LTC3526EDC-2-PBF [Linear]

500mA 2MHz Synchronous Step-Up DC/DC Converters in 2mm × 2mm DFN; 500毫安为2MHz同步升压型DC / DC转换器,采用2mm × 2mm DFN封装
LTC3526EDC-2-PBF
型号: LTC3526EDC-2-PBF
厂家: Linear    Linear
描述:

500mA 2MHz Synchronous Step-Up DC/DC Converters in 2mm × 2mm DFN
500毫安为2MHz同步升压型DC / DC转换器,采用2mm × 2mm DFN封装

转换器
文件: 总16页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3526-2/LTC3526B-2  
500mA 2MHz Synchronous  
Step-Up DC/DC Converters  
in 2mm × 2mm DFN  
FEATURES  
DESCRIPTION  
The LTC®3526-2/LTC3526B-2 are synchronous, fixed  
frequency step-up DC/DC converters with output discon-  
nect. Synchronous rectification enables high efficiency  
in the low profile 2mm × 2mm DFN package. Battery life  
in single AA/AAA powered products is extended further  
with an 850mV start-up voltage and operation down to  
500mV once started.  
n
Delivers 3.3V at 100mA from a Single Alkaline/  
NiMH Cell or 3.3V at 200mA from Two Cells  
IN  
n
V Start-Up Voltage: 850mV  
n
n
n
n
n
n
n
n
n
V Operating Range: 0.5V to 5V  
IN  
1.6V to 5.25V V  
Range  
OUT  
Up to 94% Efficiency  
Output Disconnect  
2MHz Fixed Frequency Operation  
A switching frequency of 2MHz minimizes solution foot-  
print by allowing the use of tiny, low profile inductors  
and ceramic capacitors. The current mode PWM design  
is internally compensated, reducing external parts count.  
TheLTC3526-2featuresBurstModeoperationatlightload  
conditions, while the LTC3526B-2 features continuous  
switching. Anti-ring circuitry eliminates EMI concerns by  
damping the inductor in discontinuous mode. Additional  
features include a low shutdown current of under 1μA and  
thermal shutdown.  
V > V  
Operation  
IN  
OUT  
Integrated Soft-Start  
Current Mode Control with Internal Compensation  
Burst Mode® Operation with 9μA Quiescent Current  
(LTC3526-2)  
n
n
n
n
n
Low Noise PWM Operation (LTC3526B-2)  
Internal Synchronous Rectifier  
Logic Controlled Shutdown (I < 1μA)  
Q
Anti-Ringing Control  
Low Profile (2mm × 2mm × 0.75mm) DFN-6 Package  
The LTC3526-2/LTC3526B-2 are housed in a 6-pin  
2mm × 2mm × 0.75mm DFN package.  
APPLICATIONS  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. Burst Mode  
is a trademark of Linear Technology Corporation. All other trademarks are the property of their  
respective owners. Patents pending.  
n
Medical Instruments  
n
Flash-Based MP3 Players  
n
Noise Canceling Headphones  
Wireless Mice  
Bluetooth Headsets  
n
n
TYPICAL APPLICATION  
LTC3526-2 Efficiency and Power Loss vs Load Current  
100  
1000  
100  
10  
2.2μH  
V
= 2.4V  
IN  
90  
EFFICIENCY  
80  
SW  
V
OUT  
70  
V
IN  
3.3V  
V
IN  
V
OUT  
1.6V TO 3.2V  
60  
50  
200mA  
1μF  
LTC3526-2  
SHDN FB  
GND  
1.78M  
1M  
POWER LOSS  
OFF ON  
4.7μF  
40  
30  
20  
10  
0
1
35262b2fA01a  
0.1  
0.01  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
35262b2f TA01b  
35262b2fa  
1
LTC3526-2/LTC3526B-2  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V Voltage................................................... –0.3V to 6V  
IN  
SW Voltage  
SW  
1
2
3
6
5
4
V
OUT  
DC............................................................ –0.3V to 6V  
Pulsed <100ns......................................... –0.3V to 7V  
SHDN, FB Voltage ........................................ –0.3V to 6V  
GND  
7
FB  
V
IN  
SHDN  
V
OUT  
............................................................. –0.3V to 6V  
DC PACKAGE  
6-LEAD (2mm × 2mm) PLASTIC DFN  
= 125°C, θ = 60°C/W (NOTE 6)  
JA  
EXPOSED PAD (PIN 7) IS GND, MUST BE SOLDERED TO PC BOARD  
Operating Temperature Range (Note 2).... –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
T
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3526EDC-2#PBF  
LTC3526BEDC-2#PBF  
TAPE AND REEL  
PART MARKING  
LCNM  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3526EDC-2#TRPBF  
LTC3526BEDC-2#TRPBF  
6-Lead (2mm × 2mm) Plastic DFN  
6-Lead (2mm × 2mm) Plastic DFN  
–40°C to 85°C  
–40°C to 85°C  
LCNP  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the specified operating  
temperature range of –40°C to 85°C, otherwise specifications are at TA = 25°C. VIN = 1.2V, VOUT = 3.3V unless otherwise noted.  
PARAMETER  
CONDITIONS  
= 1mA  
MIN  
TYP  
MAX  
UNITS  
Minimum Start-Up Input Voltage  
Output Voltage Adjust Range  
I
0.85  
1
V
LOAD  
l
l
1.7  
1.6  
5.25  
5.25  
V
V
0°C to 85°C  
Feedback Pin Voltage  
1.165  
1.195  
1
1.225  
50  
V
nA  
μA  
μA  
μA  
μA  
μA  
Ω
Feedback Pin Input Current  
V
V
= 1.30V  
FB  
Quiescent Current—Shutdown  
Quiescent Current—Active  
= 0V, Not Including Switch Leakage, V  
= 0V  
0.01  
250  
9
1
SHDN  
OUT  
Measured on V , Nonswitching  
500  
18  
OUT  
Quiescent Current—Burst  
Measured on V , FB > 1.230V (LTC3526-2 Only)  
OUT  
N-Channel MOSFET Switch Leakage Current  
P-Channel MOSFET Switch Leakage Current  
N-Channel MOSFET Switch On Resistance  
P-Channel MOSFET Switch On Resistance  
N-Channel MOSFET Current Limit  
Current Limit Delay to Output  
Maximum Duty Cycle  
V
V
V
V
= 5V  
0.1  
0.1  
0.4  
0.6  
700  
60  
5
SW  
= 5V, V  
= 0V  
10  
SW  
OUT  
= 3.3V  
= 3.3V  
OUT  
OUT  
Ω
l
500  
85  
mA  
ns  
%
(Note 3)  
l
l
l
V
FB  
V
FB  
= 1.15V, V  
= 1.3V  
= 5V  
OUT  
90  
Minimum Duty Cycle  
0
%
Switching Frequency  
1.8  
0.9  
2
2.4  
MHz  
V
SHDN Pin Input High Voltage  
SHDN Pin Input Low Voltage  
SHDN Pin Input Current  
0.3  
V
V
SHDN  
V
SHDN  
= 1.2V  
= 3.3V  
0.3  
1
1
2
μA  
μA  
35262b2fa  
2
LTC3526-2/LTC3526B-2  
ELECTRICAL CHARACTERISTICS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Current measurements are made when the output is not switching.  
Note 5: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 6: Failure to solder the exposed backside of the package to the PC  
board ground plane will result in a thermal resistance much higher than  
60°C/W.  
Note 2: The LTC3526E-2 is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: Specification is guaranteed by design and not 100% tested in  
production.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current and VIN  
for VOUT = 1.8V (LTC3526-2)  
Efficiency vs Load Current and VIN  
for VOUT = 3.3V (LTC3526-2)  
No-Load Input Current vs VIN  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
1000  
100  
10  
100  
90  
1000  
100  
10  
80  
80  
V = 5V  
OUT  
V
V
V
= 1.2V  
= 2.4V  
= 3.0V  
IN  
IN  
IN  
70  
70  
V
V
V
= 1.0V  
= 1.2V  
= 1.5V  
IN  
IN  
IN  
V
= 3.3V  
OUT  
V
60  
50  
60  
50  
= 2.5V  
OUT  
V
= 1.8V  
40  
30  
20  
10  
0
1
40  
30  
20  
10  
0
1
OUT  
PLOSS AT V = 1.2V  
IN  
0.1  
0.01  
0.1  
0.01  
PLOSS AT V = 1.0V  
PLOSS AT V = 2.4V  
IN  
IN  
PLOSS AT V = 1.2V  
PLOSS AT V = 3.0V  
IN  
IN  
PLOSS AT V = 1.5V  
IN  
2.5 3.0  
(V)  
0.5 1.0 1.5 2.0  
3.5 4.0 4.5  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
V
IN  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
35262b2f G04  
35262b2f G02  
35262b2f G01  
Minimum Load Resistance  
During Start-Up vs VIN  
Efficiency vs Load Current and VIN  
for VOUT = 5V (LTC3526-2)  
Maximum Output Current vs VIN  
100  
90  
1000  
100  
10  
400  
350  
300  
250  
200  
150  
100  
50  
1000  
100  
10  
V
= 3.3V  
OUT  
V
= 2.5V  
OUT  
80  
V
= 1.8V  
OUT  
70  
60  
50  
V
V
V
V
= 1.2V  
= 2.4V  
= 3.6V  
= 4.2V  
IN  
IN  
IN  
IN  
V
= 5V  
OUT  
40  
30  
20  
10  
0
1
PLOSS AT V = 1.2V  
IN  
0.1  
0.01  
PLOSS AT V = 2.4V  
IN  
PLOSS AT V = 3.6V  
IN  
PLOSS AT V = 4.2V  
IN  
L = 2.2μH  
0
2.5 3.0  
0.5 1.0 1.5 2.0  
3.5 4.0 4.5  
0.01  
0.1  
1
10  
100  
1000  
0.85  
0.95  
1.05  
(V)  
1.25  
1.15  
V
(V)  
IN  
LOAD CURRENT (mA)  
V
IN  
35262b2f  
35262b2f G05  
35262b2f  
35262b2fa  
3
LTC3526-2/LTC3526B-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
Burst Mode Threshold Current  
Burst Mode Threshold Current  
vs VIN  
Start-Up Delay Time vs VIN  
vs VIN  
40  
35  
30  
25  
30  
25  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
C
= 2.5V  
V
C
= 1.8V  
OUT  
OUT  
OUT  
OUT  
= 10μF  
= 10μF  
L = 2.2μH  
L = 2.2μH  
20  
15  
LEAVE BURST  
LEAVE BURST  
ENTER BURST  
20  
15  
10  
5
ENTER BURST  
10  
5
0
0
1.25  
1.5  
1
1.75  
1
1.25  
(V)  
1.5  
1.0  
2.0 2.5 3.0  
(V)  
3.5 4.0 4.5  
1.5  
V
(V)  
V
V
IN  
IN  
IN  
35262b2f  
35262b2f G08a  
35262b2f  
Oscillator Frequency Change  
vs VOUT  
Burst Mode Threshold Current  
vs VIN  
Burst Mode Threshold Current  
vs VIN  
60  
2
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
V
C
= 5V  
= 10μF  
NORMALIZED TO 3.3V  
V
C
= 3.3V  
= 10μF  
OUT  
OUT  
OUT  
OUT  
1
0
50 L = 2.2μH  
L = 2.2μH  
40  
LEAVE BURST  
–1  
–2  
–3  
–4  
–5  
LEAVE BURST  
30  
20  
10  
0
ENTER BURST  
2.0 2.5  
ENTER BURST  
–6  
0
3.0  
(V)  
4.0  
4.5  
2.0  
2.5  
3.5 4.0 4.5 5.0  
1.0 1.5  
3.5  
1.5  
3.0  
V
1.0  
1.5  
2.0  
(V)  
2.5  
3.0  
V
(V)  
V
IN  
OUT  
IN  
35262b2f G08d  
35262b2f  
35262b2f  
Oscillator Frequency Change  
vs Temperature  
RDS(ON) vs VOUT  
RDS(ON) Change vs Temperature  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
10  
8
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
NORMALIZED TO 25˚C  
NORMALIZED TO 25˚C  
6
4
2
PMOS  
NMOS  
0
–2  
–4  
–6  
–8  
–10  
–50 –30 –10 10  
30  
50  
70  
90  
–50 –30 –10 10  
30  
50  
70  
90  
1.5  
2.5 3.0 3.5  
(V)  
4.0 4.5 5.0  
2.0  
TEMPERATURE (˚C)  
TEMPERATURE (˚C)  
V
OUT  
35262b2f G12  
35262b2f G11  
35262b2f  
35262b2fa  
4
LTC3526-2/LTC3526B-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
Burst Mode Quiescent Current  
vs VOUT  
VFB vs Temperature  
Start-Up Voltage vs Temperature  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.50  
0.25  
LOAD = 1mA  
NORMALIZED TO 25˚C  
0
–0.25  
–0.50  
–0.75  
–1.00  
3.5  
(V)  
5.0  
1.5 2.0 2.5 3.0  
V
4.0 4.5  
–50 –30 –10 10  
30 –50 70  
90  
40 60  
TEMPERATURE (˚C)  
–60 –40 –20  
0
20  
80 100  
TEMPERATURE (°C)  
OUT  
35262b2f  
35262b2f G14  
35262b2f  
Fixed Frequency Switching  
Waveform and VOUT Ripple  
VOUT and IIN During Soft-Start  
Burst Mode Waveforms  
V
OUT  
1V/DIV  
SW PIN  
2V/DIV  
SW PIN  
2V/DIV  
INPUT  
CURRENT  
0.2A/DIV  
SHDN PIN  
1V/DIV  
V
OUT  
10mV/DIV  
V
OUT  
AC COUPLED  
50mV/DIV  
AC COUPLED  
35262b2f  
V
C
= 3.3V  
= 10μF  
200μs/DIV  
OUT  
OUT  
35262b2f  
35262b2  
200ns/DIV  
20μs/DIV  
= 3.3V AT 5mA  
V
V
C
= 1.2V  
V
V
C
= 1.2V  
IN  
IN  
= 3.3V AT 50mA  
OUT  
OUT  
OUT  
OUT  
= 10μF  
= 4.7μF  
Load Step Response (from Burst  
Mode Operation)  
Load Step Response  
(Fixed Frequency)  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
LOAD  
CURRENT  
50mA/DIV  
LOAD  
CURRENT  
50mA/DIV  
35262b2f  
35262b2f  
V
V
= 3.6V  
= 5V  
100μs/DIV  
V
V
= 3.6V  
= 5V  
100μs/DIV  
IN  
OUT  
IN  
OUT  
20mA TO 170mA STEP  
= 10μF  
50mA TO 150mA STEP  
= 10μF  
C
C
OUT  
OUT  
35262b2fa  
5
LTC3526-2/LTC3526B-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Step Response  
(Fixed Frequency)  
Load Step Response (from Burst  
Mode Operation)  
V
OUT  
V
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
LOAD  
CURRENT  
50mA/DIV  
LOAD  
CURRENT  
50mA/DIV  
35262b2f  
35262b2f  
V
V
= 1.2V  
100μs/DIV  
V
V
= 1.2V  
50μs/DIV  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 3.3V  
50mA TO 100mA STEP  
= 10μF  
5mA TO 100mA STEP  
= 10μF  
C
C
OUT  
OUT  
PIN FUNCTIONS  
SW(Pin1):SwitchPin.ConnectinductorbetweenSWand  
nect resistor divider tap to this pin. The top of the divider  
connects to the output capacitor, the bottom of the divider  
connectstoGND.ReferringtotheBlockDiagram,theoutput  
voltage can be adjusted from 1.6V to 5.25V by:  
V . Keep PCB trace lengths as short and wide as possible  
IN  
to reduce EMI. If the inductor current falls to zero or SHDN  
is low, an internal anti-ringing switch is connected from  
SW to V to minimize EMI.  
IN  
R2  
R1  
VOUT =1.195V • 1+  
GND (Pin 2): Signal and Power Ground. Provide a short  
direct PCB path between GND and the (–) side of the input  
and output capacitors.  
V
(Pin6):Outputvoltagesenseanddrainoftheinternal  
OUT  
synchronous rectifier. PCB trace from V  
to the output  
V (Pin 3): Input Supply Pin. Connect a minimum of 1μF  
OUT  
IN  
filter capacitor (4.7μF minimum) should be as short and  
wide as possible.  
ceramic decoupling capacitor from this pin to ground  
using short direct PCB traces.  
Exposed Pad (Pin 7): The Exposed Pad must be soldered  
to the PCB ground plane. It serves as an additional ground  
connection and as a means of conducting heat away from  
the package.  
SHDN (Pin 4): Logic Controlled Shutdown Input. There  
is an internal 4MΩ pull-down on this pin.  
SHDN = High: Normal operation  
SHDN = Low: Shutdown, quiescent current < 1μA  
FB (Pin 5): Feedback Input to the g Error Amplifier. Con-  
m
35262b2fa  
6
LTC3526-2/LTC3526B-2  
BLOCK DIAGRAM  
L1  
2.2μH  
V
IN  
0.85V  
TO 5V  
C
IN  
2.2μF  
3
1
V
IN  
SW  
V
OUT  
V
SEL  
WELL  
SWITCH  
V
BEST  
V
B
V
OUT  
V
OUT  
1.6V  
6
5
ANTI-RING  
TO 5.25V  
GATE DRIVERS  
AND  
R2  
R1  
ANTI-CROSS  
CONDUCTION  
FB  
SHDN  
4M  
C
OUT  
SHUTDOWN  
1.195V  
4
SHUTDOWN  
+
4.7μF  
I
ZERO  
COMP  
Σ
SLOPE  
COMP  
I
PK  
COMP  
V
REF  
+
I
PK  
UVLO  
ERROR AMP  
SLEEP COMP  
I
ZERO  
START-UP  
V
+
REF  
LOGIC  
MODE  
CLK  
TSD  
CONTROL  
2MHz  
OSC  
CLAMP  
WAKE  
THERMAL  
SHUTDOWN  
C
SS  
EXPOSED  
PAD  
GND  
2
7
35262b2f  
35262b2fa  
7
LTC3526-2/LTC3526B-2  
OPERATION  
(Refer to Block Diagram)  
TheLTC3526-2/LTC3526B-2are2MHzsynchronousboost  
converters housed in a 6-lead 2mm × 2mm DFN package.  
With the ability to start up and operate from inputs less  
than 1V, these devices feature fixed frequency, current  
mode PWM control for exceptional line and load regula-  
tion. The current mode architecture with adaptive slope  
compensation provides excellent transient load response,  
requiring minimal output filtering. Internal soft-start and  
internal loop compensation simplifies the design process  
while minimizing the number of external components.  
rampsthepeakinductorcurrentfromzerotoitspeakvalue  
of700mA(typical)inapproximately0.5ms,allowingstart-  
up into heavy loads. The soft-start circuitry is reset in the  
event of a shutdown command or a thermal shutdown.  
Oscillator  
An internal oscillator sets the switching frequency to  
2MHz.  
Shutdown  
With its low R  
and low gate charge internal N-chan-  
DS(ON)  
Shutdown is accomplished by pulling the SHDN pin  
below 0.3V and enabled by pulling the SHDN pin above  
nel MOSFET switch and P-channel MOSFET synchronous  
rectifier,theLTC3526-2achieveshighefficiencyoverawide  
range of load currents. Automatic Burst Mode operation  
maintains high efficiency at very light loads, reducing  
the quiescent current to just 9μA. Operation can be best  
understood by referring to the Block Diagram.  
0.8V typical. Note that SHDN can be driven above V  
IN  
or V , as long as it is limited to less than the absolute  
OUT  
maximum rating.  
Error Amplifier  
The positive input of the transconductance error amplifier  
is internally connected to the 1.195V reference and the  
negative input is connected to FB. Clamps limit the mini-  
mumandmaximumerrorampoutputvoltageforimproved  
large-signal transient response. Power converter control  
loop compensation is provided internally. An external  
LOW VOLTAGE START-UP  
TheLTC3526-2/LTC3526B-2includeanindependentstart-  
up oscillator designed to start up at an input voltage of  
0.85V (typical). Soft-start and inrush current limiting are  
provided during start-up, as well as normal mode.  
resistive voltage divider from V  
to ground programs  
OUT  
When either V or V  
exceeds 1.4V typical, the IC  
IN  
OUT  
the output voltage via FB from 1.6V to 5.25V.  
enters normal operating mode. When the output voltage  
exceeds the input by 0.24V, the IC powers itself from  
R2  
R1  
VOUT =1.195V • 1+  
V
instead of V . At this point the internal circuitry has  
IN  
OUT  
no dependency on the V input voltage, eliminating the  
IN  
requirement for a large input capacitor. The input voltage  
can drop as low as 0.5V. The limiting factor for the ap-  
plication becomes the availability of the power source to  
supply sufficient energy to the output at low voltages, and  
maximum duty cycle, which is clamped at 90% typical.  
Note that at low input voltages, small voltage drops due  
to series resistance become critical, and greatly limit the  
power delivery capability of the converter.  
Current Sensing  
Losslesscurrentsensingconvertsthepeakcurrentsignalof  
theN-channelMOSFETswitchintoavoltagethatissummed  
with the internal slope compensation. The summed signal  
is compared to the error amplifier output to provide a peak  
current control command for the PWM.  
Current Limit  
The current limit comparator shuts off the N-channel  
MOSFET switch once its threshold is reached. The cur-  
rent limit comparator delay to output is typically 60ns.  
Peak switch current is limited to approximately 700mA,  
LOW NOISE FIXED FREQUENCY OPERATION  
Soft-Start  
The LTC3526-2/LTC3526B-2 contain internal circuitry to  
providesoft-startoperation.Thesoft-startcircuitryslowly  
independent of input or output voltage, unless V  
falls  
OUT  
below 0.7V, in which case the current limit is cut in half.  
35262b2fa  
8
LTC3526-2/LTC3526B-2  
OPERATION  
Zero Current Comparator  
(Refer to Block Diagram)  
Burst Mode OPERATION  
The zero current comparator monitors the inductor cur-  
rent to the output and shuts off the synchronous rectifier  
when this current reduces to approximately 30mA. This  
prevents the inductor current from reversing in polarity,  
improving efficiency at light loads.  
TheLTC3526-2willautomaticallyenterBurstModeopera-  
tion at light load and return to fixed frequency PWM mode  
when the load increases. Refer to the Typical Performance  
Characteristics to see the output load Burst Mode thresh-  
old current vs V . The load current at which Burst Mode  
IN  
operation is entered can be changed by adjusting the  
inductor value. Raising the inductor value will lower the  
load current at which Burst Mode operation is entered.  
Synchronous Rectifier  
To control inrush current and to prevent the inductor  
current from running away when V  
is close to V , the  
In Burst Mode operation, the LTC3526-2 still switches at  
a fixed frequency of 2MHz, using the same error amplifier  
and loop compensation for peak current mode control.  
This control method eliminates any output transient when  
switching between modes. In Burst Mode operation, en-  
ergy is delivered to the output until it reaches the nominal  
regulation value, then the LTC3526-2 transitions to sleep  
mode where the outputs are off and the LTC3526-2 con-  
OUT  
IN  
P-channel MOSFET synchronous rectifier is only enabled  
when V > (V + 0.24V).  
OUT  
IN  
Anti-Ringing Control  
The anti-ringing control connects a resistor across the  
inductor to prevent high frequency ringing on the SW pin  
during discontinuous current mode operation. Although  
sumes only 9μA of quiescent current from V . When the  
the ringing of the resonant circuit formed by L and C  
OUT  
SW  
output voltage droops slightly, switching resumes. This  
maximizes efficiency at very light loads by minimizing  
switchingandquiescentlosses.BurstModeoutputvoltage  
ripple, which is typically 1% peak-to-peak, can be reduced  
by using more output capacitance (10μF or greater), or  
with a small capacitor (10pF to 50pF) connected between  
(capacitance on SW pin) is low energy, it can cause EMI  
radiation.  
Output Disconnect  
The LTC3526-2/LTC3526B-2 are designed to allow true  
output disconnect by eliminating body diode conduction  
of the internal P-channel MOSFET rectifier. This allows for  
V
OUT  
and FB.  
V
OUT  
to go to zero volts during shutdown, drawing no cur-  
Astheloadcurrentincreases,theLTC3526-2willautomati-  
cally leave Burst Mode operation. Note that larger output  
capacitorvaluesmaycausethistransitiontooccuratlighter  
loads. Once the LTC3526-2 has left Burst Mode operation  
and returned to normal operation, it will remain there until  
the output load is reduced below the burst threshold.  
rentfromtheinputsource. Italsoallowsforinrushcurrent  
limiting at turn-on, minimizing surge currents seen by the  
input supply. Note that to obtain the advantages of output  
disconnect, there must not be an external Schottky diode  
connected between the SW pin and V . The output dis-  
OUT  
connectfeaturealsoallowsV  
tobepulledhigh,without  
any reverse current into a battery connected to V .  
OUT  
BurstModeoperationisinhibitedduringstart-upandsoft-  
IN  
start and until V  
is at least 0.24V greater than V .  
OUT  
IN  
Thermal Shutdown  
The LTC3526B-2 features continuous PWM operation at  
2MHz. At very light loads, the LTC3526B-2 will exhibit  
pulse-skip operation.  
If the die temperature exceeds 160°C, the LTC3526-2/  
LTC3526B-2 will go into thermal shutdown. All switches  
will be off and the soft-start capacitor will be discharged.  
The device will be enabled again when the die temperature  
drops by about 15°C.  
35262b2fa  
9
LTC3526-2/LTC3526B-2  
APPLICATIONS INFORMATION  
V > V  
OPERATION  
COMPONENT SELECTION  
Inductor Selection  
IN  
OUT  
The LTC3526-2/LTC3526B-2 will maintain voltage regula-  
tionevenwhentheinputvoltageisabovethedesiredoutput  
voltage.Notethattheefficiencyismuchlowerinthismode,  
and the maximum output current capability will be less.  
Refer to the Typical Performance Characteristics.  
The LTC3526-2/LTC3526B-2 can utilize small surface  
mount chip inductors due to their fast 2MHz switching  
frequency. Inductor values between 1.5μH and 3.3μH are  
suitableformostapplications.Largervaluesofinductance  
will allow slightly greater output current capability (and  
lower the Burst Mode threshold) by reducing the inductor  
ripple current. Increasing the inductance above 10μH will  
increase size while providing little improvement in output  
current capability.  
SHORT-CIRCUIT PROTECTION  
The LTC3526-2/LTC3526B-2 output disconnect feature  
allows output short circuit while maintaining a maximum  
internally set current limit. To reduce power dissipation  
under short-circuit conditions, the peak switch current  
limit is reduced to 400mA (typical).  
The minimum inductance value is given by:  
V
• VOUT(MAX) V  
(
)
IN(MIN)  
IN(MIN)  
SCHOTTKY DIODE  
L >  
2 RIPPLE • VOUT(MAX)  
Although it is not required, adding a Schottky diode from  
where:  
SW to V  
will improve efficiency by about 2%. Note  
OUT  
Ripple = Allowable inductor current ripple (amps peak-  
peak)  
that this defeats the output disconnect and short-circuit  
protection features.  
V
V
= Minimum input voltage  
IN(MIN)  
PCB LAYOUT GUIDELINES  
= Maximum output voltage  
OUT(MAX)  
The high speed operation of the LTC3526-2/LTC3526B-2  
demands careful attention to board layout. A careless  
layout will result in reduced performance. Figure 1 shows  
the recommended component placement. A large ground  
pin copper area will help to lower the die temperature. A  
multilayer board with a separate ground plane is ideal, but  
not absolutely necessary.  
The inductor current ripple is typically set for 20% to  
40% of the maximum inductor current. High frequency  
ferrite core inductor materials reduce frequency depen-  
dent power losses compared to cheaper powdered iron  
types, improving efficiency. The inductor should have  
low ESR (series resistance of the windings) to reduce the  
I2R power losses, and must be able to support the peak  
LTC3526-2  
SW  
V
OUT  
1
2
3
6
5
4
MINIMIZE  
TRACE ON FB  
AND SW  
GND  
FB  
V
SHDN  
IN  
+
V
IN  
MULTIPLE VIAS  
TO GROUND PLANE  
35262b2f  
Figure 1. Recommended Component Placement for Single Layer Board  
35262b2fa  
10  
LTC3526-2/LTC3526B-2  
APPLICATIONS INFORMATION  
inductor current without saturating. Molded chokes and  
some chip inductors usually do not have enough core  
area to support the peak inductor currents of 700mA  
seenontheLTC3526-2/LTC3526B-2.Tominimizeradiated  
noise, use a shielded inductor. See Table 1 for suggested  
components and suppliers.  
Output and Input Capacitor Selection  
Low ESR (equivalent series resistance) capacitors should  
be used to minimize the output voltage ripple. Multilayer  
ceramic capacitors are an excellent choice as they have  
extremely low ESR and are available in small footprints.  
A 4.7μF to 10μF output capacitor is sufficient for most  
applications. Larger values up to 22μF may be used to  
obtain extremely low output voltage ripple and improve  
transient response. X5R and X7R dielectric materials are  
preferred for their ability to maintain capacitance over  
wide voltage and temperature ranges. Y5V types should  
not be used.  
Table 1. Recommended Inductors  
VENDOR  
PART/STYLE  
Coilcraft  
(847) 639-6400  
www.coilcraft.com  
LPO4815  
LPS4012, LPS4018  
MSS5131  
MSS4020  
MOS6020  
ME3220  
DS1605, DO1608  
The internal loop compensation of the LTC3526-2 is de-  
signedtobestablewithoutputcapacitorvaluesof4.7μFor  
greater (without the need for any external series resistor).  
Although ceramic capacitors are recommended, low ESR  
tantalum capacitors may be used as well.  
Coiltronics  
www.cooperet.com  
SD10, SD12, SD14, SD18, SD20,  
SD52, SD3114, SD3118  
FDK  
(408) 432-8331  
www.fdk.com  
MIP3226D4R7M, MIP3226D3R3M  
MIPF2520D4R7  
MIPWT3226D3R0  
Murata  
LQH43C  
Asmallceramiccapacitorinparallelwithalargertantalum  
capacitormaybeusedindemandingapplicationsthathave  
large load transients. Another method of improving the  
transientresponseistoaddasmallfeed-forwardcapacitor  
(714) 852-2001  
www.murata.com  
LQH32C (-53 series)  
301015  
Sumida  
(847) 956-0666  
www.sumida.com  
CDRH5D18  
CDRH2D14  
CDRH3D16  
across the top resistor of the feedback divider (from V  
to FB). A typical value of 22pF will generally suffice.  
OUT  
CDRH3D11  
CR43  
CMD4D06-4R7MC  
CMD4D06-3R3MC  
Low ESR input capacitors reduce input switching noise  
and reduce the peak current drawn from the battery. It  
follows that ceramic capacitors are also a good choice  
for input decoupling and should be located as close as  
possible to the device. A 2.2μF input capacitor is sufficient  
for most applications, although larger values may be  
used without limitations. Table 2 shows a list of several  
ceramiccapacitormanufacturers.Consultthemanufactur-  
ers directly for detailed information on their selection of  
ceramic capacitors.  
Taiyo-Yuden  
www.t-yuden.com  
NP03SB  
NR3015T  
NR3012T  
TDK  
VLP  
VLF, VLCF  
(847) 803-6100  
www.component.tdk.com  
Toko  
(408) 432-8282  
www.tokoam.com  
D412C  
D518LC  
D52LC  
D62LCB  
Wurth  
(201) 785-8800  
www.we-online.com  
WE-TPC type S, M  
Table 2. Capacitor Vendor Information  
SUPPLIER  
AVX  
PHONE  
WEBSITE  
(803) 448-9411  
(714) 852-2001  
(408) 573-4150  
(847) 803-6100  
(408) 544-5200  
www.avxcorp.com  
www.murata.com  
www.t-yuden.com  
www.component.tdk.com  
www.sem.samsung.com  
Murata  
Taiyo-Yuden  
TDK  
Samsung  
35262b2fa  
11  
LTC3526-2/LTC3526B-2  
TYPICAL APPLICATIONS  
1-Cell to 1.8V Converter with <1mm Maximum Height  
for Low-Noise Applications  
100  
90  
V
= 1.8V  
OUT  
2.2μH*  
80  
70  
SW  
V
OUT  
V
IN  
1.8V  
V
IN  
V
OUT  
60  
50  
1V TO 1.6V  
150mA  
1μF  
LTC3526B-2  
SHDN FB  
GND  
511k  
1M  
40  
30  
20  
10  
0
OFF ON  
4.7μF**  
35262b2fA02a  
V
V
V
= 1.5V  
= 1.2V  
= 0.9V  
IN  
IN  
IN  
*FDK MIPF2520D2R2  
**MURATA GRM219R60J475KE19D  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
35262b2f TA02b  
1-Cell to 3.3V  
100  
90  
V
= 3.3V  
OUT  
2.7μH*  
80  
70  
SW  
V
OUT  
V
IN  
3.3V  
V
IN  
V
OUT  
60  
50  
1V TO 1.6V  
75mA  
1.78M  
22pF  
1μF  
LTC3526-2  
SHDN FB  
GND  
40  
30  
20  
10  
0
OFF ON  
10μF  
1M  
35262b2fA04a  
V
V
V
= 1.5V  
= 1.2V  
= 0.9V  
IN  
IN  
IN  
*TAIYO-YUDEN NP03SB2R7M  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
35262b2f TA04b  
35262b2fa  
12  
LTC3526-2/LTC3526B-2  
TYPICAL APPLICATIONS  
2-Cell to 3.3V  
100  
V
= 3.3V  
OUT  
90  
80  
70  
2.7μH*  
SW  
V
OUT  
V
IN  
3.3V  
V
IN  
V
OUT  
60  
50  
2V TO 3.2V  
200mA  
1μF  
LTC3526-2  
SHDN FB  
GND  
1.78M  
1M  
40  
30  
20  
10  
0
OFF ON  
4.7μF  
35262b2fA05a  
V
V
V
= 3.0V  
= 2.4V  
= 1.8V  
IN  
IN  
IN  
*TAIYO-YUDEN NP03SB2R7M  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
35262b2f TA05b  
3.3V Converter with Output OR’d with 5V USB Input  
MBR120ESFT  
5V USB  
2.2μH  
V
OUT  
LDO  
3.3V/5V  
USB  
SW  
V
BATT  
V
IN  
V
OUT  
1.8V TO 3.2V  
1.78M  
1M  
1μF  
LTC3526-2  
SHDN FB  
GND  
DC/DC  
OFF ON  
4.7μF  
35262b2fA07a  
35262b2fa  
13  
LTC3526-2/LTC3526B-2  
TYPICAL APPLICATIONS  
2-Cell to 5V  
100  
90  
V
= 5V  
OUT  
3.3μH*  
80  
70  
SW  
V
OUT  
V
60  
50  
IN  
5V  
V
IN  
V
OUT  
2V TO 3.2V  
150mA  
22pF  
1μF  
3.24M  
1.02M  
LTC3526-2  
SHDN FB  
GND  
40  
30  
20  
10  
0
OFF ON  
10μF  
V
V
V
= 3.0V  
= 2.4V  
= 1.8V  
35262b2fA06a  
IN  
IN  
IN  
*TAIYO-YUDEN NP03SB3R3M  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
35262b2f TA06b  
Li-Ion to 5V  
100  
90  
V
= 5V  
OUT  
3.3μH*  
80  
SW  
70  
V
OUT  
V
IN  
5V  
V
IN  
V
OUT  
60  
50  
2.7V TO 4.3V  
200mA  
3.24M  
22pF  
1μF  
LTC3526-2  
SHDN FB  
GND  
OFF ON  
10μF  
40  
30  
20  
10  
0
1.02M  
35262b2fA08a  
V
V
V
= 4.2V  
= 3.6V  
= 3.0V  
IN  
IN  
IN  
*TAIYO-YUDEN NP03SB3R3M  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
35262b2f TA08b  
35262b2fa  
14  
LTC3526-2/LTC3526B-2  
PACKAGE DESCRIPTION  
DC Package  
6-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1703)  
R = 0.115  
TYP  
0.56 0.05  
(2 SIDES)  
0.38 0.05  
4
6
0.675 0.05  
2.50 0.05  
1.15 0.05  
0.61 0.05  
(2 SIDES)  
2.00 0.10  
(4 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
PACKAGE  
OUTLINE  
CHAMFER OF  
EXPOSED PAD  
(DC6) DFN 1103  
3
1
0.25 0.05  
0.25 0.05  
0.50 BSC  
0.50 BSC  
0.75 0.05  
0.200 REF  
1.37 0.05  
(2 SIDES)  
1.42 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WCCD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
35262b2fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC3526-2/LTC3526B-2  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT®1613  
800mA ISW, 1.4MHz, Step-Up DC/DC Converter  
VIN: 1.1V to 10V, VOUT(MAX) = 34V, IQ = 3mA, ISD < 1μA,  
5-Lead SOT-23 Package  
LT1615  
350mA ISW, Micropower, Step-Up DC/DC Converter  
VIN: 1.2V to 15V, VOUT(MAX) = 34V, IQ = 20μA, ISD < 1μA,  
ThinSOTTM Package  
LT1618  
1.5A ISW, 1.4MHz, Constant Current/Constant Voltage  
Step-Up DC/DC Converter  
VIN: 1.6V to 18V, VOUT(MAX) = 35V, IQ = 1.8mA, ISD < 1μA,  
DFN, MSOP Packages  
LT1930/LT1930A  
LTC3400/LTC3400B  
LTC3401  
1A ISW, 1.2MHz/2.2MHz, Step-Up DC/DC Converters  
VIN: 2.6V to 16V, VOUT(MAX) = 34V, IQ = 4.2mA/5.5mA, ISD < 1μA,  
ThinSOT Package  
600mA ISW, 1.2MHz, Synchronous Step-Up  
DC/DC Converters  
92% Efficiency VIN: 0.85V to 5V, VOUT(MAX) = 5V, IQ = 19μA/300μA,  
ISD < 1μA, ThinSOT Package  
1A ISW, 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency VIN: 0.5V to 5V, VOUT(MAX) = 6V, IQ = 38μA, ISD < 1μA,  
10-Lead MS Package  
LTC3402  
2A ISW, 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency VIN: 0.5V to 5V, VOUT(MAX) = 6V, IQ = 38μA, ISD < 1μA,  
10-Lead MS Package  
LTC3421  
3A ISW, 3MHz, Synchronous Step-Up DC/DC Converter  
with Output Disconnect  
95% Efficiency VIN: 0.5V to 4.5V, VOUT(MAX) = 5.25V, IQ = 12μA,  
ISD < 1μA, QFN24 Package  
LTC3422  
1.5A ISW, 3MHz Synchronous Step-Up DC/DC Converter 95% Efficiency VIN: 0.5V to 4.5V, VOUT(MAX) = 5.25V, IQ = 25µA,  
with Output Disconnect  
I
SD < 1µA, 3mm × 3mm DFN Package  
95% Efficiency VIN: 0.5V to 5.5V, VOUT(MAX) = 5.5V, IQ = 38μA,  
SD < 1μA, 10-Lead MS Package  
LTC3423/LTC3424  
LTC3426  
1A/2A ISW, 3MHz, Synchronous Step-Up DC/DC  
Converter  
I
2A ISW, 1.2MHz, Step-Up DC/DC Converter  
92% Efficiency VIN: 1.6V to 4.3V, VOUT(MAX) = 5V, ISD < 1μA,  
SOT-23 Package  
LTC3427  
500mA I , 1.25MHz, Synchronous Step-Up DC/DC  
VIN: 1.8V to 5V, VOUT(MAX) = 5.25V, IQ = 350μA, ISD < 1μA,  
2mm × 2mm DFN Package  
SW  
Converter with Output Disconnect  
LTC3428  
500mA ISW, 1.25MHz/2.5MHz, Synchronous Step-Up  
DC/DC Converters with Output Disconnect  
92% Efficiency VIN: 1.8V to 5V, VOUT(MAX) = 5.25V, ISD < 1µA,  
2mm × 2mm DFN Package  
LTC3429  
600mA ISW, 500kHz, Synchronous Step-Up DC/DC  
Converter with Output Disconnect and Soft-Start  
96% Efficiency VIN: 0.5V to 4.4V, VOUT(MAX) = 5V, IQ = 20μA/300μA,  
I
SD < 1μA, ThinSOT Package  
LTC3458  
1.4A ISW, 1.5MHz, Synchronous Step-Up DC/DC  
Converter/Output Disconnect/Burst Mode Operation  
93% Efficiency VIN: 1.5V to 6V, VOUT(MAX) = 7.5V, IQ = 15μA,  
SD < 1μA, DFN12 Package  
I
LTC3458L  
1.7A ISW, 1.5MHz, Synchronous Step-Up DC/DC  
Converter with Output Disconnect, Automatic Burst  
Mode Operation  
94% Efficiency VOUT(MAX) = 6V, IQ = 12μA, DFN12 Package  
LTC3459  
70mA ISW, 10V Micropower Synchronous Boost  
Converter/Output Disconnect/Burst Mode Operation  
VIN: 1.5V to 5.5V, VOUT(MAX) = 10V, IQ = 10μA, ISD < 1μA,  
ThinSOT Package  
LTC3525-3  
LTC3525-3.3  
LTC3525-5  
400mA Micropower Synchronous Step-Up DC/DC  
Converter with Output Disconnect  
95% Efficiency VIN: 1V to 4.5V, VOUT(MAX) = 3.3V or 5V, IQ = 7μA,  
ISD < 1μA, SC-70 Package  
LTC3526/LTC3526B  
500mA I , 1MHz, Synchronous Step-Up DC/DC  
VIN: 1V to 5V, VOUT(MAX) = 5.25V, IQ = 9µA, ISD < 1μA,  
2mm × 2mm DFN Package  
SW  
Converter in 2mm × 2mm DFN  
ThinSOT is a trademark of Linear Technology Corporation.  
35262b2fa  
LT 0807 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3526EDC-2-TRPBF

500mA 2MHz Synchronous Step-Up DC/DC Converters in 2mm × 2mm DFN
Linear

LTC3526EDC-PBF

500mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm × 2mm DFN
Linear

LTC3526EDC-TRPBF

500mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm × 2mm DFN
Linear

LTC3526L

550mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm × 2mm DFN
Linear

LTC3526L-2

400mA Step-Up DC/DC Converter with Maximum Power Point Control and 250mV Start-Up
Linear

LTC3526L-2_15

550mA 2MHz Synchronous Step-Up DC/DC Converters
Linear

LTC3526LB

550mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm × 2mm DFN
Linear

LTC3526LB-2

500mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm X 2mm DFN
Linear

LTC3526LB-2_15

550mA 2MHz Synchronous Step-Up DC/DC Converters
Linear

LTC3526LBEDC-2#PBF

LTC3526LBEDC-2#PBF
Linear

LTC3526LBEDC-2#TRPBF

LTC3526L-2 - 550mA 2MHz Synchronous Step-Up DC/DC Converters in 2mm x 2mm DFN; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3526LBEDC-PBF

550mA 1MHz Synchronous Step-Up DC/DC Converters in 2mm × 2mm DFN
Linear