LTC3499B_15 [Linear]

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection;
LTC3499B_15
型号: LTC3499B_15
厂家: Linear    Linear
描述:

750mA Synchronous Step-Up DC/DC Converters with Reverse-Battery Protection

电池
文件: 总16页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3499/LTC3499B  
750mA Synchronous  
Step-Up DC/DC Converters  
with Reverse-Battery Protection  
FEATURES  
DESCRIPTION  
TheLTC®3499/LTC3499Baresynchronous,fixedfrequency  
step-up DC/DC power converters with integrated reverse  
battery protection that protect and disconnect the devices  
and load when the battery polarity is reversed while  
delivering high efficiency in a small (3mm × 3mm) DFN  
package. Trueoutputdisconnecteliminatesinrushcurrent  
and allows zero load current in shutdown.  
n
Reverse-Battery Protection for DC/DC Converter  
and Load  
n
High Efficiency: Up to 94%  
n
Generates 5V at 175mA from a 1.8V Input  
n
Operates from 1.8V to 5.5V Input Supply  
n
2V to 6V Adjustable Output Voltage  
n
Inrush Current Controlled During Start-Up  
n
Output Disconnnect in Shutdown  
The devices feature an input voltage range of 1.8V to 5.5V  
enablingoperationfromtwoalkalineorNiMHbatteries.The  
switching frequency is internally set at 1.2MHz allowing  
the use of tiny surface mount inductors and capacitors.  
A minimal number of external components are required  
to generate output voltages ranging from 2V to 6V. The  
LTC3499 features automatic Burst Mode operation to  
increase efficiency at light loads, while the LTC3499B  
features continuous switching at light loads.  
n
Low Noise 1.2MHz PWM Operation  
n
Tiny External Components  
Automatic Burst Mode® Operation (LTC3499)  
n
n
Continuous Switching at Light Loads (LTC3499B)  
n
Overvoltage Protection  
n
8-Lead (3mm × 3mm × 0.75mm) DFN  
and MSOP Packages  
APPLICATIONS  
The soft-start time is externally programmable through a  
small capacitor. Anti-ring circuitry reduces EMI emissions  
by damping the inductor in discontinuous mode. The de-  
vices feature <1µA shutdown supply current, integrated  
overvoltage protection and are available in both 8-pin  
(3mm × 3mm) DFN and 8-pin MSOP packages.  
n
Medical Equipment  
n
Digital Cameras  
n
MP3 Players  
Handheld Instruments  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Two AA Cells to 5V Synchronous Boost Converter  
Battery Current vs VIN  
1.0  
4.7µH  
SHDN = 0V  
V
IN  
1.8V TO 3.2V  
V
= 0V  
OUT  
+
V
IN  
SW  
OUT  
FB  
2.2µF  
0.5  
0
LTC3499  
V
OUT  
V
5V  
ON OFF  
SHDN  
VC  
175mA  
1M  
10µF  
100k  
330pF  
SS  
–0.5  
–1.0  
GND  
324k  
0.01µF  
3499 TA01  
–6  
–4  
–2  
0
2
4
6
V
AND SW VOLTAGE (V)  
IN  
3499 TA01b  
3499fc  
1
LTC3499/LTC3499B  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
V to GND..................................................... – 7V to 7V  
FB, SS to GND............................................. – 0.3V to 7V  
Operating Temperature Range  
IN  
V
to GND .............................................. – 0.3V to 7V  
OUT  
SW to V  
SW to GND  
................................................... – 7V to 1V  
(Notes 3, 4)......................................... –40°C to 85°C  
Storage Temperature Range ................. –65°C to 125°C  
Lead Temperature (Soldering, 10 sec)  
OUT  
DC............................................................... –7V to 7V  
Pulsed < 100ns........................................... –7V to 8V  
SHDN to GND................................................. – 7V to 7V  
MSOP .............................................................. 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
SHDN  
1
2
3
4
8
7
6
5
VC  
FB  
SHDN  
1
2
3
4
8
7
6
5
VC  
FB  
V
IN  
V
SW  
9
IN  
SW  
V
OUT  
V
OUT  
GND  
SS  
GND  
SS  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
= 125°C, θ = 160°C/W  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
JMAX  
JA  
T
= 125°C, θ = 45°C  
JA  
JMAX  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3499EDD#PBF  
LTC3499BEDD#PBF  
LTC3499EMS8#PBF  
LTC3499BEMS8#PBF  
TAPE AND REEL  
PART MARKING  
LBRB  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC3499EDD#TRPBF  
LTC3499BEDD#TRPBF  
LTC3499EMS8#TRPBF  
LTC3499BEMS8#TRPBF  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead Plastic MSOP  
LCDZ  
–40°C to 85°C  
LTBRC  
–40°C to 85°C  
LTCFB  
8-Lead Plastic MSOP  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VIN = 2.4V, VOUT = 5V, SHDN = 2.4V, TA = TJ unless otherwise noted. (Note 3)  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
V
V
Minimum Start-Up Voltage  
Output Voltage Adjust Range  
FB Voltage  
1.6  
1.8  
6
V
V
V
IN  
2
OUT  
FB  
1.195  
1.220  
1.245  
3499fc  
2
LTC3499/LTC3499B  
ELECTRICAL CHARACTERISTICS The l denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VIN = 2.4V, VOUT = 5V, SHDN = 2.4V, TA = TJ unless otherwise noted. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
V = 1.22V  
FB  
MIN  
TYP  
3
MAX  
50  
UNITS  
nA  
I
I
I
I
FB Input Current  
FB  
l
V
V
Quiescent Current  
No Output Load  
SHDN = 0V, V  
300  
0.1  
600  
1
µA  
VIN  
IN  
IN  
Quiescent Current in Shutdown  
= 0V  
OUT  
µA  
SD  
Quiescent Current – Burst Mode Operation  
V
V
Current at 2.4V (LTC3499 Only)  
OUT  
20  
1.5  
µA  
µA  
BURST  
IN  
Current at 5V (LTC3499 Only)  
I
I
NMOS Switch Leakage Current  
PMOS Switch Leakage Current  
NMOS Switch On Resistance  
V
V
= 6V  
0.1  
0.1  
5
5
µA  
µA  
NMOS  
SW  
= 6V, V = 0V  
PMOS  
OUT  
SW  
R
V
V
= 3.3V  
= 5V  
0.45  
0.4  
Ω
Ω
NMOS  
PMOS  
OUT  
OUT  
R
PMOS Switch On Resistance  
V
V
= 3.3V  
= 5V  
0.58  
0.45  
Ω
Ω
OUT  
OUT  
l
I
t
NMOS Current Limit  
0.75  
80  
1
1
A
ns  
LIM  
Current Limit Delay to Output  
Maximum Duty Cycle  
Note 2  
60  
85  
DLY, ILIM  
l
l
l
D
D
%
MAX  
Minimum Duty Cycle  
0
%
MIN  
f
Frequency Accuracy  
1.2  
40  
–5  
5
1.4  
MHz  
µmhos  
µA  
OSC  
G
Error Amplifier Transconductance  
Error Amplifier Source Current  
Error Amplifier Sink Current  
SS Current Source  
mEA  
SOURCE  
SINK  
I
I
I
µA  
V
= 1V  
SS  
–3  
6.8  
400  
µA  
SS  
V
V
V
V
Overvoltage Threshold  
Overvoltage Hysteresis  
V
OV  
OUT  
OUT  
mV  
OV(HYST)  
Shutdown  
l
l
V
SHDN Input Low Voltage  
SHDN Input High Voltage  
SHDN Input Current  
0.2  
1
V
V
SHDN(LOW)  
SHDN(HIGH)  
V
Measured at SW  
1.2  
I
SD  
µA  
Reverse Battery  
l
l
l
I
I
I
V
V
Reverse-Battery Current  
V
OUT  
V
OUT  
V
OUT  
= 0V, V = V  
= V = –6V  
5
µA  
µA  
µA  
VOUT,REVBATT  
VIN,REVBATT  
SHDN,REVBATT  
OUT  
IN  
SHDN  
SHDN  
SHDN  
SW  
and V Reverse-Battery Current  
= 0V, V = V  
= V = –6V  
–5  
–5  
IN  
SW  
IN  
SW  
SHDN Reverse-Battery Current  
= 0V, V = V  
= V = –6V  
SW  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: These ICs include overtemperature protection that is intended  
to protect the devices during momentary overload conditions. Junction  
temperatures will exceed 125°C when overtemperature protection is  
active. Continuous operation above the specified maximum operating  
temperature range may impair device reliability.  
Note 2: Specification is guaranteed by design and not 100% tested in  
production.  
Note 3:The LTC3499E/LTC3499BE are guaranteed to meet device  
specifications from 0°C to 85°C. Specifications over the –40°C to 85°C  
operating temperature are assured by design, characterization and  
correlation with statistical process controls.  
