LTC3534EDHC#PBF [Linear]

LTC3534 - 7V, 500mA Synchronous Buck-Boost DC/DC Converter; Package: DFN; Pins: 16; Temperature Range: -40°C to 85°C;
LTC3534EDHC#PBF
型号: LTC3534EDHC#PBF
厂家: Linear    Linear
描述:

LTC3534 - 7V, 500mA Synchronous Buck-Boost DC/DC Converter; Package: DFN; Pins: 16; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总20页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3534  
7V, 500mA Synchronous  
Buck-Boost DC/DC  
Converter  
FEATURES  
DESCRIPTION  
The LTC®3534 is a wide V range, highly efficient, fixed  
n
Regulated Output with Input Voltages Above,  
IN  
Below or Equal to the Output  
frequency, buck-boost DC/DC converter that operates  
from input voltages above, below or equal to the output  
voltage. The topology incorporated in the IC provides a  
continuoustransferfunctionthroughalloperatingmodes,  
making the product ideal for multi-cell Alkaline/NiMH or  
singleLithium-Ion/Polymerapplicationswheretheoutput  
voltage is within the battery voltage range.  
n
2.4V to 7V Input and 1.8V to 7V Output  
Voltage Range  
n
5V V  
at 500mA from 4 AA Cells  
OUT  
n
n
n
n
n
n
n
Single Inductor  
Synchronous Rectification: Up to 94% Efficiency  
Burst Mode® Operation with 25μA I  
Q
Output Disconnect in Shutdown  
1MHz Switching Frequency  
<1μA Shutdown Current  
Small Thermally Enhanced 16-Lead (5mm × 3mm ×  
0.75mm) DFN and 16-Lead GN Packages  
The LTC3534 offers extended V and V  
ranges of 2.4V  
IN  
OUT  
to 7V and 1.8V to 7V, respectively. Quiescent current is  
only 25μA in Burst Mode operation, maximizing battery  
life in portable applications. Burst Mode operation is user  
controlled and can be enabled by driving the PWM pin  
low. If the PWM pin is driven high then fixed frequency  
switching is enabled.  
APPLICATIONS  
Other features include fixed 1MHz operating frequency, a  
<1μA shutdown, short-circuit protection, programmable  
soft-start, current limit and thermal overload protection.  
TheLTC3534isavailableinthethermallyenhanced16-lead  
(3mm × 5mm) DFN and 16-lead GN packages.  
n
Medical Instruments  
n
Portable Barcode Readers  
n
Portable Inventory Terminals  
USB to 5V Supply  
Handheld GPS  
n
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
4 AA Cells to 5V at 500mA Buck-Boost Converter  
4 AA Cells to 5V Efficiency vs VIN  
100  
5μH  
95  
SW1  
SW2  
PWM I  
= 300mA  
V
OUT  
OUT  
V
IN  
PV  
IN  
V
5V  
OUT  
3.6V TO 6.4V  
90  
85  
80  
75  
+
500mA  
4 AA  
CELLS  
V
22μF  
IN  
10k  
33pF  
649k  
PWM I  
= 500mA  
10μF  
OUT  
LTC3534  
FB  
OFF ON  
RUN/SS  
PWM  
15k  
V
C
BURST PWM  
PGND1 GND PGND2  
162k  
330pF  
3534 TA01a  
3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4  
(V)  
V
IN  
3534 TA01b  
3534f  
1
LTC3534  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
V , PV Voltages........................................ –0.3V to 8V  
OUT  
SW1, SW2 Voltages  
DC............................................................ –0.3V to 8V  
Pulsed < 100ns........................................ –0.3V to 9V  
RUN/SS, PWM Voltages............................... –0.3V to 8V  
V , FB Voltages............................................ –0.3V to 6V  
IN  
V
IN  
C
Voltage................................................ –0.3V to 8V  
Operating Temperature Range (Note 2).... –40°C to 85°C  
Maximum Junction Temperature (Note 3)............. 125°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature  
(Soldering, 10sec; GN Package) ........................... 300°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
GND  
RUN/SS  
GND  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GND  
FB  
GND  
RUN/SS  
GND  
1
2
3
4
5
6
7
8
16 GND  
15 FB  
V
C
14  
13  
V
V
C
PGND1  
SW1  
V
IN  
PGND1  
SW1  
IN  
17  
PV  
IN  
12 PV  
IN  
SW2  
V
OUT  
SW2  
11 V  
OUT  
PGND2  
GND  
PWM  
GND  
PGND2  
GND  
10 PWM  
GND  
9
GN PACKAGE  
16-LEAD PLASTIC SSOP NARROW - FUSED  
DHC PACKAGE  
16-LEAD (5mm × 3mm) PLASTIC DFN  
T
= 125°C,θ = 90°C/W (4-LAYER BOARD), θ = 37°C/W  
JA JC  
JMAX  
T
= 125°C, θ = 43°C/W (4-LAYER BOARD), θ = 4°C/W  
JA JC  
JMAX  
PINS 1, 8, 9, AND 16 ARE PGND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 17) IS PGND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3534EDHC#PBF  
LTC3534EGN#PBF  
LEAD BASED FINISH  
LTC3534EDHC  
TAPE AND REEL  
PART MARKING  
3534  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3534EDHC#TRPBF  
LTC3534EGN#TRPBF  
TAPE AND REEL  
–40°C to 85°C  
16-Lead (5mm × 3mm) Plastic DFN  
16-Lead SSOP Narrow - Fused  
PACKAGE DESCRIPTION  
3534  
–40°C to 85°C  
PART MARKING  
3534  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC3534EDHC#TR  
LTC3534EDE#TR  
16-Lead (5mm × 3mm) Plastic DFN  
16-Lead SSOP Narrow - Fused  
LTC3534EGN  
3534  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3534f  
2
LTC3534  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = VOUT = 5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
2.4  
7
UNITS  
l
l
l
l
Input Start-Up Voltage  
Input Operating Range  
Output Voltage Adjust Range  
Feedback Voltage  
2.2  
V
V
2.4  
1.8  
7
V
(Note 4)  
0.975  
1
1
1.015  
50  
V
Feedback Input Current  
V
FB  
V
FB  
= Measured Feedback Voltage (Note 4)  
nA  
μA  
V
Quiescent Current – Burst Mode  
= 1.2V, V  
= 0V (Note 5)  
PWM  
25  
50  
IN  
Operation  
V
V
Quiescent Current – Shutdown  
Quiescent Current – Active  
