses UVLO falling but  
OUT  
IN  
OUT  
1
0
43nA/78nA  
PGOOD remains high until V  
desired regulation point.  
decreases to 92% of the  
1
1
60nA/120nA  
The internal feedback network draws a small amount of  
current from V as listed in Table 1.  
This scenario is likely for cases in which the selected  
output voltage is below the UVLO falling threshold. If the  
input becomes high impedance and begins to fall it will  
be supported by the output through the body diode of  
the PMOS switch. For a high enough output voltage the  
OUT  
Dropout Operation  
When the input supply voltage decreases towards the  
output voltage, the rate of change of inductor current  
decreases, reducing the switching frequency of the cur-  
rent bursts. Further reduction in input supply voltage will  
eventually cause the PMOS to be turned on 100%, i.e.,  
DC. The output voltage will then be determined by the  
input voltage minus the voltage drop across the PMOS  
and the inductor.  
part will not necessarily enter UVLO while V  
remains  
OUT  
PGOOD.Thisisalwaystruefortheoutputvoltagesavailable  
on the LTC3388-3.  
The D0/D1 inputs can be switched while in regulation as  
showninFigure3. IfV  
isprogrammedtoavoltagewith  
OUT  
aPGOODfallingthresholdabovetheoldV , PGOODwill  
OUT  
transition low until the new regulation point is reached.  
When V  
is programmed to a lower voltage, PGOOD  
OUT  
Power Good Comparator  
will remain high through the transition.  
A power good comparator causes the PGOOD pin to  
go Hi-Z the first time the converter reaches the sleep  
The PGOOD pin is designed to drive a microprocessor or  
other chip I/O and is not intended to drive higher current  
loads such as an LED.  
threshold of the programmed V , signaling that the  
OUT  
6
3.5  
C
= 100µF, I  
= 50mA  
LOAD  
D1=D0=1  
C
IN  
= 22µF, C  
= 100µF, I  
= 10µA  
LOAD  
OUT  
OUT  
D1=D0=0  
D1=D0=0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
3
2
1
0
V
IN  
= UVLO FALLING  
V
IN  
V
OUT  
V
OUT  
PGOOD = LOGIC 1  
PGOOD  
6
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
8
10  
TIME (ms)  
TIME (sec)  
338813 F03  
338813 F02  
Figure 2. PGOOD Operation During Transition to UVLO  
Figure 3. PGOOD Operation During D0/D1 Transition  
338813fa  
12  
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
OPERATION  
Enable and Standby Modes  
Thesleepcomparatorhaslowerquiescentcurrentthanthe  
PGOODcomparatorandwhentheLTC3388-1/LTC3388-3  
is in sleep mode the PGOOD comparator is shut down and  
PGOOD is held high. The same occurs in standby mode.  
If the LTC3388-1/LTC3388-3 was in sleep before entering  
standbyitwillstayinsleepinstandby,savingthequiescent  
Two logic pins, EN and STBY, determine the operating  
mode of the LTC3388-1/LTC3388-3. When EN is high  
and STBY is low the synchronous buck converter is  
enabled and will regulate the output if the input voltage  
is above the programmed output voltage and above the  
UVLO threshold. If EN is low the buck converter circuitry  
is powered down to save quiescent current. The internal  
rail generation circuits are kept alive and the voltages at  
current of the PGOOD comparator. If V  
falls below the  
OUT  
sleep falling threshold the PGOOD comparator will be  
enabled. If V  
falls below the PGOOD falling threshold  
OUT  
the PGOOD pin will be pulled low.  
V
and CAP are maintained. When low, EN also shuts  
IN2  
down the PGOOD circuitry and pulls the PGOOD pin low.  
If EN is high and the input falls below the UVLO threshold,  
the buck converter is shut down.  
If STBY is driven high with EN low it will be ignored and  
the LTC3388-1/LTC3388-3 will remain shut down.  
If EN and STBY are driven high but near V or low but  
IH  
While enabled, the LTC3388-1/LTC3388-3 can be placed  
in standby mode by bringing STBY high. In standby mode  
the buck converter is disabled, eliminating the quiescent  
current used to run the buck circuitry. The PGOOD and  
sleep comparators are kept alive to maintain the state of  
the PGOOD pin.  
near V , additional quiescent current may appear on V .  
IL IN  
This additional quiescent current is typically 40nA and  
depends on V and temperature. Driving EN or STBY to  
IN  
0VorV willpreventadditionalquiescentcurrentonV .  
IN2  
IN  
Figure 4 shows V  
during a transition into and out of  
OUT  
standby.Whileinstandby,thebuckisoffandV  
isquiet.  
OUT  
V
OUT  
50mV/DIV  
AC-COUPLED  
STANDBY  
5V/DIV  
0V  
338813 F04  
500µs/DIV  
= 100µF  
V
= 5.5V,  
IN  
L = 22µH, C  
OUT  
STANDBY TRANSIENT  
Figure 4. LTC3388-3 Standby Transient,  
VOUT = 3.3V, ILOAD = 5mA  
338813fa  
13  
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
APPLICATIONS INFORMATION  
Introduction  
supply. Figure 5 shows this circuit and the typical values  
required to dampen the ringing. The RC resistor may be  
replaced by a single electrolytic capacitor that has an ESR  
equivalent to the needed series resistance of the network.  
See Application Note 88 for a complete discussion of this  
phenomenon.  
The basic LTC3388-1/LTC3388-3 application circuit is  
shownonthefrontpage.Externalcomponentsareselected  
basedontheperformancerequirementsoftheapplication.  
Input Capacitor Selection  
TheinputcapacitoratV shouldbeselectedtoadequately  
Output Capacitor Selection  
IN  
bypasstheLTC3388-1/LTC3388-3andfiltertheswitching  
The duration for which the regulator sleeps depends on  
the load current and the size of the output capacitor.  
The sleep time decreases as the load current increases  
and/or as the output capacitor decreases. The DC sleep  
currentpresentedbythebuckregulator. TheV capacitor  
IN  
should be rated to withstand the highest voltage ever  
present at V . It should be placed as close as possible  
IN  
to the LTC3388-1/LTC3388-3 to force the high frequency  
switchingcurrentintoatightlocallooptominimizeEMI. A  
2.2μF ceramic X7R or X5R capacitor should be adequate  
for bypassing.  
hysteresis window, V  
, is 8mV and 16mV around  
HYST  
the programmed output voltage on the LTC3388-1 and  
LTC3388-3 respectively. Ideally this means that the sleep  
time is determined by the following equation:  
Highripplecurrent,highvoltagerating,andlowESRmake  
ceramic capacitors ideal for switching regulator applica-  
tions. However, caremustbetakenwhenthesecapacitors  
areusedattheinputandoutput.Whenaceramiccapacitor  
is used at the input and the power is supplied by a wall  
adapter through long wires, a load step at the output can  
VHYST  
ILOAD  
t
SLEEP =COUT  
This is true for output capacitors on the order of 100μF  
or larger, but as the output capacitor decreases towards  
10μF delays in the internal sleep comparator along with  
the load current may result in the V  
past the 8mV/ 16mV thresholds. This will lengthen the  
sleep time and increase V  
10μF is not recommended as V  
to an undesirable level.  
induceringingattheinput, V . Asuddeninrushofcurrent  
voltage slewing  
IN  
OUT  
through the long wires can potentially cause a voltage  
spike at V large enough to damage the part.  
ripple. A capacitor less than  
IN  
OUT  
ripple could increase  
OUT  
For such applications with inductive source impedance,  
such as a long wire, a series RC network may be required  
in parallel with C to dampen the ringing of the input  
IN  
LTC3388-1/  
LTC3388-3  
L
IN  
V
IN  
LIN  
CIN  
338813 F05  
R =  
4 • C  
C
IN  
IN  
Figure 5. Series RC to Reduce VIN Ringing  
338813fa  
14  
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
APPLICATIONS INFORMATION  
If transient load currents above 50mA are required then a  
larger capacitor can be used at the output. This capacitor  
willbecontinuouslydischargedduringaloadconditionand  
a DC current rating greater than 200mA. The DCR of the  
inductor can have an impact on efficiency as it is a source  
of loss. Trade-offs between price, size, and DCR should be  
evaluated. Table 2 lists several inductors that work well  
with the LTC3388-1/LTC3388-3.  
the capacitor can be sized for an acceptable drop in V  
:
OUT  
tLOAD  
C
OUT = (ILOAD – IBUCK )  
VOUT+ – VOUT  
is the value of V when PGOOD goes high  
OUT  
Table 2. Recommended Inductors for LTC3388-1/LTC3388-3  
MAX  
DC  
MAX  
DCR  
(Ω)  
+
L
I
SIZE in mm  
(L × W × H)  
MANU-  
FACTURER  
Here V  
and V  
OUT  
INDUCTOR TYPE (µH) (mA)  
is the desired lower limit of V . I  
is the  
OUT  
OUT BUCK  
CDRH2D18/LDNP 22  
A997AS-220M 22  
300  
390  
700  
350  
0.320 3.2 × 3.2 × 2.0  
0.440 4.0 × 4.0 × 1.8  
0.190 4.9 × 4.9 × 3.0  
1.400 4.0 × 4.0 × 1.2  
0.250 7.0 × 7.0 × 4.5  
Sumida  
Toko  
average current being delivered from the buck converter,  
typically I /2.  
PEAK  
LPS5030-223MLC 22  
LPS4012-473MLC 47  
Coilcraft  
Coilcraft  
TDK  
A standard surface mount ceramic capacitor can be used  
for C , though some applications may be better suited  
OUT  
SLF7045T  
100 500  
to a low leakage aluminum electrolytic capacitor or a  
supercapacitor. These capacitors can be obtained from  
manufacturers such as Vishay, Illinois Capacitor, AVX,  
or CAP-XX.  
V
and CAP Capacitors  
IN2  
A 1μF capacitor should be connected between V and  
CAP and a 4.7μF capacitor should be connected between  
IN  
V
and GND. These capacitors hold up the internal rails  
IN2  
Inductor  
during buck switching and compensate the internal rail  
generation circuits. In applications where the input source  
is limited to less than 6V, the CAP pin can be tied to GND  
The buck is optimized to work with an inductor of at least  
22μH. This value represents a suitable trade-off between  
sizeandefficiencyfortypicalapplications.Alargerinductor  
will benefit high voltage applications by increasing the  
on-time of the PMOS switch and improving efficiency  
by reducing gate charge loss. Choose an inductor with  
and the V pin can be tied to V as shown in Figure 6.  
IN2  
IN  
This circuit does not require the capacitors on V and  
IN2  
CAP, saving components and allowing a lower voltage  
rating for the single V capacitor.  
IN  
EN  
EN  
LTC3388-1  
STBY  
STBY  
PGOOD  
PGOOD  
V
IN  
2.7V TO 5.5V  
V
IN2  
22µH  
V
OUT  
SW  
OUT  
CAP  
D1  
1.2V  
2.2µF  
6V  
V
10µF  
6V  
D0  
GND  
338813 F06  
Figure 6. Smallest Solution Size 1.2V  
Low Input Voltage Power Supply  
338813fa  
15  
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
APPLICATIONS INFORMATION  
Efficiency Considerations  
MOSFET switches. Each time the gate is switched  
from high to low to high again, a packet of charge, dQ,  
Theefficiencyofaswitchingregulatorisequaltotheoutput  
power divided by the input power times 100%. It is often  
useful to analyze individual losses to determine what is  
limiting the efficiency and which change would produce  
the most improvement. Efficiency can be expressed as:  
moves from V to ground. The resulting dQ/dt is the  
IN  
current out of V that is typically larger than the DC  
IN  
bias current. Of course, this switching current only  
appears when the buck is on and is important at high  
load currents. Gate charge loss can be reduced by in-  
creasing the inductor, thereby reducing the switching  
frequency when the buck is active.  
Efficiency = 100% – (η1 + η 2 + η 3 + ...)  
whereη1,η2,etc.aretheindividuallossesasapercentage  
of input power.  
2
3. I R losses are calculated from the resistances of the  
internal switches, R , and the external inductor DCR.  
SW  
Although all dissipative elements in the circuit produce  
losses, three main sources usually account for most of  
When switching, the average output current flowing  
through the inductor is “chopped” between the high  
sidePMOSswitchandthelowsideNMOSswitch.Thus,  
the series resistance looking back into the switch pin is  
a function of the top and bottom switch on-resistance  
the losses: 1) DC V operating current while active and  
IN  
2
in sleep, 2) MOSFET gate charge loss, and 3) I R losses.  
The V operating current dominates the efficiency loss  
IN  
at very low load currents whereas the gate charge and  
2
and the duty cycle (DC = V /V ) as follows:  
OUT IN  
I R loss dominates the efficiency loss at medium to high  
load currents.  
R
SW  
= (R )DC + (R )(1 – DC)  
P,BUCK N,BUCK  
1. The DC V current is the average of the quiescent  
Theon-resistanceforboththetopandbottomMOSFETs  
can be obtained from the curves in the Typical Perfor-  
IN  
supply currents, given in the electrical characteristics,  
in the active and sleep modes. This can be estimated  
with the following equation:  
2
mance Characteristics section. Thus, to obtain the I R  
losses, simply add R to the DCR and multiply the  
SW  
LOAD   
result by the square of the average output current:  
ILOAD  
I
I
IVIN(AVG)  
=
IQ(ACTIVE) + 1−  
I
Q(SLEEP)  
2
2
I R Loss = I (R + DCR)  
IBUCK  
O
SW  
BUCK
  
This loss term only occurs when the buck is operating  
and must be multiplied by the percentage of time the  
where I  
is the average current being delivered  
BUCK  
from the buck converter, typically I  
/2. For very  
PEAK  
buck is operating versus sleeping or I  
/I  
to see  
LOAD BUCK  
light loads I  
will dominate this loss term which  
Q(SLEEP)  
its overall effect.  
is why the extremely low quiescent current in sleep of  
the LTC3388-1/LTC3388-3 is critical.  
Otherlosses,includingC andC ESRdissipativelosses  
IN  
OUT  
and inductor core losses, generally account for less than  
2. Internal MOSFET gate charge currents result from  
switching the gate capacitance of the internal power  
2% of the total power loss.  
338813fa  
16  
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
APPLICATIONS INFORMATION  
Interfacing with a Microprocessor  
will cease and the output capacitor will support the load of  
the microprocessor and other circuitry. While in standby  
the output voltage will decrease as it’s loaded. The output  
capacitor should be sized to minimize the decline.  
The PGOOD, STBY, and EN pins can be useful when pow-  
ering a microprocessor from the LTC3388-1/LTC3388-3.  
ThePGOODsignalcanbeusedtoenableasleepingmicro-  
TheENpincanbeusedtoactivatetheLTC3388-1/LTC3388-3.  
For instance, in Figure 8 the LTC3388-1 is enabled by the  
PGOOD output of the LTC3588-1, a piezoelectric energy  
harvesting power supply, to create a 1.2V rail. The quies-  
cent current that the LTC3388-1 draws will appear at the  
input of the LTC3588-1, reduced by the conversion ratio  
oftheLTC3588-1buckconverter. BecausetheLTC3388-1  
is driven by a 3.3V supply no capacitors are needed for  
processororothercircuitrywhenV reachesregulation,  
OUT  
as shown in Figure 7. While active, a microprocessor may  
drawasmallloadwhenoperatingsensors,andthendrawa  
largeloadtotransmitdata.Figure7showstheLTC3388-1/  
LTC3388-3 responding smoothly to such a load step.  
The microprocessor or other circuitry may require a quiet  
supplyforperformingsomefunctions. TheSTBYpinallows  
the microprocessor to place the LTC3388-1/LTC3388-3  
intostandbymodewherethebuckconverterisinactive.Any  
ripple in the output voltage of the LTC3388-1/LTC3388-3  
the internal V and CAP rails.  
IN2  
2.7V TO 4.2V  
V
STBY  
STBY  
EN  
V
V
OUT  
IN  
20mV/DIV  
PGOOD  
T
X
IN2  
AC-COUPLED  
+
LTC3388-1  
MICROPROCESSOR  
1M  
EN  
22µH  
Li-ION  
SW  
OUT  
CORE  
GND  
D1  
10µF  
6V  
LOAD  
CURRENT  
25mA/DIV  
1.8V  
V
CAP  
D0  
47µF  
6V  
0mA  
GND  
338813 F07b  
250µs/DIV  
= 100µF  
338813 F07a  
V
= 5.5V  
IN  
L = 22µH, C  
OUT  
LOAD STEP BETWEEN 5mA AND 50mA  
Figure 7. 1.8V Step-Down Converter Powering a Microprocessor  
with a Wireless Transmitter and 45mA Load Step Response  
338813fa  
17  
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
APPLICATIONS INFORMATION  
MIDE V21BL  
PZ2  
PZ1  
PGOOD  
PGOOD  
LTC3388-1  
V
IN  
EN  
V
1µF  
6V  
LTC3588-1  
1M  
47µH  
IN2  
22µH  
1.2V  
SW  
OUT  
SW  
OUT  
CAP  
V
IN  
10µF  
25V  
3.3V  
V
V
V
IN2  
CAP  
D1  
D1  
D0  
10µF  
6V  
47µF  
6V  
4.7µF  
6V  
STBY  
D0  
GND  
GND  
338813 F07  
Figure 8. Piezoelectric Energy Harvester and 1.2V Secondary Rail  
338813fa  
18  
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 ± 0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
338813fa  
19  
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MSE Package  
10-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1664 Rev D)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.88  
(.074)  
1.88 ± 0.102  
0.889 ± 0.127  
1
0.29  
REF  
(.074 ± .004)  
(.035 ± .005)  
1.68  
(.066)  
0.05 REF  
5.23  
(.206)  
MIN  
1.68 ± 0.102 3.20 – 3.45  
(.066 ± .004) (.126 – .136)  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
10  
NO MEASUREMENT PURPOSE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
REF  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
1
2
3
4 5  
GAUGE PLANE  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 ± 0.0508  
(.004 ± .002)  
0.50  
(.0197)  
BSC  
MSOP (MSE) 0210 REV D  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD  
SHALL NOT EXCEED 0.254mm (.010") PER SIDE.  
338813fa  
20  
For more information www.linear.com/LTC3388  
LTC3388-1/LTC3388-3  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
08/15 Modified C  
Equation  
15  
OUT  
338813fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresentation  
that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LTC3388-1/LTC3388-3  
TYPICAL APPLICATION  
Piezoelectric Energy Harvester with Dual, 3.3V Outputs  
PZ2  
PZ1  
PGOOD  
V
IN  
1µF  
6V  
LTC3588-1  
22µH  
3.3V  
V
SW  
OUT  
CAP  
IN  
10µF  
25V  
1µF  
6V  
PGOOD  
LTC3388-3  
V
V
47µF  
6V  
IN2  
CAP  
D1  
D0  
22µH  
2.2µF  
10V  
*
4.7µF  
6V  
SW  
OUT  
V
IN2  
GND  
V
EN  
D1  
D0  
47µF  
6V  
4.7µF  
6V  
STBY  
GND  
–3.3V  
338813 TA02  
* EXPOSED PAD MUST BE ELECTRICALLY ISOLATED FROM  
SYSTEM GROUND AND CONNECTED TO THE –3.3V RAIL.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT1389  
Nanopower Precision Shunt Voltage Reference  
Nanopower Comparator with Reference  
800nA Operating Current, 1.25V/2.5V/4.096V  
LTC1540  
LT3009  
0.3µA I , Drives 0.01µF, Adjustable Hysteresis, 2V to 11V Input Range  
Q
3µA I , 20mA Low Dropout Linear Regulator  
Low 3µA I , 1.6V to 20V Range, 20mA Output Current  
Q
Q
LTC3588-1  
Piezoelectric Energy Harvesting Power Supply  
<1µA I in Regulation, 2.7V to 20V Input Range,  
Integrated Bridge Rectifier  
Q
LTC3588-2  
Piezoelectric Energy Harvesting Power Supply  
<1µA I in Regulation, UVLO Rising = 16V, UVLO Falling = 14V,  
Q
V
= 3.45V, 4.1V, 4.5V, 5.0V  
OUT  
LT3652  
LT3970  
LT3971  
LT3991  
LTC3631  
LTC3642  
Power Tracking 2A Battery Charger for Solar Power  
40V, 350mA Step-Down Regulator with 2.5µA I  
MPPT for Solar, 4.95V to 32V, Up to 2A Charge Current  
Integrated Boost and Catch Diodes, 4.2V to 40V Operating Range  
4.3V to 38V Operating Range, Low Ripple Burst Mode® Operation  
4.3V to 55V Operating Range, Low Ripple Burst Mode Operation  
4.5V to 45V Operating Range, Overvoltage Lockout Up to 60V  
4.5V to 45V Operating Range, Overvoltage Lockout Up to 60V  
Q
38V, 1.2A, 2MHz Step-Down Regulator with 2.8µA I  
Q
55V, 1.2A 2MHz Step-Down Regulator with 2.8µA I  
Q
45V, 100mA, Synchronous Step-Down Regulator with 12µA I  
Q
45V, 50mA, Synchronous Step-Down Regulator with 12µA I  
Q
338813fa  
LT 0815 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
LINEAR TECHNOLOGY CORPORATION 2010  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC3388  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY