LTC3499 [Linear]

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection; 750毫安同步升压型DC / DC与电池反向保护转换器
LTC3499
型号: LTC3499
厂家: Linear    Linear
描述:

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection
750毫安同步升压型DC / DC与电池反向保护转换器

转换器 电池
文件: 总16页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3499/LTC3499B  
750mA Synchronous  
Step-Up DC/DC Converters  
with Reverse-Battery Protection  
U
FEATURES  
DESCRIPTIO  
The LTC®3499/LTC3499B are synchronous, fixed fre-  
quency step-up DC/DC power converters with integrated  
reverse battery protection that protect and disconnect the  
devicesandloadwhenthebatterypolarityisreversedwhile  
delivering high efficiency in a small (3mm × 3mm) DFN  
package.Trueoutputdisconnecteliminatesinrushcurrent  
and allows zero load current in shutdown.  
Reverse-Battery Protection for DC/DC Converter  
and Load  
High Efficiency: Up to 94%  
Generates 5V at 175mA from a 1.8V Input  
Operates from 1.8V to 5.5V Input Supply  
2V to 6V Adjustable Output Voltage  
Inrush Current Controlled During Start-Up  
Output Disconnnect in Shutdown  
The devices feature an input voltage range of 1.8V to 5.5V  
enabling operation from two alkaline or NiMH batteries.  
The switching frequency is internally set at 1.2MHz allow-  
ingtheuseoftinysurfacemountinductorsandcapacitors.  
A minimal number of external components are required to  
generate output voltages ranging from 2V to 6V. The  
LTC3499 features automatic Burst Mode operation to  
increase efficiency at light loads, while the LTC3499B  
features continuous switching at light loads.  
Low Noise 1.2MHz PWM Operation  
Tiny External Components  
Automatic Burst Mode® Operation (LTC3499)  
Continuous Switching at Light Loads (LTC3499B)  
Overvoltage Protection  
8-Lead (3mm × 3mm × 0.75mm) DFN  
and MSOP Packages  
U
APPLICATIO S  
The soft-start time is externally programmable through a  
smallcapacitor.Anti-ringcircuitryreducesEMIemissions  
by damping the inductor in discontinuous mode. The  
devicesfeature<1µAshutdownsupplycurrent, integrated  
overvoltage protection and are available in both 8-pin  
(3mm × 3mm) DFN and 8-pin MSOP packages.  
Medical Equipment  
Digital Cameras  
MP3 Players  
Handheld Instruments  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
Battery Current vs V  
IN  
Two AA Cells to 5V Synchronous Boost Converter  
1.0  
0.5  
SHDN = 0V  
= 0V  
V
OUT  
4.7µH  
V
IN  
1.8V TO 3.2V  
+
V
2.2µF  
SW  
OUT  
FB  
IN  
LTC3499  
V
OUT  
0
V
5V  
ON OFF  
SHDN  
VC  
175mA  
1M  
10µF  
–0.5  
–1.0  
100k  
330pF  
SS  
GND  
324k  
0.01µF  
–6  
–4  
–2  
0
2
4
6
3499 TA01  
V
AND SW VOLTAGE (V)  
IN  
3499 TA01b  
3499f  
1
LTC3499/LTC3499B  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
FB, SS to GND ............................................ – 0.3V to 7V  
Operating Temperature Range  
VIN to GND..................................................... – 7V to 7V  
VOUT to GND ............................................... – 0.3V to 7V  
SW to VOUT .................................................... – 7V to 1V  
SW to GND  
DC .............................................................. –7V to 7V  
Pulsed < 100ns .......................................... –7V to 8V  
SHDN to GND ................................................ – 7V to 7V  
(Notes 3, 4) ........................................ –40°C to 85°C  
Storage Temperature Range ................ – 65°C to 125°C  
Lead Temperature (Soldering, 10 sec)  
MSOP .............................................................. 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
SHDN  
1
2
3
4
8
7
6
5
VC  
FB  
SHDN  
1
2
3
4
8
7
6
5
VC  
FB  
V
OUT  
SS  
V
IN  
9
V
SW  
IN  
SW  
V
OUT  
GND  
GND  
SS  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD PLASTIC DFN  
T
= 125°C, θ = 160°C/W  
JA  
JMAX  
TJMAX = 125°C, θJA = 45°C  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
ORDER PART NUMBER  
DD PART MARKING  
ORDER PART NUMBER  
MS8 PART MARKING  
LTC3499EMS8  
LTC3499BEMS8  
LTC3499EDD  
LTC3499BEDD  
LBRB  
LCDZ  
LTBRC  
LTCFB  
Order Options Tape and Reel: Add #TR Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. V = 2.4V, V  
= 5V, SHDN = 2.4V, T = T unless otherwise noted.  
A J  
A
IN  
OUT  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
Minimum Start-Up Voltage  
1.6  
1.8  
6
V
V
IN  
Output Voltage Adjust Range  
FB Voltage  
2
OUT  
FB  
1.195  
1.220  
3
1.245  
50  
V
I
I
I
I
FB Input Current  
V
= 1.22V  
FB  
nA  
µA  
µA  
FB  
V
V
Quiescent Current  
No Output Load  
SHDN = 0V, V  
300  
0.1  
600  
1
VIN  
IN  
IN  
Quiescent Current in Shutdown  
= 0V  
OUT  
SD  
Quiescent Current – Burst Mode Operation  
V
V
Current at 2.4V (LTC3499 Only)  
20  
1.5  
µA  
µA  
BURST  
IN  
Current at 5V (LTC3499 Only)  
OUT  
3499f  
2
LTC3499/LTC3499B  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at T = 25°C. V = 2.4V, V  
= 5V, SHDN = 2.4V, T = T unless otherwise noted.  
A
IN  
OUT  
A
J
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
0.1  
0.1  
MAX  
UNITS  
µA  
I
I
NMOS Switch Leakage  
PMOS Switch Leakage  
V
V
= 6V  
5
5
NMOS  
PMOS  
SW  
= 6V, V = 0V  
µA  
OUT  
SW  
R
NMOS  
NMOS Switch On Resistance  
V
V
= 3.3V  
= 5V  
0.45  
0.4  
OUT  
OUT  
R
PMOS  
PMOS Switch On Resistance  
V
V
= 3.3V  
= 5V  
0.58  
0.45  
OUT  
OUT  
I
t
NMOS Current Limit  
0.75  
80  
1
A
ns  
LIM  
DLY, ILIM  
Current Limit Delay to Output  
Maximum Duty Cycle  
Note 2  
60  
85  
D
D
%
MAX  
Minimum Duty Cycle  
0
%
MIN  
f
Frequency Accuracy  
1.2  
40  
–5  
5
1.4  
MHz  
µmhos  
µA  
OSC  
G
Error Amplifier Transconductance  
Error Amplifier Source Current  
Error Amplifier Sink Current  
SS Current Source  
mEA  
SOURCE  
SINK  
SS  
I
I
I
µA  
V
= 1V  
–3  
6.8  
400  
µA  
SS  
V
V
V
V
Overvoltage Threshold  
Overvoltage Hysteresis  
V
OV  
OUT  
OUT  
mV  
OV(HYST)  
Shutdown  
V
V
SHDN Input Low  
SHDN Input High  
SHDN Input Current  
0.2  
1
V
V
SHDN(LOW)  
SHDN(HIGH)  
Measured at SW  
1.2  
I
µA  
SD  
Reverse Battery  
I
I
I
V
V
Reverse-Battery Current  
V
V
V
= 0V, V = V  
= V = –6V  
5
µA  
µA  
µA  
VOUT,REVBATT  
VIN,REVBATT  
OUT  
OUT  
OUT  
OUT  
IN  
SHDN  
SHDN  
SHDN  
SW  
and V Reverse-Battery Current  
= 0V, V = V  
= V = –6V  
–5  
–5  
IN  
SW  
IN  
SW  
SHDN Reverse-Battery Current  
= 0V, V = V  
= V = –6V  
SW  
SHDN,REVBATT  
IN  
Note 4: These ICs include overtemperature protection that is intended to  
protect the devices during momentary overload conditions. Junction  
temperatures will exceed 125°C when overtemperature protection is  
active. Continuous operation above the specified maximum operating  
temperature range may impair device reliability.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Specification is guaranteed by design and not 100% tested in  
production.  
Note 3:The LTC3499E/LTC3499BE are guaranteed to meet device  
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C  
operating temperature are assured by design, characterization and  
correlation with statistical process controls.  
3499f  
3
LTC3499/LTC3499B  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
T = 25°C unless noted.  
A
2-Cell to 5V Efficiency  
vs Load Current (LTC3499 Only)  
Li-Ion to 5V Efficiency  
vs Load Current (LTC3499 Only)  
2-Cell to 5V Efficiency  
vs Load Current (LTC3499B Only)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
100000  
10000  
100  
90  
100000  
10000  
1000  
100  
EFFICIENCY  
EFFICIENCY  
80  
80  
70  
1000  
100  
70  
60  
50  
40  
30  
POWER LOSS  
POWER LOSS  
60  
50  
40  
10  
1
10  
V
V
V
= 3.2V  
= 2.4V  
= 1.8V  
V
IN  
V
IN  
V
IN  
= 3.2V  
= 2.4V  
= 1.8V  
V
V
V
= 4.2V  
= 3.6V  
= 3V  
IN  
IN  
IN  
IN  
IN  
IN  
1
0.1  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
1
10  
LOAD CURRENT (mA)  
1000  
0.1  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3499 G17  
3499 G01  
3499 G03  
Burst Mode Output Current  
Threshold vs Input Voltage  
(LTC3499 Only)  
Current Limit Accuracy  
vs Temperature  
2-Cell to 3.3V Efficiency  
vs Load Current (LTC3499 Only)  
1.04  
1.03  
1.02  
60  
100  
100000  
V
= 5V  
OUT  
50  
40  
30  
20  
10  
0
90  
10000  
EFFICIENCY  
80  
70  
1000  
100  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
60  
50  
40  
10  
1
POWER LOSS  
V
IN  
V
IN  
V
IN  
= 3V  
= 2.4V  
= 1.8V  
0.1  
–25  
0
50  
1.8  
2.8  
3.3  
3.8  
4.3  
4.8  
–50  
75  
100  
25  
2.3  
0.1  
1
10  
100  
1000  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
3499 G04  
3499 G05  
3499 G02  
Burst Mode Quiescent Current  
vs Temperature (LTC3499 Only)  
Maximum Output Current  
No Load Input Current vs V  
(LTC3499 Only)  
IN  
Capability vs V  
IN  
200  
800  
700  
600  
500  
400  
300  
200  
100  
0
30  
25  
20  
15  
10  
5
V
> V  
OUT  
IN  
V
> V  
180  
160  
140  
120  
100  
80  
IN  
OUT  
V
= 3.3V  
OUT  
V
OUT  
= 3.3V  
V
= 5V  
OUT  
V
= 5V  
OUT  
60  
40  
20  
0
0
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
3.5  
(V)  
1.5  
2.5  
4.5  
5.5  
–50  
0
25  
50  
75  
100  
–25  
V
TEMPERATURE (°C)  
V
IN  
IN  
3499 G07  
3499 G06  
3499 G08  
3499f  
4
LTC3499/LTC3499B  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
T = 25°C unless noted.  
A
Oscillator Frequency  
vs Temperature  
V and SW Reverse-Battery  
IN  
FB Voltage vs Temperature  
Current vs V and SW Voltage  
IN  
1.0  
0.5  
1.2225  
1.2220  
1.2215  
1.2210  
1.2205  
1.2200  
1.2195  
1.2190  
1.2185  
1.4  
1.3  
1.2  
1.1  
SHDN = 0V  
OUT  
V
= 0V  
0
–0.5  
–1.0  
1.0  
–25  
0
50  
–50  
75  
100  
25  
–6  
–4  
–2  
0
2
4
6
–50 –25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
V
AND SW VOLTAGE (V)  
TEMPERATURE (°C)  
IN  
3499 G09  
3499 G08  
3499 G11  
Fixed Frequency Discontinous  
Mode Operation  
Burst Mode Operation  
(LTC3499 Only)  
Load Transient 50mA to 200mA  
SW  
2V/DIV  
V
OUT  
200mV/DIV  
V
OUT  
50mV/DIV  
200mA  
50mA  
I
LOAD  
100mA/DIV  
I
L
I
100mA/DIV  
L
50mA/DIV  
3499 G13  
3499 G14  
3499 G12  
V
V
= 2.4V  
200µs/DIV  
IN  
V
V
= 2.4V  
= 5V  
200ns/DIV  
V
V
= 2.4V  
= 5V  
20µs/DIV  
IN  
OUT  
L = 4.7µH  
IN  
OUT  
L = 4.7µH  
= 5V  
OUT  
LOAD  
I
= 50mA to 200mA  
R
= 100k  
Z
C
C
V
= 10µF  
OUT  
FF  
OUT  
C = 680pF  
F
= 10pF (FEEDFORWARD CAPACITOR FROM  
C
= 10µF  
OUT  
L = 4.7µH  
TO FB)  
Fixed Frequency Operation  
Soft-Start into 25Load  
V
IN  
2V/DIV  
SS  
2V/DIV  
SW  
2V/DIV  
V
OUT  
2V/DIV  
I
L
100mA/DIV  
I
L
200mA/DIV  
34991G15  
3499 G16  
V
= 2.4V  
OUT  
1ms/DIV  
V
V
= 2.4V  
OUT  
L = 4.7µH  
200ns/DIV  
IN  
IN  
V
= 5V  
= 5V  
L = 4.7µH  
C
C
= 0.01µF  
SS  
= 10µF  
OUT  
3499f  
5
LTC3499/LTC3499B  
U
U
U
PI FU CTIO S  
SHDN (Pin 1):Shutdown Input for IC. Connect to a voltage  
greater than 1.2V to enable and a voltage less than 0.2V to  
disable the LTC3499/LTC3499B.  
VOUT (Pin 6): Power Supply Output. Connect a low ESR  
output filter capacitor from this pin to the ground plane.  
FB(Pin7): FBInputtoErrorAmplifier. Connectaresistor  
divider tap from VOUT to this pin to set the output voltage.  
The output voltage can be adjusted between 2V and 6V.  
Referring to the Functional Block Diagram, the output  
voltage is given by:  
VIN (Pin 2): Input Supply Voltage. The valid operating  
voltage is between 1.8V to 5.5V. VIN has reverse battery  
protection. Since the LTC3499/LTC3499B use VIN as the  
main bias source, bypass with a low ESR ceramic capaci-  
tor of at least 2.2µF.  
R1  
R2  
SW (Pin 3): Switch Pin. Connect an inductor from VIN to  
this pin with a value between 2.2µH and 10µH. Keep PCB  
trace lengths as short and wide as possible to minimize  
EMI and voltage overshoot. If the inductor current falls to  
zero or SHDN is low an internal 250antiringing switch is  
connected from VIN to SW to minimize EMI.  
VOUT = 1.221+  
⎟ ⎥  
VC (Pin 8): Error Amplifier Output. A frequency compen-  
sation network is connected from this pin to GND to  
compensate the boost converter loop. See Closing the  
Feedthrough Loop section for guidelines.  
GND (Pin 4): Signal and Power Ground for the IC.  
Exposed Pad—DD Only (Pin 9): Ground. Must be sol-  
dered to the PCB power ground plane for electrical con-  
nection and rated thermal performance.  
SS (Pin 5): Soft-Start Input. Connect a capacitor from SS  
to ground to control the inrush current at start-up. An  
internal 3µA current source charges this pin. SS will be  
discharged if SHDN is pulled low, thermal shutdown  
occurs or VIN is below the minimum operating voltage.  
3499f  
6
LTC3499/LTC3499B  
U
U
W
FU CTIO AL BLOCK DIAGRA  
C
IN  
+
V
IN  
1.8V TO 5.5V  
L
2
3
V
SW  
IN  
REVERSE-BATTERY COMPARATOR  
ANTI-RING  
250Ω  
+
1 = CLOSED  
1 = CLOSED  
0.7V  
+
+
V
SELECT  
OV COMPARATOR  
1 = OFF  
V
OUT  
6
7
V
OUT  
+
ERROR AMPLIFIER  
C
FF  
(OPTIONAL)  
1.22V  
+
R1  
R2  
6.8V  
ENABLE  
FB  
PWM  
C
OUT  
THERMAL SD  
SLEEP  
LOGIC  
AND  
DRIVERS  
VC  
I
ZERO  
8
5
C
C1  
C
C2  
RZ  
1.2MHz  
OSCILLATOR  
SLOPE  
COMPENSATION  
Σ
3µA  
SS  
5k  
+
C
SS  
PWM COMPARATOR  
ENABLE  
TSD  
Burst Mode  
CONTROL  
(LTC3499 ONLY)  
+
SLEEP  
CURRENT LIMIT COMPARATOR  
REFERENCE  
1A  
TYP  
SHDN  
1
BIAS  
ENABLE  
UVLO  
+
0.8V  
SD  
34991 F01  
GND  
4
Figure 1. Functional Block Diagram  
3499f  
7
LTC3499/LTC3499B  
U
OPERATIO  
TheLTC3499/LTC3499Bprovidehighefficiency,lownoise  
power for boost applications with output voltages up to  
6V. Operation can be best understood by referring to the  
Functional Block Diagram in Figure 1. The synchronous  
boost converters are housed in either an 8-lead (3mm ×  
3mm) DFN or MSOP package and operates at a fixed  
1.2MHz. With a 1.6V typical minimum VIN voltage these  
devices are well suited for applications using two or three  
alkaline or nickel-metal hydride (NiMH) cells or one  
Lithium-Ion(Li+)cell. The LTC3499/LTC3499Bhaveinte-  
grated circuitry which protects the battery, IC, and cir-  
cuitry powered by the device in the event that the input  
batteries are connected backwards (reverse battery pro-  
tection). The true output disconnect feature eliminates  
inrush current and allows VOUT to be zero volts during  
shutdown. The current mode architecture simplifies loop  
compensationwithexcellentloadtransientresponse.The  
low RDS(ON), low gate charge synchronous switches  
eliminatetheneedforanexternalSchottkydioderectifier,  
and provide efficient high frequency pulse width modula-  
tion(PWM).BurstModequiescentcurrenttotheLTC3499  
is only 20µA from VIN, maximizing battery life. The  
LTC3499B does not have Burst Mode operation and the  
device continues switching at constant frequency. This  
resultsintheabsenceoflowfrequencyoutputrippleatthe  
expense of light load efficiency.  
In the event of a commanded shutdown or thermal  
shutdown (TSD), CSS is discharged through a nominal  
5kimpedance to GND. Once the condition is removed  
and SS is discharged near ground, a soft-start will auto-  
matically be re-initiated.  
Error Amplifier  
A transconductance amplifier generates an error voltage  
from the difference between the positive input internally  
connected to the 1.22V reference and the negative input  
connected to FB. A simple compensation network is  
placed from VC to ground. Internal clamps limit the  
minimumandmaximumerroramplifieroutputvoltagefor  
improved large signal transient response. A voltage di-  
vider from VOUT to GND programs the output voltage via  
FB from 2V to 6V and is defined by the following equation:  
R1  
R2  
VOUT = 1.221+  
⎟ ⎥  
Current Sensing  
Losslesscurrentsensingconvertsthepeakcurrentsignal  
into a voltage which is summed with the internal slope  
compensation. This summed signal is compared to the  
error amplifier output to provide a peak current control  
command for the PWM. Peak switch current is limited to  
750mA minimum.  
LOW NOISE FIXED FREQUENCY OPERATION  
Shutdown  
Antiringing Control  
The antiringing control connects a resistor across the  
inductor to damp the ringing on SW in discontinuous  
conduction mode. The LC resonant ringing (L = inductor,  
CSW = capacitance on SW) is low energy, but can cause  
EMI radiation if antiringing control is not present.  
The LTC3499/LTC3499B are shut down by pulling SHDN  
below 0.2V, and activated by pulling the pin above 1.2V.  
SHDN can be driven above VIN or VOUT as long as it is  
limited to less than the absolute maximum rating.  
Soft-Start  
Zero Current Comparator  
Thesoft-starttimeisprogrammedwithanexternalcapaci-  
tor to ground on SS. An internal current source charges  
the capacitor, CSS, with a nominal 3µA. The voltage on SS  
is used to clamp the voltage on VC. The soft-start time is  
given by  
The zero current comparator monitors the inductor cur-  
rent to the output and shuts off the synchronous rectifier  
once this current reduces to approximately 40mA, pre-  
venting negative inductor current.  
t(msec) = CSS (µF) • 200  
3499f  
8
LTC3499/LTC3499B  
U
OPERATIO  
Reverse-Battery Protection  
sleep if the output load remains less than the sleep  
threshold. The frequency of this intermittent PWM (or  
burst)operationisproportionaltoloadcurrent.Therefore,  
as the load current drops further below the burst thresh-  
old, the LTC3499 operates in PWM mode less frequently.  
When the load current increases above the burst thresh-  
old, the LC3499 will resume continuous PWM operation  
seamlessly.  
Pluggingthebatteryinbackwardsposesasevereproblem  
to most power converters. At a minimum the battery will  
be quickly discharged. Almost all ICs have an inherent  
diode from VIN (cathode) to ground (anode) which con-  
ducts appreciable current when VIN drops more than 0.7V  
below ground. Under this condition the integrated circuit  
will most likely be damaged due to the excessive current  
draw. There exists the possibility for the battery and  
circuitry powered by the device to also be damaged. The  
LTC3499/LTC3499B have integrated circuitry which al-  
lows negligible current flow under a reverse-battery con-  
dition,protectingthebattery,deviceandcircuitryattached  
totheoutput. Agraphofthereverse-batterycurrentdrawn  
is shown in the Typical Performance Characteristics.  
Referring to the Functional Block Diagram, an optional  
capacitor, CFF, between VOUT and FB in some circum-  
stances can reduce peak-to-peak VOUT ripple and input  
quiescent current during Burst Mode operation. Typical  
values for CFF range from 10pF to 220pF.  
Output Disconnect and Inrush Current Limiting  
TheLTC3499/LTC3499Baredesignedtoallowtrueoutput  
disconnect by eliminating body diode conduction of the  
internalP-channelMOSFETtransistor.ThisallowsVOUT to  
go to zero volts during shutdown without drawing any  
current from the input source. It also provides for inrush  
current limiting at turn-on, minimizing surge current seen  
by the input supply.  
Discrete methods of reverse battery protection put addi-  
tional dissipative elements in the high current path reduc-  
ing efficiency while increasing component count to  
implement protection. The LTC3499/LTC3499B do not  
suffer from either of these drawbacks.  
Burst Mode Operation (LTC3499 only)  
Portable devices frequently spend extended time in low  
power or stand-by mode, only drawing high power when  
specificfunctionsareenabled. Inordertoimprovebattery  
life in these types of products, high power converter  
efficiency needs to be maintained over a wide output  
power range. In addition to its high efficiency at moderate  
and heavy loads, the LTC3499 includes automatic Burst  
Mode operation that improves efficiency of the power  
converter at light loads. Burst Mode operation is initiated  
if the output load current falls below an internally pro-  
grammed threshold (see Typical Performance graph,  
Output Load Burst Mode Threshold vs VIN). Once initiated  
theBurstModeoperationcircuitryshutsdownmostofthe  
circuitry in the LTC3499, only keeping alive the circuitry  
required to monitor the output voltage.  
VIN > VOUT Operation  
The LTC3499/LTC3499B will maintain voltage regulation  
when the input voltage is above the output voltage. This  
is achieved by terminating the switching on the synchro-  
nous P-channel MOSFET and applying VIN statically on  
the gate. This will ensure the volts • seconds of the  
inductor will reverse during the time current is flowing to  
the output. Since this mode will dissipate more power in  
the IC, the maximum output current is limited in order to  
maintain an acceptable junction temperature:  
125 – TA  
IOUT(MAX)  
θJA • V + 1.5 – V  
(
)
(
)
IN  
OUT  
where TA = ambient temperature and θJA is the package  
thermal resistance (45°C/W for the DD8 and 160°C/W for  
the MS8).  
This state is referred to as sleep. In sleep, the LTC3499  
only draws 20µA from the input supply, greatly enhancing  
efficiency. When the output has drooped approximately  
1% from its nominal regulation point, the LTC3499 wakes  
up and commences normal PWM operation. The output  
capacitor will recharge causing the LTC3499 to re-enter  
For example at VIN = 4.5V, VOUT = 3.3V and TA = 85°C in  
the DD8 package, the maximum output current is 330mA.  
3499f  
9
LTC3499/LTC3499B  
U
W U U  
APPLICATIO S I FOR ATIO  
PCB LAYOUT GUIDELINES  
such as ferrite, to reduce core losses. The inductor should  
have low ESR (equivalent series resistance) to reduce the  
I2R power losses, and must be able to handle the peak  
inductor current without saturating. To minimize radiated  
noise, use a toroidal or shielded inductor. See Table 1 for  
some suggested inductor suppliers.  
The high speed operation of the LTC3499/LTC3499B  
demand careful attention to board layout. Advertised  
performance will not be achieved with careless layout.  
Figure 2 shows the recommended component placement.  
Alargecopperareawillhelptolowerthechiptemperature.  
Traces carrying high current (SW, VOUT, GND) are kept  
short. The lead length to the battery should be kept as  
short as possible. The VIN and VOUT ceramic capacitors  
should be placed as close to the IC pins as possible.  
Table 1. Inductor Vendor Information  
PART NUMBER  
SUPPLIER  
WEB SITE  
MSS5131 and  
Coilcraft  
www.coilcraft.com  
MOS6020 Series  
SLF7028 and  
TDK  
www.component.tdk.com  
SLF7045 Series  
C
C2  
EXPOSED PAD FOR DD8  
LQH55D Series  
Murata  
Sumida  
www.murata.com  
www.sumida.com  
C
C1  
RZ  
R2  
CDRH4D28 and  
CDRH4D28 Series  
VC  
1
2
3
4
8
7
6
5
SHDN  
D53LC and  
D62CB Series  
Toko  
www.tokoam.com  
V
IN  
FB  
V
DT0703 Series  
CoEV  
FDK  
www.coev.net  
www.fdk.com  
9
R1  
C
C
L
+
IN  
MJPF2520 Series  
V
BATT  
OUT  
SW  
SS  
Output Capacitor Selection  
OUT  
GND  
C
SS  
The output voltage ripple has three components to it. The  
bulk value of the capacitor is set to reduce the ripple due  
to charge into the capacitor each cycle. The maximum  
ripple voltage due to charge is given by:  
34991 F02  
Figure 2: Recommended Component Placement  
V
IN  
VRBULK = IP •  
COMPONENT SELECTION  
Inductor Selection  
C
(
OUT VOUT • f  
)
where IP = peak inductor current and f = switching fre-  
quency.  
The LTC3499/LTC3499B allow the use of small surface  
mountinductorsandchipinductorsduetothefast1.2MHz  
switching frequency. A minimum inductance value of  
2.2µH is required. Larger values of inductance will allow  
greater output current capability by reducing the inductor  
ripple current. Increasing the inductance above 10µH will  
increase total solution area while providing minimal im-  
provement in output current capability.  
The ESR (equivalent series resistance) is usually the most  
dominant factor for ripple in most power converters. The  
ripple due to capacitor ESR is simply given by:  
VRCESR = IP • CESR  
where CESR = capacitor equivalent series resistance  
The ESL (equivalent series inductance) is also an impor-  
tant factor for high frequency converters. Using small  
surface mount ceramic capacitors, placed as close as  
possible to VOUT, will minimize ESL.  
The inductor current ripple is typically set to 20% to 40%  
of the maximum inductor current. For high efficiency,  
choose an inductor with high frequency core material,  
3499f  
10  
LTC3499/LTC3499B  
U
W
U U  
APPLICATIO S I FOR ATIO  
Low ESR capacitors should be used to minimize output  
voltage ripple. A 4.7µF to 10µF output capacitor is suffi-  
cient for most applications and should be placed as close  
to VOUT as possible. Larger values may be used to obtain  
even lower output ripple and improve transient response.  
X5R and X7R dielectric materials are preferred for their  
ability to maintain capacitance over wide voltage and  
temperature ranges.  
Closing the Feedback Loop  
The LTC3499/LTC3499B utilize current mode control,  
with internal slope compensation. Current mode control  
eliminates the 2nd order filter due to the inductor and  
output capacitor exhibited in voltage mode controllers,  
thus simplifying it to a single pole filter response. The  
productofthemodulatorcontroltooutputDCgainandthe  
error amp open loop gain gives the DC gain of the system:  
Input Capacitor Selection  
VREF  
The input filter capacitor reduces peak currents drawn  
from the input source and reduces input switching noise.  
Ceramiccapacitorsareagoodchoiceforinputdecoupling  
due to their low ESR and ability to withstand reverse  
voltage (i.e. non-polar nature). The capacitor should be  
located as close as possible to the device. In most appli-  
cations a 2.2µF input capacitor is sufficient. Larger values  
may be used without limitations. Table 2 shows a list of  
several ceramic capacitor manufacturers.  
GDC = GCONTROL GEA  
VOUT GCURRENT_SENSE  
V
IOUT  
IN  
GCONTROL = 2 •  
,
1
GEA ~ 1000, GCURRENT_SENSE  
=
RDS ON  
(
)
The output filter pole is given by:  
IOUT  
Table 2. Capacitor Vendor Information  
SUPPLIER  
AVX  
WEB SITE  
fFILTER_POLE  
=
www.avxcorp.com  
www.murata.com  
www.component.tdk.com  
www.t-yuden.com  
π VOUT COUT  
(
)
Murata  
TDK  
where COUT is the output filter capacitor.  
The output filter zero is given by:  
Taiyo Yuden  
Thermal Considerations  
1
fFILTER_ZERO  
=
For the LTC3499/LTC3499B to deliver full output power, it  
is imperative that a good thermal path be provided to  
dissipate the heat generated within the package. For the  
DFN package, this can be accomplished by taking advan-  
tage of the large thermal pad on the underside of the  
device. It is recommended that multiple vias in the printed  
circuit board be used to conduct heat away from the part  
and into a copper plane with as much area as possible. If  
the junction temperature continues to rise, the part will go  
into thermal shutdown where switching will stop until the  
temperature drops.  
2 • π RESR COUT  
(
)
where RESR is the capacitor equivalent series resistance.  
A troublesome feature of the boost regulator topology is  
the right half plane (RHP) zero, given by:  
2
V
IN  
fRPHZ  
=
2 • π IOUT VOUT L  
(
)
3499f  
11  
LTC3499/LTC3499B  
U
W U U  
APPLICATIO S I FOR ATIO  
V
There is a resultant gain increase with a phase lag which  
makes it difficult to compensate the loop. At heavy loads  
the right half plane zero can occur at a relatively low  
frequency. The loop gain is typically rolled off before the  
RHP zero frequency.  
OUT  
6
ERROR AMPLIFIER  
R1  
R2  
1.22V  
+
FB  
7
The typical error amp compensation is shown in Figure 3,  
following the equations for the loop dynamics:  
VC  
8
1
RZ  
fPOLE1  
~
C
C2  
2 • π 10e6 C  
C
C1  
(
)
C1  
3499 F03  
which is extremely close to DC.  
Figure 3: Typical Error Amplifier Compensation  
1
fZERO1  
=
=
2 • π R •C  
(
)
Z
C1  
1
fPOLE2  
2 • π R •C  
(
)
Z
C2  
3499f  
12  
LTC3499/LTC3499B  
U
TYPICAL APPLICATIO S  
Lithium-Ion to 5V Efficiency  
Lithium-Ion to 5V, 350mA  
100  
90  
100000  
L
4.7µH  
10000  
V
IN  
C
+
IN  
EFFICIENCY  
Li-Ion  
2.2µF  
V
IN  
SW  
OUT  
FB  
80  
3.1V TO 4.2V  
X5R  
1000  
LTC3499  
V
70  
60  
50  
40  
30  
OUT  
V
5V  
POWER LOSS  
100  
ON OFF  
SHDN  
VC  
350mA  
1M  
C
OUT  
10  
10µF  
100k  
X5R  
SS  
GND  
V
V
V
= 4.2V  
= 3.6V  
= 3V  
324k  
IN  
IN  
IN  
1
330pF  
0.01µF  
0.1  
C
C
: TAIYO YUDEN X5R JMK212BJ225MD  
IN  
OUT  
1
10  
LOAD CURRENT (mA)  
1000  
0.1  
100  
: TAIYO YUDEN X5R JMK212BJ106MD  
3499 F04a  
L: COILCRAFT MSS5131-472MLB  
3499 G03  
Two Cells to 5V Efficiency  
Two Cells to 5V, 175mA  
100  
90  
100000  
10000  
L
4.7µH  
V
IN  
C
+
IN  
2 AA CELLS  
2.2µF  
V
IN  
SW  
OUT  
FB  
EFFICIENCY  
1.8V TO 3.2V  
X5R  
80  
70  
1000  
100  
LTC3499  
V
OUT  
V
5V  
ON OFF  
SHDN  
VC  
175mA  
1M  
POWER LOSS  
C
OUT  
60  
50  
40  
10  
1
10µF  
100k  
X5R  
SS  
GND  
V
IN  
V
IN  
V
IN  
= 3.2V  
= 2.4V  
= 1.8V  
324k  
330pF  
0.01µF  
0.1  
C
C
: TAIYO YUDEN X5R JMK212BJ225MD  
IN  
OUT  
0.1  
1
10  
100  
1000  
: TAIYO YUDEN X5R JMK212BJ106MD  
LOAD CURRENT (mA)  
3499 F05a  
L: COILCRAFT MSS5131-472MLB  
3499 G01  
3499f  
13  
LTC3499/LTC3499B  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 1203  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
3499f  
14  
LTC3499/LTC3499B  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
0.889 ± 0.127  
(.035 ± .005)  
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
3.00 ± 0.102  
(.118 ± .004)  
0.52  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
(.0205)  
REF  
(NOTE 3)  
8
7 6  
5
RECOMMENDED SOLDER PAD LAYOUT  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
0.127 ± 0.076  
(.009 – .015)  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
TYP  
MSOP (MS8) 0204  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3499f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC3499/LTC3499B  
U
TYPICAL APPLICATIO  
Two Cells to 3.3V Efficiency  
Two Cells to 3.3V, 250mA  
100  
90  
100000  
10000  
L
4.7µH  
C
V
+
IN  
IN  
EFFICIENCY  
2.2µF  
V
IN  
2 AA CELLS  
SW  
OUT  
FB  
X5R  
1.8V TO 3.2V  
80  
70  
1000  
100  
LTC3499  
V
OUT  
V
3.3V  
ON OFF  
SHDN  
VC  
250mA  
1M  
C
OUT  
60  
50  
40  
10  
1
10µF  
POWER LOSS  
100k  
X5R  
SS  
GND  
332k  
V
IN  
V
IN  
V
IN  
= 3V  
= 2.4V  
= 1.8V  
330pF  
0.01µF  
0.1  
C
C
: TAIYO YUDEN X5R JMK212BJ225MD  
IN  
OUT  
0.1  
1
10  
100  
1000  
: TAIYO YUDEN X5R JMK212BJ106MD  
3499 F06a  
LOAD CURRENT (mA)  
L: COILCRAFT MSS5131-472MB  
3499 G02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
High Efficiency, V : 2.6V to 16V, V = 34V,  
OUT(MAX)  
LT1930/LT1930A  
1A (I ), 1.2MHz/2.2MHz, High Efficiency Step-Up  
SW  
IN  
DC/DC Converter  
I = 4.2mA/5.5mA, I < 1µA, ThinSOT Package  
Q SD  
LT1961  
1.5A (I ), 1.25MHz, High Efficiency Step-Up  
DC/DC Converter  
90% Efficiency, V : 3V to 25V, V  
= 35V, I = 0.9mA,  
OUT(MAX) Q  
SW  
IN  
I
< 6µA, MS8E Package  
SD  
LTC3400/LTC3400B  
LTC3401  
600mA (I ), 1.2MHz, Synchronous Step-Up  
DC/DC Converter  
92% Efficiency, V : 0.5V to 5V, V  
= 5V, I = 19µA/300µA,  
Q
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
I
< 1µA, ThinSOT Package  
SD  
1A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.5V to 5V, V  
= 5.5V, I = 38µA,  
Q
SW  
IN  
I
< 1µA, 10-Lead MS Package  
SD  
LTC3402  
2A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.5V to 5V, V  
= 5.5V, I = 38µA,  
Q
SW  
IN  
I
< 1µA, 10-Lead MS Package  
SD  
LTC3421  
3A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
with Output Disconnect  
95% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 12µA,  
Q
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
I
< 1µA, 24-Lead QFN Package  
SD  
LTC3422  
1.5A (I ), 3MHz, Synchronous Step-Up DC/DC  
95% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 25µA,  
Q
SW  
IN  
Converter with Output Disconnect  
I
< 1µA  
SD  
LTC3425  
5A (I ), 8MHz, 4-Phase Synchronous Step-Up DC/DC  
95% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 12µA,  
Q
SW  
IN  
Converter with Output Disconnect  
I
< 1µA, 32-Lead QFN Package  
SD  
LTC3427  
500mA (I ), 1.25MHz, Synchronous Step-Up DC/DC  
Converter with Soft-Start/Output Disconnect  
94% Efficiency, V : 1.8V to 5V, V  
DFN Package  
= 5.25V, I < 1µA,  
OUT(MAX) SD  
SW  
IN  
LTC3429/LTC3429B  
LTC3458/LTC3458L  
LTC3525  
600mA (I ), 550kHz, Synchronous Step-Up DC/DC  
Converters with Soft-Start/Output Disconnect  
92% Efficiency, V : 0.5V to 4.3V, V  
= 5V, I = 20µA,  
SW  
IN  
OUT(MAX) Q  
I
< 1µA, ThinSOT Package  
SD  
1.4A/1.7A (I ), 1.5MHz, Synchronous Step-Up DC/DC  
93% Efficiency, V : 1.5V to 6V, V  
= 7.5V/6V, I = 15µA,  
OUT(MAX) Q  
SW  
IN  
Converter with Soft-Start/Output Disconnect  
I
< 1µA, DFN Package  
SD  
400mA (I ), Synchronous Step-Up DC/DC  
94% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 7µA,  
SW  
IN  
OUT(MAX) Q  
Converter in SC70  
I
< 1µA, Output Disconnect  
SD  
3499f  
LT 0106 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2006  

相关型号:

LTC3499B

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection
Linear

LTC3499BEDD

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection
Linear

LTC3499BEDD#PBF

LTC3499 - 750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3499BEDD#TR

LTC3499 - 750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3499BEDD#TRPBF

暂无描述
Linear

LTC3499BEMS8

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection
Linear

LTC3499BEMS8#PBF

LTC3499 - 750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3499BEMS8#TR

LTC3499 - 750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3499BEMS8#TRPBF

LTC3499 - 750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3499B_15

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection
Linear

LTC3499EDD

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection
Linear

LTC3499EMS8

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection
Linear