V
V
V
V
V
= 0V, Not Including Switch Leakage, V = 0V  
OUT  
0.1  
420  
1.8  
500  
400  
0.1  
0.1  
260  
275  
215  
85  
1
μA  
μA  
IN  
IN  
RUN/SS  
= 1.2V, V  
= 5V (Note 5)  
PWM  
700  
FB  
l
Input Current Limit  
= 5V  
= 5V  
= 0V  
1
A
PWM  
PWM  
PWM  
Reverse Current Limit  
mA  
mA  
μA  
Burst Current Limit  
NMOS Switches Leakage  
PMOS Switches Leakage  
PMOS Switches On-Resistance  
NMOS B Switch On-Resistance  
NMOS C Switch On-Resistance  
Maximum Duty Cycle  
Switches B and C  
Switches A and D  
Switches A and D  
Switch B  
7
10  
μA  
mΩ  
mΩ  
mΩ  
Switch C  
l
l
Boost (% Switch C On)  
Buck (% Switch A On)  
75  
100  
%
%
l
l
Minimum Duty Cycle  
Frequency  
0
%
MHz  
dB  
μA  
μA  
V
0.80  
1
74  
1.15  
Error Amp AV  
(Note 4)  
OL  
Error Amp Source Current  
Error Amp Sink Current  
RUN/SS Threshold  
–15  
225  
1
l
0.4  
0.4  
1.4  
1
RUN/SS Input Current – Shutdown  
RUN/SS Input Current – Active  
PWM Threshold  
V
V
= 400mV; IC is Shut Down  
= 5V; IC is Enabled  
0.02  
0.28  
1
μA  
μA  
V
RUN/SS  
1
RUN/SS  
Measured at PWM Pin; Voltage at which Burst Mode Operation is  
Disabled (PWMing Enabled)  
1.4  
PWM Input Current  
V
= 5V  
1.25  
2.5  
μA  
PWM  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC3534E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 4: The IC is tested in a feedback loop to make this measurement.  
Note 5: Current Measurements are performed when the outputs are not  
switching.  
3534f  
3
LTC3534  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
4 Alkaline Cells to 5V Efficiency  
vs ILOAD  
USB to 5V Efficiency vs ILOAD  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Burst  
Burst  
Mode  
Mode  
OPERATION  
OPERATION  
V
V
V
= 3.6V  
= 5V  
V
V
V
= 4.35V  
= 4.8V  
IN  
IN  
IN  
IN  
IN  
IN  
= 6.4V  
= 5.25V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3534 G01  
3534 G02  
Active Quiescent and Burst Mode  
SLEEP Currents vs VIN  
Current Limits vs VIN  
3.3  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
425  
415  
405  
395  
385  
30  
28  
26  
24  
22  
V
OUT  
= 5V  
V
FB  
= 1.2V  
ACTIVE QUIESCENT CURRENT  
PEAK CURRENT LIMIT  
Burst Mode SLEEP CURRENT  
4.8 5.6 6.4 7.2 8  
LINEAR CURRENT LIMIT  
4.8 5.6 6.4 7.2 8  
2.4 3.2  
4
2.4 3.2  
4
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3534 G04  
3534 G03  
Minimum Start-Up Voltage  
vs Temperature  
Burst Mode SLEEP Current  
vs Temperature  
Active Quiescent Current  
vs Temperature  
2.200  
2.175  
2.150  
2.125  
450  
430  
410  
390  
370  
50  
40  
30  
20  
10  
V
= 1.2V  
V
= 1.2V  
FB  
FB  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3534 G05  
3534 G06  
3534 G07  
3534f  
4
LTC3534  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Converter Line Regulation  
vs Temperature  
Converter Load Regulation  
vs Temperature  
Feedback Voltage vs Temperature  
5.005  
5.000  
4.995  
4.990  
4.985  
4.980  
4.975  
1.001  
1.000  
0.999  
0.998  
0.997  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
I
= 100mA  
V
= 5V  
LOAD  
IN  
25mA  
300mA  
500mA  
3.6V  
5.0V  
6.4V  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3534 G08  
3534 G10  
3534 G09  
Switching Frequency  
vs Temperature  
BURST No-Load Input Current  
vs VIN (Switching)  
Current Limits vs Temperature  
50  
45  
40  
35  
30  
1050  
1025  
1000  
975  
3.0  
2.8  
2.5  
2.3  
2.0  
1.8  
1.5  
V
OUT  
= 5V  
V
= V  
= 5V  
OUT  
IN  
PEAK CURRENT LIMIT  
LINEAR CURRENT LIMIT  
950  
2.4 3.2  
4
4.8 5.6 6.4 7.2  
8
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3534 G13  
3534 G11  
3534 G12  
PWM No-Load Input Current  
vs VIN (Switching)  
BURST Maximum Output Current  
Capability vs VIN  
PWM Maximum Output Current  
Capability vs VIN  
225  
200  
175  
150  
125  
100  
75  
18  
14  
10  
6
1800  
1600  
1400  
1200  
1000  
800  
V
= 5V  
V
= 5V  
OUT  
OUT  
L = 4.7μH  
600  
400  
V
= 5V  
OUT  
Burst Mode OPERATION  
50  
2
200  
2.4 3.2  
4
4.8 5.6 6.4 7.2  
8
2.4 3.2  
4
4.8 5.6 6.4 7.2  
8
2.4 3.2  
4
4.8 5.6 6.4 7.2  
8
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3534 G15  
3534 G14  
3534 G16  
3534f  
5
LTC3534  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Transient Response in Fixed  
Frequency Mode, No-Load to  
300mA  
VOUT Ripple at 300mA Load  
V
= 100mV/DIV  
= 100mA/DIV  
V
= 5V  
OUT  
IN  
V
V
= 3.6V  
= 6.4V  
IN  
IN  
I
LOAD  
3534 G18  
3534 G17  
100μs/DIV  
1μs/DIV  
= 5V, AC-COUPLED  
V
I
= V  
LOAD  
OUT  
= 5V  
OUT  
V
IN  
OUT  
= 0 TO 300mA  
= 22μF  
20mV/DIV  
C
C
= 22μF  
= 300mA  
OUT  
X5R CERAMIC  
I
LOAD  
Transition from Burst Mode  
Operation to Fixed Frequency  
Mode  
Burst Mode Operation VOUT  
Ripple at 25mA Load  
V
OUT  
= 50mV/DIV  
V
OUT  
= 50mV/DIV  
INDUCTOR CURRENT  
= 200mA/DIV  
PWM = 2V/DIV  
3534 G19  
3534 G20  
10μs/DIV  
100μs/DIV  
V
C
= V  
OUT  
X5R CERAMIC  
= 5V  
OUT  
V
I
= V  
= 5V  
OUT  
IN  
IN  
= 22μF  
= 25mA  
= 22μF  
LOAD  
OUT  
C
X5R CERAMIC  
VOUT Start-Up  
V
OUT  
= 2V/DIV  
RUN/SS = 1V/DIV  
(STARTS AT 1V)  
INDUCTOR CURRENT =  
500mA/DIV  
3534 G21  
500μs/DIV  
I
= 100mA  
LOAD  
3534f  
6
LTC3534  
PIN FUNCTIONS  
GND Pads (Pins 1, 8, 9, 16; GN Package): IC Substrate  
Grounds. These pins MUST be soldered to the printed  
circuit board ground to provide both electrical contact  
and a good thermal contact to the PCB.  
V
(Pin 11): Output of the Synchronous Rectifier. A  
OUT  
filter capacitor is placed from V  
to GND. A ceramic  
OUT  
bypass capacitor is recommended as close to the V  
and GND pins as possible. V  
equation:  
OUT  
is given by the following  
OUT  
RUN/SS (Pin 2): Combined Shutdown and Soft-Start. Ap-  
plying a voltage below 400mV shuts down the IC. Apply  
a voltage above 1.4V to enable the IC and above 2.4V to  
ensure that the error amp is not clamped from soft-start.  
An R-C from the enable command signal to this pin will  
provide a soft-start function by limiting the rise time of  
R1+R2  
VOUT =1.000 •  
V
R2  
PV (Pin 12): Power V Supply Pin. A 10μF ceramic  
IN  
IN  
capacitor is recommended as close to the PV and PGND  
IN  
pins as possible.  
the V pin.  
C
V (Pin 13): Input Supply Pin. Connect the power source  
IN  
GND (Pin 3): Signal Ground for the IC.  
to this pin.  
PGND1, PGND2 (Pins 4, 7): Power Ground for the In-  
ternal N-channel MOSFET Power Switches (Switches B  
and C).  
V (Pin 14): Error Amp Output. An R-C network is con-  
C
nected from this pin to FB for loop compensation. Refer  
to “Closing the Feedback Loop” section for component  
selection guidelines.  
SW1 (Pin 5): Switch Pin where Internal Switches A and  
B are Connected. Connect inductor from SW1 to SW2.  
Minimize trace length to reduce EMI.  
FB(Pin15):FeedbackPin.ConnectV resistordividertap  
OUT  
to this pin. The output voltage can be adjusted from 1.8V  
SW2 (Pin 6): Switch Pin where Internal Switches C and D  
are Connected. Minimize trace length to reduce EMI.  
to 7V. The feedback reference voltage is typically 1V.  
ExposedPad(Pin17;DHCPackage):ICSubstrateGround.  
This pin MUST be soldered to the printed circuit board  
ground to provide both electrical contact and a good  
thermal contact to the PCB.  
PWM (Pin 10): Burst Mode Select. Applying a voltage  
below 400mV enables Burst Mode operation, providing a  
significantefficiencyimprovementatlightloads.Duringthe  
period where the IC is supplying energy to the output, the  
inductor peak current will reach 400mA typical and return  
to zero current on each cycle. Burst Mode operation will  
continue until this pin is driven high. Applying a voltage  
above 1.4V disables Burst Mode operation, enabling low  
noise, fixed frequency operation.  
3534f  
7
LTC3534  
BLOCK DIAGRAM  
L1  
5
6
SW1  
SW2  
V
OUT  
V
ANTIRING  
IN  
1.8V TO 7V  
2.4V TO 7V  
PV  
V
OUT  
SW A  
SW D  
IN  
12  
13  
11  
C
OUT  
+
+
+
+
V
GATE  
DRIVERS  
AND  
ANTICROSS  
CONDUCTION  
IN  
–500mA  
C
IN  
SW B  
SW C  
+
R1  
R2  
REVERSE  
CURRENT  
LIMIT  
PGND1  
PGND2  
R
FF  
+
G
C
Z1  
FB  
1
=
m
15  
100k  
AVERAGE  
1.8A  
2.6A  
CURRENT  
LIMIT  
THERMAL  
SHUTDOWN  
+
V
REF  
1V  
SUPPLY  
CURRENT  
LIMIT  
+
ERROR  
AMP  
+
+
2.2V  
PWM  
LOGIC  
UVLO  
R
Z
PWM  
COMPARATORS  
C
P2  
AND  
SHUTDOWN  
OUTPUT  
PHASING  
C
P1  
V
C
+
R
SS  
14  
SHUTDOWN  
AND  
SOFT-START  
RUN/SS  
2
C
SS  
1MHz  
OSC  
PWM  
SLEEP  
Burst Mode OPERATION  
CONTROL  
10  
PGND1  
4
GND  
EXPOSED PAD  
17  
PGND2  
7
3
3534 BD  
3534f  
8
LTC3534  
OPERATION  
The LTC3534 provides high efficiency, low noise power  
for a wide variety of handheld electronic devices. Linear  
Technology’s proprietary topology allows input voltages  
above, below or equal to the output voltage by properly  
phasing the output switches. The error amplifier output  
Therstcircuitisanaveragecurrentlimitamplifier,sourcing  
currentoutofFBtodroptheoutputvoltageshouldthepeak  
input current exceed 1.8A typical. This method provides a  
closed loop means of clamping the input current. During  
conditions where V  
is near ground, such as during a  
OUT  
voltage on V determines the output duty cycle of the  
short circuit or start-up, this threshold is cut to 800mA  
typical, providing a foldback feature. For this current limit  
feature to be most effective, the Thevenin resistance from  
FB to ground should be greater than 100k.  
C
switches. Since V is a filtered signal, it provides rejection  
C
of frequencies from well below the switching frequency.  
The low R , low gate charge synchronous switches  
DS(ON)  
provide high frequency pulse width modulation control at  
high efficiency. High efficiency is achieved at light loads  
when Burst Mode operation is invoked and the LTC3534’s  
quiescent current drops to a mere 25μA.  
Should the peak input current exceed 2.6A typical, the  
second circuit, a high speed peak current limit compara-  
tor, shuts off PMOS switch A. The delay to output of this  
comparator is typically 50ns.  
LOW NOISE FIXED FREQUENCY OPERATION  
Reverse Current Limit  
During fixed frequency operation, the LTC3534 operates  
in forced continuous conduction mode. The reverse cur-  
rent limit comparator monitors the inductor current from  
the output through PMOS switch D. Should this negative  
inductorcurrentexceed500mAtypical,theLTC3534shuts  
off switch D.  
Oscillator  
The frequency of operation is internally set to 1MHz.  
Error Amplifier  
The error amplifier is a voltage mode amplifier. The loop  
compensation components are configured around the  
amplifier(fromFBtoV )toobtainstabilityoftheconverter.  
Four-Switch Control  
C
For improved bandwidth, an additional R-C feedforward  
network can be placed across the upper feedback divider  
resistor.ThevoltageonRUN/SSclampstheerroramplifier  
Figure1showsasimplifieddiagramofhowthefourinternal  
switchesareconnectedtotheinductor,PV ,V ,PGND1  
IN OUT  
and PGND2. Figure 2 shows the regions of operation for  
output, V , to provide a soft-start function.  
the LTC3534 as a function of the internal control voltage,  
C
V . Dependent on the magnitude of V , the LTC3534 will  
CI  
CI  
Supply Current Limits  
operate in buck, buck-boost or boost mode. V is a level  
CI  
There are two different supply current limit circuits in the  
LTC3534, each having internally fixed thresholds.  
INTERNAL  
CONTROL  
DUTY  
CYCLE  
VOLTAGE, V  
CI  
85%  
D
MAX  
V4 (^1.2V)  
PV  
V
IN  
OUT  
BOOST  
A ON, B OFF  
PWM C AND D  
SWITCHES  
12  
11  
BOOST REGION  
D
MIN  
PMOS A  
PMOS D  
V3 (^720mV)  
V2 (^640mV)  
BOOST  
BUCK-BOOST REGION  
FOUR SWITCH PWM  
SW1  
5
L1  
SW2  
6
D
BUCK  
MAX  
D ON, C OFF  
BUCK REGION  
PWM A AND B  
SWITCHES  
NMOS B  
NMOS C  
V1 (^100mV)  
0%  
4
7
3534 F01  
PGND1  
PGND2  
3534 F02  
Figure 1. Simplified Diagram of Output Switches  
Figure 2. Switch Control vs Internal Control Voltage, VCI  
3534f  
9
LTC3534  
OPERATION  
shifted voltage from the output of the error amplifier (V  
The V potential at which the four switch region ends is  
IN  
C
given by:  
pin), see Figure 3. The four power switches are properly  
phased so the transfer between operating modes is con-  
V = V  
• (1 – D) = V  
• (1 – 125ns • ƒ) V  
IN  
OUT  
OUT  
tinuous, smooth and transparent to the user. When V  
IN  
where f = operating frequency in Hz, typically 1MHz.  
approaches V  
the buck-boost region is entered, where  
OUT  
the conduction time of the four switch region is typically  
125ns. Referring to Figures 1 and 2, the various regions  
of operation will now be described.  
Hence, for the LTC3534,  
VOUT  
0.875  
V
V
IN(ENTER4SW)  
Buck Region (V > V  
)
OUT  
IN  
Approximate V potential at which the four switch  
IN  
Switch D is always on and switch C is always off dur-  
region is entered.  
ing this mode. When the internal control voltage, V , is  
CI  
V
0.875 • V  
V
IN(4SWEXIT)  
OUT  
above voltage V1, output A begins to switch. During the  
off-time of switch A, synchronous switch B turns on for  
the remainder of the period. Switches A and B will alter-  
nate similar to a typical synchronous buck regulator. As  
the control voltage increases, the duty cycle of switch A  
increases until the maximum duty cycle of the converter  
Approximate V potential at which the four switch  
IN  
region is exited.  
Boost Region (V < V  
)
IN  
OUT  
Switch A is always on and switch B is always off during  
this mode. When the internal control voltage, V , is above  
in buck mode reaches D , given by:  
MAX_BUCK  
CI  
voltageV3,switchpairCDwillalternatelyswitchtoprovide  
a boosted output voltage. This operation is typical to a  
synchronous boost regulator. The maximum duty cycle  
of the converter is limited to 85% typical and is reached  
D
= (100 – D4 )%  
SW  
MAX_BUCK  
where D4 = duty cycle % of the four switch range.  
SW  
D4 = (125ns • f) • 100%  
SW  
when V is above V4.  
CI  
where f = operating frequency in Hz, typically 1MHz.  
Hence, D4 = 12.5% for the LTC3534.  
Burst Mode OPERATION  
SW  
D
= 87.5%  
Burst Mode operation reduces the LTC3534’s quiescent  
current consumption at light loads and improves overall  
conversionefficiency, increasingbatterylife. DuringBurst  
Mode operation the LTC3534 delivers energy to the output  
until it is regulated and then enters a sleep state where  
the switches are off and the quiescent current drops to  
25μA typical. In this mode the output ripple has a variable  
frequency component that depends upon load current,  
and will typically be about 2% peak-to-peak. Burst Mode  
operation ripple can be reduced slightly by using more  
output capacitance (47μF or greater). Another method of  
reducing Burst Mode operation ripple is to place a small  
feedforward capacitor across the upper resistor in the  
MAX_BUCK  
Beyond this point the “four switch”, or buck-boost region  
is reached.  
Buck-Boost or Four Switch (V ~ V  
)
IN  
OUT  
Whentheinternalcontrolvoltage,V ,isabovevoltageV2,  
switch pair AD remain on for duty cycle D  
CI  
, and  
MAX_BUCK  
the switch pair AC begins to phase in. As switch pair AC  
phases in, switch pair BD phases out accordingly. When  
V reaches the edge of the buck-boost range, at voltage  
CI  
V3, the AC switch pair completely phase out the BD pair,  
and the boost phase begins at duty cycle D4 .  
SW  
V
feedback divider network (as in Type III compensa-  
Theinputvoltage,V ,wherethefourswitchregionbegins  
is given by:  
OUT  
IN  
tion), see Figure 6.  
VOUT  
1125ns • f  
V =  
V
IN  
(
)
3534f  
10  
LTC3534  
OPERATION  
In Burst Mode operation the typical maximum average  
output currents in the three operating regions, buck, four  
switch, and boost are given by:  
Burst Mode Operation to Fixed Frequency Transient  
Response  
In Burst Mode operation, the compensation network is  
I
≈ 100mA;  
not used and V is disconnected from the error amplifier.  
OUT(MAX)BURST–BUCK  
C
During long periods of Burst Mode operation, leakage  
currents in the external components or on the PC board  
could cause the compensation capacitor to charge (or  
discharge), which could result in a large output transient  
when returning to fixed frequency mode operation, even  
at the same load current. To prevent this, the LTC3534  
incorporates an active clamp circuit that holds the voltage  
Burst Mode operation – buck region: V > V  
IN  
OUT  
I
≈ 200mA;  
OUT(MAX)BURST–FOUR_SWITCH  
Burst Mode operation – four switch region: V ≈ V  
IN  
OUT  
200 • V  
VOUT  
IN  
IOUT(MAX)BURSTBOOST  
mA;  
on V at an optimal voltage during Burst Mode operation.  
C
Burst Mode operation – boost region: V < V  
IN  
OUT  
This minimizes any output transient when returning to  
fixed frequency mode operation. For optimum transient  
response, Type III compensation is also recommended  
to broad band the control loop and roll off past the two  
pole response of the output LC filter. (See Closing the  
Feedback Loop).  
The efficiency below 1mA becomes dominated primarily  
by the quiescent current. The Burst Mode operation ef-  
ficiency is given by:  
ηILOAD  
Efficiency ≅  
25µA +ILOAD  
Soft-Start  
where η is typically 90% during Burst Mode operation.  
The soft-start function is combined with shutdown. When  
the RUN/SS pin is brought above 1V typical, the LTC3534  
is enabled but the error amplifier duty cycle is clamped  
AgraphofBurstModeoperationmaximumoutputcurrent  
vs V (for V  
= 5V) is provided in the Typical Perfor-  
IN  
OUT  
mance Characteristics section.  
from V . A detailed diagram of this function is shown in  
C
Figure 3. The components R and C provide a slow  
SS  
SS  
rampingvoltageonRUN/SStoprovideasoft-startfunction.  
To ensure that V is not being clamped, RUN/SS must be  
C
raised to 2.4V or above.  
V
IN  
13  
V
OUT  
RUN/SS  
2
R
SS  
ENABLE  
SIGNAL  
11  
1V  
+
ERROR  
AMP  
C
SS  
R1  
FB  
15  
R2  
C
P1  
V
C
14  
+
3534 F03  
V
CI  
CHIP  
ENABLE  
TO PWM  
COMPARATORS  
1V  
Figure 3. Soft-Start Circuitry  
3534f  
11  
LTC3534  
APPLICATIONS INFORMATION  
COMPONENT SELECTION  
2
3
4
5
6
7
RUN/SS  
GND  
FB 15  
V
14  
13  
C
PGND1  
SW1  
V
IN  
V
V
IN  
PV 12  
IN  
SW2  
V
11  
OUT  
OUT  
PGND2  
PWM 10  
PWM  
MULTIPLE VIAS  
3534 F04  
Figure 4. Recommended Component Placement. Traces Carrying High Current are Direct. Trace Area at FB and VC Pins are  
Kept Low. Lead Length to Battery Should be Kept Short. Keep VOUT and VIN Ceramic Capacitors Close to their IC Pins.  
Inductor Selection  
ΔI = maximum allowable inductor ripple current, A  
L
The high frequency operation of the LTC3534 allows the  
use of small surface mount inductors. The inductor ripple  
current is typically set to 20% to 40% of the maximum  
inductor current. For a given ripple the inductance terms  
are given as follows:  
V
V
V
= minimum input voltage, V  
= maximum input voltage, V  
IN(MIN)  
IN(MAX)  
= output voltage, V  
OUT  
For high efficiency, choose a ferrite inductor with a high  
frequency core material to reduce core loses. The induc-  
tor should have low ESR (equivalent series resistance) to  
V
• VOUT – V  
(
)
IN(MIN)  
IN(MIN)  
LBOOST  
>
H
2
f • ΔIL • VOUT  
reduce the I R losses, and must be able to handle the peak  
inductorcurrentwithoutsaturating.Moldedchokesorchip  
inductors usually do not have enough core to support the  
peak inductor currents in the 1A to 2A region. To minimize  
radiated noise, use a shielded inductor. See Table 1 for a  
suggested list of inductor suppliers.  
VOUT VIN(MAX) – VOUT  
(
)
LBUCK  
>
H
f • ΔIL • V  
IN(MAX)  
where f = switching frequency in Hz, typically 1MHz.  
Table 1. Inductor Vendor Information  
SUPPLIER  
Coilcraft  
FDK  
PHONE  
FAX OR E-MAIL  
WEBSITE  
(847) 639-6400  
(408) 432-8331  
(847) 639-1469  
america@fdk.com  
(814) 238-0490  
www.coilcraft.com  
www.fdk.com  
www.murata.com  
Murata  
(814) 237-1431  
(800) 831-9172  
Sumida  
USA: (847) 956-0666  
USA: (847) 956-0702  
www.sumida.com  
Japan: 81(3) 3607-5111 Japan: 81(3) 3607-5144  
TDK  
(847) 803-6100  
(847) 297-0070  
(847) 803-6296  
(847) 699-7864  
www.component.tdk.com  
www.tokoam.com  
TOKO  
3534f  
12  
LTC3534  
APPLICATIONS INFORMATION  
Output Capacitor Selection  
Input Capacitor Selection  
The bulk value of the output filter capacitor is set to reduce  
the ripple due to charge into the capacitor each cycle. The  
steady state ripple due to charge is given by:  
Since V is the supply voltage for the IC, as well as the  
IN  
input to the power stage of the converter, it is recom-  
mended to place at least a 10μF, low ESR ceramic bypass  
capacitor close to the PV /V and PGND/GND pins. It is  
IN IN  
IOUT • VOUT – V  
(
)
IN(MIN)  
also important to minimize any stray resistance from the  
ΔVP-P Boost =  
ΔVP-PBuck =  
V
COUT • VOUT • f  
converter to the battery or other power source.  
V
IN(MAX) – VOUT • V  
(
)
1
OUT  
V
Optional Schottky Diodes  
8 L •COUT • f2  
V
IN(MAX)  
Schottky diodes across the synchronous switches B and  
D are not required, but do provide a lower drop during the  
break-before-make time (typically 15ns), thus improving  
efficiency. Use a surface mount Schottky diode such as an  
MBRM120T3 or equivalent. Do not use ordinary rectifier  
diodes since their slow recovery times will compromise  
efficiency.  
where f = switching frequency in Hz, typically 1MHz.  
C
I
= output filter capacitor, F  
= output load current, A  
OUT  
OUT  
The output capacitance is usually many times larger than  
theminimumvalueinordertohandlethetransientresponse  
requirements of the converter. As a rule of thumb, the ratio  
of the operating frequency to the unity-gain bandwidth of  
the converter is the amount the output capacitance will  
have to increase from the above calculations in order to  
maintain the desired transient response. A 22μF or larger  
ceramic capacitor is appropriate for most applications.  
Output Voltage < 1.8V  
The LTC3534 can operate as a buck converter with output  
voltages as low as 400mV. Since synchronous switch D is  
powered from V  
and the R  
will increase signifi-  
OUT  
DS(ON)  
cantly at output voltages below 1.8V typical, a Schottky  
diodeisrequiredfromSW2toV  
tion path to the output at low V  
limit is folded back to 800mA when V  
toprovidetheconduc-  
voltages. The current  
OUT  
OUT  
The other component of ripple is due to the ESR (equiva-  
lent series resistance) of the output capacitor. Low ESR  
capacitors should be used to minimize output voltage  
ripple. For surface mount applications, Taiyo Yuden or  
TDK ceramic capacitors, AVX TPS series tantalum capaci-  
tors or Sanyo POSCAP are recommended. See Table 2 for  
contact information.  
< 0.9V typical  
OUT  
which will significantly reduce the output current capabil-  
ity of the application. Note that Burst Mode operation is  
inhibited at output voltages below 1.6V typical.  
Closing the Feedback Loop  
Table 2. Capacitor Vendor Information  
The LTC3534 incorporates voltage mode PWM control.  
The control to output gain varies with operation region  
(buck, boost, buck-boost), but is usually no greater than  
15. The output filter exhibits a double pole response, as  
given by:  
SUPPLIER PHONE  
FAX  
WEBSITE  
AVX  
(803) 448-9411 (803) 448-1943 www.avxcorp.com  
(619) 661-6322 (619) 661-1055 www.sanyovideo.com  
(408) 573-4150 (408) 573-4159 www.t-yuden.com  
Sanyo  
Taiyo  
Yuden  
1
TDK  
(847) 803-6100 (847) 803-6296 www.component.tdk.com  
fFILTER _POLE  
=
=
Hz (in buck mode)  
2• π • L1COUT  
V
IN  
fFILTER _POLE  
Hz (in boost mode)  
2• VOUT π • L1COUT  
where L1 is in Henries and C  
is in Farads.  
OUT  
3534f  
13  
LTC3534  
APPLICATIONS INFORMATION  
The output filter zero is given by:  
Mostapplicationsdemandanimprovedtransientresponse  
toallowasmalleroutputltercapacitor.Toachieveahigher  
bandwidth, Type III compensation is required, providing  
two zeros to compensate for the double-pole response of  
the output filter. Referring to Figure 6, the location of the  
poles and zeros are given by:  
1
fFILTER _ ZERO  
=
Hz  
2• π RESR COUT  
where R  
is the equivalent series resistance of the  
ESR  
output capacitor.  
1
Atroublesomefeatureinboostmodeistheright-halfplane  
zero (RHP), given by:  
fPOLE1  
Hz  
2• π 5×103 R1CP1  
(which is extremely close to DC)  
1
2
V
IN  
fRHPZ  
=
Hz  
2• π IOUT L1• VOUT  
fZERO1  
fZERO2  
fPOLE2  
=
=
=
Hz  
Hz  
Hz  
2• π RZ CP1  
The loop gain is typically rolled off before the RHP zero  
frequency.  
1
2• π R1CZ1  
1
2• π RZ CP2  
AsimpleTypeIcompensationnetworkcanbeincorporated  
tostabilizetheloop,butatacostofreducedbandwidthand  
slowertransientresponse.Toensureproperphasemargin  
usingTypeIcompensation, theloopmustbecrossedover  
a decade before the LC double pole. Referring to Figure  
5, the unity-gain frequency of the error amplifier utilizing  
Type I compensation is given by:  
where resistance is in Ohms and capacitance is in Far-  
ads.  
1
fUG  
=
Hz  
2• π R1CP1  
V
OUT  
11  
1V  
+
V
OUT  
ERROR  
AMP  
C
R1  
R2  
Z1  
11  
FB  
15  
1V  
+
ERROR  
AMP  
R1  
R2  
FB  
15  
C
P1  
V
C
R
Z
14  
C
P1  
C
P2  
V
C
3534 F06  
14  
3534 F05  
Figure 5. Error Amplifier with Type I Compensation  
Figure 6. Error Amplifier with Type III Compensation  
3534f  
14  
LTC3534  
TYPICAL APPLICATIONS  
4 Alkaline/NiMH to 5V at 500mA  
L1  
5μH  
SW1  
SW2  
V
OUT  
V
IN  
PV  
IN  
V
OUT  
5V  
3.6V TO 6.4V  
C
+
500mA  
R
OUT  
4 ALKALINE/  
NiMH CELLS  
V
IN  
FF  
C
R
IN  
22μF  
SS  
10k  
LTC3534  
10μF  
200k  
R1  
C
Z1  
649k  
33pF  
FB  
RUN/SS  
PWM  
C
C
SS  
P1  
R
Z
330pF  
0.056μF  
15k  
V
C
C
P2  
10pF  
BURST PWM  
R2  
162k  
PGND1 GND PGND2  
L1: COILCRAFT MSS7341  
3534 TA02a  
4 Alkaline/NiMH Cells to 5V Efficiency vs ILOAD  
100  
Burst  
Mode  
90  
80  
70  
60  
50  
40  
30  
20  
10  
OPERATION  
V
V
V
= 3.6V  
= 5V  
= 6.4V  
IN  
IN  
IN  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3534 TA02b  
3534f  
15  
LTC3534  
TYPICAL APPLICATIONS  
USB to 5V at 500mA  
L1  
5μH  
SW1  
SW2  
V
OUT  
USB  
4.35V TO 5.25V  
PV  
IN  
V
5V  
OUT  
C
500mA*  
R
OUT  
V
IN  
FF  
R
C
SS  
IN  
22μF  
10k  
LTC3534  
200k  
10μF  
R1  
C
Z1  
649k  
33pF  
FB  
RUN/SS  
PWM  
C
C
P1  
SS  
R
Z
330pF  
0.056μF  
15k  
V
C
C
P2  
10pF  
BURST PWM  
R2  
162k  
PGND1 GND PGND2  
L1: COILCRAFT MSS7341  
3534 TA03a  
*NOTE: OUTPUT CURRENT CAN BE LESS THAN 500mA  
IF USB INPUT CURRENT LIMIT REACHED.  
USB to 5V Efficiency vs ILOAD  
100  
Burst  
Mode  
90  
80  
70  
60  
50  
40  
30  
20  
10  
OPERATION  
V
V
V
= 4.35V  
= 4.8V  
= 5.25V  
IN  
IN  
IN  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3534 TA03b  
3534f  
16  
LTC3534  
TYPICAL APPLICATIONS  
Li-Ion to 3.3V at 400mA  
L1  
3.3μH  
SW1  
SW2  
V
OUT  
V
IN  
PV  
IN  
V
OUT  
3.3V  
2.7V TO 4.2V  
C
+
400mA  
R
OUT  
1 Li-Ion  
CELL  
V
IN  
FF  
R
22μF  
SS  
10k  
C
IN  
LTC3534  
200k  
R1  
10μF  
C
Z1  
374k  
66pF  
FB  
RUN/SS  
PWM  
C
C
SS  
P1  
R
Z
470pF  
0.056μF  
15k  
V
C
C
P2  
10pF  
BURST PWM  
R2  
162k  
PGND1 GND PGND2  
L1: TDK RLF7030  
3534 TA04a  
Li-Ion to 3.3V Efficiency vs ILOAD  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
Burst  
Mode  
OPERATION  
V
V
V
= 2.7V  
= 3.6V  
= 4.2V  
IN  
IN  
IN  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3534 TA04b  
3534f  
17  
LTC3534  
PACKAGE DESCRIPTION  
DHC Package  
16-Lead Plastic DFN (5mm × 3mm)  
(Reference LTC DWG # 05-08-1706)  
0.65 0.05  
3.50 0.05  
1.65 0.05  
2.20 0.05 (2 SIDES)  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
4.40 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
0.40 0.10  
5.00 0.10  
(2 SIDES)  
9
16  
R = 0.20  
TYP  
3.00 0.10 1.65 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
NOTCH  
(DHC16) DFN 1103  
8
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
4.40 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3534f  
18  
LTC3534  
PACKAGE DESCRIPTION  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 p.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 p.0015  
.0250 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 p .004  
(0.38 p 0.10)  
s 45o  
.0532 – .0688  
(1.35 – 1.75)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0o – 8o TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
GN16 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
3534f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC3534  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
93% Efficiency, V : 1.8V to 5V, V  
LTC3125  
1.2A (I ), 1.5MHz, Synchronous Step-Up DC/DC  
= 5.25V,  
OUT(MAX)  
SW  
IN  
Converter with Programmable Input Current  
I = 15μA, I < 1μA, 5% Input Current Accuracy,  
Q SD  
200mA to 1A Program Range, 2mm × 3mm DFN Package  
LTC3421  
LTC3422  
LTC3425  
LTC3429  
LTC3440  
3A (I ), 3MHz, Synchronous  
96% Efficiency, V : 0.5V to 4.5V, V  
OUT(MAX)  
= 5.25V,  
= 5.25V,  
= 5.25V,  
= 5V,  
SW  
IN  
Step-Up DC/DC Converter with Output Disconnect  
I = 12μA, I <1μA, QFN24 Package  
Q SD  
1.5A (I ), 3MHz, Synchronous  
96% Efficiency, V : 0.5V to 4.5V, V  
IN OUT(MAX)  
I = 25μA, I <1μA, DFN10 Package  
Q SD  
SW  
Step-Up DC/DC Converter with Output Disconnect  
5A (I ), 8MHz (Low Ripple), 4-Phase Synchronous  
95% Efficiency, V : 0.5V to 4.5V, V  
IN OUT(MAX)  
I = 12μA, I <1μA, QFN32 Package  
Q SD  
SW  
Step-Up DC/DC Converter with Output Disconnect  
600mA (I ), 500KHz, Synchronous Step-Up DC/DC  
96% Efficiency, V : 0.5V to 4.4V, V  
IN OUT(MAX)  
I = 20μA, I <1μA, ThinSOT-23 Package  
Q SD  
SW  
Converter with Output Disconnect and Soft-Start  
600mA (I ), 2MHz, Synchronous Buck-Boost  
96% Efficiency, V : 2.5V to 5.5V, V = 5.5V,  
OUT(MAX)  
OUT  
IN  
DC/DC Converter  
I = 25μA, I <1μA, MSOP and DFN Packages  
Q SD  
LTC3441/LTC3443 1.2A (I ), 1MHz/600kHz, Synchronous Buck-Boost  
95%/96% Efficiency, V : 2.4V to 5.5V, V  
= 5.25V,  
OUT  
IN  
OUT(MAX)  
DC/DC Converter  
I = 35μA/28μA, I <1μA, MSOP Packages  
Q SD  
LTC3442  
LTC3444  
LTC3520  
LTC3522  
LTC3526L  
LTC3530  
LTC3531  
1.2A (I ), 2MHz, Synchronous Buck-Boost  
95% Efficiency, V : 2.4V to 5.5V, V  
= 5.25V,  
OUT  
IN  
OUT(MAX)  
DC/DC Converter  
I = 25μA, I <1μA, DFN Package  
Q SD  
400mA (I ), 1.5MHz, Synchronous Buck-Boost  
93% Efficiency, V : 2.7V to 5.5V, V : 0.5V to 5V,  
IN OUT  
OUT  
DC/DC Converter with wide V  
Range  
I
SD  
<1μA, DFN Package, Ideal for WCDMA PA Bias  
OUT  
1A (I ), 2MHz Synchronous Buck-Boost, 600mA  
95% Efficiency, V : 2.2V to 5.5V, V  
= 5.25V, V  
= 5.25V, V  
= 0.8V;  
= 0.6V;  
OUT  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MIN)  
Buck DC/DC Converter  
I = 55μA, I < 1μA, QFN Package  
Q SD  
Synchronous 400mA (I ) Buck-Boost and 200mA  
95% Efficiency, V : 2.4V to 5.5V, V  
IN  
I = 25μA, I <1μA, QFN Package  
Q SD  
OUT  
OUT(MIN)  
(I ) Buck, 1MHz, DC/DC Converters  
OUT  
500mA (I ), 1MHz Synchronous Step-Up DC/DC  
94% Efficiency, V : 0.8V to 5V, V  
= 5.25V,  
OUT  
IN  
OUT(MAX)  
Converter with Output Disconnect  
I = 9μA, I <1μA, 2mm × 2mm DFN-6 Package  
Q SD  
600mA (I ), 2MHz, Synchronous Buck-Boost DC/DC 96% Efficiency, V : 1.8V to 5.5V, V = 5.25V,  
OUT(MAX)  
OUT  
IN  
Converter with Wide Input Voltage Range  
I = 40μA, I <1μA, MSOP and DFN Packages  
Q SD  
200mA (I ), Burst Mode Operation, Synchronous  
90% Efficiency, V : 1.8V to 5.5V, V  
= 5V,  
OUT  
IN  
OUT(MAX)  
Buck-Boost DC/DC Converter with Adjustable and  
I = 16μA Always since Burst Mode Operation,  
Q
Fixed V  
Versions  
I
SD  
<1μA, Small ThinSOT and DFN Packages  
OUT  
LTC3532  
LTC3533  
LTC3538  
500mA (I ), 2MHz, Synchronous Buck-Boost  
95% Efficiency, V : 2.4V to 5.5V, V  
= 5.25V,  
OUT  
IN  
OUT(MAX)  
DC/DC Converter  
I = 35μA, I <1μA, MSOP and DFN Packages  
Q SD  
2A (I ), 2MHz, Synchronous Buck-Boost DC/DC  
96% Efficiency, V : 1.8V to 5.5V, V  
= 5.25V,  
OUT  
IN  
OUT(MAX)  
Converter with Wide Input Voltage Range  
I = 40μA, I <1μA, MSOP and DFN Packages  
Q SD  
800mA (I ), 1MHz, Synchronous Buck-Boost  
95% Efficiency, V : 2.4V to 5.5V, V  
= 5.25V,  
OUT  
IN  
OUT(MAX)  
DC/DC Converter  
I = 35μA, I = 1.5μA, DFN Package  
Q SD  
3534f  
LT 0209 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3535

Dual Channel 550mA 1MHz Synchronous Step-Up DC/DC Converter
Linear

LTC3535EDD-PBF

Dual Channel 550mA 1MHz Synchronous Step-Up DC/DC Converter
Linear

LTC3535EDD-TRPBF

Dual Channel 550mA 1MHz Synchronous Step-Up DC/DC Converter
Linear

LTC3536EDD#PBF

LTC3536 - 1A Low Noise, Buck-Boost DC/DC Converter; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3536IMSE#PBF

暂无描述
Linear

LTC3536IMSE#TRPBF

暂无描述
Linear

LTC3537

2.2 MHz, 600mA Synchronous Step-Up DC/DC Converter and 100mA LDO
Linear

LTC3537EUD#PBF

LTC3537 - 2.2 MHz, 600mA Synchronous Step-Up DC/DC Converter and 100mA LDO; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3537EUD-PBF

2.2 MHz, 600mA Synchronous Step-Up DC/DC Converter and 100mA LDO
Linear

LTC3537EUD-TRPBF

2.2 MHz, 600mA Synchronous Step-Up DC/DC Converter and 100mA LDO
Linear

LTC3538

800mA Synchronous Buck-Boost DC/DC Converter
Linear

LTC3538EDCB

800mA Synchronous Buck-Boost DC/DC Converter
Linear