3499fc  
3
LTC3499/LTC3499B  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
2-Cell to 5V Efficiency  
vs Load Current (LTC3499 Only)  
Li-Ion to 5V Efficiency  
vs Load Current (LTC3499 Only)  
2-Cell to 5V Efficiency  
vs Load Current (LTC3499B Only)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
100000  
10000  
100  
90  
100000  
10000  
1000  
100  
EFFICIENCY  
EFFICIENCY  
80  
80  
70  
1000  
100  
70  
60  
50  
40  
30  
POWER LOSS  
POWER LOSS  
60  
50  
40  
10  
1
10  
V
V
V
= 3.2V  
= 2.4V  
= 1.8V  
V
V
V
= 4.2V  
= 3.6V  
= 3V  
V
V
V
= 3.2V  
= 2.4V  
= 1.8V  
IN  
IN  
IN  
IN  
IN  
IN  
1
IN  
IN  
IN  
0.1  
0.1  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
1
10  
LOAD CURRENT (mA)  
1000  
0.1  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3499 G17  
3499 G01  
3499 G03  
Burst Mode Output Current  
Threshold vs Input Voltage  
(LTC3499 Only)  
Current Limit Accuracy  
vs Temperature  
2-Cell to 3.3V Efficiency  
vs Load Current (LTC3499 Only)  
1.04  
1.03  
1.02  
60  
50  
40  
30  
20  
10  
0
100  
90  
100000  
V
= 5V  
OUT  
10000  
EFFICIENCY  
80  
70  
1000  
100  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
60  
50  
40  
10  
1
POWER LOSS  
V
V
V
= 3V  
= 2.4V  
= 1.8V  
IN  
IN  
IN  
0.1  
–25  
0
50  
1.8  
2.8  
3.3  
3.8  
4.3  
4.8  
–50  
75  
100  
25  
2.3  
0.1  
1
10  
100  
1000  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
3499 G04  
3499 G05  
3499 G02  
Maximum Output Current  
Capability vs VIN  
No Load Input Current vs VIN  
(LTC3499 Only)  
Burst Mode Quiescent Current  
vs Temperature (LTC3499 Only)  
200  
180  
160  
140  
120  
100  
80  
30  
25  
20  
15  
10  
5
800  
700  
600  
500  
400  
300  
200  
100  
0
V
IN  
> V  
OUT  
V
> V  
OUT  
IN  
V
= 3.3V  
OUT  
V
= 3.3V  
OUT  
V
= 5V  
OUT  
V
= 5V  
OUT  
60  
40  
20  
0
0
1.5  
2.5  
3.5  
(V)  
4.5  
5.5  
–50  
0
25  
50  
75  
100  
3.5  
(V)  
–25  
1.5  
2.5  
4.5  
5.5  
V
TEMPERATURE (°C)  
V
IN  
IN  
3499 G07  
3499 G08  
3499 G06  
3499fc  
4
LTC3499/LTC3499B  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Burst Mode Quiescent Current  
vs Temperature  
VIN and SW Reverse-Battery  
FB Voltage vs Temperature  
Current vs VIN and SW Voltage  
1.0  
0.5  
30  
25  
20  
15  
10  
5
1.2225  
1.2220  
1.2215  
1.2210  
1.2205  
1.2200  
1.2195  
1.2190  
1.2185  
SHDN = 0V  
V
OUT  
= 0V  
0
–0.5  
–1.0  
0
–25  
0
50  
–50  
75  
100  
25  
–50  
0
25  
50  
75  
100  
–25  
–6  
–4  
–2  
0
2
4
6
TEMPERATURE (°C)  
V
IN  
AND SW VOLTAGE (V)  
TEMPERATURE (°C)  
3499 G09  
3499 G08  
3499 G11  
Burst Mode Operation  
(LTC3499 Only)  
Fixed Frequency Discontinous  
Mode Operation  
Load Transient 50mA to 200mA  
SW  
2V/DIV  
V
OUT  
V
OUT  
200mV/DIV  
50mV/DIV  
200mA  
50mA  
I
I
LOAD  
L
I
100mA/DIV  
100mA/DIV  
L
50mA/DIV  
3499 G12  
3499 G13  
3499 G14  
V
V
= 2.4V  
= 5V  
20µs/DIV  
V
V
= 2.4V  
= 5V  
200µs/DIV  
V
V
= 2.4V  
= 5V  
OUT  
200ns/DIV  
IN  
OUT  
L = 4.7µH  
IN  
OUT  
IN  
I
= 50mA to 200mA  
L = 4.7µH  
LOAD  
C
C
V
= 10µF  
R
C
= 100k  
= 680pF  
= 10µF  
OUT  
Z
= 10pF (FEEDFORWARD CAPACITOR FROM  
TO FB)  
FF  
OUT  
F
OUT  
L = 4.7µH  
C
Soft-Start into 25Ω Load  
Fixed Frequency Operation  
V
IN  
2V/DIV  
SS  
2V/DIV  
SW  
2V/DIV  
V
OUT  
I
L
2V/DIV  
100mA/DIV  
I
L
200mA/DIV  
3499 G16  
3499G15  
V
V
= 2.4V  
= 5V  
200ns/DIV  
V
V
= 2.4V  
= 5V  
1ms/DIV  
IN  
OUT  
L = 4.7µH  
IN  
OUT  
L = 4.7µH  
C
C
= 0.01µF  
SS  
= 10µF  
OUT  
3499fc  
5
LTC3499/LTC3499B  
PIN FUNCTIONS  
SHDN(Pin1):ShutdownInputforIC. Connecttoavoltage  
greater than 1.2V to enable and a voltage less than 0.2V  
to disable the LTC3499/LTC3499B.  
SS (Pin 5): Soft-Start Input. Connect a capacitor from  
SS to ground to control the inrush current at start-up.  
An internal 3µA current source charges this pin. SS will  
be discharged if SHDN is pulled low, thermal shutdown  
V
(Pin 2): Input Supply Voltage. The valid operating  
IN  
occurs or V is below the minimum operating voltage.  
IN  
voltage is between 1.8V to 5.5V. V has reverse battery  
IN  
protection. Since the LTC3499/LTC3499B use V as the  
V
(Pin 6): Power Supply Output. Connect a low ESR  
IN  
OUT  
main bias source, bypass with a low ESR ceramic capaci-  
output filter capacitor from this pin to the ground plane.  
tor of at least 2.2µF.  
FB (Pin 7): FB Input to Error Amplifier. Connect a resistor  
SW (Pin 3): Switch Pin. Connect an inductor from V to  
divider tap from V  
to this pin to set the output voltage.  
IN  
OUT  
this pin with a value between 2.2µH and 10µH. Keep PCB  
trace lengths as short and wide as possible to minimize  
EMI and voltage overshoot. If the inductor current falls to  
zero or SHDN is low an internal 250Ω antiringing switch  
The output voltage can be adjusted between 2V and 6V.  
Referring to the Functional Block Diagram, the output  
voltage is given by:  
R1  
R2  
is connected from V to SW to minimize EMI.  
IN  
VOUT =1.221+  
GND (Pin 4/Exposed Pad, DD Package Pin 9): Signal  
and Power Ground. The DD package exposed pad must  
be soldered to the PCB power ground plane for electrical  
connection and rated thermal performance.  
VC (Pin 8): Error Amplifier Output. A frequency com-  
pensation network is connected from this pin to GND to  
compensate the boost converter loop. See Closing the  
Feedthrough Loop section for guidelines.  
3499fc  
6
LTC3499/LTC3499B  
FUNCTIONAL BLOCK DIAGRAM  
C
IN  
+
V
IN  
1.8V TO 5.5V  
L
2
3
V
SW  
IN  
REVERSE-BATTERY COMPARATOR  
ANTI-RING  
250Ω  
+
1 = CLOSED  
1 = CLOSED  
0.7V  
+
+
V
SELECT  
OV COMPARATOR  
V
OUT  
6
7
V
OUT  
+
1 = OFF  
ERROR AMPLIFIER  
C
FF  
(OPTIONAL)  
1.22V  
+
R1  
R2  
6.8V  
ENABLE  
FB  
PWM  
C
OUT  
THERMAL SD  
SLEEP  
LOGIC  
AND  
DRIVERS  
VC  
I
ZERO  
8
5
C
C1  
C
C2  
RZ  
1.2MHz  
OSCILLATOR  
SLOPE  
COMPENSATION  
Σ
3µA  
SS  
5k  
+
C
SS  
PWM COMPARATOR  
ENABLE  
TSD  
Burst Mode  
CONTROL  
(LTC3499 ONLY)  
+
SLEEP  
CURRENT LIMIT COMPARATOR  
REFERENCE  
1A  
TYP  
SHDN  
1
BIAS  
ENABLE  
UVLO  
+
0.8V  
SD  
GND  
4
3499 F01  
Figure 1: Functional Block Diagram  
3499fc  
7
LTC3499/LTC3499B  
OPERATION  
TheLTC3499/LTC3499Bprovidehighefficiency, lownoise  
power for boost applications with output voltages up to  
6V. Operation can be best understood by referring to  
the Functional Block Diagram in Figure 1. The synchro-  
nous boost converters are housed in either an 8-lead  
(3mm × 3mm) DFN or MSOP package and operates at a  
In the event of an external shutdown or thermal shutdown  
(TSD), C is discharged through a nominal 5kΩ imped-  
SS  
ance to GND. Once the condition is removed and SS is  
discharged near ground, a soft-start will automatically  
be re-initiated.  
Error Amplifier  
fixed 1.2MHz. With a 1.6V typical minimum V voltage  
IN  
these devices are well suited for applications using two  
or three alkaline or nickel-metal hydride (NiMH) cells or  
one Lithium-Ion (Li-Ion) cell. The LTC3499/LTC3499B  
have integrated circuitry which protects the battery, IC,  
and circuitry powered by the device in the event that the  
input batteries are connected backwards (reverse battery  
protection). The true output disconnect feature eliminates  
A transconductance amplifier generates an error voltage  
from the difference between the positive input internally  
connected to the 1.22V reference and the negative input  
connectedtoFB.Asimplecompensationnetworkisplaced  
fromVCtoground. Internalclampslimittheminimumand  
maximumerroramplifieroutputvoltageforimprovedlarge  
signal transient response. A voltage divider from V  
to  
OUT  
inrush current and allows V  
to be zero volts during  
OUT  
GND programs the output voltage via FB from 2V to 6V  
and is defined by the following equation:  
shutdown. The current mode architecture simplifies loop  
compensation with excellent load transient response.  
R1  
R2  
The low R  
, low gate charge synchronous switches  
DS(ON)  
VOUT =1.221+  
eliminate the need for an external Schottky diode recti-  
fier, and provide efficient high frequency pulse width  
modulation (PWM). Burst Mode quiescent current to the  
Current Sensing  
LTC3499 is only 20µA from V , maximizing battery life.  
IN  
Lossless current sensing converts the peak current signal  
into a voltage which is summed with the internal slope  
compensation. This summed signal is compared to the  
error amplifier output to provide a peak current control  
command for the PWM. Peak switch current is limited  
to 750mA minimum.  
The LTC3499B does not have Burst Mode operation and  
thedevicecontinuesswitchingatconstantfrequency.This  
results in the absence of low frequency output ripple at  
the expense of light load efficiency.  
LOW NOISE FIXED FREQUENCY OPERATION  
Shutdown  
Antiringing Control  
The antiringing control connects a resistor across the  
inductor to damp the ringing on SW in discontinuous  
conduction mode. The LC resonant ringing (L = inductor,  
The LTC3499/LTC3499B are shut down by pulling SHDN  
below 0.2V, and activated by pulling the pin above 1.2V.  
SHDN can be driven above V or V  
as long as it is  
IN  
OUT  
C
= capacitance on SW) is low energy, but can cause  
SW  
limited to less than the absolute maximum rating.  
EMI radiation if antiringing control is not present.  
Soft-Start  
Zero Current Comparator  
Thesoft-starttimeisprogrammedwithanexternalcapaci-  
tor to ground on SS. An internal current source charges  
Thezerocurrentcomparatormonitorstheinductorcurrent  
to the output and shuts off the synchronous rectifier once  
this current reduces to approximately 40mA, preventing  
negative inductor current.  
the capacitor, C , with a nominal 3µA. The voltage on SS  
SS  
is used to clamp the voltage on VC. The soft-start time  
is given by  
t
= C (µF) • 200  
SS  
(msec)  
3499fc  
8
LTC3499/LTC3499B  
OPERATION  
Reverse-Battery Protection  
capacitor will recharge causing the LTC3499 to re-enter  
sleep if the output load current remains less than the  
sleep threshold. The frequency of this intermittent PWM  
(or burst) operation is proportional to load current.  
Therefore, as the load current drops further below the  
burst threshold, the LTC3499 operates in PWM mode  
less frequently. When the load current increases above  
the burst threshold, the LC3499 will resume continuous  
PWM operation seamlessly.  
Connectingthebatterybackwardsposesasevereproblem  
to most power converters. At a minimum the battery will  
bequicklydischarged.AlmostallICshaveaninherentdiode  
from V (cathode) to ground (anode) which conducts ap-  
IN  
preciable current when V drops more than 0.7V below  
IN  
ground. Under this condition the integrated circuit will  
most likely be damaged due to the excessive current draw.  
There exists the possibility for the battery and circuitry  
powered by the device to also be damaged. The LTC3499/  
LTC3499Bhaveintegratedcircuitrywhichallowsnegligible  
current flow under a reverse-battery condition, protecting  
the battery, device and circuitry attached to the output. A  
graph of the reverse-battery current drawn is shown in  
the Typical Performance Characteristics.  
Referring to the Functional Block Diagram, an optional  
capacitor,C ,betweenV andFBinsomecircumstances  
FF  
OUT  
can reduce peak-to-peak V  
ripple and input quiescent  
OUT  
current during Burst Mode operation. Typical values for  
C range from 10pF to 220pF.  
FF  
Output Disconnect and Inrush Current Limiting  
Discrete methods of reverse battery protection put ad-  
ditional dissipative elements in the high current path  
reducing efficiency while increasing component count  
to implement protection. The LTC3499/LTC3499B do not  
suffer from either of these drawbacks.  
The LTC3499/LTC3499B are designed to allow true output  
disconnect by eliminating body diode conduction of the  
internal P-channel MOSFET switch. This allows V  
to  
OUT  
go to zero volts during shutdown without drawing any  
current from the input source. It also provides for inrush  
current limiting at turn-on, minimizing surge current seen  
by the input supply.  
Burst Mode Operation (LTC3499 only)  
Portable devices frequently spend extended time in low  
power or stand-by mode, only drawing high power when  
specificfunctionsareenabled. Inordertoimprovebattery  
life in these types of products, high power converter ef-  
ficiency needs to be maintained over a wide output power  
range. In addition to its high efficiency at moderate and  
heavy loads, the LTC3499 includes automatic Burst Mode  
operation that improves efficiency of the power converter  
at light loads. Burst Mode operation is initiated if the  
output load current falls below an internally programmed  
threshold (see Typical Performance graph, Output Load  
V > V  
Operation  
IN  
OUT  
The LTC3499/LTC3499B will maintain voltage regulation  
when the input voltage is above the output voltage. This is  
achievedbyterminatingtheswitchingonthesynchronous  
P-channelMOSFETandapplyingV staticallyonthegate.  
IN  
This will ensure the volts • seconds of the inductor will  
reverse during the time current is flowing to the output.  
Since this mode will dissipate more power in the IC, the  
maximum output current is limited in order to maintain  
an acceptable junction temperature:  
Burst Mode Threshold vs V ). Once initiated the Burst  
IN  
Mode operation circuitry shuts down most of the circuitry  
in the LTC3499, keeping alive only the circuitry required  
to monitor the output voltage.  
125TA  
IOUT(MAX)  
θJA V +1.5 – V  
(
)
(
)
JA  
IN  
OUT  
where T = ambient temperature and θ is the package  
thermal resistance (45°C/W for the DD8 and 160°C/W  
This state is referred to as sleep. In sleep, the LTC3499  
only draws 20µA from the input supply, greatly enhancing  
efficiency. When the output has drooped approximately  
1% from its nominal regulation point, the LTC3499 wakes  
up and commences normal PWM operation. The output  
A
for the MS8).  
For example at V = 4.5V, V  
= 3.3V and T = 85°C in  
A
IN  
OUT  
the DD8 package, the maximum output current is 330mA.  
3499fc  
9
LTC3499/LTC3499B  
APPLICATIONS INFORMATION  
PCB LAYOUT GUIDELINES  
The inductor current ripple is typically set to 20% to 40%  
of the maximum inductor current. For high efficiency,  
choose an inductor with high frequency core material,  
such as ferrite, to reduce core losses. The inductor should  
have low ESR (equivalent series resistance) to reduce the  
The high speed operation of the LTC3499/LTC3499B  
demand careful attention to board layout. Advertised per-  
formancewillnotbeachievedwithcarelesslayout.Figure 2  
shows the recommended component placement. A large  
copper area will help to lower the chip temperature. Traces  
2
I R power losses, and must be able to handle the peak  
inductor current without saturating. To minimize radiated  
noise, use a toroidal or shielded inductor. See Table 1 for  
some suggested inductor suppliers.  
carrying high current (SW, V , GND) are kept short.  
OUT  
The lead length to the battery should be kept as short as  
possible. The V and V  
ceramic capacitors should be  
IN  
OUT  
placed as close to the IC pins as possible.  
Table 1. Inductor Vendor Information  
PART NUMBER  
SUPPLIER  
WEB SITE  
C
C2  
EXPOSED PAD FOR DD8  
MSS5131 and  
Coilcraft  
www.coilcraft.com  
MOS6020 Series  
C
C1  
RZ  
R2  
VC  
SLF7028 and  
SLF7045 Series  
TDK  
www.component.tdk.com  
1
2
3
4
8
7
6
5
SHDN  
LQH55D Series  
Murata  
Sumida  
Toko  
www.murata.com  
www.sumida.com  
www.tokoam.com  
V
IN  
FB  
V
CDRH4D28 Series  
9
R1  
C
C
L
+
IN  
D53LC and  
D62CB Series  
V
BATT  
OUT  
SW  
DT0703 Series  
CoEV  
FDK  
www.coev.net  
www.fdk.com  
SS  
MJPF2520 Series  
OUT  
GND  
C
SS  
Output Capacitor Selection  
3499 F02  
The output voltage ripple has three components to it. The  
bulk value of the capacitor is set to reduce the ripple due  
to charge into the capacitor each cycle. The maximum  
ripple voltage due to charge is given by:  
Figure 2: Recommended Component Placement  
COMPONENT SELECTION  
Inductor Selection  
VIN  
VRBULK =IP •  
C
OUT VOUT f  
(
)
The LTC3499/LTC3499B allow the use of small surface  
mountinductorsandchipinductorsduetothefast1.2MHz  
switching frequency. A minimum inductance value of  
2.2µH is required. Larger values of inductance will allow  
greater output current capability by reducing the induc-  
tor ripple current. Increasing the inductance above 10µH  
will increase total solution area while providing minimal  
improvement in output current capability.  
where I = peak inductor current and f = switching  
P
frequency.  
The ESR (equivalent series resistance) is usually the most  
dominant factor for ripple in most power converters. The  
ripple due to capacitor ESR is simply given by:  
V
= I • C  
P ESR  
RCESR  
where C  
= capacitor equivalent series resistance.  
ESR  
3499fc  
10  
LTC3499/LTC3499B  
APPLICATIONS INFORMATION  
TheESL(equivalentseriesinductance)isalsoanimportant  
factor for high frequency converters. Using small surface  
mount ceramic capacitors, placed as close as possible to  
into a copper plane with as much area as possible. If the  
junction temperature continues to rise, the part will go  
into thermal shutdown where switching will stop until the  
temperature drops.  
V
, will minimize ESL.  
OUT  
Low ESR capacitors should be used to minimize output  
voltage ripple. A 4.7µF to 10µF output capacitor is suf-  
ficientformostapplicationsandshouldbeplacedasclose  
Closing the Feedback Loop  
The LTC3499/LTC3499B utilize current mode control,  
with internal slope compensation. Current mode control  
eliminates the 2nd order filter due to the inductor and out-  
put capacitor exhibited in voltage mode controllers, thus  
simplifying it to a single pole filter response. The product  
of the modulator control to output DC gain and the error  
amp open loop gain gives the DC gain of the system:  
to V  
as possible. Larger values may be used to obtain  
OUT  
even lower output ripple and improve transient response.  
X5R and X7R dielectric materials are preferred for their  
ability to maintain capacitance over wide voltage and  
temperature ranges.  
Input Capacitor Selection  
V
REF  
G
G
G
= G  
G  
DC  
CONTROL  
EA  
The input filter capacitor reduces peak currents drawn  
from the input source and reduces input switching noise.  
Ceramiccapacitorsareagoodchoiceforinputdecoupling  
duetotheirlowESRandabilitytowithstandreversevoltage  
(i.e. non-polar nature). The capacitor should be located  
as close as possible to the device. In most applications a  
2.2µF input capacitor is sufficient. Larger values may be  
used without limitations. Table 2 shows a list of several  
ceramic capacitor manufacturers.  
V
G  
CURRENT _ SENSE  
OUT  
V
IN  
= 2 •  
,
CONTROL  
I
OUT  
1
1000, G  
=
CURRENT _ SENSE  
EA  
R
DS ON  
(
)
The output filter pole is given by:  
IOUT  
π VOUT COUT  
fFILTER _POLE  
=
Table 2. Capacitor Vendor Information  
(
)
SUPPLIER  
AVX  
WEB SITE  
www.avxcorp.com  
www.murata.com  
www.component.tdk.com  
www.t-yuden.com  
where C  
is the output filter capacitor.  
OUT  
Murata  
TDK  
The output filter zero is given by:  
Taiyo Yuden  
1
fFILTER _ ZERO  
=
2π RESR COUT  
(
)
Thermal Considerations  
where R  
is the capacitor equivalent series resistance.  
ESR  
For the LTC3499/LTC3499B to deliver full output power, it  
is imperative that a good thermal path be provided to dis-  
sipate the heat generated within the package. For the DFN  
package, this can be accomplished by taking advantage  
of the large thermal pad on the underside of the device.  
It is recommended that multiple vias in the printed circuit  
board be used to conduct heat away from the part and  
A troublesome feature of the boost regulator topology is  
the right half plane (RHP) zero, given by:  
2
VIN  
fRHPZ  
=
2π IOUT VOUT L  
(
)
3499fc  
11  
LTC3499/LTC3499B  
APPLICATIONS INFORMATION  
V
There is a resultant gain increase with a phase lag which  
makes it difficult to compensate the loop. At heavy loads  
the right half plane zero can occur at a relatively low  
frequency. The loop gain is typically rolled off before the  
RHP zero frequency.  
OUT  
6
ERROR AMPLIFIER  
R1  
R2  
1.22V  
+
FB  
7
The typical error amp compensation is shown in Figure 3,  
following the equations for the loop dynamics:  
VC  
8
1
fPOLE1  
~
R
Z
C
2π 10e6 C  
C2  
(
)
C1  
C
C1  
3499 F03  
which is extremely close to DC.  
1
Figure 3: Typical Error Amplifier Compensation  
fZERO1  
=
=
2π R C  
(
)
Z
C1  
1
fPOLE2  
2π R C  
(
)
Z
C2  
3499fc  
12  
LTC3499/LTC3499B  
TYPICAL APPLICATIONS  
Lithium-Ion to 5V, 350mA  
Lithium-Ion to 5V Efficiency  
100  
90  
100000  
L
4.7µH  
10000  
V
IN  
C
EFFICIENCY  
+
IN  
Li-Ion  
2.2µF  
V
IN  
SW  
OUT  
FB  
80  
3.1V TO 4.2V  
1000  
×5R  
LTC3499  
70  
60  
50  
40  
30  
V
OUT  
V
POWER LOSS  
100  
5V  
ON OFF  
SHDN  
VC  
350mA  
1M  
C
OUT  
10  
10µF  
100k  
×5R  
SS  
GND  
V
V
V
= 4.2V  
= 3.6V  
= 3V  
324k  
IN  
IN  
IN  
1
330pF  
0.01µF  
0.1  
C
C
: TAIYO YUDEN X5R JMK212BJ225MD  
IN  
OUT  
1
10  
LOAD CURRENT (mA)  
1000  
0.1  
100  
: TAIYO YUDEN X5R JMK212BJ106MD  
3499 F04a  
L: COILCRAFT MSS5131-472MLB  
3499 G03  
Two Cells to 5V, 175mA  
Two Cells to 5V Efficiency  
100  
90  
100000  
10000  
L
4.7µH  
V
IN  
C
+
IN  
EFFICIENCY  
2 AA CELLS  
2.2µF  
V
IN  
SW  
OUT  
FB  
80  
70  
1000  
100  
1.8V TO 3.2V  
×5R  
LTC3499  
V
OUT  
V
5V  
ON OFF  
SHDN  
VC  
175mA  
POWER LOSS  
1M  
C
60  
50  
40  
10  
1
OUT  
10µF  
100k  
×5R  
SS  
V
V
V
= 3.2V  
= 2.4V  
= 1.8V  
IN  
IN  
IN  
GND  
324k  
330pF  
0.01µF  
0.1  
0.1  
1
10  
100  
1000  
C
C
: TAIYO YUDEN X5R JMK212BJ225MD  
IN  
OUT  
: TAIYO YUDEN X5R JMK212BJ106MD  
LOAD CURRENT (mA)  
3499 F05a  
L: COILCRAFT MSS5131-472MLB  
3499 G01  
3499fc  
13  
LTC3499/LTC3499B  
PACKAGE DESCRIPTION  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
R = 0.125  
0.40 0.10  
TYP  
5
8
0.70 0.05  
3.5 0.05  
2.10 0.05 (2 SIDES)  
1.65 0.05  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD8) DFN 0509 REV C  
4
1
0.25 0.05  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.50  
BSC  
2.38 0.10  
2.38 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
8
7
6 5  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
0.889 ± 0.127  
(.035 ± .005)  
DETAIL “A”  
0° – 6° TYP  
0.254  
(.010)  
GAUGE PLANE  
5.23  
(.206)  
MIN  
1
2
3
4
3.20 – 3.45  
(.126 – .136)  
0.53 ± 0.152  
(.021 ± .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
SEATING  
PLANE  
TYP  
0.22 – 0.38  
0.1016 ± 0.0508  
RECOMMENDED SOLDER PAD LAYOUT  
(.009 – .015)  
(.004 ± .002)  
0.65  
(.0256)  
BSC  
TYP  
NOTE:  
MSOP (MS8) 0307 REV F  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3499fc  
14  
LTC3499/LTC3499B  
REVISION HISTORY (Revision history begins at Rev C)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
C
3/11  
Updated Pin Functions for Pins 4 and 9.  
6
Corrected typo in Equation from f  
to f  
.
11  
RPHZ  
RHPZ  
3499fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC3499/LTC3499B  
TYPICAL APPLICATION  
Two Cells to 3.3V, 250mA  
Two Cells to 5V Efficiency  
100  
90  
100000  
10000  
L
4.7µH  
EFFICIENCY  
C
V
+
IN  
IN  
2.2µF  
V
IN  
2 AA CELLS  
SW  
OUT  
FB  
80  
70  
1000  
100  
×5R  
1.8V TO 3.2V  
LTC3499  
V
OUT  
V
3.3V  
ON OFF  
SHDN  
VC  
250mA  
562k  
332k  
C
OUT  
60  
50  
40  
10  
1
10µF  
POWER LOSS  
100k  
×5R  
SS  
V
V
V
= 3V  
= 2.4V  
= 1.8V  
GND  
IN  
IN  
IN  
330pF  
0.01µF  
0.1  
0.1  
1
10  
100  
1000  
C
C
: TAIYO YUDEN X5R JMK212BJ225MD  
IN  
: TAIYO YUDEN X5R JMK212BJ106MD  
LOAD CURRENT (mA)  
OUT  
3499 F06a  
L: COILCRAFT MSS5131-472MB  
3499 F06b  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1930/LT1930A  
1A (I ), 1.2MHz/2.2MHz, High Efficiency Step-Up  
High Efficiency, V : 2.6V to 16V, V  
SD  
= 34V, I = 4.2mA/5.5mA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converter  
I
< 1µA, ThinSOT Package  
LT1961  
1.5A (I ), 1.25MHz, High Efficiency Step-Up  
90% Efficiency, V : 3V to 25V, V  
SD  
= 35V, I = 0.9mA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converter  
I
< 6µA, MS8E Package  
LTC3400/LTC3400B  
LTC3401  
600mA (I ), 1.2MHz, Synchronous Step-Up  
92% Efficiency, V : 0.5V to 5V, V  
SD  
= 5V, I = 19µA/300µA,  
SW  
IN  
OUT(MAX) Q  
DC/DC Converter  
I
< 1µA, ThinSOT Package  
1A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, VIN: 0.5V to 5V, V  
= 5.5V, I = 38µA,  
Q
SW  
OUT(MAX)  
I
SD  
< 1µA, 10-Lead MS Package  
LTC3402  
2A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, VIN: 0.5V to 5V, V  
< 1µA, 10-Lead MS Package  
= 5.5V, I = 38µA,  
Q
SW  
OUT(MAX)  
I
SD  
LTC3421  
3A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
95% Efficiency, V : 0.5V to 4.5V, V  
SD  
= 5.25V, I = 12µA,  
Q
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
with Output Disconnect  
I
< 1µA, 24-Lead QFN Package  
LTC3422  
1.5A (I ), 3MHz, Synchronous Step-Up DC/DC  
95% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 25µA,  
Q
SW  
IN  
Converter with Output Disconnect  
I
SD  
< 1µA  
LTC3425  
5A (I ), 8MHz, 4-Phase Synchronous Step-Up DC/DC  
95% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 12µA,  
Q
SW  
IN  
Converter with Output Disconnect  
I
SD  
< 1µA, 32-Lead QFN Package  
LTC3427  
500mA (I ), 1.25MHz, Synchronous Step-Up DC/DC  
94% Efficiency, V : 1.8V to 5V, V  
= 5.25V, I < 1µA,  
OUT(MAX) SD  
SW  
IN  
Converter with Soft-Start/Output Disconnect  
DFN Package  
LTC3429/LTC3429B  
LTC3458/LTC3458L  
LTC3525  
600mA (I ), 550kHz, Synchronous Step-Up DC/DC  
92% Efficiency, V : 0.5V to 4.3V, V  
SD  
= 5V, I = 20µA,  
OUT(MAX) Q  
SW  
IN  
Converters with Soft-Start/Output Disconnect  
I
< 1µA, ThinSOT Package  
1.4A/1.7A (I ), 1.5MHz, Synchronous Step-Up DC/DC  
93% Efficiency, V : 1.5V to 6V, V  
SD  
= 7.5V/6V, I = 15µA,  
SW  
IN  
OUT(MAX) Q  
Converter with Soft-Start/Output Disconnect  
I
< 1µA, DFN Package  
400mA (I ), Synchronous Step-Up DC/DC  
94% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 7µA,  
OUT(MAX) Q  
SW  
IN  
Converter in SC70  
I
SD  
< 1µA, Output Disconnect  
3499fc  
LT 0311 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY