LTC3444EDD#TRPBF [Linear]

LTC3444 - Micropower Synchronous Buck-Boost DC/DC Converter for WCDMA Applications; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C;
LTC3444EDD#TRPBF
型号: LTC3444EDD#TRPBF
厂家: Linear    Linear
描述:

LTC3444 - Micropower Synchronous Buck-Boost DC/DC Converter for WCDMA Applications; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C

CD 开关 光电二极管
文件: 总20页 (文件大小:189K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3444  
Micropower Synchronous  
Buck-Boost DC/DC Converter  
for WCDMA Applications  
U
FEATURES  
DESCRIPTIO  
Optimized Features for WCDMA Handsets  
The LTC®3444 is a highly efficient, fixed frequency, buck-  
boost DC/DC converter, which operates from input volt-  
ages above, below, and equal to the output voltage. The  
topology incorporated in the IC provides a continuous  
transferfunctionthroughalloperatingmodes, makingthe  
product ideal for a single Lithium-Ion or multi-cell  
applicationswheretheoutputvoltagecanvaryoverawide  
range.  
Regulated Output with Input Voltages  
Above, Below, or Equal to the Output  
0.5V to 5V Output Range  
Up to 400mA Continuous Output Current From  
a Single Lithium-Ion Cell  
Minimal External Components  
1.5MHz Fixed Frequency Operation  
Internal Loop Compensation for Fast Response  
The LTC3444 has been optimized for use in 3G WCDMA  
applications. A unique design yields high efficiency at  
very low output voltages while also eliminating external  
components. The high speed error amplifier provides the  
fast transient response required to slew the RF power  
amplifier from standby to transmit and transmit to stand  
by power levels. Output overvoltage protection protects  
the RF power amplifier.  
<25μs Full Scale Output Slewing; COUT 4.7μF  
Output Disconnect in Shutdown  
2.75V to 5.5V Input  
<1μA Shutdown Current  
Internal Soft-Start  
Output Overvoltage Protection  
Single Inductor, No Schottky Diodes Required  
Small, Thermally Enhanced 8-Lead (3mm × 3mm)  
DFN Package  
Operating frequency is internally set to 1.5MHz to mini-  
mizeexternalcomponentsizewhilemaximizingefficiency.  
U
Other features include <1μA shutdown current, internal  
soft-start, peak current limit and thermal shutdown. The  
LTC3444 is available in a small, thermally enhanced  
8-lead (3mm × 3mm) DFN package.  
APPLICATIO S  
WCDMA Applications–3G Handsets with High Speed  
Data Rate Capability  
MP3 Players  
Digital Cameras  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 6404251, 6166527.  
U
TYPICAL APPLICATIO  
2.2μH  
V
LTC3444 Dynamic Response  
OUT  
0.8V TO 4.2V  
LTC3444  
340k  
SW1  
SW2  
3.1V TO 4.2V  
V
IN  
V
OUT  
4.7μF  
V
OUT  
CONTROL  
SHDN  
GND  
FB  
V
4.7μF  
+
V
C
205k  
Li-Ion  
267k  
10μs/DIV  
V
V
= 3.6V, V  
CONTROL  
= 0.8V TO 4.2V  
OUT  
IN  
= 2.36V TO 0.28V, I  
= 100mA  
LOAD  
V
CONTROL  
DAC  
3444 G16a  
3444 TA01  
3444fb  
1
LTC3444  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
VIN,VOUT Voltages .......................................... –0.3 to 6V  
SW1,SW2 Voltages DC .................................. –0.3 to 6V  
Pulsed <100ns ............... –0.3 to 7V  
SHDN Voltage ................................................ –0.3 to 6V  
Operating Temperature (Note 2) .............. –40°C to 85°C  
Maximum Junction Temperature (Note 4) ............ 125°C  
Storage Temperature Range .................. –65°C to 125°C  
ORDER PART  
NUMBER  
SHDN  
SW1  
GND  
SW2  
1
2
3
4
8
7
6
5
FB  
V
V
V
C
LTC3444EDD  
9
IN  
OUT  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
DD PART MARKING  
LBVZ  
TJMAX = 125°C, θJA = 43°C/W,  
4-LAYER BOARD θJC = 2.96°C/W  
EXPOSED PAD IS GND (PIN 9)  
MUST BE SOLDERED TO PCB  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
A
V
IN  
= V  
= 3.6V unless otherwise noted.  
OUT  
PARAMETER  
CONDITIONS  
MIN  
2.55  
0.5  
TYP  
MAX  
2.75  
5
UNITS  
V
Input Start-Up Voltage  
Output Voltage Adjust Range  
Feedback Voltage  
2.65  
V
1.19  
1.22  
1
1.25  
50  
V
Feedback Input Current  
Quiescent Current - Shutdown  
Quiescent Current - Active  
NMOS Switch Leakage  
PMOS Switch Leakage  
NMOS Switch On Resistance  
PMOS Switch On Resistance  
PMOS Switch On Resistance  
Input Current Limit  
V
= 1.22V  
nA  
μA  
μA  
μA  
μA  
Ω
FB  
SD = 0V, V  
(Note 3)  
= 0V Not Including Switch Leakage  
0.1  
700  
0.1  
0.1  
0.19  
0.22  
0.4  
3.5  
1
OUT  
1100  
7
Switches B and C  
Switches A and D  
Switches B and C  
Switches A and D  
10  
Ω
Switch D V = 3.6, V  
= 1V  
OUT  
Ω
IN  
2.5  
3
A
Reverse Current Limit  
Max Duty Cycle  
A
Boost (%Switch C On)  
Buck (% Switch A On)  
70  
100  
82  
%
%
Min Duty Cycle  
0
%
MHz  
dB  
Frequency Accuracy  
1.2  
1.5  
65  
1.8  
Error Amp A  
VOL  
Error Amp Source Current  
Error Amp Sink Current  
Internal Soft-Start Time  
Output OV Threshold  
V = 1.5V, FB = 0V  
8
μA  
C
V = 1.5V, FB = 1.5V  
C
230  
250  
5.3  
μA  
SHDN Going High  
μs  
5.1  
5.5  
V
3444fb  
2
LTC3444  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating temperature range, otherwise specifications are T = 25°C.  
A
V
IN  
= V  
= 3.6V unless otherwise noted.  
OUT  
PARAMETER  
CONDITIONS  
IC is Enabled  
IC is Disabled  
MIN  
TYP  
MAX  
UNITS  
V
SHDN Threshold (On)  
SHDN Threshold (Off)  
SHDN Input Current  
1.4  
0.4  
1
V
V
= 3.6V  
0.01  
0.5  
μA  
SHDN  
V Output Current  
C
V = GND  
C
2
μA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC3444E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: Current measurements are performed when the outputs are not  
switching.  
Note 4: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature is active.  
Continuous operation above the specified maximum operating junction  
temperature may result in device degradation or failure.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(T = 25°C unless otherwise specified)  
A
Efficiency vs V  
Li-Ion to 1V Efficiency  
Li-Ion to 3.3V Efficiency  
IN  
85  
80  
75  
70  
65  
60  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.25  
0.20  
0.15  
0.10  
0.05  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.18  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
V
= 1.0V  
OUT  
V
= 3.1V  
IN  
I
= 100mA  
OUT  
V
= 3.6V  
IN  
V
= 3.1V  
IN  
V
= 4.4V  
IN  
V
= 4.4V  
IN  
I
= 65mA  
OUT  
I
= 50mA  
OUT  
V
IN  
= 3.6V  
PLOSS  
V
IN  
= 4.4V  
V
= 3.6V  
IN  
PLOSS  
V
= 3.1V  
IN  
V
IN  
= 3.1V  
10  
3.1 3.3 3.5 3.7 3.9  
(V)  
4.1 4.3 4.5  
1
10  
100  
1000  
1
100  
1000  
V
IN  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3444 G05  
3444 G03  
3444 G06  
Li-Ion to 4.2V Efficiency  
Error Amp Source Current  
Operating Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.50  
19  
17  
15  
13  
11  
9
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
V
= 3.6V  
IN  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 3.1V  
IN  
V
= 4.4V  
IN  
V
IN  
= 4.4V  
PLOSS  
7
V
= 1V  
C
V
= 3.1V  
IN  
FB = 0V  
5
–55 –25  
35  
65  
95  
125  
5
1
10  
100  
1000  
–55  
0
35  
65  
95  
125  
–25  
TEMPERATURE (°C)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
3444 G04  
3444 G07  
3444 G08  
3444fb  
3
LTC3444  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
(T = 25°C unless otherwise specified)  
A
Boost Maximum Duty Cycle  
PMOS R  
NMOS R  
DS(ON)  
DS(ON)  
90  
0.30  
0.25  
0.20  
0.15  
0.30  
0.25  
0.20  
0.15  
SWITCH B  
85  
80  
75  
SWITCH C  
70  
0.10  
0.10  
–55  
–25  
5
35  
65  
95  
125  
–55 –25  
5
35  
65  
95  
125  
–55 –25  
5
35  
65  
95  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3444 G11  
3444 G09  
3444 G10  
Error Amp Sink Current  
Active Quiescent Current  
Feedback Voltage  
400  
390  
380  
370  
800  
750  
700  
650  
600  
550  
500  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
V
= V = 3.6V  
OUT  
V
V
= V  
= 3.6V  
OUT  
IN  
IN  
C
= 2V, FB = 3.6V  
360  
350  
–55  
5
35  
65  
95  
125  
–25  
–25  
5
65  
–55  
95  
125  
35  
–55  
5
35  
65  
95  
125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMERATURE (°C)  
3444 G12  
3444 G13  
3444 G14  
Minimum Start Voltage  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.50  
2.45  
2.40  
–55  
–25  
5
35  
125  
65  
95  
TEMPERATURE (°C)  
3444 G15  
3444fb  
4
LTC3444  
U
U
U
PI FU CTIO S  
SHDN(Pin1): ShutdownFunction.Alogiclowinputshuts  
down the IC. A logic high input enables the IC and starts  
the internal soft-start function by limiting the rise time of  
the internal PWM command.  
VOUT (Pin 5): Output of the Synchronous Rectifier. A filter  
capacitor is placed from VOUT to GND. A ceramic bypass  
capacitor is recommended as close to the VOUT and GND  
pins as possible.  
SW1 (Pin 2): Switch Pin Where the Internal Switches A  
andBareConnected. ConnectinductorfromSW1toSW2.  
AnoptionalSchottkydiodecanbeconnectedfrom ground  
to SW1 for a moderate efficiency improvement. Minimize  
trace length to minimize EMI.  
VIN (Pin 6): Input Supply Pin. Internal VCC for the IC. A  
4.7μF ceramic capacitor is recommended as close to VIN  
and GND as possible.  
VC (Pin 7): Error Amp Output. Pull VC to ground to select  
internal loop compensation. External compensation may  
be connected from VC to FB. Internal compensation will be  
disabled if VC is tied to an external compensation network.  
GND (Pin 3): Ground Pin for the IC.  
SW2 (Pin 4): Switch Pin Where the Internal Switches C  
and D are Connected. An optional Schottky diode can be  
connected from SW2 to VOUT for a moderate efficiency  
improvement. Minimize trace length to keep EMI down.  
FB (Pin 8): Feedback Pin. Connect resistive divider tap  
here. The output voltage can be adjusted from 0.5V to 5V.  
The feedback reference voltage is typically 1.22V.  
GND (Pin 9, Exposed Pad): Solder to Board GND.  
3444fb  
5
LTC3444  
W
BLOCK DIAGRA  
SW1  
SW2  
2
4
2.75V TO 5.5V  
V
OUT  
V
A
IN  
D
V
OUT  
6
5
3A  
GATE DRIVERS  
AND  
ANTI-CROSS  
CONDUCTION  
B
C
PEAK  
REVERSE  
CURRENT  
LIMIT  
+
OUTLOW  
INPUT  
CURRENT  
LIMIT  
1.8V  
335k  
+
+
2.5A  
OUTPUT OV  
+
1.22V  
100k  
PEAK  
CURRENT  
LIMIT  
PWM LOGIC  
AND  
OUTPUT PHASING  
+
+
3.5A  
1.22V  
+
PWM  
COMPARATORS  
FB  
EA  
+
8
+
UVLO  
2.65V  
INTERNAL  
COMPENSATION  
THERMAL  
SHUTDOWN  
GND = INTERNAL COMP  
V
C
FLOAT = EXTERNAL COMP  
7
1
OSC  
SOFTSTART  
THERMAL  
V
IN  
INTERNAL  
SOFTSTART  
SHDN  
SHUTDOWN  
GND  
3
UVLO  
3444 BD  
3444fb  
6
LTC3444  
U
OPERATIO  
The LTC3444 is a highly efficient, fixed frequency, buck-  
boost DC/DC converter, which operates from input volt-  
ages above, below, and equal to the output voltage. The  
topology incorporated in the IC provides a continuous  
transfer function through all operating modes, making the  
product ideal for single Lithium-Ion or multi-cell applica-  
tions where the output voltage can vary over a wide range.  
MOSFET in parallel to P-channel MOSFET switch D.  
This parallel MOSFET eliminates the need for an external  
Schottky. Output overvoltage protection protects the RF  
power amplifier from voltages greater than 5.5V.  
When used with the proper inductance and output capaci-  
tance, the LTC3444 internal compensation is designed to  
be consistent with the transient requirements of a typical  
WCDMA application. External compensation can be used  
with other combinations of inductance and output capaci-  
tance, however, the transient response may not be  
consistent with typical WCDMA requirements.  
The LTC3444 is designed to provide dynamic voltage  
control in space constrained 3G WCDMA applications.  
Due to the high operating frequency and integrated loop  
compensation a complete WCDMA application requires  
only six additional components; input and output capaci-  
tors (ceramic), an inductor, and three resistors. The high  
speed error amplifier and integrated loop compensation  
providethefasttransientresponserequiredtoslewtheRF  
power amplifier’s voltage rail from standby to transmit  
and transmit to standby levels in < 25μs while minimizing  
output overshoot or undershoot.  
Output voltage programming is accomplished via a sum-  
mingresistorinputtothefeedbackresistivedividerstring.  
The output voltage varies inversely with the command  
voltage. When using the internal loop compensation,  
resistor R1 in the feedback resistive divider string must be  
340k. There are no constraints on R1 when using external  
compensation. However, lower value resistors will de-  
crease the resistance value required for programming the  
output voltage. Care must be taken not to load down the  
control voltage source.  
Efficiency under low output voltage conditions  
(standby mode) is improved by using an N-channel  
3444fb  
7
LTC3444  
U
OPERATIO  
Error Amp  
Internal Current Limit  
The LTC3444 error amplifier is a voltage mode amplifier.  
The internal loop compensation is designed to optimize  
transient response to control input change when the  
proper output L-C and R1 values are used. Refer to  
Figure 1.  
TherearetwodifferentcurrentlimitcircuitsintheLTC3444.  
The two circuits have internally fixed thresholds.  
The first circuit sources current out of the FB pin to drop  
the output voltage once the peak input current exceeds  
2.5A minimum. During conditions where VOUT is near  
ground, such as during a short circuit or during startup,  
this threshold is cut in half, providing current foldback  
protection.  
Internal loop compensation is selected by grounding the  
VC pin. The loop is designed to exhibit a single pole roll-off  
(–20dB/dec) with a crossover frequency of ~100KHz.  
External compensation can be used by connecting the  
compensation components from FB to VC. The VC pin  
must be allowed to float when using external compensa-  
tion. If external compensation is used the internal com-  
pensation is automatically disabled. A Type III compensa-  
tion network is typically required to meet the output  
transient requirements of WCDMA.  
The second circuit is a high-speed peak current limit  
amplifier that shuts off P-channel MOSFET switch A if the  
input current exceeds 3.5A typical. The delay to output for  
this amplifier is typically 50ns.  
During start-up, the ramp rate of the error amp output is  
controlled to provide a soft-start function. Refer to  
Figure 2.  
V
OUT  
ERROR AMP  
20μA  
R1  
+
1.22V  
FB  
8
R3  
V
C
TO PWM  
COMPARATORS  
V
CONTROL  
R2  
INTERNAL  
COMPENSATION  
NETWORK  
V
OUT  
INT  
ON  
V
IN  
0.5μA  
GND = INTERNAL  
OPEN = EXTERNAL  
V
C
7
3444 F01  
Figure 1. Error Amplifier with Compensation Select Function  
3444fb  
8
LTC3444  
U
OPERATIO  
Reverse Current Limit  
resume once the output voltage drops below ~5.1V. If the  
condition which caused the output overvoltage is still  
present the output will charge up to 5.3V again and the  
overvoltage cycle will be repeat. Normal output regulation  
will resume once the condition responsible for the output  
overvoltage is removed.  
The LTC3444 always operates in forced continuous con-  
duction mode. The reverse current limit amplifier moni-  
tors the inductor current from the output through switch  
D. Once the negative inductor current exceeds 3A mini-  
mum, theLTC3444willshutoffswitchD. Thehighreverse  
current is required to meet the transient slew require-  
ments for WCDMA power amplifiers.  
Soft-Start  
The soft-start function is initiated when the SHDN pin is  
brought above 1.4V and the LTC3444 is out of UVLO  
(above minimum input operating specs). The LTC3444 is  
enabled but the PWM duty cycle is clamped via the error  
amp output. The soft-start time is internally set to 250μs  
to minimize output overshoot. A detailed diagram of this  
function is shown in Figure 2.  
Output Overvoltage Protection  
The LTC3444 provides output overvoltage protection. If  
theoutputvoltageexceeds5.3Vtypical,P-channelMOSFET  
switches A and D are turned off and N-channel MOSFET  
switches B and C are turned on. Normal switching will  
ERROR AMP  
20μA  
V
IN  
SOFT-START  
CLAMP  
+
1.22V  
FB  
8
7
V
C
V
CI  
TO PWM  
COMPARATORS  
I
SS  
SHDN  
1
+
C
SS  
1V  
3444 F02  
Figure 2. Soft-Start Circuitry  
3444fb  
9
LTC3444  
U
OPERATIO  
Buck-Boost Four-Switch Control  
voltage is a level shifted voltage from the output of the  
erroramp(VCpin)(seeFigure2). Thefourpowerswitches  
are properly phased so the transfer between operating  
modes is continuous, smooth and transparent to the user.  
The buck-boost region is reached when VIN approaches  
VOUT. The conduction time of the four switch region is  
typically 125ns. The three operating modes of the four  
switch buck-boost converter are described below. Please  
refer to Figures 3 and 4.  
Figure 3 shows a simplified diagram of how the four  
internal switches are connected to the inductor, VIN, VOUT  
and GND. Figure 4 shows the regions of operation for the  
LTC3444 as a function of the internal control voltage, VCI.  
Depending on the control voltage, the LTC3444 will oper-  
ate in either buck, buck-boost or boost mode. The VCI  
88% D  
MAX  
V4 (~1.16V)  
V
V
IN  
OUT  
5
BOOST  
A ON, B OFF  
PWM CD  
SWITCHES  
6
BOOST REGION  
D
MIN  
V3 (~0.73V)  
V2 (~0.49V)  
PMOS A  
PMOS D  
BOOST  
BUCK-BOOST  
REGION  
FOUR SWITCH PWM  
SW1  
2
SW2  
4
D
MAX  
BUCK  
D ON, C OFF  
PWM AB  
SWITCHES  
BUCK REGION  
NMOS B  
NMOS C  
V1 (OV)  
0%  
DUTY  
CYCLE  
INTERNAL  
CONTROL  
VOLTAGE, V  
3444 F03  
CI  
3444 F04  
Figure 3. Simplified Diagram of Output Switches  
Figure 4. Switch Control vs Internal Control Voltage, V  
CI  
3444fb  
10  
LTC3444  
U
OPERATIO  
Buck-Boost or Four Switch (VIN ~ VOUT  
)
Buck Region (VIN > VOUT  
)
Whentheinternalcontrolvoltage,VCI,isabovevoltageV2,  
but below V3, switch pair AD remain on for duty cycle  
DMAX_BUCK, and the switch pair AC begins to phase in.  
As switch pair AC phases in, switch pair BD phases out  
accordingly. When the VCI voltage reaches the edge of the  
buck-boost range, at voltage V3, the AC switch pair  
completely phase out the BD pair, and the boost phase  
begins at duty cycle D4SW. The input voltage, VIN, where  
the four switch region begins is given by:  
SwitchDisalwaysonandswitchCisalwaysoffduringthis  
mode. When the internal control voltage, VCI, is above  
voltage V1, Switch A is on. During the off time of switch A,  
synchronous switch B turns on for the remainder of the  
time. Switches A and B will alternate similar to a typical  
synchronous buck regulator. As the control voltage in-  
creases, the duty cycle of switch A increases until the  
maximum duty cycle of the converter in buck mode  
reaches DMAX_BUCK, given by:  
DMAX_BUCK = 100% – D4SW  
where D4SW = duty cycle % of the four switch range.  
D4SW = (125ns • f) • 100 %  
VOUT  
1(125nsf)  
V
=
V
IN  
where f = operating frequency, Hz.  
Beyond this point the “four switch,” or Buck-Boost region  
is reached.  
The point at which the four switch region ends is given by:  
VIN = VOUT(1–D) = VOUT(1–125ns • f) V  
3444fb  
11  
LTC3444  
U
OPERATIO  
Boost Region (VIN < VOUT  
)
control voltage range. When using the internal loop com-  
pensation, VC = GND, R1 must be 340k. For external  
compensation R1 should be chosen first and R2 and R3  
calculated from the following equations.  
SwitchAisalwaysonandswitchBisalwaysoffduringthis  
mode. When the internal control voltage, VCI, is above  
voltage V3, switch pair CD will alternately switch to pro-  
vide a boosted output voltage. This operation is typical to  
a synchronous boost regulator. The maximum duty cycle  
of the converter is limited to 82% typical and is reached  
when VCI is above V4.  
The resistor values are given by:  
(VCON(MAX) VCON(MIN)  
)
R3=  
R2=  
R1Ω  
VO(MAX) – VO(MIN)  
CONTROLLING THE OUTPUT VOLTAGE  
1.22  
The output voltage is controlled via a summing resistor  
input at the feedback (FB) resistive divider string. Refer to  
Figure 1. The output voltage has an inverse relation to the  
control voltage as shown in Figure 5. The resistor values  
are dependent on the desired output voltage range and the  
Ω
(VCON(MAX) 1.22) (1.22 VO(MIN)  
)
R3  
R1  
4.5  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0.5  
1
1.5  
2
2.5  
V
CONTROL  
3444 G01  
Figure 5. V  
vs V  
CONTROL  
with R1 = 340k, R2 = 249k, and  
CONTROL  
OUT  
R3 = 182k, V  
= 0.5V to 2.5V  
3444fb  
12  
LTC3444  
U
OPERATIO  
Table 1. Shows some typical resistor value combinations  
forseveral VCONTROL vsVOUT voltageranges. Onepercent  
(1%) resistor tolerances were assumed.  
COMPONENT SELECTION  
Recommended Component Placement  
Figure 6. Shows a recommended component placement.  
Traces carrying high current should be made short and  
wide. Trace area at FB and VC pins should be minimized.  
Lead lengths to the battery should be kept short. VOUT and  
Table 1. Typical Resistor Values for V  
vs V  
OUT  
CONTROL  
RESISTANCE (kΩ)  
V
MIN  
0.35  
0.35  
0.8  
(V)  
V
(V)  
CONTROL  
OUT  
MAX  
2.4  
MIN  
MAX  
R1  
340  
R2  
R3  
0.8  
0.5  
0.8  
0.5  
4.2  
5.0  
4.2  
4.2  
271  
210  
200  
249  
205  
162  
154  
182  
V
IN ceramic capacitors should be placed close to the IC  
2.5  
340  
340  
340  
pins. Multiple vias should be used between layers.  
2.35  
2.5  
0.5  
V
CONTROL  
LTC3444  
V
IN  
FB  
8
7
1
2
SHDN  
V
C
SW1  
GND  
SW2  
V
V
IN  
3
4
V
6
5
IN  
V
OUT  
OUT  
3444 F06  
MULTIPLE VIAS  
Figure 6. Recommended Component Placement  
3444fb  
13  
LTC3444  
U
OPERATIO  
Inductor Selection  
VOUT (VIN(MAX) VOUT  
f IOUT(MAX) ΔIL V  
)
LBUCK  
>
H
The high frequency operation of the LTC3444 allows the  
use of small surface mount inductors. The internal loop  
compensation is designed to work with a 2.2μH inductor  
(1.5μH for VIN < 3.1V). The 2.2μH inductor was selected to  
optimize the transient response to the control input. The  
use of a 2.2μH inductor pushes out the right half plane  
(RHP) zero frequency and allows the loop crossover to  
occur at frequencies higher than the output L-C double  
pole.  
IN(MAX)  
where f = operating frequency, Hz  
ΔIL = inductor ripple current, A  
VIN(MIN) = minimum input voltage, V  
V
V
IN(MAX) = maximum input voltage, V  
OUT = output voltage, V  
For external compensation the inductor selection is based  
on the desired inductor ripple current. The inductor ripple  
current is typically set to 20% to 40% of the average  
inductor current. Increased inductance results in lower  
ripple current, however, higher inductance pulls in the  
RHP zero frequency and limits the maximum crossover  
frequency possible. Refer to Closing the Feedback Loop  
for more information on the RHP zero. For a given ripple  
the inductance terms are given as follows:  
IOUT(MAX) = maximum output load current  
In most cases, the boost configuration will be used to  
determine the minimum inductance allowed for a given  
ripple current.  
For high efficiency, choose a ferrite inductor with a high  
frequencycorematerialtoreducecoreloses. Theinductor  
should have low ESR (equivalent series resistance) to  
reduce the I2R losses, and must be able to handle the peak  
inductor current without saturating. To minimize radiated  
noise, useashieldedinductor. SeeTable2forasuggested  
list of inductor suppliers.  
V
IN(MIN) (VOUT – V  
)
IN(MIN)  
LBOOST  
>
H
fIOUT(MAX) ΔIL VOUT  
Table 2. Inductor Vendor Information  
SUPPLIER  
PHONE  
FAX  
WEB SITE  
Coilcraft  
(847) 639-6400  
(800) 227-7040  
(636) 394-2877  
(847) 639-1469  
(650) 361-2508  
1-800-544-2570  
(814) 238-0490  
www.coilcraft.com  
CoEv Magnetics  
COOPER Bussmann  
Murata  
www.circuitprotection.com/magnetics.asp  
www.coooperET.com  
(814) 237-1431  
(800) 831-9172  
www.murata.com  
Sumida  
USA: (847) 956-0666  
Japan: 81(3) 3607-5111  
USA: (847) 956-0702  
Japan: 81(3) 3607-5144  
www.sumida.com  
TDK  
(847) 803-6100  
(847) 803-6296  
(847) 699-7864  
www.component.tdk.com  
www.tokoam.com  
TOKO  
(847) 297-0070  
3444fb  
14  
LTC3444  
U
OPERATIO  
In a typical application the output capacitance may be  
many times larger than that calculated above in order to  
handle the transient load response requirements of the  
converter. For a rule of thumb, the ratio of the operating  
frequency to the unity-gain bandwidth of the converter is  
the amount the output capacitance will have to increase  
from the above calculations in order to maintain the  
desired transient response. However, in WCDMA applica-  
tions the output capacitance should be kept at a minimum  
to maximize the output slew rate. Refer to the Loop  
Compensation Networks section of this datasheet.  
Output Capacitor Selection  
A 4.7μF, X5R or X7R type ceramic capacitor should be  
used when using the internal loop compensation. When  
using external compensation, larger values of output  
capacitance can be used, however, larger output capaci-  
tance will increase the time needed to slew the output  
voltage as required in typical WCDMA applications. The  
bulk value of the output filter capacitor is set to reduce the  
ripple due to charge into the capacitor each cycle. The  
steady state ripple due to charge is given by:  
%RIPPLE_BOOST =  
IOUT (VOUT VIN(MIN))100  
The other component of ripple is due to the ESR (equiva-  
lent series resistance) of the output capacitor. Low ESR  
capacitors should be used to minimize output voltage  
ripple. For surface mount applications, Taiyo Yuden or  
TDK ceramic capacitors, AVX TPS series tantalum capaci-  
tors or Sanyo POSCAP are recommended. See Table 3 for  
contact information.  
%
COUT VOUT2 f  
%RIPPLE_BUCK =  
IOUT(MAX) (VIN(MAX) VOUT)100  
Ceramic output capacitors should use case size 1206 or  
larger. Smaller case sizes have a larger voltage coefficient  
that can greatly reduce the output capacitance value at  
higher output voltages.  
%
COUT VIN(MAX) VOUT f  
where COUT = output filter capacitor in farads  
f = switching frequency in Hz.  
Input Capacitor Selection  
Since the VIN pin is the supply voltage for the LTC3444, as  
well as the input to the power stage of the converter, it is  
recommended to place at least a 4.7μF, X5R or X7R  
ceramic bypass capacitor close to the VIN and GND pins.  
It is also important to minimize any stray resistance from  
the converter to the battery or other power source.  
Table 3. Capacitor Vendor Information  
SUPPLIER  
AVX  
PHONE  
FAX  
WEB SITE  
(803) 448-9411  
(619) 661-6322  
(408) 573-4150  
(847) 803-6100  
(803) 448-1943  
(619) 661-1055  
(408) 573-4159  
(847) 803-6296  
www.avxcorp.com  
Sanyo  
www.sanyovideo.com  
www.t-yuden.com  
Taio Yuden  
TDK  
www.component.tdk.com  
3444fb  
15  
LTC3444  
U
OPERATIO  
Optional Schottky Diodes  
A troublesome problem when operating in boost mode is  
dealing with the right-half plane zero (RHP), given by:  
Schottky diodes across the synchronous switches B and  
D are not required, but provide a lower drop during the  
break-before-make time (typically 15ns) of the NMOS to  
PMOS transition, improving efficiency. Use a surface  
mount Schottky diode such as an MBRM120T3 or equiva-  
lent. Do not use ordinary rectifier diodes, since the slow  
recovery times will compromise efficiency.  
2
V
IN  
fRHPZ  
=
Hz  
2π IOUT LVOUT  
The RHP zero has a +20dB/dec gain typical of a zero but  
the –90° phase lag of a pole. This causes the loop gain to  
flattenoutwhilethephasemargindecreases.Theonlyway  
to combat a RHP zero is to roll off the loop well before the  
RHP zero frequency.  
Closing the Feedback Loop  
The LTC3444 incorporates voltage mode PWM control.  
The control to output gain varies with operation region  
(buck, boost, buck-boost), but is usually ~20dB. The  
output filter exhibits a double pole response, as given by:  
LOOP COMPENSATION NETWORKS  
A simple Type I compensation network, refer to Figure 7,  
can be incorporated to stabilize the loop, but at a cost of  
reduced bandwidth and slower transient response. To  
ensure proper phase margin using Type I compensation,  
the loop must be crossed over at least a decade before the  
output LC double pole frequency. The unity-gain fre-  
quencyoftheerroramplifierwiththeTypeIcompensation  
is given by:  
1
fFILTER_POLE  
=
Hz  
2π LCOUT  
(inbuck mode)  
V
IN  
fFILTER_POLE  
=
Hz  
2VOUT π LCOUT  
(inboostmode)  
1
f UG=  
Hz  
2π R1C2  
WCDMA applications demand an improved transient re-  
sponse to the input control voltage. In other applications,  
the output capacitor can be increased to meet help meet  
the load transient requirements.  
where L is in Henries and COUT is in farads.  
The output filter zero is given by:  
1
fFILTER_ZERO  
=
Hz  
2π RESR COUT  
where RESR is the equivalent series resistance of the  
output cap.  
C2  
R1  
FB  
V
8
OUT  
V
C
7
+
R2  
V
REF  
3444 F07  
Figure 7. Error Amplifier with Type I Compensation  
3444fb  
16  
LTC3444  
U
OPERATIO  
However, due to the output voltage slewing requirements  
found in WCDMA applications the output filter capacitor  
must be minimized. To maximize the transient response,  
while minimizing the output capacitance, a higher band-  
width, Type III compensation is required. A Type III  
compensationnetwork,refertoFigure8,hasadoublezero  
to cancel the double pole of the output LC filter and a  
double pole to compensate for the ESR zero and RHP zero  
of the boost topology. In addition to the double poles,  
the Type III network also has a single pole at DC. The  
Type III compensation provides a maximum 135° phase  
boost and allows the loop crossover to occur at frequen-  
cieshigherthantheoutputLC.RefertoFigure9. Referring  
toFigure8,thelocationofthepolesandzerosaregivenby:  
Assume C2 >> C3, R1 >> R4.  
C3  
C2  
R5  
C1  
R4  
R1  
FB  
+
V
8
OUT  
V
C
7
R2  
V
REF  
3444 F08  
Figure 8, Error Amplifier with Type III Compensation  
1
80  
60  
360  
270  
180  
90  
fPOLE1  
fPOLE2  
fZERO1  
fZERO2  
=
=
=
Hz  
Hz  
2π R5C3  
40  
1
20  
2π R4 C1  
f
UO  
0
0
1
–20  
–40  
–90  
–180  
Hz  
2π R1C1  
–60  
–80  
–270  
–360  
1
Hz  
e
e1  
e2  
e3  
e4  
e5  
e6  
e7  
e8  
1
1
1
1
1
1
1
1
1
2π R5C2  
FREQUENCY (Hz)  
3444 G02  
Figure 9. Frequency Response for LTC3444 Error  
Amplifier with a Typical Type III Compensation Network  
And the unity gain frequency (fUG) of the Type III compen-  
sation is given by:  
1
fUG  
=
Hz  
2π R1C2  
where resistance is in ohms and capacitance is in farads.  
Note: Bias resistor, R2, does not affect the Pole/Zero  
placement.  
3444fb  
17  
LTC3444  
TYPICAL APPLICATIO S  
U
Example of Internal Compensation Transient Response for a  
Command Voltage Change  
LTC3444 Dynamic Response  
LTC3444 Dynamic Response  
V
OUT  
V
OUT  
CONTROL  
V
V
CONTROL  
10μs/DIV  
10μs/DIV  
V
V
= 3.6V, V  
CONTROL  
= 0.8V TO 4.2V  
OUT  
IN  
V
V
= 3.6V, V  
CONTROL  
= 4.2V TO 0.8V  
OUT  
IN  
= 2.36V TO 0.28V, I  
= 100mA  
LOAD  
= 0.28V TO 2.36V, I  
= 100mA  
LOAD  
3444 G16a  
Internally Compensated WCDMA Application. Singe Cell, 2.7V to  
4.2V Input, 0.8V to 4.2V at 400mA Output.  
1.5μH  
L1  
V
OUT  
0.8V TO 4.2V  
LTC3444  
R1  
340k  
SW1  
SW2  
2.7V TO 4.2V  
C
OUT  
V
IN  
V
OUT  
4.7μF  
SHDN  
GND  
FB  
C
IN  
4.7μF  
+
V
C
R3  
205k  
Li-Ion  
R2  
267k  
V
CONTROL  
DAC  
3444 TA02  
C
OUT  
= MURATA:GRM31CR61C475K  
= MURATA:GRM31CR61C475K  
IN  
C
L1 = COOPER BUSSMAN SD12-2R2  
3444fb  
18  
LTC3444  
U
TYPICAL APPLICATIO S  
Single Li-Ion, 3.1V to 4.2V Input, 3.3V at 400mA  
Output with Internal Compensation  
2.2μH  
L1  
V
OUT  
3.3V AT 400mA  
LTC3444  
R1  
340k  
SW1  
SW2  
3.1V TO 4.4V  
C
OUT  
V
V
IN  
OUT  
FB  
4.7μF  
SHDN  
GND  
C
IN  
4.7μF  
+
V
C
Li-Ion  
R2  
200k  
3444 TA04  
C
OUT  
= MURATA:GRM31CR61C475K  
= MURATA:GRM31CR61C475K  
IN  
C
L1 = COOPER BUSSMAN SD12-2R2  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD) DFN 1203  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
3444fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC3444  
U
TYPICAL APPLICATIO  
Externally Compensated WCDMA Application. Singe Cell,  
3.1V to 4.2V Input, 0.8V to 4.2V at 400mA Output.  
3.3μH  
L1  
V
OUT  
0.8V TO 4.2V  
LTC3444  
R4  
47.5k  
R1  
340k  
SW1  
SW2  
3.1V TO 4.2V  
C
C1  
10pF  
OUT  
V
IN  
V
OUT  
4.7μF  
SHDN  
GND  
FB  
C
IN  
R5  
47.5k  
C2  
220pF  
4.7μF  
+
R3  
205k  
V
C
Li-Ion  
R2  
267k  
C3  
10pF  
V
CONTROL  
3444 TA03  
DAC  
C
OUT  
= MURATA:GRM31CR61C475K  
= MURATA:GRM31CR61C475K  
IN  
C
L1 = COOPER BUSSMAN SD12-3R3  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
96% Efficiency, V : 2.5V to 5V, V : 0.3V to 3.5V,  
LTC3403  
1.5MHz, 600mA, Synchronous Step-Down Regulator  
with Bypass Transistor  
IN  
OUT  
I
<1μA, (3mm × 3mm) DFN Package  
SD  
LTC3408  
LTC3440  
LTC3441  
LTC3442  
LTC3443  
1.5MHz, 600mA, Synchronous Step-Down Regulator  
with Bypass Transistor  
96% Efficiency, V : 2.5V to 5V, V : 0.3V to 3.5V,  
IN OUT  
I
<1μA, (3mm × 3mm) DFN Package  
SD  
Up to 2MHz, 600μA, Synchronous Buck-Boost  
DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V  
= 2.5V,  
= 2.5V,  
IN  
OUT(MIN)  
I
<1μA, I = 25μA, 10-Lead MS Package  
SD Q  
1MHz, 1.2A, Synchronous Buck-Boost  
DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V V  
IN OUT(MIN)  
I
<1μA, I = 25μA, 12-Lead (4mm × 3mm) DFN Package  
SD  
Q
Up to 2MHz, 1.2A, Synchronous Buck-Boost  
DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V  
= 2.5V,  
OUT(MIN)  
IN  
I
<1μA, I = 25μA, 12-Lead (4mm × 3mm) DFN Package  
SD  
Q
600MHz, 1.2A Synchronous Buck-Boost  
DC/DC Converter  
95% Efficiency, V : 2.5V to 5.5V, V  
= 2.5V,  
OUT(MIN)  
IN  
I
<1μA, I = 25μA, 12-Lead (4mm × 3mm) DFN Package  
SD  
Q
3444fb  
LT 0507 REV B • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY