LTC3406B-1.5 [Linear]

1.5MHz, 600mA Synchronous Step-Down egulator in ThinSOT; 为1.5MHz , 600mA同步降压型egulator采用ThinSOT
LTC3406B-1.5
型号: LTC3406B-1.5
厂家: Linear    Linear
描述:

1.5MHz, 600mA Synchronous Step-Down egulator in ThinSOT
为1.5MHz , 600mA同步降压型egulator采用ThinSOT

文件: 总16页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3406  
LTC3406-1.5/LTC3406-1.8  
1.5MHz, 600mA  
Synchronous Step-Down  
Regulator in ThinSOT  
U
FEATURES  
DESCRIPTIO  
The LTC®3406 is a high efficiency monolithic synchro-  
nous buck regulator using a constant frequency, current  
mode architecture. The device is available in an adjustable  
versionandfixedoutputvoltagesof1.5Vand1.8V. Supply  
current during operation is only 20µA and drops to 1µA  
in shutdown. The 2.5V to 5.5V input voltage range makes  
the LTC3406 ideally suited for single Li-Ion battery-pow-  
ered applications. 100% duty cycle provides low dropout  
operation, extending battery life in portable systems.  
Automatic Burst Mode® operation increases efficiency at  
light loads, further extending battery life.  
High Efficiency: Up to 96%  
Very Low Quiescent Current: Only 20µA  
During Operation  
600mA Output Current  
2.5V to 5.5V Input Voltage Range  
1.5MHz Constant Frequency Operation  
No Schottky Diode Required  
Low Dropout Operation: 100% Duty Cycle  
0.6V Reference Allows Low Output Voltages  
Shutdown Mode Draws 1µA Supply Current  
Current Mode Operation for Excellent Line and  
Load Transient Response  
Switching frequency is internally set at 1.5MHz, allowing  
the use of small surface mount inductors and capacitors.  
Overtemperature Protected  
Low Profile (1mm) ThinSOTTM Package  
The internal synchronous switch increases efficiency and  
eliminates the need for an external Schottky diode. Low  
output voltages are easily supported with the 0.6V feed-  
back reference voltage. The LTC3406 is available in a low  
profile (1mm) ThinSOT package.  
U
APPLICATIO S  
Cellular Telephones  
Personal Information Appliances  
Wireless and DSL Modems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
Digital Still Cameras  
Protected by U.S. Patents, including 6580258, 5481178.  
MP3 Players  
Portable Instruments  
U
TYPICAL APPLICATIO  
95  
V
= 2.7V  
IN  
90  
85  
80  
75  
70  
65  
60  
2.2µH*  
V
V
IN  
OUT  
4
1
3
5
V
= 3.6V  
IN  
2.7V  
1.8V  
V
SW  
IN  
C
C
**  
TO 5.5V  
OUT  
600mA  
IN  
10µF  
V
= 4.2V  
4.7µF  
IN  
LTC3406-1.8  
CER  
CER  
3406 F01a  
RUN  
V
OUT  
GND  
2
V
= 1.8V  
OUT  
*MURATA LQH32CN2R2M33  
0.1  
1
10  
100  
1000  
**TAIYO YUDEN JMK212BJ475MG  
TAIYO YUDEN JMK316BJ106ML  
OUTPUT CURRENT (mA)  
3406 F01b  
Figure 1a. High Efficiency Step-Down Converter  
Figure 1b. Efficiency vs Load Current  
3406fa  
1
LTC3406  
LTC3406-1.5/LTC3406-1.8  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Peak SW Sink and Source Current ........................ 1.3A  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Junction Temperature (Note 3)............................ 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
Input Supply Voltage .................................. 0.3V to 6V  
RUN, VFB Voltages ..................................... 0.3V to VIN  
SW Voltage .................................. 0.3V to (VIN + 0.3V)  
P-Channel Switch Source Current (DC) ............. 800mA  
N-Channel Switch Sink Current (DC) ................. 800mA  
U W  
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
TOP VIEW  
RUN 1  
GND 2  
SW 3  
5 V  
4 V  
RUN 1  
GND 2  
SW 3  
5 V  
4 V  
FB  
OUT  
IN  
LTC3406ES5-1.5  
LTC3406ES5-1.8  
LTC3406ES5  
IN  
S5 PART MARKING  
LTA5  
S5 PART MARKING  
S5 PACKAGE  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
5-LEAD PLASTIC TSOT-23  
TJMAX = 125°C, θJA = 250°C/ W, θJC = 90°C/ W  
TJMAX = 125°C, θJA = 250°C/ W, θJC = 90°C/ W  
LTD6  
LTC4  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
VIN = 3.6V unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Feedback Current  
±30  
nA  
VFB  
V
Regulated Feedback Voltage  
LTC3406 (Note 4) T = 25°C  
0.5880  
0.5865  
0.5850  
0.6  
0.6  
0.6  
0.6120  
0.6135  
0.6150  
V
V
V
FB  
A
LTC3406 (Note 4) 0°C T 85°C  
A
LTC3406 (Note 4) –40°C T 85°C  
A
V  
Reference Voltage Line Regulation  
Regulated Output Voltage  
V
= 2.5V to 5.5V (Note 4)  
IN  
0.04  
0.4  
%/V  
FB  
V
LTC3406-1.5, I  
LTC3406-1.8, I  
= 100mA  
= 100mA  
1.455  
1.746  
1.500  
1.800  
1.545  
1.854  
V
V
OUT  
OUT  
OUT  
V  
Output Voltage Line Regulation  
Peak Inductor Current  
V
V
= 2.5V to 5.5V  
0.04  
1
0.4  
%/V  
A
OUT  
IN  
I
= 3V, V = 0.5V or V = 90%,  
OUT  
0.75  
2.5  
1.25  
PK  
IN  
FB  
Duty Cycle < 35%  
V
V
Output Voltage Load Regulation  
Input Voltage Range  
0.5  
%
V
LOADREG  
IN  
5.5  
I
Input DC Bias Current  
Active Mode  
Sleep Mode  
(Note 5)  
S
V
V
V
= 0.5V or V  
= 0.62V or V  
= 90%, I = 0A  
LOAD  
300  
20  
0.1  
400  
35  
1
µA  
µA  
µA  
FB  
OUT  
= 103%, I  
= 0A  
FB  
OUT  
LOAD  
Shutdown  
= 0V, V = 4.2V  
RUN  
IN  
f
Oscillator Frequency  
V
V
= 0.6V or V = 100%  
OUT  
1.2  
1.5  
210  
1.8  
MHz  
kHz  
OSC  
FB  
FB  
= 0V or V  
= 0V  
OUT  
R
R
R
R
of P-Channel FET  
of N-Channel FET  
I
I
= 100mA  
0.4  
0.35  
0.5  
0.45  
±1  
PFET  
NFET  
LSW  
DS(ON)  
SW  
SW  
= –100mA  
= 0V, V = 0V or 5V, V = 5V  
DS(ON)  
I
SW Leakage  
V
±0.01  
µA  
RUN  
SW  
IN  
3406fa  
2
LTC3406  
LTC3406-1.5/LTC3406-1.8  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C.  
VIN = 3.6V unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1
MAX  
1.5  
UNITS  
V
V
RUN Threshold  
RUN Leakage Current  
0.3  
RUN  
RUN  
I
±0.01  
±1  
µA  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: T is calculated from the ambient temperature T and power  
J A  
dissipation P according to the following formula:  
D
Note 2: The LTC3406E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
LTC3406: T = T + (P )(250°C/W)  
J A D  
Note 4: The LTC3406 is tested in a proprietary test mode that connects  
to the output of the error amplifier.  
V
FB  
Note 5: Dynamic supply current is higher due to the gate charge being  
delivered at the switching frequency.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(From Figure1a Except for the Resistive Divider Resistor Values)  
Efficiency vs Input Voltage  
Efficiency vs Output Current  
Efficiency vs Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
95  
90  
85  
80  
75  
70  
65  
60  
V
OUT  
= 1.2V  
V
= 1.5V  
OUT  
I
= 100mA  
OUT  
I
= 10mA  
OUT  
V
IN  
= 2.7V  
V
= 2.7V  
IN  
I
= 1mA  
OUT  
V
= 4.2V  
IN  
V
IN  
= 4.2V  
I
= 600mA  
OUT  
V
IN  
= 3.6V  
V
= 3.6V  
IN  
I
= 0.1mA  
OUT  
V
= 1.8V  
3
OUT  
2
4
INPUT VOLTAGE (V)  
5
6
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3406 G02  
3406 G03  
3406 G01  
Reference Voltage vs  
Temperature  
Oscillator Frequency vs  
Temperature  
Efficiency vs Output Current  
0.614  
0.609  
0.604  
0.599  
0.594  
0.589  
0.584  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
100  
95  
90  
85  
80  
75  
70  
65  
60  
V
= 2.5V  
OUT  
V
= 3.6V  
IN  
V
= 3.6V  
IN  
V
= 2.7V  
IN  
V
= 3.6V  
IN  
V
= 4.2V  
IN  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50  
25  
75  
–25  
0
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
3406 G04  
3406 G05  
3406 G06  
3406fa  
3
LTC3406  
LTC3406-1.5/LTC3406-1.8  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(From Figure1a Except for the Resistive Divider Resistor Values)  
Oscillator Frequency vs  
Supply Voltage  
R
DS(ON) vs Input Voltage  
Output Voltage vs Load Current  
1.844  
1.834  
1.824  
1.814  
1.804  
1.794  
1.784  
1.774  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
0.7  
0.6  
V
= 3.6V  
IN  
0.5  
0.4  
0.3  
0.2  
0.1  
MAIN  
SWITCH  
SYNCHRONOUS  
SWITCH  
0
0
100  
900  
2
3
4
5
6
200 300 400 500 600 700 800  
LOAD CURRENT (mA)  
5
7
0
1
2
3
4
6
SUPPLY VOLTAGE (V)  
INPUT VOLTAGE (V)  
3406 G07  
3406 G08  
3406 G09  
RDS(ON) vs Temperature  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
0.7  
0.6  
V
V
LOAD  
= 3.6V  
V
I
= 1.8V  
= 0A  
IN  
OUT  
LOAD  
V
IN  
= 2.7V  
= 1.8V  
= 0A  
OUT  
I
V
IN  
= 3.6V  
V
IN  
= 4.2V  
0.5  
0.4  
0.3  
0.2  
0.1  
MAIN SWITCH  
SYNCHRONOUS SWITCH  
0
0
0
–50  
0
25  
50  
75 100 125  
2
3
4
5
6
–25  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
3406 G12  
3406 G11  
3406 G10  
Switch Leakage vs Temperature  
Switch Leakage vs Input Voltage  
Burst Mode Operation  
120  
100  
80  
60  
40  
20  
0
300  
250  
200  
150  
RUN = 0V  
V
= 5.5V  
IN  
RUN = 0V  
SW  
5V/DIV  
SYNCHRONOUS  
SWITCH  
V
OUT  
100mV/DIV  
AC COUPLED  
MAIN  
SWITCH  
I
L
200mA/DIV  
100  
50  
0
MAIN SWITCH  
SYNCHRONOUS SWITCH  
3406 G15  
V
V
= 3.6V  
4µs/DIV  
IN  
= 1.8V  
OUT  
I
= 50mA  
LOAD  
0
2
3
4
5
6
50  
TEMPERATURE (°C)  
100 125  
1
–50 –25  
0
25  
75  
INPUT VOLTAGE (V)  
3406 G14  
3406 G13  
3406fa  
4
LTC3406  
LTC3406-1.5/LTC3406-1.8  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(From Figure 1a Except for the Resistive Divider Resistor Values)  
Start-Up from Shutdown  
Load Step  
Load Step  
V
OUT  
100mV/DIV  
RUN  
V
OUT  
AC COUPLED  
2V/DIV  
100mV/DIV  
AC COUPLED  
V
OUT  
2V/DIV  
I
L
I
L
500mA/DIV  
500mA/DIV  
I
LOAD  
500mA/DIV  
I
I
LOAD  
LOAD  
500mA/DIV  
500mA/DIV  
3406 G18  
3406 G17  
3406 G16  
V
V
I
= 3.6V  
20µs/DIV  
V
V
I
= 3.6V  
20µs/DIV  
V
V
I
= 3.6V  
40µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 1.8V  
= 1.8V  
= 0mA TO 600mA  
= 1.8V  
= 50mA TO 600mA  
= 600mA  
LOAD  
LOAD  
LOAD  
Load Step  
Load Step  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
I
I
L
L
500mA/DIV  
500mA/DIV  
I
I
LOAD  
LOAD  
500mA/DIV  
500mA/DIV  
3406 G19  
3406 G20  
V
V
I
= 3.6V  
20µs/DIV  
V
V
I
= 3.6V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
= 1.8V  
= 1.8V  
= 100mA TO 600mA  
= 200mA TO 600mA  
LOAD  
LOAD  
U
U
U
PI FU CTIO S  
RUN (Pin 1): Run Control Input. Forcing this pin above  
1.5V enables the part. Forcing this pin below 0.3V shuts  
down the device. In shutdown, all functions are disabled  
drawing <1µA supply current. Do not leave RUN floating.  
VIN (Pin 4): Main Supply Pin. Must be closely decoupled  
to GND, Pin 2, with a 2.2µF or greater ceramic capacitor.  
VFB (Pin 5) (LTC3406): Feedback Pin. Receives the feed-  
back voltage from an external resistive divider across the  
output.  
GND (Pin 2): Ground Pin.  
SW (Pin 3): Switch Node Connection to Inductor. This pin  
connects to the drains of the internal main and synchro-  
nous power MOSFET switches.  
VOUT (Pin 5) (LTC3406-1.5/LTC3406-1.8): Output Volt-  
age Feedback Pin. An internal resistive divider divides the  
output voltage down for comparison to the internal refer-  
ence voltage.  
3406fa  
5
LTC3406  
LTC3406-1.5/LTC3406-1.8  
U
U
W
FU CTIO AL DIAGRA  
SLOPE  
COMP  
0.65V  
OSC  
OSC  
V
IN  
4
FREQ  
+
SHIFT  
V
/V  
FB OUT  
+
5
SLEEP  
+
5  
0.6V  
+
LTC3406-1.5  
R1  
R2  
0.4V  
I
COMP  
EA  
FB  
R1 + R2 = 550k  
BURST  
LTC3406-1.8  
R1 + R2 = 540k  
Q
Q
S
R
SWITCHING  
LOGIC  
AND  
RS LATCH  
V
ANTI-  
SHOOT-  
THRU  
IN  
BLANKING  
CIRCUIT  
SW  
3
RUN  
1
0.6V REF  
+
SHUTDOWN  
I
RCMP  
2
GND  
3406 BD  
U
OPERATIO  
(Refer to Functional Diagram)  
Burst Mode Operation  
Main Control Loop  
The LTC3406 is capable of Burst Mode operation in which  
the internal power MOSFETs operate intermittently based  
on load demand.  
The LTC3406 uses a constant frequency, current mode  
step-down architecture. Both the main (P-channel  
MOSFET)andsynchronous(N-channelMOSFET)switches  
are internal. During normal operation, the internal top  
power MOSFET is turned on each cycle when the oscillator  
sets the RS latch, and turned off when the current com-  
parator, ICOMP, resets the RS latch. The peak inductor  
current at which ICOMP resets the RS latch, is controlled by  
the output of error amplifier EA. When the load current  
increases, it causes a slight decrease in the feedback  
voltage, FB, relative to the 0.6V reference, which in turn,  
causes the EA amplifier’s output voltage to increase until  
the average inductor current matches the new load cur-  
rent. While the top MOSFET is off, the bottom MOSFET is  
turnedonuntileithertheinductorcurrentstartstoreverse,  
as indicated by the current reversal comparator IRCMP, or  
the beginning of the next clock cycle.  
In Burst Mode operation, the peak current of the inductor  
is set to approximately 200mA regardless of the output  
load. Each burst event can last from a few cycles at light  
loads to almost continuously cycling with short sleep  
intervalsatmoderateloads.Inbetweentheseburstevents,  
thepowerMOSFETsandanyunneededcircuitryareturned  
off, reducing the quiescent current to 20µA. In this sleep  
state, the load current is being supplied solely from the  
output capacitor. As the output voltage droops, the EA  
amplifier’s output rises above the sleep threshold signal-  
ingtheBURSTcomparatortotripandturnthetopMOSFET  
on. This process repeats at a rate that is dependent on the  
load demand.  
3406fa  
6
LTC3406  
LTC3406-1.5/LTC3406-1.8  
U
OPERATIO  
(Refer to Functional Diagram)  
Short-Circuit Protection  
in the maximum output current as a function of input  
voltage for various output voltages.  
Whentheoutputisshortedtoground, thefrequencyofthe  
oscillator is reduced to about 210kHz, 1/7 the nominal  
frequency. This frequency foldback ensures that the in-  
ductorcurrenthasmoretimetodecay, therebypreventing  
runaway. The oscillator’s frequency will progressively  
increase to 1.5MHz when VFB or VOUT rises above 0V.  
Slope Compensation and Inductor Peak Current  
Slope compensation provides stability in constant fre-  
quency architectures by preventing subharmonic oscilla-  
tions at high duty cycles. It is accomplished internally by  
adding a compensating ramp to the inductor current  
signal at duty cycles in excess of 40%. Normally, this  
results in a reduction of maximum inductor peak current  
for duty cycles >40%. However, the LTC3406 uses a  
patent-pending scheme that counteracts this compensat-  
ing ramp, which allows the maximum inductor peak  
current to remain unaffected throughout all duty cycles.  
Dropout Operation  
Astheinputsupplyvoltagedecreasestoavalueapproach-  
ing the output voltage, the duty cycle increases toward the  
maximumon-time.Furtherreductionofthesupplyvoltage  
forcesthemainswitchtoremainonformorethanonecycle  
untilitreaches100%dutycycle.Theoutputvoltagewillthen  
be determined by the input voltage minus the voltage drop  
across the P-channel MOSFET and the inductor.  
1200  
1000  
Animportantdetailtorememberisthatatlowinputsupply  
voltages, the RDS(ON) of the P-channel switch increases  
(see Typical Performance Characteristics). Therefore, the  
user should calculate the power dissipation when the  
LTC3406isusedat100%dutycyclewithlowinputvoltage  
(See Thermal Considerations in the Applications Informa-  
tion section).  
V
V
= 1.8V  
= 1.5V  
OUT  
OUT  
800  
600  
400  
200  
0
V
= 2.5V  
OUT  
Low Supply Operation  
2.5  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
SUPPLY VOLTAGE (V)  
The LTC3406 will operate with input supply voltages as  
low as 2.5V, but the maximum allowable output current is  
reduced at this low voltage. Figure 2 shows the reduction  
3406 F02  
Figure 2. Maximum Output Current vs Input Voltage  
3406fa  
7
LTC3406  
LTC3406-1.5/LTC3406-1.8  
W U U  
U
APPLICATIO S I FOR ATIO  
The basic LTC3406 application circuit is shown in Figure 1.  
Externalcomponentselectionisdrivenbytheloadrequire-  
ment and begins with the selection of L followed by CIN and  
inductor to use often depends more on the price vs size  
requirements and any radiated field/EMI requirements  
than on what the LTC3406 requires to operate. Table 1  
shows some typical surface mount inductors that work  
well in LTC3406 applications.  
COUT  
.
Inductor Selection  
Table 1. Representative Surface Mount Inductors  
For most applications, the value of the inductor will fall in  
the range of 1µH to 4.7µH. Its value is chosen based on the  
desired ripple current. Large value inductors lower ripple  
current and small value inductors result in higher ripple  
currents. Higher VIN or VOUT also increases the ripple  
currentasshowninequation1. Areasonablestartingpoint  
for setting ripple current is IL = 240mA (40% of 600mA).  
PART  
NUMBER  
VALUE  
(µH)  
DCR  
MAX DC  
SIZE  
3
(MAX) CURRENT (A) W × L × H (mm )  
Sumida  
CDRH3D16  
1.5  
2.2  
3.3  
4.7  
0.043  
0.075  
0.110  
0.162  
1.55  
1.20  
1.10  
0.90  
3.8 × 3.8 × 1.8  
Sumida  
CMD4D06  
2.2  
3.3  
4.7  
0.116  
0.174  
0.216  
0.950  
0.770  
0.750  
3.5 × 4.3 × 0.8  
VOUT  
V
IN  
1
IL =  
VOUT 1−  
Panasonic  
ELT5KT  
3.3  
4.7  
0.17  
0.20  
1.00  
0.95  
4.5 × 5.4 × 1.2  
2.5 × 3.2 × 2.0  
(1)  
f L  
( )( )  
Murata  
LQH32CN  
1.0  
2.2  
4.7  
0.060  
0.097  
0.150  
1.00  
0.79  
0.65  
The DC current rating of the inductor should be at least  
equal to the maximum load current plus half the ripple  
current to prevent core saturation. Thus, a 720mA rated  
inductorshouldbeenoughformostapplications(600mA  
+ 120mA). For better efficiency, choose a low DC-resis-  
tance inductor.  
CIN and COUT Selection  
Incontinuousmode,thesourcecurrentofthetopMOSFET  
is a square wave of duty cycle VOUT/VIN. To prevent large  
voltage transients, a low ESR input capacitor sized for the  
maximum RMS current must be used. The maximum  
RMS capacitor current is given by:  
The inductor value also has an effect on Burst Mode  
operation. The transition to low current operation begins  
when the inductor current peaks fall to approximately  
200mA. Lower inductor values (higher IL) will cause this  
to occur at lower load currents, which can cause a dip in  
efficiency in the upper range of low current operation. In  
Burst Mode operation, lower inductance values will cause  
the burst frequency to increase.  
1/2  
]
V
V V  
OUT  
(
)
[
OUT IN  
CIN required IRMS IOMAX  
V
IN  
This formula has a maximum at VIN = 2VOUT, where  
RMS = IOUT/2. This simple worst-case condition is com-  
I
Inductor Core Selection  
monlyusedfordesignbecauseevensignificantdeviations  
do not offer much relief. Note that the capacitor  
manufacturer’s ripple current ratings are often based on  
2000hoursoflife.Thismakesitadvisabletofurtherderate  
the capacitor, or choose a capacitor rated at a higher  
temperature than required. Always consult the manufac-  
turer if there is any question.  
Different core materials and shapes will change the size/  
current and price/current relationship of an inductor.  
Toroid or shielded pot cores in ferrite or permalloy mate-  
rials are small and don’t radiate much energy, but gener-  
ally cost more than powdered iron core inductors with  
similarelectricalcharacteristics. Thechoiceofwhichstyle  
3406fa  
8
LTC3406  
LTC3406-1.5/LTC3406-1.8  
W U U  
APPLICATIO S I FOR ATIO  
U
The selection of COUT is driven by the required effective  
induce ringing at the input, VIN. At best, this ringing can  
couple to the output and be mistaken as loop instability. At  
worst, a sudden inrush of current through the long wires  
can potentially cause a voltage spike at VIN, large enough  
to damage the part.  
series resistance (ESR).  
Typically, once the ESR requirement for COUT has been  
met, the RMS current rating generally far exceeds the  
I
RIPPLE(P-P) requirement.TheoutputrippleVOUT isdeter-  
mined by:  
When choosing the input and output ceramic capacitors,  
choose the X5R or X7R dielectric formulations. These  
dielectrics have the best temperature and voltage charac-  
teristics of all the ceramics for a given value and size.  
1
VOUT ≅ ∆I ESR +  
L
8fCOUT  
where f = operating frequency, COUT = output capacitance  
and IL = ripple current in the inductor. For a fixed output  
voltage, the output ripple is highest at maximum input  
voltage since IL increases with input voltage.  
Output Voltage Programming (LTC3406 Only)  
In the adjustable version, the output voltage is set by a  
resistive divider according to the following formula:  
R2  
R1  
Aluminum electrolytic and dry tantalum capacitors are  
bothavailableinsurfacemountconfigurations.Inthecase  
oftantalum,itiscriticalthatthecapacitorsaresurgetested  
for use in switching power supplies. An excellent choice is  
the AVX TPS series of surface mount tantalum. These are  
specially constructed and tested for low ESR so they give  
the lowest ESR for a given volume. Other capacitor types  
include Sanyo POSCAP, Kemet T510 and T495 series, and  
Sprague 593D and 595D series. Consult the manufacturer  
for other specific recommendations.  
VOUT = 0.6V 1+  
(2)  
The external resistive divider is connected to the output,  
allowing remote voltage sensing as shown in Figure 3.  
0.6V V  
5.5V  
OUT  
R2  
V
FB  
LTC3406  
R1  
GND  
3406 F03  
Using Ceramic Input and Output Capacitors  
Higher values, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them ideal  
for switching regulator applications. Because the  
LTC3406’s control loop does not depend on the output  
capacitor’s ESR for stable operation, ceramic capacitors  
can be used freely to achieve very low output ripple and  
small circuit size.  
Figure 3. Setting the LTC3406 Output Voltage  
Efficiency Considerations  
The efficiency of a switching regulator is equal to the  
output power divided by the input power times 100%. It is  
oftenusefultoanalyzeindividuallossestodeterminewhat  
is limiting the efficiency and which change would produce  
the most improvement. Efficiency can be expressed as:  
However, care must be taken when ceramic capacitors are  
usedattheinputandtheoutput.Whenaceramiccapacitor  
is used at the input and the power is supplied by a wall  
adapter through long wires, a load step at the output can  
Efficiency = 100% – (L1 + L2 + L3 + ...)  
whereL1, L2, etc. aretheindividuallossesasapercentage  
of input power.  
3406fa  
9
LTC3406  
LTC3406-1.5/LTC3406-1.8  
W U U  
U
APPLICATIO S I FOR ATIO  
Although all dissipative elements in the circuit produce  
losses, two main sources usually account for most of the  
losses in LTC3406 circuits: VIN quiescent current and I2R  
losses. The VIN quiescent current loss dominates the  
efficiency loss at very low load currents whereas the I2R  
loss dominates the efficiency loss at medium to high load  
currents. In a typical efficiency plot, the efficiency curve at  
very low load currents can be misleading since the actual  
power lost is of no consequence as illustrated in Figure 4.  
2. I2R losses are calculated from the resistances of the  
internal switches, RSW, and external inductor RL. In  
continuous mode, the average output current flowing  
through inductor L is “chopped” between the main  
switch and the synchronous switch. Thus, the series  
resistance looking into the SW pin is a function of both  
top and bottom MOSFET RDS(ON) and the duty cycle  
(DC) as follows:  
RSW = (RDS(ON)TOP)(DC) + (RDS(ON)BOT)(1 – DC)  
The RDS(ON) for both the top and bottom MOSFETs can  
beobtainedfromtheTypicalPerformanceCharateristics  
curves. Thus, to obtain I2R losses, simply add RSW to  
RL and multiply the result by the square of the average  
output current.  
1
V
V
V
V
= 1.2V  
= 1.5V  
= 1.8V  
= 2.5V  
OUT  
OUT  
OUT  
OUT  
0.1  
0.01  
Other losses including CIN and COUT ESR dissipative  
losses and inductor core losses generally account for less  
than 2% total additional loss.  
0.001  
0.0001  
0.00001  
Thermal Considerations  
0.1  
1
10  
100  
1000  
In most applications the LTC3406 does not dissipate  
much heat due to its high efficiency. But, in applications  
where the LTC3406 is running at high ambient tempera-  
ture with low supply voltage and high duty cycles, such  
as in dropout, the heat dissipated may exceed the maxi-  
mum junction temperature of the part. If the junction  
temperature reaches approximately 150°C, both power  
switches will be turned off and the SW node will become  
high impedance.  
LOAD CURRENT (mA)  
3406 F04  
Figure 4. Power Lost vs Load Current  
1. The VIN quiescent current is due to two components:  
the DC bias current as given in the electrical character-  
istics and the internal main switch and synchronous  
switch gate charge currents. The gate charge current  
results from switching the gate capacitance of the  
internal power MOSFET switches. Each time the gate is  
switched from high to low to high again, a packet of  
charge, dQ, moves from VIN to ground. The resulting  
dQ/dtisthecurrentoutofVINthatistypicallylargerthan  
To avoid the LTC3406 from exceeding the maximum  
junction temperature, the user will need to do some  
thermal analysis. The goal of the thermal analysis is to  
determine whether the power dissipated exceeds the  
maximum junction temperature of the part. The tempera-  
ture rise is given by:  
the DC bias current. In continuous mode, IGATECHG  
=
f(QT + QB) where QT and QB are the gate charges of the  
internal top and bottom switches. Both the DC bias and  
gate charge losses are proportional to VIN and thus  
their effects will be more pronounced at higher supply  
voltages.  
TR = (PD)(θJA)  
where PD is the power dissipated by the regulator and θJA  
is the thermal resistance from the junction of the die to the  
ambient temperature.  
3406fa  
10  
LTC3406  
LTC3406-1.5/LTC3406-1.8  
W U U  
APPLICATIO S I FOR ATIO  
U
The junction temperature, TJ, is given by:  
A second, more severe transient is caused by switching in  
loads with large (>1µF) supply bypass capacitors. The  
dischargedbypasscapacitorsareeffectivelyputinparallel  
with COUT, causing a rapid drop in VOUT. No regulator can  
deliver enough current to prevent this problem if the load  
switch resistance is low and it is driven quickly. The only  
solution is to limit the rise time of the switch drive so that  
the load rise time is limited to approximately (25 • CLOAD).  
Thus, a 10µF capacitor charging to 3.3V would require a  
250µs rise time, limiting the charging current to about  
130mA.  
TJ = TA + TR  
where TA is the ambient temperature.  
As an example, consider the LTC3406 in dropout at an  
input voltage of 2.7V, a load current of 600mA and an  
ambient temperature of 70°C. From the typical perfor-  
mance graph of switch resistance, the RDS(ON) of the  
P-channel switch at 70°C is approximately 0.52. There-  
fore, power dissipated by the part is:  
PD = ILOAD2 • RDS(ON) = 187.2mW  
PC Board Layout Checklist  
For the SOT-23 package, the θJA is 250°C/W. Thus, the  
junction temperature of the regulator is:  
When laying out the printed circuit board, the following  
checklist should be used to ensure proper operation of the  
LTC3406. These items are also illustrated graphically in  
Figures 5 and 6. Check the following in your layout:  
TJ = 70°C + (0.1872)(250) = 116.8°C  
which is below the maximum junction temperature of  
125°C.  
1. The power traces, consisting of the GND trace, the SW  
trace and the VIN trace should be kept short, direct and  
wide.  
Note that at higher supply voltages, the junction tempera-  
ture is lower due to reduced switch resistance (RDS(ON)).  
Checking Transient Response  
2. Does the VFB pin connect directly to the feedback  
resistors? The resistive divider R1/R2 must be con-  
nected between the (+) plate of COUT and ground.  
The regulator loop response can be checked by looking at  
the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
a load step occurs, VOUT immediately shifts by an amount  
equal to (ILOAD • ESR), where ESR is the effective series  
resistance of COUT. ILOAD also begins to charge or  
discharge COUT, which generates a feedback error signal.  
The regulator loop then acts to return VOUT to its steady-  
state value. During this recovery time VOUT can be moni-  
toredforovershootorringingthatwouldindicateastability  
problem. For a detailed explanation of switching control  
loop theory, see Application Note 76.  
3. Does the (+) plate of CIN connect to VIN as closely as  
possible? This capacitor provides the AC current to the  
internal power MOSFETs.  
4. Keep the switching node, SW, away from the sensitive  
VFB node.  
5. Keepthe()platesofCIN andCOUT ascloseaspossible.  
3406fa  
11  
LTC3406  
LTC3406-1.5/LTC3406-1.8  
W U U  
U
APPLICATIO S I FOR ATIO  
1
2
3
5
4
RUN  
V
FB  
1
2
3
LTC3406  
GND  
R2  
R1  
RUN  
LTC3406-1.8  
+
5
4
C
V
OUT  
OUT  
C
FWD  
GND  
V
OUT  
+
SW  
V
IN  
C
V
OUT  
OUT  
L1  
C
IN  
SW  
V
IN  
L1  
V
IN  
C
IN  
V
IN  
3406 F05b  
3406 F05a  
BOLD LINES INDICATE HIGH CURRENT PATHS  
BOLD LINES INDICATE HIGH CURRENT PATHS  
Figure 5a. LTC3406 Layout Diagram  
Figure 5b. LTC3406-1.8 Layout Diagram  
VIA TO GND  
R1  
VIA TO V  
OUT  
V
IN  
V
IN  
VIA TO V  
VIA TO V  
IN  
IN  
VIA TO V  
OUT  
R2  
PIN 1  
PIN 1  
C
FWD  
LTC3406-1.8  
V
OUT  
LTC3406  
V
OUT  
SW  
L1  
SW  
L1  
C
OUT  
C
IN  
C
OUT  
C
IN  
GND  
GND  
3406 F06b  
3406 F06a  
Figure 6a. LTC3406 Suggested Layout  
Figure 6b. LTC3406-1.8 Suggested Layout  
Design Example  
Substituting VOUT = 2.5V, VIN = 4.2V, IL = 240mA and  
f = 1.5MHz in equation (3) gives:  
As a design example, assume the LTC3406 is used in a  
single lithium-ion battery-powered cellular phone  
application. The VIN will be operating from a maximum of  
4.2V down to about 2.7V. The load current requirement  
is a maximum of 0.6A but most of the time it will be in  
standbymode, requiringonly2mA. Efficiencyatbothlow  
and high load currents is important. Output voltage is  
2.5V. With this information we can calculate L using  
equation (1),  
2.5V  
1.5MHz(240mA)  
2.5V  
4.2V  
L =  
1−  
= 2.81µH  
A 2.2µH inductor works well for this application. For best  
efficiency choose a 720mA or greater inductor with less  
than 0.2series resistance.  
CIN will require an RMS current rating of at least 0.3A ≅  
ILOAD(MAX)/2 at temperature and COUT will require an ESR  
of less than 0.25. In most cases, a ceramic capacitor will  
satisfy this requirement.  
1
VOUT  
V
IN  
L =  
VOUT 1−  
(3)  
f I  
( )(  
)
L
3406fa  
12  
LTC3406  
LTC3406-1.5/LTC3406-1.8  
W U U  
APPLICATIO S I FOR ATIO  
U
For the feedback resistors, choose R1 = 316k. R2 can  
then be calculated from equation (2) to be:  
Figure 7 shows the complete circuit along with its effi-  
ciency curve.  
V
0.6  
OUT  
100  
R2 =  
1 R1= 1000k  
V
= 2.5V  
OUT  
95  
90  
85  
80  
75  
70  
65  
60  
V
= 2.7V  
IN  
V
= 3.6V  
IN  
2.2µH*  
V
IN  
2.7V  
TO 4.2V  
4
3
5
V
V
= 4.2V  
OUT  
IN  
V
SW  
LTC3406  
RUN  
IN  
2.5V  
22pF  
C
IN  
C
**  
2.2µF  
OUT  
10µF  
CER  
CER  
1
V
FB  
1M  
GND  
2
316k  
3406 F07a  
0.1  
1
10  
100  
1000  
*MURATA LQH32CN2R2M33  
**TAIYO YUDEN JMK316BJ106ML  
TAIYO YUDEN LMK212BJ225MG  
OUTPUT CURRENT (mA)  
3406 F07b  
Figure 7b  
Figure 7a  
U
TYPICAL APPLICATIO S  
Single Li-Ion 1.5V/600mA Regulator for  
High Efficiency and Small Footprint  
2.2µH*  
V
IN  
4
3
V
OUT  
1.5V  
2.7V  
V
SW  
IN  
C
**  
TO 4.2V  
IN  
C
LTC3406-1.5  
RUN  
OUT1  
4.7µF  
1
10µF  
CER  
CER  
5
V
OUT  
GND  
3406 TA05  
2
*MURATA LQH32CN2R2M33  
**TAIYO YUDEN JMK212BJ475MG  
TAIYO YUDEN JMK316BJ106ML  
95  
90  
85  
80  
75  
70  
65  
60  
V
= 1.5V  
= 2.7V  
V
OUT  
OUT  
V
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
V
IN  
AC COUPLED  
V
= 4.2V  
IN  
I
L
I
L
500mA/DIV  
500mA/DIV  
V
= 3.6V  
IN  
I
I
LOAD  
LOAD  
500mA/DIV  
500mA/DIV  
3406 TA07  
3406 TA08  
V
V
I
= 3.6V  
20µs/DIV  
V
V
I
= 3.6V  
20µs/DIV  
IN  
IN  
OUT  
= 1.5V  
= 1.5V  
= 200mA TO 600mA  
OUT  
= 0A TO 600mA  
LOAD  
LOAD  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
3406 TA06  
3406fa  
13  
LTC3406  
LTC3406-1.5/LTC3406-1.8  
U
TYPICAL APPLICATIO S  
Single Li-Ion 1.2V/600mA Regulator for High Efficiency and Small Footprint  
2.2µH*  
V
IN  
4
3
V
OUT  
1.2V  
2.7V  
V
SW  
LTC3406  
RUN  
IN  
22pF  
C
TO 4.2V  
IN  
C
**  
2.2µF  
CER  
OUT  
10µF  
CER  
1
5
V
FB  
301k  
301k  
GND  
2
*MURATA LQH32CN2R2M33  
**TAIYO YUDEN JMK316BJ106ML  
TAIYO YUDEN LMK212BJ225MG  
3406 TA09  
95  
90  
85  
80  
75  
70  
65  
60  
V
= 1.2V  
V
OUT  
OUT  
V
OUT  
100mV/DIV  
V
= 2.7V  
IN  
100mV/DIV  
AC COUPLED  
AC COUPLED  
I
L
I
L
V
= 4.2V  
IN  
500mA/DIV  
500mA/DIV  
V
= 3.6V  
IN  
I
I
LOAD  
LOAD  
500mA/DIV  
500mA/DIV  
3406 TA11  
3406 TA12  
V
V
I
= 3.6V  
20µs/DIV  
V
V
I
= 3.6V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
= 1.2V  
= 0mA TO 600mA  
= 1.2V  
= 200mA TO 600mA  
LOAD  
LOAD  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
3406 TA10  
Tiny 3.3V/600mA Buck Regulator  
2.2µH*  
V
OUT  
3.3V  
4
3
V
IN  
5V  
V
SW  
LTC3406  
RUN  
IN  
22pF  
C
600mA  
IN  
C
**  
4.7µF  
CER  
OUT  
10µF  
CER  
1
5
V
FB  
301k  
GND  
2
*MURATA LQH32CN2R2M33  
**TAIYO YUDEN JMK316BJ106ML  
TAIYO YUDEN JMK212BJ475MG  
66.5k  
3406 TA13  
100  
V
V
= 5V  
IN  
OUT  
V
OUT  
= 3.3V  
95  
90  
85  
80  
75  
70  
65  
60  
100mV/DIV  
AC COUPLED  
I
L
500mA/DIV  
I
LOAD  
500mA/DIV  
3406 TA15  
V
V
LOAD  
= 5V  
20µs/DIV  
IN  
= 3.3V  
OUT  
I
= 200mA TO 600mA  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
3406 TA14  
3406fa  
14  
LTC3406  
LTC3406-1.5/LTC3406-1.8  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
S5 TSOT-23 0302  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
3406fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC3406  
LTC3406-1.5/LTC3406-1.8  
U
TYPICAL APPLICATIO  
Single Li-Ion 1.8V/600mA Regulator for Low Output Ripple and Small Footprint  
4.7µH*  
V
IN  
4
1
3
V
OUT  
1.8V  
2.7V  
V
SW  
IN  
C
**  
TO 4.2V  
IN  
LTC3406-1.8  
RUN  
+
4.7µF  
C
OUT1  
100µF  
CER  
5
V
OUT  
GND  
3406 TA01  
2
*MURATA LQH32CN4R7M34  
**TAIYO YUDEN CERAMIC JMK212BJ475MG  
SANYO POSCAP 4TPB100M  
95  
90  
85  
80  
75  
70  
65  
60  
V
V
= 1.8V  
OUT  
OUT  
V
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
V
= 2.7V  
IN  
= 3.6V  
V
IN  
I
L
I
L
500mA/DIV  
500mA/DIV  
V
IN  
= 4.2V  
I
LOAD  
500mA/DIV  
I
LOAD  
500mA/DIV  
3406 TA04  
3406 TA03  
V
V
LOAD  
= 3.6V  
40µs/DIV  
IN  
V
V
LOAD  
= 3.6V  
40µs/DIV  
IN  
= 1.8V  
OUT  
= 1.8V  
OUT  
I
= 200mA TO 600mA  
I
= 0mA TO 600mA  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
3406 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 3V to 18V, Constant Off-Time, I = 10µA, MS8 Package  
LTC1474/LTC1475  
250mA (I ) Low Quiescent Current Step-Down  
OUT  
IN  
Q
DC/DC Converters  
LT1616  
1.4MHz, 600mA Step-Down DC/DC Converter  
V : 3.6V to 25V, I = 1.9mA, ThinSOT Package  
IN Q  
LTC1701  
LTC1767  
LTC1779  
LTC1875  
LTC1877  
LTC1878  
LTC1879  
LTC3404  
1MHz, 500mA (I ) Step-Down DC/DC Converter  
V : 2.5V to 5.5V, Constant Off-Time, I = 135µA, ThinSOT Package  
IN Q  
OUT  
1.5A, 1.25MHz Step-Down Switching Regulator  
V : 3V to 25V, I = 1mA, MS8/E Packages  
IN Q  
550kHz, 250mA (I ) Step-Down Switching Regulator  
V : 2.5V to 9.8V, I = 135µA, ThinSOT Package  
IN Q  
OUT  
550kHz, 1.2A (I ) Synchronous Step-Down Regulator  
V : 2.7V to 6V, I = 15µA, TSSOP-16 Package  
IN Q  
OUT  
550kHz, 600mA (I ) Synchronous Step-Down Regulator  
V : 2.65V to 10V, I = 10µA, MS8 Package  
IN Q  
OUT  
550kHz, 600mA (I ) Synchronous Step-Down Regulator  
V : 2.65V to 6V, I = 10µA, MS8 Package  
IN Q  
OUT  
550kHz, 1.2A (I ) Synchronous Step-Down Regulator  
V : 2.7V to 10V, I = 15µA, TSSOP-16 Package  
IN Q  
OUT  
1.4MHz, 600mA (I ) Synchronous Monolithic  
Up to 95% Efficiency, V : 2.65V to 6V, I = 10µA, MS8 Package  
IN Q  
OUT  
Step-Down Regulator  
LTC3405/LTC3405A 1.5MHz, 300mA (I ) Synchronous Monolithic  
Up to 95% Efficiency, V : 2.5V to 5.5V, I = 20µA,  
IN Q  
Fixed Output Voltages Available, ThinSOT Package  
OUT  
LTC3405A-1.5  
LTC3405A-1.8  
Step-Down Regulators  
LTC3406B  
LTC3406B-1.5  
LTC3406B-1.8  
1.5MHz, 600mA (I ) Synchronous Monolithic  
Up to 95% Efficiency, with Pulse Skipping Mode  
Fixed Output Voltages Available, ThinSOT Package  
OUT  
Step-Down Regulators  
LTC3411  
4MHz, 1.25A (I ) Synchronous Monolithic  
Up to 95% Efficiency, V : 2.5V to 5.5V, I = 60µA, MS Package  
IN Q  
OUT  
Step-Down Regulator  
LTC3412  
4MHz, 2.5A (I ) Synchronous Monolithic  
Up to 95% Efficiency, V : 2.5V to 5.5V, I = 60µA, TSSOP Package  
IN Q  
OUT  
Step-Down Regulator  
3406fa  
LT/TP 0604 1K REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LTC3406B-1.8

1.5MHz, 600mA Synchronous Step-Down egulator in ThinSOT
Linear

LTC3406B-2

2.25MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406B-2ES5

2.25MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406B-2ES5#TRM

LTC3406B-2 - 2.25MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406BES5#TRPBF

暂无描述
Linear

LTC3406BES5-1.2

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406BES5-1.2#TRM

LTC3406B-1.2 - 1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5-1.5

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406BES5-1.5#TR

LTC3406B - 1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5-1.5#TRMPBF

LTC3406B - 1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5-1.8

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear