LTC3541EDD [Linear]

High Efficiency Buck + VLDO Regulator; 高效率降压+ VLDO稳压器
LTC3541EDD
型号: LTC3541EDD
厂家: Linear    Linear
描述:

High Efficiency Buck + VLDO Regulator
高效率降压+ VLDO稳压器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总20页 (文件大小:346K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3541  
High Efficiency  
Buck + VLDO Regulator  
U
DESCRIPTIO  
FEATURES  
High Efficiency, 500mA Buck Plus 300mA VLDO  
Regulator  
TM  
TheꢀLTC®3541ꢀcombinesꢀaꢀsynchronousꢀbuckꢀDC/DCꢀ  
converterꢀwithꢀaꢀveryꢀlowꢀdropoutꢀlinearꢀregulatorꢀ  
(VLDO)ꢀtoꢀprovideꢀupꢀtoꢀtwoꢀoutputꢀvoltagesꢀfromꢀaꢀsingleꢀ  
inputꢀvoltageꢀwithꢀminimalꢀexternalꢀcomponents.ꢀWhenꢀ  
configuredꢀforꢀdualꢀoutputꢀoperation,ꢀtheꢀLTC3541’sꢀautoꢀ  
start-upꢀfeatureꢀwillꢀbringꢀtheꢀBuckꢀoutputꢀintoꢀregulationꢀ  
inacontrolledmannerpriortoenablingtheVLDOregulatorꢀ  
outputꢀwithoutꢀtheꢀneedꢀforꢀexternalꢀpinꢀcontrol.ꢀVLDO/  
linearꢀregulatorꢀoutputꢀpriorꢀtoꢀBuckꢀoutputꢀsequencingꢀ  
mayꢀalsoꢀbeꢀobtainedꢀviaꢀexternalꢀpinꢀcontrol.ꢀTheꢀinputꢀ  
voltageꢀrangeꢀisꢀideallyꢀsuitedꢀforꢀLi-Ionꢀbattery-poweredꢀ  
applications,ꢀasꢀwellꢀasꢀpoweringꢀsub-3.3Vꢀlogicꢀfromꢀ5Vꢀ  
orꢀ3.3Vꢀrails.  
Auto Start-Up Powers Buck Output Prior to  
VLDO/Linear Regulator Output  
Independent High Efficiency, 500mA Buck  
(V : 2.7V to 5.5V)  
IN  
300mA VLDO Regulator with 30mA Standalone Mode  
No External Schottky Diodes Required  
Buck Output Voltage Range: 0.8V to 5V  
VLDO Input Voltage Range (LV ): 0.9V to 5.5V  
IN  
VLDO Output Voltage Range VLDO: 0.4V to 4.1V  
ꢀ SelectableꢀFixedꢀFrequency,ꢀPulse-SkipꢀOperationꢀor  
ꢀ BurstꢀMode®ꢀOperation  
ꢀ Short-CircuitꢀProtected  
Thesynchronousbuckconverterprovidesahighefficiencyꢀ  
output,ꢀtypicallyꢀ90%,ꢀcapableꢀofꢀprovidingꢀupꢀtoꢀ500mAꢀ  
ofꢀcontinuousꢀoutputꢀcurrentꢀwhileꢀswitchingꢀatꢀ2.25MHz,ꢀ  
allowingꢀtheꢀuseꢀofꢀsmallꢀsurfaceꢀmountꢀinductorsꢀandꢀca-  
pacitors.ꢀAꢀmode-selectꢀpinꢀallowsꢀBurstꢀModeꢀoperationꢀ  
tobeenabledforhigherefficiencyatlightloadcurrents,orꢀ  
disabledforlowernoise,constantfrequencyoperation.ꢀ  
ꢀ CurrentꢀModeꢀOperationꢀforꢀExcellentꢀLineꢀandꢀLoadꢀ  
TransientꢀResponse  
ꢀ ConstantꢀFrequencyꢀOperation:ꢀ2.25MHz  
ꢀ LowꢀDropoutꢀBuckꢀOperation:ꢀ100%ꢀDutyꢀCycle  
ꢀ Small,ꢀThermallyꢀEnhanced,ꢀ10-Leadꢀ(3mmꢀ×ꢀ3mm)ꢀ  
DFNꢀPackage  
U
APPLICATIO S  
TheVLDOregulatorprovidesalownoise,lowvoltageꢀ  
outputꢀcapableꢀofꢀprovidingꢀupꢀtoꢀ300mAꢀofꢀcontinuousꢀ  
outputꢀcurrentꢀusingꢀonlyꢀaꢀ2.2µFꢀceramicꢀcapacitor.ꢀTheꢀ  
inputsupplyvoltageoftheVLDOregulator(LV )mayꢀ  
comeꢀfromꢀtheꢀbuckꢀregulatorꢀorꢀaꢀseparateꢀsupply.  
, LT, LTc and LTM are registered trademarks of Linear Teꢀhnology corporation.  
VLDO is a trademark of Linear Teꢀhnology corporation.  
All other trademarks are the property of their respeꢀtive owners.  
Proteꢀted by U.S. Patents, inꢀluding 5481178, 6611131, 6304066, 6498466, 6580258  
ꢀ PDAs/PalmtopꢀPCs  
ꢀ DigitalꢀCameras  
IN  
ꢀ CellularꢀPhones  
ꢀ PCꢀCards  
ꢀ WirelessꢀandꢀDSLꢀModems  
ꢀ OtherꢀPortableꢀPowerꢀSystems  
U
Buck (Burst) Efficiency and Power Loss vs Load Current  
TYPICAL APPLICATIO  
100  
1
LTC3541 Typical Application  
90  
EFFICIENCY  
80  
V
IN  
0.1  
2.9V TO 5.5V  
70  
SW  
ENVLDO  
MODE  
60  
50  
POWER LOSS  
V
2.2µH  
IN  
0.01  
0.001  
0.0001  
LTC3541  
150k  
412k  
243k  
ENBUCK  
BUCKFB  
GND  
LFB  
40  
30  
20  
10  
0
V
OUT1  
2.5V  
22pF  
200mA  
LV  
LV  
OUT  
IN  
V
V
V
= 3.3V  
OUT2  
IN  
OUT  
PGND  
1.5V  
= 2.5V  
10µF  
115k  
300mA  
2.2µF  
1
10  
100  
1000  
3541 TA01b  
LOAD CURRENT (mA)  
3541 TA01a  
3541fa  
                         
            
LTC3541  
W W W U  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
SupplyꢀVoltages:  
ꢀ V ,ꢀLV ꢀ.................................................. –0.3Vꢀtoꢀ6V  
IN  
IN  
V
1
2
3
4
5
10 SW  
IN  
ꢀ LV ꢀ–ꢀV ꢀ..........................................................<0.3V  
IN  
IN  
ENBUcK  
BUcKFB  
LFB  
9
8
7
6
ENVLDO  
11  
MODE  
GND  
PinꢀVoltages:  
ꢀ ENVLDO,ꢀENBUCK,ꢀMODE,ꢀSW,ꢀ  
LV  
LV  
IN  
OUT  
ꢀ LFB,ꢀBUCKFBꢀ.............................–0.3Vꢀtoꢀ(V ꢀ+ꢀ0.3V)  
LinearꢀRegulatorꢀI  
OperatingꢀAmbientꢀTemperatureꢀRangeꢀ  
(Noteꢀ2).................................................... –40°Cꢀtoꢀ85°C  
JunctionꢀTemperatureꢀ(Noteꢀ5)ꢀ............................. 125°C  
StorageꢀTemperatureꢀRange................... –65°Cꢀtoꢀ125°C  
IN  
ꢀ(100ms)ꢀ(Noteꢀ9)......100mA  
OUT(MAX)  
DD PAcKAGE  
10-LEAD (3mm × 3mm) PLASTIc DFN  
ꢀ=ꢀ125°C,ꢀθ ꢀ=ꢀ43°C/W  
JA  
EXPOSEDꢀPADꢀ(PINꢀ11)ꢀISꢀGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
T
JMAX  
ORDERꢀPARTꢀNUMBER  
LTC3541EDD  
DDꢀPARTꢀMARKING  
LCBS  
Order OptionsꢀꢀꢀTapeꢀandꢀReel:ꢀAddꢀ#TRꢀ  
LeadꢀFree:ꢀAddꢀ#PBFꢀꢀꢀLeadꢀFreeꢀTapeꢀandꢀReel:ꢀAddꢀ#TRPBFꢀ  
LeadꢀFreeꢀPartꢀMarking:ꢀhttp://www.linear.com/leadfree/  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V unless otherwise specified (Note 2)  
SYMBOL  
PARAMETER  
PeakꢀInductorꢀCurrent  
CONDITIONS  
V ꢀ=ꢀ4.2Vꢀ(Noteꢀ8)  
MIN  
0.8  
TYP  
0.95  
MAX  
1.25  
UNITS  
Aꢀ  
I
I
I
PK  
IN  
BUCKFBꢀPinꢀInputꢀCurrent  
LFBꢀPinꢀInputꢀCurrent  
InputꢀVoltageꢀRange  
V
V
ꢀ=ꢀ0.9V  
BUCKFB  
50  
nA  
nA  
BUCKFB  
LFB  
ꢀ=ꢀ0.45V  
LFB  
–200  
2.7  
–40  
V
V
(Noteꢀ4)  
5.5  
0.4  
V
IN  
BuckꢀV ꢀLineꢀRegulationꢀꢀ  
V ꢀ=ꢀ2.7Vꢀtoꢀ5.5V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
0.04  
0.6  
0.6  
0.3  
%/V  
IN(LINEREG)  
IN  
IN  
IN  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀV ꢀ(Noteꢀ6)  
IN  
VLDOꢀV ꢀLineꢀRegulationꢀꢀ  
V ꢀ=ꢀ2.7Vꢀtoꢀ5.5V,ꢀLV ꢀ=ꢀ1.2V,ꢀENBUCKꢀ=ꢀV ,ꢀ  
mV/V  
mV/V  
mV/V  
IN  
IN  
OUT  
IN  
(ReferredꢀtoꢀLFB)  
ENVLDOꢀ=ꢀV ,ꢀI  
ꢀ=ꢀ100mA,ꢀLV ꢀ=ꢀ1.5Vꢀ  
IN OUT(VLDO) IN  
LinearꢀRegulatorꢀV ꢀLineꢀ  
Regulationꢀ(ReferredꢀtoꢀLFB)  
V ꢀ=ꢀ2.7Vꢀtoꢀ5.5V,ꢀLV ꢀ=ꢀ1.2V,ꢀENBUCKꢀ=ꢀ0V,ꢀ  
IN OUT  
IN  
ENVLDOꢀ=ꢀV ,ꢀI  
ꢀ=ꢀ10mA  
IN OUT(LREG)  
LV  
LV ꢀLineꢀRegulationꢀꢀ  
LV ꢀ=ꢀ0.9Vꢀtoꢀ5.5V,ꢀV ꢀ=ꢀ5.5V,ꢀLV ꢀ=ꢀ0.4V,ꢀꢀ  
IN(LINEREG)  
IN  
IN IN OUT  
(ReferredꢀtoꢀLFB)  
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀV ,ꢀ  
IN  
IN  
IN  
I
ꢀ=ꢀ100mA  
OUT(VLDO)  
VLDO  
LV ꢀ–ꢀLV ꢀDropoutꢀVoltageꢀ  
LV ꢀ=ꢀ1.5V,ꢀENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀV ,ꢀꢀ  
28  
60  
mV  
DO  
IN  
OUT  
IN  
IN  
IN  
(Noteꢀ9)  
MODEꢀ=ꢀV ,ꢀI  
ꢀ=ꢀ50mA,ꢀV ꢀ=ꢀ0.3Vꢀ  
IN OUT(VLDO) LFB  
V
BuckꢀOutputꢀLoadꢀRegulationꢀ  
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀV ꢀ(Noteꢀ6)  
0.5  
%
%
LOADREG  
IN  
IN  
VLDOꢀOutputꢀLoadꢀRegulationꢀ  
I
ꢀ=ꢀ1mAꢀ–ꢀ300mA,ꢀLV ꢀ=ꢀ1.5V,ꢀLV ꢀ=ꢀ1.2V,ꢀ  
0.25  
0.5  
0.5  
OUT(VLDO)  
IN  
OUT  
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀV  
IN  
IN  
IN  
LinearꢀRegulatorꢀOutputꢀLoadꢀ  
I
ꢀ=ꢀ1mAꢀ–ꢀ30mA,ꢀLV ꢀ=ꢀ1.2V,ꢀꢀ  
0.25  
%
OUT(LREG)  
OUT  
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV  
IN  
V
V
ReferenceꢀRegulationꢀVoltageꢀ  
(Noteꢀ6)  
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀT ꢀ=ꢀ25°C  
0.784  
0.782  
0.78  
0.8  
0.8  
0.8  
0.4  
0.4  
0.4  
0.816  
0.818  
0.82  
V
V
V
V
V
BUCKFB  
LFB  
IN  
A
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀ0°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
IN  
A
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀ–40°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
IN  
A
ReferenceꢀRegulationꢀVoltageꢀ  
(Noteꢀ7)  
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV ,ꢀT ꢀ=ꢀ25°C  
0.392  
0.391  
0.390  
0.408  
0.409  
0.410  
IN  
A
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV ,ꢀ0°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
IN  
A
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV ,ꢀ–40°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
V
IN  
A
3541fa  
LTC3541  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V unless otherwise specified (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Buckꢀ+ꢀVLDOꢀꢀ  
LV ꢀ=ꢀ1.5V,ꢀLV ꢀ=ꢀ1.2V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
85  
µA  
S
IN  
OUT  
IN  
BurstꢀModeꢀSleepꢀꢀ  
ENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀ0V,ꢀI  
ꢀ=ꢀ10µA,ꢀ  
IN  
OUT(VLDO)  
V ꢀQuiescentꢀCurrent  
IN  
V
ꢀ=ꢀ0.9V  
BUCKFB  
Buckꢀ+ꢀVLDOꢀꢀ  
LV ꢀ=ꢀ1.5V,ꢀLV ꢀ=ꢀ1.2V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
315  
300  
55  
µA  
µA  
µA  
µA  
µA  
µA  
IN  
OUT  
IN  
BurstꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀ0V,ꢀI  
ꢀ=ꢀ10µA,ꢀ  
IN  
OUT(VLDO)  
V ꢀQuiescentꢀCurrent  
V
ꢀ=ꢀ0.7V  
BUCKFB  
IN  
Buckꢀ+ꢀVLDOꢀ  
LV ꢀ=ꢀ1.5V,ꢀLV ꢀ=ꢀ1.2V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
IN  
OUT  
IN  
Pulse-SkipꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀV ,ꢀI  
V
V
ꢀ=ꢀ10µA,ꢀ  
IN  
IN OUT(VLDO)  
V ꢀQuiescentꢀCurrent  
ꢀ=ꢀ0.7V  
IN  
BUCKFB  
Buckꢀ  
ꢀ=ꢀ0.9V,ꢀI  
ꢀ=ꢀ0A,ꢀENBUCKꢀ=ꢀV ,ꢀ  
BUCKFB  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀ0V  
OUT(BUCK)  
IN  
BurstꢀModeꢀSleepꢀ  
V ꢀQuiescentꢀCurrent  
IN  
Buckꢀ  
V
ꢀ=ꢀ0.7V,ꢀI  
ꢀ=ꢀ0A,ꢀENBUCKꢀ=ꢀV ,ꢀ  
300  
285  
50  
BUCKFB  
OUT(BUCK)  
IN  
BurstꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀ0V  
V ꢀQuiscentꢀCurrent  
IN  
Buckꢀ  
V
ꢀ=ꢀ0.7V,ꢀI  
ꢀ=ꢀ0A,ꢀENBUCKꢀ=ꢀV ,ꢀ  
BUCKFB  
OUT(BUCK)  
IN  
Pulse-SkipꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀV  
IN  
V ꢀQuiescentꢀCurrent  
IN  
LinearꢀRegulatorꢀV ꢀQuiescentꢀ  
Current  
LV ꢀ=ꢀ1.2V,ꢀENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV ,ꢀ  
OUT IN  
IN  
I
ꢀ=ꢀ10µA  
OUT(LREG)  
V ꢀShutdownꢀQuiescentꢀCurrent ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀ0V  
2.5  
0.1  
µA  
µA  
MHz  
Ω
IN  
LV ꢀShutdownꢀQuiescentꢀCurrent LV ꢀ=ꢀ3.6V,ꢀENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀ0V  
IN  
IN  
f
OscillatorꢀFrequency  
1.8  
0.9  
2.25  
0.25  
0.35  
0.01  
2.7  
1
OSC  
R
R
I
R
R
ꢀofꢀP-ChannelꢀMOSFET  
ꢀofꢀN-ChannelꢀMOSFET  
I
I
ꢀ=ꢀ100mA  
PFET  
DS(ON)  
SW  
Ω
ꢀ=ꢀ100mA  
SW  
NFET  
DS(ON)  
SWꢀLeakage  
Enableꢀ=ꢀ0V,ꢀV ꢀ=ꢀ0Vꢀorꢀ6V,ꢀV ꢀ=ꢀ6V  
SW IN  
µA  
V
LSW  
V
InputꢀPinꢀHighꢀThreshold  
InputꢀPinꢀLowꢀThreshold  
InputꢀPinꢀCurrent  
MODE,ꢀENBUCK,ꢀENVLDO  
IH  
IL  
V
I
MODE,ꢀENBUCK,ꢀENVLDO  
0.3  
1
V
,ꢀ  
0.01  
µA  
MODE  
ENBUCK  
ENVLDO  
I
I
,ꢀ  
Note 6:ꢀTheꢀLTC3541ꢀisꢀtestedꢀinꢀaꢀproprietaryꢀtestꢀmodeꢀthatꢀconnectsꢀ  
ꢀtoꢀtheꢀoutputꢀofꢀtheꢀerrorꢀamplifier.ꢀForꢀtheꢀreferenceꢀregulationꢀ  
andꢀlineꢀregulationꢀtests,ꢀtheꢀoutputꢀofꢀtheꢀerrorꢀamplifierꢀisꢀsetꢀtoꢀtheꢀ  
midpoint.ꢀForꢀtheꢀloadꢀregulationꢀtest,ꢀtheꢀoutputꢀofꢀtheꢀerrorꢀamplifierꢀisꢀ  
drivenꢀtoꢀminimumꢀandꢀmaximumꢀofꢀtheꢀsignalꢀrange.  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingꢀconditionꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀ  
reliabilityꢀandꢀlifetime.  
V
BUCKFB  
Note 2:ꢀTheꢀLTC3541ꢀisꢀguaranteedꢀtoꢀmeetꢀperformanceꢀspecificationsꢀ  
fromꢀ0°Cꢀtoꢀ85°C.ꢀVLDO/linearꢀregulatorꢀoutputꢀisꢀtestedꢀandꢀspecifiedꢀ  
underꢀpulseꢀloadꢀconditionsꢀsuchꢀthatꢀT ꢀ≈ꢀT ,ꢀandꢀareꢀ100%ꢀproductionꢀ  
Note 7:ꢀMeasurementꢀmadeꢀinꢀclosedꢀloopꢀlinearꢀregulatorꢀconfigurationꢀ  
withꢀLV ꢀ=ꢀ1.2V,ꢀI  
ꢀ=ꢀ10µA.  
LOAD  
OUT  
J
A
testedꢀatꢀ25°C.ꢀSpecificationsꢀoverꢀtheꢀ–40°Cꢀtoꢀ85°Cꢀoperatingꢀ  
temperatureꢀrangeꢀareꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀandꢀcorrelationꢀ  
withꢀstatisticalꢀprocessꢀcontrols.  
Note 8:ꢀMeasurementꢀmadeꢀinꢀaꢀproprietaryꢀtestꢀmodeꢀwithꢀslopeꢀ  
compensationꢀdisabled.  
Note 9:ꢀMeasurementꢀisꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀandꢀstatisticalꢀ  
processꢀcontrol.  
Note 10:ꢀThisꢀICꢀincludesꢀovertemperatureꢀprotectionꢀthatꢀisꢀintendedꢀ  
toꢀprotectꢀtheꢀdeviceꢀduringꢀmomentaryꢀoverloadꢀconditions.ꢀJunctionꢀ  
temperatureꢀwillꢀexceedꢀ125°Cꢀwhenꢀovertemperatureꢀprotectionꢀisꢀactive.ꢀ  
Continuousꢀoperationꢀaboveꢀtheꢀspecifiedꢀmaximumꢀoperatingꢀjunctionꢀ  
temperatureꢀmayꢀimpairꢀdeviceꢀreliability.  
Note 3:ꢀMinimumꢀoperatingꢀLV ꢀvoltageꢀrequiredꢀforꢀVLDOꢀregulatorꢀ  
IN  
regulationꢀis:ꢀ  
LV ꢀ≥ꢀLV ꢀ+ꢀV  
ꢀandꢀLV ꢀ≥ꢀ0.9V  
DROPOUT IN  
IN  
OUT  
Note 4:ꢀMinimumꢀoperatingꢀV ꢀvoltageꢀrequiredꢀforꢀVLDOꢀregulatorꢀandꢀ  
IN  
linearꢀregulatorꢀregulationꢀis:ꢀꢀ  
V ꢀ≥ꢀLV ꢀ+ꢀ1.4VꢀandꢀV ꢀ≥ꢀ2.7V  
IN  
OUT  
IN  
Note 5:ꢀT ꢀisꢀcalculatedꢀfromꢀtheꢀambientꢀtemperature,ꢀT ,ꢀandꢀpowerꢀ  
J
A
dissipation,ꢀP ,ꢀaccordingꢀtoꢀtheꢀfollowingꢀformula:  
D
T ꢀ=ꢀT ꢀ+ꢀ(P ꢀ•ꢀ43°C/W)  
J A D  
3541fa  
LTC3541  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Efficiency vs Input Voltage for  
Buck (Burst)  
Efficiency vs Input Voltage for  
Buck (Pulse Skip)  
Efficiency vs Load Current for  
Buck (Burst)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 1.8V  
V
OUT  
= 1.8V  
OUT  
V
= 2.7V  
IN  
I
= 500mA  
I
I
= 500mA  
= 30mA  
OUT  
V
= 4.2V  
IN  
OUT  
OUT  
V
= 3.6V  
IN  
I
= 100mA  
OUT  
I
= 100mA  
OUT  
I
= 30mA  
OUT  
V
= 1.8V  
1
OUT  
2
3
4
5
6
2
3
4
5
6
0.1  
10  
100  
1000  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
3541 G03  
3541 G01  
3541 G02  
Efficiency vs Load Current for  
Buck (Burst)  
Efficiency vs Load Current for  
Buck (Pulse Skip)  
Efficiency vs Load Current for  
Buck (Pulse Skip)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 2.7V  
V
= 2.5V  
V
= 1.8V  
IN  
OUT  
OUT  
V
= 2.7V  
IN  
V
= 4.2V  
V
= 2.7V  
IN  
IN  
V
= 3.6V  
IN  
V
= 3.6V  
IN  
V
= 3.6V  
V
= 4.2V  
V
= 4.2V  
IN  
IN  
IN  
V
= 2.5V  
1
OUT  
0.1  
10  
100  
1000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
LOAD cURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3541 G05  
3541 G06  
3541 G04  
Buck (Burst) Plus VLDO Bias  
Current vs VLDO Load Current  
Output (Auto Start-Up Sequence,  
Buck in Pulse Skip) vs Time  
VLDO Dropout Voltage vs  
Load Current  
100  
80  
250  
200  
150  
100  
50  
V
= 1.5V  
V
= 3.6V  
OUT  
IN  
I
I
= 0  
LOAD(BUCK)  
BIAS VIN LVIN LOAD  
V
= 3V  
IN  
= I + I  
– I  
V
OUT  
V
= 3.6V  
IN  
2V/DIV  
LV  
2V/DIV  
OUT  
60  
V
= 4.2V  
IN  
V
IN  
40  
2V/DIV  
20  
0
3541 G09  
2ms/DIV  
I
I
= 300mA  
LVOUT  
VOUT  
= 200mA  
0
0
100  
150  
200  
250  
300  
0.1  
1
10  
100  
50  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3541 G07  
3541 G08  
3541fa  
LTC3541  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Oscillator Frequency  
vs Temperature  
Oscillator Frequency  
vs Supply Voltage  
VLDO/Linear Regulator Reference  
vs Temperature  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
0.410  
0.408  
0.406  
0.404  
0.402  
0.400  
0.398  
0.396  
0.394  
0.392  
0.390  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
V
= 3.6V  
V
= 3.6V  
V
= 3.6V  
IN  
IN  
IN  
–50  
0
25  
50  
75 100 125  
–25  
50  
TEMPERATURE (°C)  
125  
–50  
0
25  
75 100  
–25  
4
5
6
3
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
3541 G10  
5341 G12  
3541 G11  
Buck (Burst) and VLDO Output  
Buck Reference vs Temperature  
RDS(ON) vs Temperature  
0.820  
0.816  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
0.780  
0.700  
0.600  
0.500  
0.400  
0.300  
0.200  
0.100  
0
V
= 3.6V  
IN  
LV  
OUT  
10mV/DIV  
AC COUPLED  
V
OUT  
10mV/DIV  
SYNCH SWITCH  
MAIN SWITCH  
AC COUPLED  
V
V
V
= 2.5V  
= 3.6V  
= 5.5V  
3541 G15  
IN  
IN  
IN  
2µs/DIV  
V
= 3.6V  
OUT  
IN  
LV  
= 1.5V  
V
I
= 1.8V  
= 50mA  
OUT  
–50  
0
25  
50  
75 100 125  
–50  
25  
50  
75  
100 125  
–25  
–25  
0
LOAD  
Burst Mode OPERATION  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
5341 G13  
3541 G14  
Buck (Pulse Skip) Load Step from  
1mA to 500mA  
Buck (Burst) Load Step from  
1mA to 500mA  
VLDO Load Step from  
1mA to 500mA  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
LV  
OUT  
AC COUPLED  
AC COUPLED  
20mV/DIV  
AC COUPLED  
I
I
L
L
500mA/DIV  
500mA/DIV  
I
I
I
LOAD  
LOAD  
LOAD  
250mA/DIV  
500mA/DIV  
500mA/DIV  
3541 G16  
3541 G18  
3541 G17  
40µs/DIV  
V
V
I
= 3.6V  
400µs/DIV  
= 1mA TO 300mA  
V
= 3.6V  
OUT  
40µs/DIV  
V
V
I
= 3.6V  
IN  
OUT  
IN  
IN  
OUT  
= 1.8V  
= 1mA TO 500mA  
LV  
I
= 1.5V  
= 1.8V  
= 1mA TO 500mA  
LOAD  
LOAD  
LOAD  
3541fa  
LTC3541  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
VLDO Load Step from  
100mA to 300mA  
Linear Regulator to VLDO  
Transient Step, Load = 1mA  
Linear Regulator to VLDO  
Transient Step, Load = 30mA  
LV  
LV  
OUT  
LV  
OUT  
OUT  
20mV/DIV  
10mV/DIV  
10mV/DIV  
AC COUPLED  
AC COUPLED  
AC COUPLED  
I
LOAD  
I
50mA/DIV  
LOAD  
I
LOAD  
50mA/DIV  
250mA/DIV  
3541 G19  
3541 G20  
3541 G21  
400µs/DIV  
= 100mA TO 300mA  
40µs/DIV  
V
= 3.6V  
OUT  
V
= 3.6V  
IN  
40µs/DIV  
V
= 3.6V  
IN  
IN  
LV  
I
= 1.5V  
LV  
I
= 1.5V  
LV  
I
= 1.5V  
OUT  
OUT  
= 1mA  
= 30mA  
LOAD  
LOAD  
LOAD  
VLDO to Linear Regulator  
Transient Step, Load = 1mA  
VLDO to Linear Regulator  
Transient Step, Load = 30mA  
LV  
LV  
OUT  
OUT  
10mV/DIV  
10mV/DIV  
AC COUPLED  
AC COUPLED  
I
LOAD  
I
LOAD  
50mA/DIV  
50mA/DIV  
3541 G22  
3541 G23  
40µs/DIV  
V
= 3.6V  
40µs/DIV  
V
= 3.6V  
IN  
IN  
LV  
I
= 1.5V  
LV  
I
= 1.5V  
OUT  
OUT  
= 1mA  
= 30mA  
LOAD  
LOAD  
3541fa  
LTC3541  
U U  
U
PI FU CTIO S  
V (Pin 1):ꢀMainꢀSupplyꢀPin.ꢀThisꢀpinꢀmustꢀbeꢀcloselyꢀ  
MODE (Pin 8):ꢀBuckꢀModeꢀSelectionꢀPin.ꢀThisꢀpinꢀenablesꢀ  
buckPulse-Skipoperationwhendriventoalogichighꢀ  
andꢀenablesꢀbuckꢀBurstꢀModeꢀoperationꢀwhenꢀdrivenꢀtoꢀ  
aꢀlogicꢀlow.  
IN  
decoupledꢀtoꢀGNDꢀwithꢀaꢀ10µFꢀorꢀgreaterꢀcapacitor.  
ENBUCK (Pin 2):ꢀBuckꢀEnableꢀPin.ꢀThisꢀpinꢀenablesꢀtheꢀ  
buckꢀregulatorꢀwhenꢀdrivenꢀtoꢀaꢀlogicꢀhigh.  
ENVLDO (Pin 9):ꢀ VLDO/Linearꢀ Regulatorꢀ Enableꢀ Pin.ꢀ  
Whenꢀdrivenꢀtoꢀaꢀlogicꢀhigh,ꢀthisꢀpinꢀenablesꢀtheꢀlinearꢀ  
regulatorꢀwhenꢀtheꢀENBUCKꢀpinꢀisꢀdrivenꢀtoꢀaꢀlogicꢀlow,ꢀ  
andꢀenablesꢀtheꢀVLDOꢀwhenꢀtheꢀENBUCKꢀpinꢀisꢀdrivenꢀtoꢀ  
aꢀlogicꢀhigh.  
BUCKFB (Pin 3):ꢀBuckꢀRegulatorꢀFeedbackꢀPin.ꢀThisꢀpinꢀ  
receivesthebuckregulator’sfeedbackvoltagefromanꢀ  
externalꢀresistiveꢀdivider.  
LFB (Pin 4):ꢀVLDO/LinearꢀRegulatorꢀFeedbackꢀPin.ꢀThisꢀ  
pinꢀreceivesꢀeitherꢀtheꢀVLDOꢀorꢀlinearꢀregulator’sꢀfeedbackꢀ  
voltageꢀfromꢀanꢀexternalꢀresistiveꢀdivider.  
SW (Pin 10):SwitchNodePin.Thispinconnectstheꢀ  
internalꢀmainꢀandꢀsynchronousꢀpowerꢀMOSFETꢀswitchesꢀ  
toꢀtheꢀexternalꢀinductorꢀforꢀtheꢀbuckꢀregulator.  
LV  
(Pin 5):ꢀVLDO/LinearꢀRegulatorꢀOutputꢀPin.ꢀThisꢀ  
OUT  
pinꢀprovidesꢀtheꢀregulatedꢀoutputꢀvoltageꢀfromꢀtheꢀVLDOꢀ  
Exposed Pad (Pin 11):GroundPin.Thispinmustbeꢀ  
solderedꢀtoꢀtheꢀPCBꢀtoꢀprovideꢀbothꢀelectricalꢀcontactꢀtoꢀ  
groundꢀandꢀgoodꢀthermalꢀcontactꢀtoꢀtheꢀPCB.  
orꢀlinearꢀregulator.  
LV (Pin 6):VLDO/LinearRegulatorInputSupplyPin.ꢀ  
IN  
ThisꢀpinꢀprovidesꢀtheꢀinputꢀsupplyꢀvoltageꢀforꢀtheꢀVLDOꢀ  
Note:ꢀTableꢀ1ꢀdetailsꢀtheꢀtruthꢀtableꢀforꢀtheꢀcontrolꢀpinsꢀ  
ofꢀtheꢀLTC3541.  
powerꢀFET.  
GND (Pin 7):ꢀAnalogꢀGroundꢀPin.  
Table 1. LTC3541 Control Pin Truth Table  
PIN NAME  
OPERATIONAL DESCRIPTION  
ENBUCK ENVLDO MODE  
0
0
0
1
X
X
LTC3541ꢀPoweredꢀDown  
BuckꢀPoweredꢀDown,ꢀVLDOꢀRegulatorꢀ  
PoweredꢀDown,ꢀLinearꢀRegulatorꢀ  
Enabled  
1
1
1
1
0
0
1
1
0
1
0
1
BuckꢀEnabled,ꢀVLDOꢀRegulatorꢀPoweredꢀ  
Down,ꢀLinearꢀRegulatorꢀPoweredꢀDown, ꢀ  
BurstꢀModeꢀOperation  
BuckꢀEnabled,ꢀVLDOꢀRegulatorꢀPoweredꢀ  
Down,ꢀLinearꢀRegulatorꢀPoweredꢀDown,ꢀ  
Pulse-SkipꢀModeꢀOperation  
BuckꢀEnabled,ꢀVLDOꢀRegulatorꢀEnabled,ꢀ  
LinearꢀRegulatorꢀPoweredꢀDown,ꢀBurstꢀ  
ModeꢀOperation  
BuckꢀEnabled,ꢀVLDOꢀRegulatorꢀEnabled,ꢀ  
LinearꢀRegulatorꢀPoweredꢀDown,ꢀPulse-  
SkipꢀModeꢀOperation  
3541fa  
LTC3541  
U
U
W
FU CTIO AL BLOCK DIAGRA  
2.2µH  
I
= 500mA  
OUT(BUCK)  
V
LV  
+ 1.4V  
OUT  
IN(MIN)  
10µF  
10  
SW  
V
IN  
1
500mA BUCK  
SW  
V
IN  
22pF  
REF  
FB  
GND  
BUCKFB  
3
6
PGND  
LV  
IN  
VLDO/LINEAR REG  
V
LV  
IN  
IN  
REF  
REF  
LV  
< V – 1.4V  
IN  
ENBUCK  
ENVLDO  
MODE  
OUT(MAX)  
+
2
9
8
I
I
= 300mA (VLDO REG)  
= 30mA (LINEAR REG)  
OUT  
OUT  
CONTROL  
LOGIC  
LFB  
LV  
OUT  
5
4
CNTRL  
GND  
2.2µF  
LFB  
GND  
PGND  
11  
7
3541 F01  
Figure 1. LTC3541 Functional Block Diagram  
U
OPERATIO  
Theꢀ LTC3541ꢀ containsꢀ aꢀ highꢀ efficiencyꢀ synchronousꢀ  
buckꢀconverter,ꢀaꢀveryꢀlowꢀdropoutꢀregulatorꢀ(VLDO)ꢀandꢀ  
alinearregulator.Itcanbeusedtoprovideuptotwoꢀ  
outputꢀvoltagesꢀfromꢀaꢀsingleꢀinputꢀvoltageꢀmakingꢀtheꢀ  
LTC3541ꢀidealꢀforꢀapplicationsꢀwithꢀlimitedꢀboardꢀspace.ꢀ  
Theꢀcombinationꢀandꢀconfigurationꢀofꢀtheseꢀmajorꢀblocksꢀ  
withinꢀtheꢀLTC3541ꢀisꢀdeterminedꢀbyꢀwayꢀofꢀtheꢀcontrolꢀ  
pinsꢀENBUCKꢀandꢀENVLDOꢀasꢀdefinedꢀinꢀTableꢀ1.  
whenꢀusingꢀtheꢀbuckꢀregulatorꢀtoꢀprovideꢀtheꢀpowerꢀforꢀ  
bothꢀtheꢀVLDOꢀandꢀforꢀexternalꢀloads.ꢀ  
WithꢀtheꢀENBUCKꢀpinꢀdrivenꢀtoꢀaꢀlogicꢀlowꢀandꢀENVLDOꢀ  
driventoalogichigh,theLTC3541enablesthelinearꢀ  
regulator,ꢀprovidingꢀaꢀlowꢀnoiseꢀregulatedꢀoutputꢀvoltageꢀ  
atꢀtheꢀLV ꢀpinꢀwhileꢀdrawingꢀminimalꢀquiescentꢀcurrentꢀ  
OUT  
fromꢀtheꢀV ꢀinputꢀpin.ꢀThisꢀfeatureꢀallowsꢀoutputꢀvoltageꢀ  
IN  
LV ꢀtoꢀbeꢀbroughtꢀintoꢀregulationꢀwithoutꢀtheꢀpresenceꢀ  
OUT  
WithꢀtheꢀENBUCKꢀpinꢀdrivenꢀtoꢀaꢀlogicꢀhighꢀandꢀENVLDOꢀ  
drivenꢀtoꢀaꢀlogicꢀlow,ꢀtheꢀLTC3541ꢀenablesꢀtheꢀbuckꢀcon-  
ofꢀtheꢀLV ꢀvoltage.ꢀ  
IN  
Withꢀ theꢀ ENBUCKꢀ andꢀ ENVLDOꢀ pinsꢀ bothꢀ drivenꢀ toꢀ aꢀ  
logicꢀhigh,ꢀtheꢀLTC3541ꢀenablesꢀtheꢀhighꢀefficiencyꢀbuckꢀ  
converterandVLDOregulator,providingdualoutputopera-  
tionꢀfromꢀaꢀsingleꢀinputꢀvoltage.ꢀWhenꢀconfiguredꢀinꢀthisꢀ  
manner,ꢀtheꢀLTC3541’sꢀautoꢀstart-upꢀsequencingꢀfeatureꢀ  
willꢀbringꢀtheꢀbuckꢀoutputꢀintoꢀregulationꢀinꢀaꢀcontrolledꢀ  
mannerꢀpriorꢀtoꢀenablingꢀtheꢀVLDOꢀregulatorꢀwithoutꢀtheꢀ  
verterꢀtoꢀefficientlyꢀreduceꢀtheꢀvoltageꢀprovidedꢀatꢀtheꢀV ꢀ  
IN  
inputꢀpinꢀtoꢀanꢀoutputꢀvoltageꢀwhichꢀisꢀsetꢀbyꢀanꢀexternalꢀ  
feedbackresistornetwork.Thebuckregulatorcanbecon-  
figuredꢀforꢀPulse-SkipꢀorꢀBurstꢀModeꢀoperationꢀbyꢀdrivingꢀ  
theꢀMODEꢀpinꢀtoꢀaꢀlogicꢀhighꢀorꢀlogicꢀlowꢀrespectively.ꢀTheꢀ  
buckꢀregulatorꢀisꢀcapableꢀofꢀprovidingꢀaꢀmaximumꢀoutputꢀ  
currentof500mA,whichmustbetakenintoconsiderationꢀ  
3541fa  
LTC3541  
U
OPERATIO  
needꢀforꢀexternalꢀpinꢀcontrol.ꢀAꢀdetailedꢀdiscussionꢀofꢀtheꢀ  
transitionsꢀbetweenꢀtheꢀVLDOꢀandꢀlinearꢀregulatorꢀcanꢀbeꢀ  
foundꢀinꢀtheꢀVLDO/LinearꢀRegulatorꢀLoopꢀsection.ꢀ  
WhenꢀtheꢀMODEꢀpinꢀisꢀdrivenꢀtoꢀaꢀlogicꢀhighꢀtheꢀLTC3541ꢀ  
operatesinPulse-Skipmodeforlowoutputvoltageripple.ꢀ  
Inthismode,theLTC3541continuestoswitchataconstantꢀ  
frequencyꢀdownꢀtoꢀveryꢀlowꢀcurrents,ꢀwhereꢀitꢀwillꢀbeginꢀ  
skippingꢀpulsesꢀusedꢀtoꢀcontrolꢀtheꢀmainꢀ(top)ꢀswitchꢀtoꢀ  
maintainꢀtheꢀproperꢀaverageꢀinductorꢀcurrent.  
Buck Regulator Control Loop  
TheꢀLTC3541ꢀinternalꢀbuckꢀregulatorꢀusesꢀaꢀconstantꢀfre-  
quency,ꢀcurrentꢀmode,ꢀstep-downꢀarchitecture.ꢀBothꢀtheꢀ  
main(top,P-channelMOSFET)andsynchronous(bottom,ꢀ  
N-channelꢀMOSFET)ꢀswitchesꢀareꢀinternal.ꢀDuringꢀnormalꢀ  
operation,ꢀtheꢀinternalꢀmainꢀswitchꢀisꢀturnedꢀonꢀatꢀtheꢀbe-  
ginningꢀofꢀeachꢀclockꢀcycleꢀprovidedꢀtheꢀinternalꢀfeedbackꢀ  
voltageꢀtoꢀtheꢀbuckꢀisꢀlessꢀthanꢀtheꢀreferenceꢀvoltage.ꢀTheꢀ  
currentꢀintoꢀtheꢀinductorꢀprovidedꢀtoꢀtheꢀloadꢀincreasesꢀ  
untilꢀtheꢀcurrentꢀlimitꢀisꢀreached.ꢀOnceꢀtheꢀcurrentꢀlimitꢀisꢀ  
reachedꢀtheꢀmainꢀswitchꢀturnsꢀoffꢀandꢀtheꢀenergyꢀstoredꢀ  
intheinductorowsthroughthebottomsynchronousꢀ  
switchꢀintoꢀtheꢀloadꢀuntilꢀtheꢀnextꢀclockꢀcycle.  
Iftheinputsupplyvoltageisdecreasedtoavalueap-  
proachingꢀtheꢀoutputꢀvoltage,ꢀtheꢀdutyꢀcycleꢀofꢀtheꢀbuckꢀ  
isincreasedtowardmaximumon-timeand100%dutyꢀ  
cycle.ꢀTheꢀoutputꢀvoltageꢀwillꢀthenꢀbeꢀdeterminedꢀbyꢀtheꢀ  
inputvoltageminusthevoltagedropacrossthemainꢀ  
switchꢀandꢀtheꢀinductor.  
VLDO/Linear Regulator Loop  
IntheLTC3541,theVLDOandlinearregulatorloopsconsistꢀ  
ofanamplifierandN-channelMOSFEToutputstagesthat,ꢀ  
whenconnectedwiththeproperexternalcomponents,ꢀ  
willꢀservoꢀtheꢀoutputꢀtoꢀmaintainꢀaꢀregulatorꢀoutputꢀvolt-  
Thepeakinductorcurrentisdeterminedbycomparingtheꢀ  
buckꢀfeedbackꢀsignalꢀtoꢀanꢀinternalꢀ0.8Vꢀreference.ꢀWhenꢀ  
theloadcurrentincreases,theoutputofthebuckandꢀ  
henceꢀtheꢀbuckꢀfeedbackꢀsignalꢀdecrease.ꢀThisꢀdecreaseꢀ  
causesthepeakinductorcurrenttoincreaseuntiltheaver-  
ageꢀinductorꢀcurrentꢀmatchesꢀtheꢀloadꢀcurrent.ꢀWhileꢀtheꢀ  
mainꢀswitchꢀisꢀoff,ꢀtheꢀsynchronousꢀswitchꢀisꢀturnedꢀonꢀ  
untilꢀeitherꢀtheꢀinductorꢀcurrentꢀstartsꢀtoꢀreverseꢀdirectionꢀ  
orꢀtheꢀbeginningꢀofꢀaꢀnewꢀclockꢀcycle.  
age,ꢀLV .ꢀTheꢀinternalꢀreferenceꢀvoltageꢀprovidedꢀtoꢀtheꢀ  
OUT  
amplifierꢀisꢀ0.4Vꢀallowingꢀforꢀaꢀwideꢀrangeꢀofꢀoutputꢀvolt-  
ages.ꢀLoopꢀconfigurationsꢀenablingꢀtheꢀVLDOꢀorꢀtheꢀlinearꢀ  
regulatorꢀareꢀstableꢀwithꢀanꢀoutputꢀcapacitanceꢀasꢀlowꢀasꢀ  
2.2µFꢀandꢀasꢀhighꢀasꢀ100µF.ꢀBothꢀtheꢀVLDOꢀandꢀtheꢀlinearꢀ  
regulatorsꢀareꢀcapableꢀofꢀoperatingꢀwithꢀanꢀinputꢀvoltage,ꢀ  
V ,ꢀasꢀlowꢀasꢀ2.7V,ꢀbutꢀareꢀsubjectꢀtoꢀtheꢀconstraintꢀthatꢀ  
IN  
V ꢀmustꢀbeꢀgreaterꢀthanꢀLV ꢀ+ꢀ1.4V.ꢀ  
IN  
OUT  
WhenꢀtheꢀMODEꢀpinꢀisꢀdrivenꢀtoꢀaꢀlogicꢀlow,ꢀtheꢀLTC3541ꢀ  
buckꢀregulatorꢀoperatesꢀinꢀBurstꢀModeꢀoperationꢀforꢀhighꢀ  
efficiency.ꢀInꢀthisꢀmode,ꢀtheꢀmainꢀswitchꢀoperatesꢀbasedꢀ  
uponloaddemand.InBurstModeoperationthepeakꢀ  
inductorꢀcurrentꢀisꢀsetꢀtoꢀaꢀfixedꢀvalue,ꢀwhereꢀeachꢀburstꢀ  
eventꢀcanꢀlastꢀfromꢀaꢀfewꢀclockꢀcyclesꢀatꢀlightꢀloadsꢀtoꢀ  
nearlyꢀ continuousꢀ cyclingꢀ atꢀ moderateꢀ loads.ꢀ Betweenꢀ  
burstꢀeventsꢀtheꢀmainꢀswitchꢀandꢀanyꢀunneededꢀcircuitryꢀ  
areturnedoff,reducingthequiescentcurrent.Inthissleepꢀ  
state,ꢀtheꢀloadꢀisꢀbeingꢀsuppliedꢀsolelyꢀfromꢀtheꢀoutputꢀ  
capacitor.ꢀAsꢀtheꢀoutputꢀvoltageꢀdroops,ꢀanꢀinternalꢀerrorꢀ  
amplifier’sꢀoutputꢀrisesꢀuntilꢀaꢀwakeꢀthresholdꢀisꢀreachedꢀ  
causingꢀtheꢀmainꢀswitchꢀtoꢀagainꢀturnꢀon.ꢀThisꢀprocessꢀ  
repeatsꢀatꢀaꢀrateꢀthatꢀisꢀdependantꢀuponꢀtheꢀloadꢀcurrentꢀ  
demand.  
TheꢀVLDOꢀisꢀdesignedꢀtoꢀprovideꢀupꢀtoꢀ300mAꢀofꢀoutputꢀ  
currentꢀatꢀaꢀveryꢀlowꢀLV ꢀtoꢀLV ꢀvoltage.ꢀThisꢀallowsꢀ  
IN  
OUT  
aꢀclean,ꢀsecondary,ꢀanalogꢀsupplyꢀvoltageꢀtoꢀbeꢀprovidedꢀ  
withꢀaꢀminimumꢀdropꢀinꢀefficiency.ꢀTheꢀVLDOꢀisꢀprovidedꢀ  
withthermalprotectionthatisdesignedtodisabletheꢀ  
VLDOfunctionwhentheoutput,passtransistor’sjunctionꢀ  
temperatureꢀreachesꢀapproximatelyꢀ160°C.ꢀInꢀadditionꢀtoꢀ  
thermalꢀprotection,ꢀshort-circuitꢀdetectionꢀisꢀprovidedꢀtoꢀ  
disabletheVLDOfunctionwhenashort-circuitconditionisꢀ  
sensed.Thiscircuitisdesignedsuchthatanoutputcurrentꢀ  
ofꢀapproximatelyꢀ1Aꢀcanꢀbeꢀprovidedꢀbeforeꢀthisꢀcircuitꢀ  
willtrigger.AsdetailedintheElectricalCharacteristics,theꢀ  
VLDOꢀregulatorꢀwillꢀbeꢀoutꢀofꢀregulationꢀwhenꢀthisꢀeventꢀ  
occurs.Boththethermalandshort-circuitfaultswhenꢀ  
detectedꢀareꢀtreatedꢀasꢀcatastrophicꢀfaultꢀconditions.ꢀTheꢀ  
3541fa  
LTC3541  
U
OPERATIO  
LTC3541ꢀwillꢀbeꢀresetꢀuponꢀtheꢀdetectionꢀofꢀeitherꢀevent.ꢀ  
TheꢀN-channelꢀMOSFETꢀincorporatedꢀinꢀtheꢀVLDOꢀhasꢀitsꢀ  
TransitioningꢀfromꢀlinearꢀregulatorꢀmodeꢀtoꢀVLDOꢀmode,ꢀ  
accomplishedꢀbyꢀbringingꢀENBUCKꢀfromꢀaꢀlogicꢀlowꢀtoꢀaꢀ  
logicꢀhighꢀwhileꢀENVLDOꢀisꢀaꢀlogicꢀhigh,ꢀisꢀdesignedꢀtoꢀbeꢀ  
asꢀseamlessꢀandꢀtransientꢀfreeꢀasꢀpossible.ꢀTheꢀpreciseꢀ  
drainꢀconnectedꢀtoꢀtheꢀLV ꢀpinꢀasꢀshownꢀinꢀFigureꢀ1.ꢀToꢀ  
IN  
ensureꢀreliableꢀoperation,ꢀtheꢀLV ꢀvoltageꢀmustꢀbeꢀstableꢀ  
IN  
beforeꢀtheꢀVLDOꢀisꢀenabled.ꢀForꢀtheꢀcaseꢀwhereꢀtheꢀvolt-  
transientresponseofLV duetothistransitionisaꢀ  
OUT  
ageꢀonꢀtheꢀLV ꢀpinꢀisꢀsuppliedꢀbyꢀtheꢀbuckꢀregulator,ꢀtheꢀ  
functionꢀofꢀC ꢀandꢀtheꢀloadꢀcurrent.ꢀWaveformsꢀgivenꢀ  
IN  
OUT  
internalꢀpowerꢀsupplyꢀsequencingꢀlogicꢀassuresꢀvoltagesꢀ  
intheTypicalPerformanceCharaceristicsshowtypicalꢀ  
areꢀappliedꢀinꢀtheꢀappropriateꢀmanner.ꢀForꢀtheꢀcaseꢀwhereꢀ  
transientresponsesusingtheminimumC ꢀof2.2µFandꢀ  
OUT  
anꢀexternalꢀsupplyꢀisꢀusedꢀtoꢀpowerꢀtheꢀLV ꢀpin,ꢀtheꢀvolt-  
loadcurrentsof1mAand30mArespectively.Generally,theꢀ  
IN  
ageꢀonꢀtheꢀLV ꢀpinꢀmustꢀbeꢀstableꢀbeforeꢀtheꢀENVLDOꢀpinꢀ  
amplitudeꢀofꢀanyꢀtransientsꢀpresentꢀwillꢀdecreaseꢀasꢀC  
IN  
OUT  
isꢀbroughtꢀfromꢀaꢀlowꢀtoꢀaꢀhigh.ꢀFurther,ꢀtheꢀexternalꢀLV ꢀ  
isꢀincreased.ꢀToꢀensureꢀreliableꢀoperationꢀandꢀadherenceꢀ  
totheloadregulationlimitspresentedintheElectricalꢀ  
Characteristicstable,theloadcurrentmustnotexceedꢀ  
IN  
voltagemustbereducedinconjunctionwithV ꢀwheneverꢀ  
IN  
V ꢀisꢀpulledꢀlowꢀorꢀremoved.  
IN  
theꢀlinearꢀregulatorꢀI ꢀlimitꢀofꢀ30mAꢀwithinꢀ20msꢀafterꢀ  
OUT  
Theꢀlinearꢀregulatorꢀisꢀdesignedꢀtoꢀprovideꢀaꢀlowerꢀoutputꢀ  
currentꢀ(30mA)ꢀthanꢀthatꢀavailableꢀfromꢀtheꢀVLDO.ꢀTheꢀ  
linearꢀregulator’sꢀoutputꢀpassꢀtransistorꢀhasꢀitsꢀdrainꢀtiedꢀ  
ENBUCKꢀhasꢀtransitionedꢀtoꢀaꢀlogicꢀhigh.ꢀTheꢀ300mAꢀI  
OUT  
limitofVLDOappliesthereafter.Further,forconfigurationsꢀ  
thatꢀdoꢀnotꢀuseꢀtheꢀLTC3541’sꢀbuckꢀregulatorꢀtoꢀprovideꢀ  
toꢀtheꢀV ꢀrail.ꢀThisꢀallowsꢀtheꢀlinearꢀregulatorꢀtoꢀbeꢀturnedꢀ  
IN  
theVLDOinputvoltage(LV ),theusermustensureaꢀ  
IN  
onꢀpriorꢀto,ꢀandꢀindependentꢀof,ꢀtheꢀbuckꢀregulatorꢀwhichꢀ  
ordinarilydrivestheVLDO.Thelinearregulatorisprovidedꢀ  
withthermalprotectionthatisdesignedtodisabletheꢀ  
linearregulatorfunctionwhentheoutputpasstransistor’sꢀ  
junctionꢀ temperatureꢀ reachesꢀ approximatelyꢀ 160°C.ꢀ Inꢀ  
additionꢀtoꢀthermalꢀprotection,ꢀshort-circuitꢀdetectionꢀisꢀ  
providedꢀtoꢀdisableꢀtheꢀlinearꢀregulatorꢀfunctionꢀwhenꢀaꢀ  
short-circuitꢀconditionꢀisꢀsensed.ꢀThisꢀcircuitꢀisꢀdesignedꢀ  
suchꢀthatꢀanꢀoutputꢀcurrentꢀofꢀapproximatelyꢀ120mAꢀcanꢀ  
beꢀprovidedꢀbeforeꢀthisꢀcircuitꢀwillꢀtrigger.ꢀAsꢀdetailedꢀinꢀ  
theꢀElectricalꢀCharacteristics,ꢀtheꢀlinearꢀregulatorꢀwillꢀbeꢀ  
outꢀofꢀregulationꢀwhenꢀthisꢀeventꢀoccurs.ꢀBothꢀtheꢀthermalꢀ  
andꢀshort-circuitꢀfaultsꢀareꢀtreatedꢀasꢀcatastrophicꢀfaultꢀ  
conditions.ꢀTheꢀLTC3541ꢀwillꢀbeꢀresetꢀuponꢀtheꢀdetectionꢀ  
ofꢀeitherꢀevent.ꢀ  
stableꢀLV ꢀvoltageꢀisꢀpresentꢀnoꢀlessꢀthanꢀ1msꢀpriorꢀtoꢀ  
IN  
ENBUCKꢀtransitioningꢀtoꢀaꢀlogicꢀhigh.  
Inasimilarmanner,transitioningfromVLDOmodetoꢀ  
linearregulatormode,accomplishedbybringingENBUCKꢀ  
fromꢀaꢀhighꢀlowꢀtoꢀaꢀlogicꢀlowꢀwhileꢀENVLDOꢀisꢀaꢀlogicꢀ  
high,ꢀisꢀdesignedꢀtoꢀbeꢀasꢀseamlessꢀandꢀtransientꢀfreeꢀasꢀ  
possible.ꢀAgain,ꢀtheꢀpreciseꢀtransientꢀresponseꢀofꢀLV  
OUT  
dueꢀtoꢀthisꢀtransitionꢀisꢀaꢀfunctionꢀofꢀC ꢀandꢀtheꢀloadꢀ  
OUT  
current.ꢀ Waveformsꢀ givenꢀ inꢀ theꢀ Typicalꢀ Performanceꢀ  
Characeristicsꢀ showꢀ typicalꢀ transientꢀ responsesꢀ usingꢀ  
theminimumC ꢀof2.2µFandloadcurrentsof1mAꢀ  
OUT  
andꢀ30mAꢀrespectively.ꢀGenerally,ꢀtheꢀamplitudeꢀofꢀanyꢀ  
transientsꢀ presentꢀ willꢀ decreaseꢀ asꢀ C ꢀ isꢀ increased.ꢀ  
OUT  
Toensurereliableoperationandadherencetotheloadꢀ  
regulationꢀlimitsꢀpresentedꢀinꢀtheꢀElectricalꢀCharactersticsꢀ  
table,theloadcurrentmustnotexceedthelinearregulatorꢀ  
TheN-channelMOSFETincorporatedinthelinearregulatorꢀ  
hasitsdrainconnectedtotheV ꢀpinasshowninFigureꢀ1.ꢀ  
IN  
I
ꢀlimitꢀofꢀ30mAꢀ1msꢀpriorꢀtoꢀENBUCKꢀtransitioningꢀtoꢀaꢀ  
OUT  
TheꢀsizeꢀofꢀthisꢀMOSFETꢀandꢀitsꢀassociatedꢀpowerꢀbussingꢀ  
isdesignedtoaccommodate30mAofDCcurrent.Currentsꢀ  
abovethiscanbesupportedforshortperiodsasstipulatedꢀ  
inꢀtheꢀAbsoluteꢀMaximumꢀRatingsꢀsection.  
logicꢀlowꢀandꢀthereafer.ꢀFurther,ꢀforꢀconfigurationsꢀthatꢀdoꢀ  
notꢀuseꢀtheꢀLTC3541’sꢀbuckꢀregulatorꢀtoꢀprovideꢀtheꢀVLDOꢀ  
inputꢀvoltageꢀ(LV ),ꢀtheꢀuserꢀmustꢀcontinueꢀtoꢀensureꢀaꢀ  
IN  
stableꢀLV ꢀvoltageꢀnoꢀlessꢀthanꢀ1msꢀafterꢀENBUCKꢀhasꢀ  
IN  
transitionedꢀtoꢀaꢀlogicꢀlow.  
3541fa  
ꢀ0  
LTC3541  
U U  
W U  
APPLICATIO S I FOR ATIO  
ThebasicLTC3541ꢀapplicationꢀcircuitꢀisꢀshownꢀonꢀtheꢀfirstꢀ  
pageꢀofꢀthisꢀdataꢀsheet.ꢀExternalꢀcomponentꢀselectionꢀisꢀ  
drivenꢀbyꢀtheꢀloadꢀrequirementꢀandꢀrequiresꢀtheꢀselectionꢀ  
Table 2. Representative Surface Mount Inductors  
PART  
NUMBER  
VALUE  
(µH)  
DCR  
MAX DC  
SIZE  
3
(Ω MAX) CURRENT (A) W × L × H (mm )  
Sumidaꢀ  
CDRH3D23  
1.0ꢀ  
1.5ꢀ  
2.2ꢀ  
3.3  
0.025ꢀ  
0.029ꢀ  
0.038ꢀ  
0.048  
2.0ꢀ  
1.5ꢀ  
1.3ꢀ  
1.1  
3.9ꢀ×ꢀ3.9ꢀ×ꢀ2.4  
ofꢀL,ꢀfollowedꢀbyꢀC ,ꢀC ,ꢀandꢀfeedbackꢀresistorꢀvaluesꢀ  
IN OUT  
forꢀtheꢀbuckꢀandꢀtheꢀselectionꢀofꢀtheꢀoutputꢀcapacitorꢀandꢀ  
feedbackꢀvaluesꢀforꢀtheꢀVLDOꢀandꢀlinearꢀregulator.ꢀ  
Sumidaꢀ  
2.2ꢀ  
3.3  
0.116ꢀ  
0.174  
0.950ꢀ  
0.770  
3.5ꢀ×ꢀ4.3ꢀ×ꢀ0.8  
2.5ꢀ×ꢀ3.2ꢀ×ꢀ2.0  
CMD4D06  
BUCK REGULATOR  
Inductor Selection  
Coilcraftꢀ  
ME3220  
1.0ꢀ  
1.5ꢀ  
2.2ꢀ  
3.3  
0.058ꢀ  
0.068ꢀ  
0.104ꢀ  
0.138  
2.7ꢀ  
2.2ꢀ  
1.0ꢀ  
1.3  
Forꢀmostꢀapplications,ꢀtheꢀappropriateꢀinductorꢀvalueꢀwillꢀ  
beꢀinꢀtheꢀrangeꢀofꢀ1.5µHꢀtoꢀ3.3µHꢀwithꢀ2.2µHꢀtheꢀmostꢀ  
commonlyꢀ used.ꢀ Theꢀ exactꢀ inductorꢀ valueꢀ isꢀ chosenꢀ  
largelyꢀ basedꢀ onꢀ theꢀ desiredꢀ rippleꢀ currentꢀ andꢀ burstꢀ  
rippleꢀperformance.ꢀGenerally,ꢀlargeꢀvalueꢀinductorsꢀre-  
duceꢀrippleꢀcurrent,ꢀandꢀconversely,ꢀsmallꢀvalueꢀinductorsꢀ  
Murataꢀ  
LQH3C  
1.0ꢀ  
2.2  
0.060ꢀ  
0.097  
1.00ꢀ  
0.79  
2.5ꢀ×ꢀ3.2ꢀ×ꢀ2.0  
3.2ꢀ×ꢀ3.2ꢀ×ꢀ1.2ꢀ  
Sumidaꢀ  
CDRH2D11/HP  
1.5ꢀ  
2.2  
0.06ꢀ  
0.10  
1.00ꢀ  
0.72  
C and C  
IN  
Selection  
OUT  
producehigherripplecurrent.HigherV ꢀorV mayꢀ  
IN  
OUT  
Incontinuousmode,thesourcecurrentofthetopMOSFETꢀ  
isꢀaꢀsquareꢀwaveꢀofꢀdutyꢀcycleꢀV /V .ꢀToꢀpreventꢀlargeꢀ  
voltageꢀtransients,ꢀaꢀlowꢀESRꢀinputꢀcapacitorꢀsizedꢀforꢀtheꢀ  
maximumRMScurrentmustbeused.ThemaximumRMSꢀ  
capacitorꢀcurrentꢀisꢀgivenꢀby:  
alsoꢀincreaseꢀtheꢀrippleꢀcurrentꢀasꢀshownꢀinꢀEquationꢀ1.ꢀ  
OUT IN  
Areasonablestartingpointforsettingripplecurrentisꢀ  
ΔI ꢀ=ꢀ200mAꢀ(40%ꢀofꢀ500mA).  
L
VOUT  
VIN  
1
ΔIL =  
VOUT 1−  
(1)  
f L  
( )( )  
1/2  
VOUT V V  
(
)
IN  
OUT  
cIN required IRMS IOMAX  
VIN  
TheꢀDCꢀcurrentꢀratingꢀofꢀtheꢀinductorꢀshouldꢀbeꢀatꢀleastꢀ  
equalꢀtoꢀtheꢀmaximumꢀloadꢀcurrentꢀplusꢀhalfꢀtheꢀrippleꢀ  
currentꢀtoꢀpreventꢀcoreꢀsaturation.ꢀThus,ꢀaꢀ600mAꢀratedꢀ  
inductorꢀshouldꢀbeꢀenoughꢀforꢀmostꢀapplicationsꢀ(500mAꢀ  
+ꢀ100mA).ꢀForꢀbetterꢀefficiency,ꢀchooseꢀaꢀlowꢀDCꢀresis-  
tanceꢀinductor.  
Thisꢀ formulaꢀ hasꢀ aꢀ maximumꢀ atꢀ V ꢀ =ꢀ 2V ,ꢀ whereꢀ  
IN  
OUT  
I =I /2.Thissimpleworst-caseconditioniscommon-  
RMS OUT  
lyꢀusedꢀforꢀdesign.ꢀNoteꢀthatꢀtheꢀcapacitorꢀmanufacturer’sꢀ  
rippleꢀcurrentꢀratingsꢀareꢀoftenꢀbasedꢀonꢀ2000ꢀhoursꢀofꢀ  
life.ꢀThisꢀmakesꢀitꢀadvisableꢀtoꢀfurtherꢀderateꢀtheꢀcapaci-  
torꢀorꢀchooseꢀaꢀcapacitorꢀratedꢀatꢀaꢀhigherꢀtemperatureꢀ  
thanꢀrequired.ꢀAlwaysꢀconsultꢀtheꢀmanufacturerꢀwithꢀanyꢀ  
questionꢀregardingꢀproperꢀcapacitorꢀchoice.  
Inductor Core Selection  
Differentꢀ coreꢀ materialsꢀ andꢀ shapesꢀ willꢀ changeꢀ theꢀ  
size/currentandprice/currentrelationshipofaninduc-  
tor.Toroidorꢀshieldedꢀpotꢀcoresꢀinꢀferriteꢀorꢀpermalloyꢀ  
materialsꢀareꢀsmallꢀandꢀdon’tꢀradiateꢀmuchꢀenergy,ꢀbutꢀ  
generallyꢀcostꢀmoreꢀthanꢀpowderedꢀironꢀcoreꢀinductorsꢀ  
withꢀsimilarꢀelectricalꢀcharacteristics.ꢀTheꢀchoiceꢀofꢀwhichꢀ  
styleꢀinductorꢀtoꢀuseꢀoftenꢀdependsꢀmoreꢀonꢀtheꢀpriceꢀvsꢀ  
sizeꢀrequirementꢀandꢀanyꢀradiatedꢀfield/EMIꢀrequirementsꢀ  
TheꢀselectionꢀofꢀC ꢀforꢀtheꢀbuckꢀregulatorꢀisꢀdrivenꢀbyꢀ  
OUT  
thedesiredbucklooptransientresponse,requiredeffectiveꢀ  
seriesꢀresistanceꢀ(ESR)ꢀandꢀburstꢀrippleꢀperformance.  
TheꢀLTC3541ꢀminimizesꢀtheꢀrequiredꢀnumberꢀofꢀexternalꢀ  
componentsꢀ byꢀ providingꢀ internalꢀ loopꢀ compensationꢀ  
forꢀtheꢀbuckꢀregulatorꢀloop.ꢀLoopꢀstability,ꢀtransientꢀre  
-
ratherꢀthanꢀwhatꢀtheꢀLTC3541ꢀrequiresꢀtoꢀoperate.ꢀTableꢀ2ꢀ sponseꢀandꢀburstꢀperformanceꢀcanꢀbeꢀtailoredꢀbyꢀchoiceꢀ  
showsꢀsomeꢀtypicalꢀsurfaceꢀmountꢀinductorsꢀthatꢀworkꢀ ofꢀoutputꢀcapacitance.ꢀForꢀmanyꢀapplications,ꢀdesirableꢀ  
wellꢀinꢀLTC3541ꢀapplications.  
stability,ꢀtransientꢀresponseꢀandꢀrippleꢀperformanceꢀcanꢀ  
3541fa  
ꢀꢀ  
LTC3541  
U U  
W U  
APPLICATIO S I FOR ATIO  
beobtainedbychoosinganoutputcapacitorvalueof10µFꢀ  
Whenꢀchoosingꢀtheꢀinputꢀandꢀoutputꢀceramicꢀcapacitors,ꢀ  
choosetheX5RorX7Rdielectricformulations.Theseꢀ  
dielectricsꢀhaveꢀtheꢀbestꢀtemperatureꢀandꢀvoltageꢀcharac-  
teristicsꢀofꢀallꢀtheꢀceramicsꢀforꢀaꢀgivenꢀvalueꢀandꢀsize.  
toꢀ22µF.ꢀTypically,ꢀonceꢀtheꢀESRꢀrequirementꢀforꢀC ꢀhasꢀ  
OUT  
beenꢀmet,ꢀtheꢀRMSꢀcurrentꢀratingꢀgenerallyꢀfarꢀexceedsꢀ  
theꢀI  
ꢀrequirement.ꢀTheꢀoutputꢀrippleꢀΔV ꢀisꢀ  
RIPPLE(P-P)  
determinedꢀby:  
OUT  
Output Voltage Programming  
1
ΔVOUT ≅ ΔIL ESR+  
TheꢀoutputꢀvoltageꢀisꢀsetꢀbyꢀtyingꢀBUCKFBꢀtoꢀaꢀresistiveꢀ  
dividerꢀaccordingꢀtoꢀtheꢀfollowingꢀformula:  
8fc  
OUT   
whereꢀfꢀ=ꢀoperatingꢀfrequency,ꢀC ꢀ=ꢀoutputꢀcapacitanceꢀ  
OUT  
R2  
R1  
andꢀΔI ꢀ=ꢀrippleꢀcurrentꢀinꢀtheꢀinductor.ꢀForꢀaꢀfixedꢀoutputꢀ  
L
VOUT = 0.8V 1+  
voltage,theoutputrippleishighestatmaximuminputꢀ  
voltageꢀsinceꢀΔI ꢀincreasesꢀwithꢀinputꢀvoltage.  
L
SincetheimpedanceattheBUCKFBpinisdependantuponꢀ  
theꢀresistorꢀdividerꢀnetworkꢀused,ꢀandꢀphaseꢀshiftꢀdueꢀtoꢀ  
thisꢀimpedanceꢀdirectlyꢀimpactsꢀtheꢀtransientꢀresponseꢀofꢀ  
theꢀbuck,ꢀR1ꢀshouldꢀbeꢀchosenꢀ<125k.ꢀInꢀaddition,ꢀstrayꢀ  
capacitanceꢀatꢀthisꢀpinꢀshouldꢀbeꢀminimizedꢀ(<5pF)ꢀtoꢀpre-  
ventexcessivephaseshift.Finally,specialattentionshouldꢀ  
begiventoanystraycapacitancesthatcancoupleexternalꢀ  
signalsontotheBUCKFBpinproducingundesirableoutputꢀ  
ripple.ForoptimumperformanceconnecttheBUCKFBꢀ  
pinꢀtoꢀR1ꢀandꢀR2ꢀwithꢀaꢀshortꢀPCBꢀtraceꢀandꢀminimizeꢀallꢀ  
otherꢀstrayꢀcapacitanceꢀtoꢀtheꢀBUCKFBꢀpin.  
Aluminumelectrolyticanddrytantalumcapacitorsarebothꢀ  
availableꢀinꢀsurfaceꢀmountꢀconfigurations.ꢀInꢀtheꢀcaseꢀofꢀ  
tantalum,ꢀitꢀisꢀcriticalꢀthatꢀtheꢀcapacitorsꢀareꢀsurgeꢀtestedꢀ  
foruseinswitchingpowersupplies.Anexcellentchoiceisꢀ  
theꢀAVXꢀTPSꢀseriesꢀofꢀsurfaceꢀmountꢀtantalum.ꢀTheseꢀareꢀ  
speciallyꢀconstructedꢀandꢀtestedꢀforꢀlowꢀESRꢀsoꢀtheyꢀgiveꢀ  
theꢀlowestꢀESRꢀforꢀaꢀgivenꢀvolume.ꢀOtherꢀcapacitorꢀtypesꢀ  
includeꢀSanyoꢀPOSCAP,ꢀKemetꢀT510ꢀandꢀT495ꢀseries,ꢀandꢀ  
Sprague593Dand595Dseries.Consultthemanufacturerꢀ  
forꢀotherꢀspecificꢀrecommendations.  
Using Ceramic Input and Output Capacitors  
Theꢀexternalꢀresistiveꢀdividerꢀisꢀconnectedꢀtoꢀtheꢀoutput,ꢀ  
allowingꢀremoteꢀvoltageꢀsensingꢀasꢀshownꢀinꢀFigureꢀ6.  
Highvalue,lowcostceramiccapacitorsarenowbecomingꢀ  
availableꢀinꢀsmallerꢀcaseꢀsizes.ꢀTheirꢀhighꢀrippleꢀcurrent,ꢀ  
highvoltagerating,andlowESRmakethemidealforꢀ  
switchingꢀ regulatorꢀ applications.ꢀ Sinceꢀ theꢀ LTC3541’sꢀ  
controlꢀloopꢀdoesꢀnotꢀdependꢀonꢀtheꢀoutputꢀcapacitor’sꢀ  
ESRꢀforꢀstableꢀoperation,ꢀceramicꢀcapacitorsꢀcanꢀbeꢀusedꢀ  
freelyꢀtoꢀachieveꢀveryꢀlowꢀoutputꢀrippleꢀandꢀsmallꢀcircuitꢀ  
size.  
Checking Transient Response  
Theꢀregulatorꢀloopꢀresponseꢀcanꢀbeꢀcheckedꢀbyꢀlookingꢀ  
atꢀtheꢀloadꢀtransientꢀresponse.ꢀSwitchingꢀregulatorsꢀtakeꢀ  
severalꢀcyclesꢀtoꢀrespondꢀtoꢀaꢀstepꢀinꢀloadꢀcurrent.ꢀWhenꢀ  
aꢀloadꢀstepꢀoccurs,ꢀV ꢀimmediatelyꢀshiftsꢀbyꢀanꢀamountꢀ  
OUT  
equalꢀtoꢀ(ΔI  
ꢀ•ꢀESR),ꢀwhereꢀESRꢀisꢀtheꢀeffectiveꢀseriesꢀ  
LOAD  
However,caremustbetakenwhenceramiccapacitorsꢀ  
areusedattheinputandtheoutput.Whenaceramicꢀ  
capacitorꢀisꢀusedꢀatꢀtheꢀinputꢀandꢀtheꢀpowerꢀisꢀsuppliedꢀ  
byꢀaꢀwallꢀadapterꢀthroughꢀlongꢀwires,ꢀaꢀloadꢀstepꢀatꢀtheꢀ  
0.8V V  
5V  
OUT  
R2  
BUcKFB  
LTc3541  
R1  
outputꢀcanꢀinduceꢀringingꢀatꢀtheꢀinput,ꢀV .ꢀAtꢀbest,ꢀthisꢀ  
IN  
GND  
ringingꢀcanꢀcoupleꢀtoꢀtheꢀoutputꢀandꢀbeꢀmistakenꢀasꢀloopꢀ  
3541 F06  
instability.ꢀAtꢀworst,ꢀaꢀsuddenꢀinrushꢀofꢀcurrentꢀthroughꢀ  
theꢀlongꢀwiresꢀcanꢀpotentiallyꢀcauseꢀaꢀvoltageꢀspikeꢀatꢀV ,ꢀ  
Figure 6. Setting the LTC3541 Output Voltage  
IN  
largeꢀenoughꢀtoꢀdamageꢀtheꢀpart.  
3541fa  
ꢀꢁ  
LTC3541  
U U  
W U  
APPLICATIO S I FOR ATIO  
resistanceꢀofꢀC .ꢀΔI  
ꢀalsoꢀbeginsꢀtoꢀchargeꢀorꢀdis-  
OUT  
LOAD  
R2  
R1  
LV  
V
= 0.4V 1 +  
OUT  
OUT  
(
)
chargeC ,whichgeneratesafeedbackerrorsignal.Theꢀ  
OUT  
R2  
R1  
LTc3541  
LFB  
regulatorꢀloopꢀthenꢀactsꢀtoꢀreturnꢀV ꢀtoꢀitsꢀsteady-stateꢀ  
value.ꢀDuringꢀthisꢀrecoveryꢀtimeꢀV ꢀcanꢀbeꢀmonitoredꢀ  
OUT  
OUT  
c
OUT  
forovershootorringingthatwouldindicateastabilityꢀ  
problem.ꢀForꢀaꢀdetailedꢀexplanationꢀofꢀswitchingꢀcontrolꢀ  
loopꢀtheoryꢀseeꢀApplicationꢀNoteꢀ76.  
GND  
3541 F07  
Figure 7. Programming the LTC3541  
Aꢀsecond,ꢀmoreꢀsevereꢀtransientꢀisꢀcausedꢀbyꢀswitchingꢀ  
inꢀloadsꢀwithꢀlargeꢀ(>1µF)ꢀsupplyꢀbypassꢀcapacitors.ꢀTheꢀ  
dischargedꢀbypassꢀcapacitorsꢀareꢀeffectivelyꢀputꢀinꢀparal-  
forꢀtheꢀlinearꢀregulator.ꢀToꢀcalculateꢀtheꢀchangeꢀreferredꢀ  
toꢀtheꢀoutputꢀsimplyꢀmultiplyꢀbyꢀtheꢀgainꢀofꢀtheꢀfeedbackꢀ  
networkꢀ(i.e.,ꢀ1ꢀ+ꢀR2/R1).ꢀForꢀexample,ꢀtoꢀprogramꢀtheꢀ  
outputꢀforꢀ1.2VꢀchooseꢀR2/R1ꢀ=ꢀ2.ꢀInꢀthisꢀexample,ꢀanꢀ  
outputcurrentchangeof1mAto300mAproduces1.05mVꢀ  
•ꢀ(1ꢀ+ꢀ2)ꢀ=ꢀ3.15mVꢀdropꢀatꢀtheꢀoutput.  
lelꢀwithꢀC ,ꢀcausingꢀaꢀrapidꢀdropꢀinꢀV .ꢀNoꢀregulatorꢀ  
OUT  
OUT  
canꢀdeliverꢀenoughꢀcurrentꢀtoꢀpreventꢀthisꢀproblemꢀifꢀtheꢀ  
loadꢀswitchꢀresistanceꢀisꢀlowꢀandꢀitꢀisꢀdrivenꢀquickly.ꢀTheꢀ  
onlyꢀsolutionꢀisꢀtoꢀlimitꢀtheꢀriseꢀtimeꢀofꢀtheꢀswitchꢀdriveꢀ  
soꢀ thatꢀ theꢀ loadꢀ riseꢀ timeꢀ isꢀ limitedꢀ toꢀ approximatelyꢀ  
SinceꢀtheꢀLFBꢀpinꢀisꢀrelativelyꢀhighꢀimpedanceꢀ(dependingꢀ  
onꢀtheꢀresistorꢀdividerꢀused),ꢀstrayꢀcapacitanceꢀatꢀthisꢀpinꢀ  
shouldꢀbeꢀminimizedꢀ(<10pF)ꢀtoꢀpreventꢀphaseꢀshiftꢀinꢀtheꢀ  
errorꢀamplifierꢀloop.ꢀAdditionally,ꢀspecialꢀattentionꢀshouldꢀ  
begiventoanystraycapacitancesthatcancoupleexternalꢀ  
signalsontotheLFBpinproducingundesirableoutputꢀ  
ripple.ꢀForꢀoptimumꢀperformanceꢀconnectꢀtheꢀLFBꢀpinꢀtoꢀ  
R1ꢀandꢀR2ꢀwithꢀaꢀshortꢀPCBꢀtraceꢀandꢀminimizeꢀallꢀotherꢀ  
strayꢀcapacitanceꢀtoꢀtheꢀLFBꢀpin.  
(25C  
).Thus,a10µFcapacitorchargingto3.3Vꢀ  
LOAD  
wouldrequirea250µsrisetime,limitingthechargingꢀ  
currentꢀtoꢀaboutꢀ130mA.  
VLDO/LINEAR REGULATOR  
Adjustable Output Voltage  
TheLTC3541LV ꢀoutputvoltageissetbytheratiooftwoꢀ  
OUT  
externalꢀresistorsꢀasꢀshownꢀinꢀFigureꢀ7.ꢀTheꢀdeviceꢀservosꢀ  
Output Capacitance and Transient Response  
LV ꢀtoꢀmaintainꢀtheꢀLFBꢀpinꢀvoltageꢀatꢀ0.4Vꢀ(referencedꢀ  
OUT  
toꢀground).ꢀThus,ꢀtheꢀcurrentꢀinꢀR1ꢀisꢀequalꢀtoꢀ0.4V/R1.ꢀ  
Forꢀgoodꢀtransientꢀresponse,ꢀstability,ꢀandꢀaccuracy,ꢀtheꢀ  
currentꢀinꢀR1ꢀshouldꢀbeꢀatꢀleastꢀ2µA,ꢀthusꢀtheꢀvalueꢀofꢀ  
R1ꢀshouldꢀbeꢀnoꢀgreaterꢀthanꢀ200k.ꢀTheꢀcurrentꢀinꢀR2ꢀisꢀ  
theꢀcurrentꢀinꢀR1ꢀplusꢀtheꢀLFBꢀpinꢀbiasꢀcurrent.ꢀSinceꢀtheꢀ  
LFBꢀpinꢀbiasꢀcurrentꢀisꢀtypicallyꢀ<10nA,ꢀitꢀcanꢀbeꢀignoredꢀ  
inꢀtheꢀoutputꢀvoltageꢀcalculation.ꢀTheꢀoutputꢀvoltageꢀcanꢀ  
beꢀcalculatedꢀusingꢀtheꢀformulaꢀinꢀFigureꢀ8.ꢀNoteꢀthatꢀinꢀ  
shutdownꢀtheꢀoutputꢀisꢀturnedꢀoffꢀandꢀtheꢀdividerꢀcurrentꢀ  
TheꢀLTC3541ꢀisꢀdesignedꢀtoꢀbeꢀstableꢀwithꢀaꢀwideꢀrangeꢀofꢀ  
ceramicꢀoutputꢀcapacitors.ꢀTheꢀESRꢀofꢀtheꢀoutputꢀcapaci-  
torꢀaffectsꢀstability,ꢀmostꢀnotablyꢀwithꢀsmallꢀcapacitors.ꢀ  
Aminimumoutputcapacitorof2.2µFwithanESRofꢀ  
0.05Ωorlessisrecommendedtoensurestability.Theꢀ  
LTC3541ꢀVLDOꢀisꢀaꢀmicropowerꢀdeviceꢀandꢀoutputꢀtran-  
sientꢀresponseꢀwillꢀbeꢀaꢀfunctionꢀofꢀoutputꢀcapacitance.ꢀ  
Largervaluesofoutputcapacitancedecreasethepeakꢀ  
deviationsꢀandꢀprovideꢀimprovedꢀtransientꢀresponseꢀforꢀ  
largerꢀloadꢀcurrentꢀchanges.ꢀNoteꢀthatꢀbypassꢀcapacitorsꢀ  
usedꢀtoꢀdecoupleꢀindividualꢀcomponentsꢀpoweredꢀbyꢀtheꢀ  
LTC3541ꢀwillꢀincreaseꢀtheꢀeffectiveꢀoutputꢀcapacitorꢀvalue.ꢀ  
HighESRtantalumandelectrolyticcapacitorsmaybeused,ꢀ  
butꢀaꢀlowꢀESRꢀceramicꢀcapacitorꢀmustꢀbeꢀinꢀparallelꢀatꢀtheꢀ  
output.ꢀThereꢀisꢀnoꢀminimumꢀESRꢀorꢀmaximumꢀcapacitorꢀ  
sizeꢀrequirement.  
willꢀbeꢀzeroꢀonceꢀC ꢀisꢀdischarged.  
OUT  
TheLTC3541VLDOandlinearregulatorloopsoperateꢀ  
atarelativelyhighgainof3.5µV/mAand3.4µV/mAꢀ  
respectively,ꢀreferredꢀtoꢀtheꢀLFBꢀinput.ꢀThus,ꢀaꢀloadꢀcur-  
rentꢀchangeꢀofꢀ1mAꢀtoꢀ300mAꢀproducesꢀaꢀ1.05mVꢀdropꢀ  
atꢀtheꢀLFBꢀinputꢀforꢀtheꢀVLDOꢀandꢀaꢀloadꢀcurrentꢀchangeꢀ  
ofꢀ1mAꢀtoꢀ30mAꢀproducesꢀaꢀ0.1mVꢀdropꢀatꢀtheꢀLFBꢀinputꢀ  
3541fa  
ꢀꢂ  
LTC3541  
U U  
W U  
APPLICATIO S I FOR ATIO  
Extraꢀconsiderationꢀmustꢀbeꢀgivenꢀtoꢀtheꢀuseꢀofꢀceramicꢀ  
capacitors.ꢀCeramicꢀcapacitorsꢀareꢀmanufacturedꢀwithꢀaꢀ  
varietyꢀofꢀdielectrics,ꢀeachꢀwithꢀdifferentꢀbehaviorꢀacrossꢀ  
temperatureꢀ andꢀ appliedꢀ voltage.ꢀ Theꢀ mostꢀ commonꢀ  
dielectricsusedareZ5U,Y5V,X5RandX7R.TheZ5Uꢀ  
andꢀY5Vꢀdielectricsꢀareꢀgoodꢀforꢀprovidingꢀhighꢀcapaci-  
tancesꢀinꢀaꢀsmallꢀpackage,ꢀbutꢀexhibitꢀlargeꢀvoltageꢀandꢀ  
temperaturecoefficientsasshowninFigures8and9.ꢀ  
Whenꢀusedꢀwithꢀaꢀ2Vꢀregulator,ꢀaꢀ1µFꢀY5Vꢀcapacitorꢀcanꢀ  
loseꢀasꢀmuchꢀasꢀ75%ꢀofꢀitsꢀinitialꢀcapacitanceꢀoverꢀtheꢀ  
operatingtemperaturerange.TheX5RandX7Rdielectricsꢀ  
resultꢀinꢀmoreꢀstableꢀcharacteristicsꢀandꢀareꢀusuallyꢀmoreꢀ  
suitableꢀforꢀuseꢀasꢀtheꢀoutputꢀcapacitor.ꢀTheꢀX7Rꢀtypeꢀhasꢀ  
betterꢀstabilityꢀacrossꢀtemperature,ꢀwhileꢀtheꢀX5Rꢀisꢀlessꢀ  
expensiveꢀandꢀisꢀavailableꢀinꢀhigherꢀvalues.ꢀInꢀallꢀcases,ꢀ  
theꢀoutputꢀcapacitanceꢀshouldꢀneverꢀdropꢀbelowꢀ1µFꢀorꢀ  
instabilityꢀorꢀdegradedꢀperformanceꢀmayꢀoccur.  
EFFICIENCY CONSIDERATIONS  
Generally,ꢀtheꢀefficiencyꢀofꢀaꢀregulatorꢀisꢀequalꢀtoꢀtheꢀout-  
putꢀpowerꢀdividedꢀbyꢀtheꢀinputꢀpowerꢀtimesꢀ100%.ꢀItꢀisꢀ  
oftenꢀusefulꢀtoꢀanalyzeꢀindividualꢀlossꢀtermsꢀtoꢀdetermineꢀ  
whichꢀtermsꢀareꢀlimitingꢀefficiencyