LTC3400 [Linear]

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT; 600毫安, 1.2MHz的微功率同步升压转换器采用ThinSOT
LTC3400
型号: LTC3400
厂家: Linear    Linear
描述:

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT
600毫安, 1.2MHz的微功率同步升压转换器采用ThinSOT

转换器 升压转换器
文件: 总12页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3400/LTC3400B  
600mA, 1.2MHz Micropower  
Synchronous Boost Converter  
in ThinSOT  
U
FEATURES  
DESCRIPTIO  
Up to 92% Efficiency  
The LTC®3400/LTC3400B are synchronous, fixed fre-  
quency, step-up DC/DC converters delivering high effi-  
ciency in a 6-lead ThinSOT package. Capable of supplying  
3.3V at 100mA from a single AA cell input, the devices  
contain an internal NMOS switch and PMOS synchronous  
rectifier.  
Generates 3.3V at 100mA from a Single AA Cell  
Low Start-Up Voltage: 0.85V  
1.2MHz Fixed Frequency Switching  
Internal Synchronous Rectifier  
2.5V to 5V Output Range  
Automatic Burst Mode® Operation (LTC3400)  
A switching frequency of 1.2MHz minimizes solution  
footprint by allowing the use of tiny, low profile inductors  
and ceramic capacitors. The current mode PWM design is  
internally compensated, reducing external parts count.  
The LTC3400 features automatic shifting to power saving  
Burst Mode operation at light loads, while the LTC3400B  
features continuous switching at light loads. Antiringing  
control circuitry reduces EMI concerns by damping the  
inductor in discontinuous mode, and the devices feature  
low shutdown current of under 1µA.  
Continuous Switching at Light Loads (LTC3400B)  
Logic Controlled Shutdown (<1µA)  
Antiringing Control Minimizes EMI  
Tiny External Components  
Low Profile (1mm) ThinSOTTM Package  
U
APPLICATIO S  
Pagers  
MP3 Players  
Digital Cameras  
LCD Bias Supplies  
Bothdevicesareavailableinthelowprofile(1mm)ThinSOT  
package.  
, LTC, LT and Burst Mode are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
Handheld Instruments  
Wireless Handsets  
GPS Receivers  
U
TYPICAL APPLICATIO  
Efficiency  
L1  
4.7µH  
100  
V
= 2.4V  
IN  
1
+
90  
80  
SINGLE  
AA CELL  
C1  
SW  
4.7µF  
V
OUT  
6
4
5
3
3.3V  
V
IN  
V
OUT  
V
= 1.5V  
IN  
R1  
1.02M  
1%  
100mA  
LTC3400  
SHDN FB  
GND  
C2  
70  
60  
OFF  
ON  
4.7µF  
R2  
604k  
1%  
2
FIGURE 1 CIRCUIT  
WITH OPTIONAL SCHOTTKY DIODE  
(SEE APPLICATIONS INFORMATION)  
3400 F01  
50  
40  
C1, C2: TAIYO-YUDEN X5R EMK316BJ475ML  
L1: COILCRAFT DO160C-472  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
Figure 1. Single Cell to 3.3V Synchronous Boost Converter  
3400 F01a  
3400f  
1
LTC3400/LTC3400B  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
VIN Voltage ................................................. 0.3V to 6V  
SW Voltage ................................................. 0.3V to 6V  
SHDN, FB Voltage ....................................... 0.3V to 6V  
VOUT ........................................................... 0.3V to 6V  
Operating Temperature Range (Note 2) .. 30°C to 85°C  
Storage Temperature Range ................... 65°C to 125°  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
NUMBER  
SW 1  
GND 2  
FB 3  
6 V  
5 V  
IN  
LTC3400ES6  
LTC3400BES6  
OUT  
4 SHDN  
S6 PART MARKING  
S6 PACKAGE  
6-LEAD PLASTIC SOT-23  
LTWK  
LTUN  
TJMAX = 125°C, θJA = 256°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.2V, VOUT = 3.3V, unless otherwise specified.  
PARAMETER  
CONDITIONS  
I = 1mA  
LOAD  
MIN  
TYP  
0.85  
0.5  
MAX  
1
UNITS  
V
Minimum Start-Up Voltage  
Minimum Operating Voltage  
Output Voltage Adjust Range  
Feedback Voltage  
SHDN = V (Note 4)  
0.65  
5
V
IN  
2.5  
V
1.192  
1.23  
1
1.268  
V
Feedback Input Current  
V
V
V
= 1.25V (Note 3)  
nA  
µA  
µA  
µA  
µA  
µA  
FB  
Quiescent Current (Burst Mode Operation)  
Quiescent Current (Shutdown)  
Quiescent Current (Active)  
NMOS Switch Leakage  
= 1.4V (Note 5), LTC3400 Only  
19  
30  
1
FB  
= 0V, Not Including Switch Leakage  
0.01  
300  
0.1  
0.1  
SHDN  
Measured On V  
500  
5
OUT  
V
SW  
V
SW  
= 5V  
= 0V  
PMOS Switch Leakage  
5
NMOS Switch On Resistance  
V
OUT  
V
OUT  
= 3.3V  
= 5V  
0.35  
0.20  
PMOS Switch On Resistance  
V
OUT  
V
OUT  
= 3.3V  
= 5V  
0.45  
0.30  
NMOS Current Limit  
600  
80  
850  
3
mA  
mA  
ns  
Burst Mode Operation Current Threshold  
Current Limit Delay to Output  
Max Duty Cycle  
LTC3400 Only (Note 3)  
(Note 3)  
40  
87  
V
FB  
= 1.15V  
%
Switching Frequency  
0.95  
0.85  
1.2  
1.2  
1.5  
1.5  
MHz  
MHz  
SHDN Input High  
SHDN Input Low  
SHDN Input Current  
1
V
V
0.35  
1
V
SHDN  
= 5.5V  
0.01  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: Specification is guaranteed by design and not 100% tested in  
production.  
Note 2: The LTC3400E/LTC3400BE are guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the 30°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 4: Minimum V operation after start-up is only limited by the  
battery’s ability to provide the necessary power as it enters a deeply  
discharged state.  
IN  
Note 5: Burst Mode operation I is measured at V . Multiply this value  
Q
OUT  
by V /V to get the equivalent input (battery) current.  
OUT IN  
3400f  
2
LTC3400/LTC3400B  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Load Burst Mode Threshold  
Minimum Start-Up Voltage  
vs VIN  
vs Load Current  
VOUT vs Temperature  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
1.4  
FIGURE 1 CIRCUIT  
L = 4.7µH  
T
= 25°C  
A
I
= 10mA  
T
= 25°C  
O
A
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
20  
10  
0
V
OUT  
= 3.3V  
V
OUT  
= 5V  
–60  
0
30  
60  
90  
120  
0.1  
1
10  
100  
–30  
0.9  
1.5  
2.1  
2.7  
(V)  
3.3  
3.9  
4.5  
I
(mA) CURRENT SOURCE LOAD  
TEMPERATURE (°C)  
V
OUT  
IN  
3400 G02  
3400 G03  
3400 G01  
Normalized Oscillator Frequency  
vs Temperature  
No Load Battery Current vs VBATT  
SW Pin Antiringing Operation  
1000  
100  
10  
1.01  
1.00  
0.99  
0.98  
V
A
= 3.3V  
OUT  
T
= 25°C  
VSW  
1V/DIV  
0.97  
0.96  
0.95  
0V  
VIN = 1.3V  
100ns/DIV  
3400 G06  
VOUT = 3.3V  
IOUT = 10mA  
L = 6.8µH  
0.9 1.2 1.5  
3.0  
–50  
–30 –10  
10  
30  
50  
70  
90  
1.8 2.1 2.4  
2.7  
COUT = 4.7µF  
BATTERY VOLTAGE (V)  
TEMPERATURE (°C)  
3400 G04  
3400 G05  
SW Pin Fixed Frequency,  
Continuous Inductor Current  
Operation  
Fixed Frequency and Burst Mode  
Operation  
VOUT Transient Response  
VSW  
1V/DIV  
VOUT(AC)  
100mV/DIV  
VOUT(AC)  
100mV/DIV  
60mA  
IOUT  
100mA  
IOUT  
0V  
10µA  
40mA  
VIN = 1.3V  
100ns/DIV  
3400 G07  
V
IN = 1.3V  
10ms/DIV  
3400 G08  
V
IN = 1.3V  
100µs/DIV  
3400 G09  
VOUT = 3.3V  
IOUT = 50mA  
L = 6.8µH  
VOUT = 3.3V  
VOUT = 3.3V  
IOUT = 60mA TO 10µA  
L = 6.8µH  
COUT = 4.7µF  
IOUT = 40mA TO 100mA  
L = 6.8µH  
COUT = 4.7µF  
COUT = 4.7µF  
3400f  
3
LTC3400/LTC3400B  
U
U
U
PI FU CTIO S  
SW (Pin 1): Switch Pin. Connect inductor between SW  
and VIN. Optional Schottky diode is connected between  
SW and VOUT. Keep these PCB trace lengths as short and  
wide as possible to reduce EMI and voltage overshoot. If  
the inductor current falls to zero, or SHDN is low, an  
internal 100antiringing switch is connected from SW to  
VIN to minimize EMI.  
SHDN = Low: Shutdown, quiescent current <1µA.  
100connected between SW and VIN.  
Typically, SHDN should be connected to VIN through a 1M  
pull-up resistor.  
V
OUT (Pin 5): Output Voltage Sense Input and Drain of the  
Internal Synchronous Rectifier MOSFET. Bias is derived  
from VOUT. PCB trace length from VOUT to the output filter  
capacitor(s)shouldbeasshortandwideaspossible.VOUT  
is held at VIN – 0.6V in shutdown due to the body diode of  
the internal PMOS.  
GND (Pin 2): Signal and Power Ground. Provide a short  
directPCBpathbetweenGNDandthe()sideoftheoutput  
capacitor(s).  
FB (Pin 3): Feedback Input to the gm Error Amplifier.  
Connect resistor divider tap to this pin. The output voltage  
can be adjusted from 2.5V to 5V by:  
VIN (Pin 6): Battery Input Voltage. The device gets its  
start-up bias from VIN. Once VOUT exceeds VIN, bias  
comes from VOUT. Thus, once started, operation is com-  
pletelyindependentfromVIN.Operationisonlylimitedby  
the output power level and the battery’s internal series  
resistance.  
VOUT = 1.23V • [1 + (R1/R2)]  
SHDN (Pin 4): Logic Controlled Shutdown Input.  
SHDN = High: Normal free running operation, 1.2MHz  
typical operating frequency.  
W
BLOCK DIAGRA  
L1  
4.7µH  
SINGLE  
+
C
IN  
1µF  
V
IN  
SW  
1
6
CELL  
OPTIONAL  
SCHOTTKY  
+
INPUT  
V
OUT  
GOOD  
2.3V  
START-UP  
OSC  
A/B  
MUX  
A
B
3.3V  
OUTPUT  
V
OUT  
0.45Ω  
5
SYNC  
DRIVE  
CONTROL  
PWM  
CONTROL  
0.35Ω  
R1  
1.02M  
RAMP  
GEN  
1.2MHz  
CURRENT  
SENSE  
1%  
Σ
SLOPE  
COMP  
(EXTERNAL)  
PWM  
COMPARATOR  
+
FB  
3
+
C
OUT  
4.7µF  
g
m
ERROR  
AMP  
1.23V  
REF  
R
C
80k  
C
P2  
2.5pF  
R2  
Burst Mode  
OPERATION  
CONTROL  
604k  
C
C
SLEEP  
1%  
(EXTERNAL)  
150pF  
SHDN  
4
2
GND  
SHUTDOWN  
CONTROL  
SHUTDOWN  
3400 BD  
3400f  
4
LTC3400/LTC3400B  
U
OPERATIO  
The LTC3400/LTC3400B are 1.2MHz, synchronous boost  
converters housed in a 6-lead ThinSOT package. Able to  
operate from an input voltage below 1V, the devices  
feature fixed frequency, current mode PWM control for  
exceptional line and load regulation. With its low RDS(ON)  
and gate charge internal MOSFET switches, the devices  
maintain high efficiency over a wide range of load current.  
Detaileddescriptionsofthethreedistinctoperatingmodes  
follow. Operation can be best understood by referring to  
the Block Diagram.  
independentofinputoroutputvoltage. Thecurrentsignal  
is blanked for 40ns to enhance noise rejection.  
Zero Current Comparator: The zero current comparator  
monitors the inductor current to the output and shuts off  
the synchronous rectifier once this current reduces to ap-  
proximately20mA.Thispreventstheinductorcurrentfrom  
reversing in polarity improving efficiency at light loads.  
Antiringing Control: The antiringing control circuitry pre-  
vents high frequency ringing of the SW pin as the inductor  
current goes to zero by damping the resonant circuit  
formed by L and CSW (capacitance on SW pin).  
Low Voltage Start-Up  
The LTC3400/LTC3400B will start up at a typical VIN volt-  
age of 0.85V or higher. The low voltage start-up circuitry  
controls the internal NMOS switch up to a maximum peak  
inductor current of 850mA (typ), with an approximate  
1.5µs off-time during start-up, allowing the devices to  
start up into an output load. Once VOUT exceeds 2.3V, the  
start-up circuitry is disabled and normal fixed frequency  
PWM operation is initiated. In this mode, the LTC3400/  
LTC3400B operate independent of VIN, allowing extended  
operating time as the battery can droop to several tenths  
of a volt without affecting output voltage regulation. The  
limitingfactorfortheapplicationbecomestheabilityofthe  
battery to supply sufficient energy to the output.  
Burst Mode Operation  
Portable devices frequently spend extended time in low  
power or standby mode, only switching to high power  
drain when specific functions are enabled. In order to  
improvebatterylifeinthesetypesofproducts,highpower  
converter efficiency needs to be maintained over a wide  
output power range. In addition to its high efficiency at  
moderate and heavy loads, the LTC3400 includes auto-  
matic Burst Mode operation that improves efficiency of  
the power converter at light loads. Burst mode operation  
is initiated if the output load current falls below an  
internally programmed threshold (see Typical Perfor-  
mancegraph, OutputLoadBurstModeThresholdvsVIN).  
Once initiated, the Burst Mode operation circuitry shuts  
down most of the device, only keeping alive the circuitry  
required to monitor the output voltage. This is referred to  
as the sleep state. In sleep, the LTC3400 draws only 19µA  
from the output capacitor, greatly enhancing efficiency.  
When the output voltage has drooped approximately 1%  
from nominal, the LTC3400 wakes up and commences  
normal PWM operation. The output capacitor recharges  
and causes the LTC3400 to reenter sleep if the output load  
remains less than the sleep threshold. The frequency of  
thisintermittentPWMorburstoperationisproportionalto  
load current; that is, as the load current drops further  
below the burst threshold, the LTC3400 turns on less  
frequently. When the load current increases above the  
burst threshold, the LTC3400 will resume continuous  
PWM operation seamlessly. The LTC3400B does not use  
BurstModeoperationand featurescontinousoperationat  
lightloads,eliminatinglowfrequencyoutputvoltageripple  
Low Noise Fixed Frequency Operation  
Oscillator: The frequency of operation is internally set to  
1.2MHz.  
ErrorAmp:Theerroramplifierisaninternallycompensated  
transconductancetype(currentoutput)withatransconduc-  
tance(gm)=33microsiemens.Theinternal1.23Vreference  
voltageiscomparedtothevoltageattheFBpintogenerate  
an error signal at the output of the error amplifier. A volt-  
age divider from VOUT to ground programs the output  
voltage via FB from 2.5V to 5V using the equation:  
VOUT = 1.23V • [1 + (R1/R2)]  
Current Sensing: A signal representing NMOS switch  
current is summed with the slope compensator. The  
summed signal is compared to the error amplifier output  
to provide a peak current control command for the PWM.  
Peak switch current is limited to approximately 850mA  
at the expense of light load efficiency.  
3400f  
5
LTC3400/LTC3400B  
W U U  
U
APPLICATIO S I FOR ATIO  
PCB LAYOUT GUIDELINES  
V
=1.2V  
IN  
180  
V
= 3V  
OUT  
The high speed operation of the LTC3400/LTC3400B  
demandscarefulattentiontoboardlayout. Youwillnotget  
advertised performance with careless layout. Figure 2  
shows the recommended component placement. A large  
groundpincopperareawillhelptolowerthechiptempera-  
ture. A multilayer board with a separate ground plane is  
ideal, but not absolutely necessary.  
V
= 3.3V  
= 3.6V  
OUT  
OUT  
160  
140  
120  
110  
80  
V
V
= 5V  
OUT  
60  
3
5
7
9
11 13 15 17 19 21 23  
(OPTIONAL)  
INDUCTANCE (µH)  
3400 F03  
1
2
3
SW  
V
6
5
4
IN  
Figure 3. Maximum Output Current vs  
Inductance Based On 90% Efficiency  
V
IN  
GND V  
OUT  
FB SHDN  
SHDN  
V D  
IN  
I
OUT(MAX) = η • IP –  
• 1D  
(
)
f L • 2  
V
OUT  
where:  
η = estimated efficiency  
3400 F02  
RECOMMENDED COMPONENT PLACEMENT. TRACES  
CARRYING HIGH CURRENT ARE DIRECT. TRACE AREA AT  
FB PIN IS SMALL. LEAD LENGTH TO BATTERY IS SHORT  
IP = peak current limit value (0.6A)  
VIN = input (battery) voltage  
Figure 2. Recommended Component Placement  
for Single Layer Board  
D = steady-state duty ratio = (VOUT – VIN)/VOUT  
f = switching frequency (1.2MHz typical)  
L = inductance value  
COMPONENT SELECTION  
The inductor current ripple is typically set for 20% to 40%  
of the maximum inductor current (IP). High frequency  
ferrite core inductor materials reduce frequency depen-  
dent power losses compared to cheaper powdered iron  
types, improving efficiency. The inductor should have low  
ESR (series resistance of the windings) to reduce the I2R  
power losses, and must be able to handle the peak  
inductor current without saturating. Molded chokes and  
some chip inductors usually do not have enough core to  
support the peak inductor currents of 850mA seen on the  
LTC3400/LTC3400B. To minimize radiated noise, use a  
toroid, pot core or shielded bobbin inductor. See Table 1  
for some suggested components and suppliers.  
Inductor Selection  
The LTC3400/LTC3400B can utilize small surface mount  
and chip inductors due to their fast 1.2MHz switching  
frequency. A minimum inductance value of 3.3µH is  
necessary for 3.6V and lower voltage applications and  
4.7µHforoutputvoltagesgreaterthan3.6V. Largervalues  
of inductance will allow greater output current capability  
by reducing the inductor ripple current. Increasing the  
inductance above 10µH will increase size while providing  
little improvement in output current capability.  
TheapproximateoutputcurrentcapabilityoftheLTC3400/  
LTC3400B versus inductance value is given in the equa-  
tion below and illustrated graphically in Figure 3.  
3400f  
6
LTC3400/LTC3400B  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 1. Recommended Inductors  
to maintain acceptable phase margin. X5R and X7R  
dielectric materials are preferred for their ability to main-  
taincapacitanceoverwidevoltageandtemperatureranges.  
MAX  
DCR  
L
HEIGHT  
(mm)  
PART  
(µH)  
mΩ  
VENDOR  
Low ESR input capacitors reduce input switching noise  
and reduce the peak current drawn from the battery. It  
follows that ceramic capacitors are also a good choice for  
input decoupling and should be located as close as pos-  
sible to the device. A 4.7µF input capacitor is sufficient for  
virtually any application. Larger values may be used with-  
out limitations. Table 2 shows a list of several ceramic  
capacitor manufacturers. Consult the manufacturers di-  
rectly for detailed information on their entire selection of  
ceramic parts.  
CDRH5D18-4R1  
CDRH5D18-100  
CDRH3D16-4R7  
CDRH3D16-6R8  
CR43-4R7  
CR43-100  
CMD4D06-4R7MC  
4.1  
10  
4.7  
57  
2.0  
2.0  
1.8  
1.8  
3.5  
3.5  
0.8  
0.8  
Sumida  
(847) 956-0666  
www.sumida.com  
124  
105  
170  
109  
182  
216  
174  
4.7  
10  
4.7  
CMD4D06-3R3MC  
3.3  
DS1608-472  
DS1608-103  
DO1608C-472  
4.7  
10  
4.7  
60  
75  
90  
2.9  
2.9  
2.9  
Coilcraft  
(847) 639-6400  
www.coilcraft.com  
D52LC-4R7M  
D52LC-100M  
4.7  
10  
84  
137  
2.0  
2.0  
Toko  
(408) 432-8282  
www.tokoam.com  
Table 2. Capacitor Vendor Information  
SUPPLIER  
AVX  
PHONE  
WEBSITE  
LQH3C4R7M24  
4.7  
195  
2.2  
Murata  
www.murata.com  
(803) 448-9411  
(714) 852-2001  
(408) 573-4150  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
Murata  
Taiyo Yuden  
Output and Input Capacitor Selection  
LowESR(equivalentseriesresistance)capacitorsshould  
be used to minimize the output voltage ripple. Multilayer  
ceramic capacitors are an excellent choice as they have  
extremely low ESR and are available in small footprints. A  
2.2µF to 10µF output capacitor is sufficient for most  
applications. Larger values up to 22µF may be used to  
obtain extremely low output voltage ripple and improve  
transient response. An additional phase lead capacitor  
may be required with output capacitors larger than 10µF  
Output Diode  
Use a Schottky diode such as an MBR0520L, CMDSH2-3,  
1N5817orequivalentiftheconverteroutputvoltageis4.5V  
orgreater.TheSchottkydiodecarriestheoutputcurrentfor  
the time it takes for the synchronous rectifier to turn on. Do  
not use ordinary rectifier diodes, since the slow recovery  
times will compromise efficiency. A Schottky diode is  
optional for output voltages below 4.5V, but will increase  
converter efficiency by 2% to 3%.  
3400f  
7
LTC3400/LTC3400B  
U
TYPICAL APPLICATIO S  
Single Cell to 3.3V Synchronous Boost Converter  
with Load Disconnect in Shutdown  
L1  
4.7µH  
D1  
1
+
SINGLE  
C1  
4.7µF  
M1  
AA CELL  
SW  
V
Si2305DS  
OUT  
6
5
3.3V  
V
IN  
V
OUT  
R1  
1.02M  
1%  
R3  
510k  
100mA  
LTC3400  
4
3
OFF  
SHDN  
GND  
FB  
ON  
R2  
604k  
1%  
C2  
4.7µF  
2
Q1  
2N3904  
D1: CENTRAL SEMI CMDSH2-3  
L1: COILCRAFT DS1608-472  
R3  
510k  
3400 TA01a  
3400f  
8
LTC3400/LTC3400B  
U
TYPICAL APPLICATIO S  
Single Lithium Cell to 5V, 250mA  
L1  
4.7µH  
D1  
1
+
LITHIUM  
CELL  
C1  
4.7µF  
SW  
6
5
3
V
IN  
V
OUT  
R1  
1.82M  
1%  
C2  
4.7µF  
LTC3400  
SHDN FB  
GND  
4
OFF  
ON  
R2  
604k  
1%  
2
D1: CENTRAL SEMI CMDSH2-3  
L1: SUMIDA CMD4D06-4R7  
3400 TA02a  
3.6V to 5V Efficiency  
100  
90  
80  
70  
60  
50  
LTC3400  
= 4.7µF  
C
O
L = 4.7µH  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3400 TA02b  
3400f  
9
LTC3400/LTC3400B  
U
TYPICAL APPLICATIO S  
Single Cell AA Cell to ±3V Synchronous Boost Converter  
C3  
1µF  
L1  
4.7µH  
1
+
SINGLE  
AA CELL  
C1  
4.7µF  
SW  
V
OUT1  
6
5
3
3V  
V
IN  
V
OUT  
R1  
1.02M  
1%  
C2  
4.7µF  
90mA  
LTC3400  
SHDN FB  
GND  
D1 D2  
4
OFF  
ON  
R2  
750k  
1%  
C4  
10µF  
V
OUT2  
2
–3V  
3400 TA03a  
10mA  
D1, D2: ZETEX FMND7000 DUAL DIODE  
L1: COILCRAFT DS1608-472  
3400f  
10  
LTC3400/LTC3400B  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic SOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.754  
0.854 ±0.127  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.254  
PIN ONE ID  
0.95 BSC  
1.9 BSC  
0.30 – 0.45 TYP  
6 PLCS (NOTE 3)  
RECOMMENDED SOLDER PAD LAYOUT  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
0.01 – 0.10  
1.00 MAX  
DATUM ‘A’  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0801  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3400f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC3400/LTC3400B  
U
TYPICAL APPLICATIO  
Single AA Cell to 2.5V Synchronous Boost Converter  
L1  
3.3µH  
D1  
1
+
SINGLE  
AA CELL  
C1  
SW  
4.7µF  
V
OUT  
6
5
3
2.5V  
V
V
IN  
LTC3400  
SHDN FB  
GND  
OUT  
R1  
1.02M  
1%  
130mA  
4
C2  
OFF  
ON  
4.7µF  
R2  
1.02M  
1%  
2
D1: CENTRAL SEMI CMDSH2-3  
L1: SUMIDA CMD4D06-3R3MC  
3400 TA04a  
RELATED PARTS  
PART NUMBER  
LT1308A/LT1308B  
LT1613  
DESCRIPTION  
COMMENTS  
High Current, Micropower, Single Cell 600kHz DC/DC Converter  
1.4MHz, Single Cell DC/DC Converter in ThinSOT  
5V at 1A with Single Li-Ion Cell, V  
to 34V  
OUT  
V
as Low as 1.1V, 3V at 30mA from Single Cell  
IN  
LT1615  
LT®1618  
Micropower Step-Up DC/DC Converter in ThinSOT  
1.4MHz Step-Up DC/DC Converter with Current Limit  
I = 20µA, 1µA Shutdown Current, V as Low as 1V  
Q IN  
1.5A Switch, 1.6V to 18V Input Range,  
Input or Output Current Limiting  
LT1619  
High Efficiency Boost DC/DC Controller  
ThinSOT Boost DC/DC Controller  
1A Gate Drive, 1.1V to 20V Input, Separate V for Gate Drive  
CC  
LTC1872  
50kHz, 2.5V to 9.8V Input  
LT1930/LT1930A  
LT1932  
1.2MHz/2.2MHz DC/DC Converters in ThinSOT  
Constant Current Step-Up LED Driver  
1.2MHz/2.7MHz Boost DC/DC Converters  
600kHz, 1A Switch PWM DC/DC Converter  
V = 2.6V to 16V, 5V at 450mA from 3.3V Input  
IN  
Drives Up to Eight White LEDs, ThinSOT Package  
1.5A, 36V Internal Switch, 8-Pin MSOP Package  
LT1946/LT1946A  
LT1949  
1A, 0.5, 30V Internal Switch, V as Low as 1.5V,  
IN  
Low-Battery Detect Active in Shutdown  
LTC3401  
LTC3402  
LTC3423  
LTC3424  
1A, 3MHz Micropower Synchronous Boost Converter  
2A, 3MHz Micropower Synchronous Boost Converter  
1A, 3MHz Micropower Synchronous Boost Converter  
2A, 3MHz Micropower Synchronous Boost Converter  
1A Switch, Programmable Frequency, 10-Pin MSOP Package  
2A Switch, Programmable Frequency, 10-Pin MSOP Package  
1A Switch, Separate Bias Pin for Low Output Voltages  
2A Switch, Separate Bias Pin for Low Output Voltages  
3400f  
LT/TP 0302 2K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LTC3400-1

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT
Linear

LTC3400/LTC3400B

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
Linear

LTC3400B

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT
Linear

LTC3400BES6

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT
Linear

LTC3400BES6#PBF

IC 0.85 A SWITCHING REGULATOR, 1500 kHz SWITCHING FREQ-MAX, PDSO6, PLASTIC, SOT-23, 6 PIN, Switching Regulator or Controller
Linear

LTC3400BES6#TR

LTC3400B - 600mA, 1.2MHz Micropower Synchronous Boost Converters in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3400BES6#TRM

LTC3400B - 600mA, 1.2MHz Micropower Synchronous Boost Converters in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3400BES6#TRPBF

600mA, 1.2MHz Micropower Synchronous Boost Converters in ThinSOT
Linear

LTC3400B_15

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT
Linear

LTC3400ES6

600mA, 1.2MHz Micropower Synchronous Boost Converter in ThinSOT
Linear

LTC3400ES6#PBF

LTC3400 - 600mA, 1.2MHz Micropower Synchronous Boost Converters in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3400ES6#TRMPBF

暂无描述
Linear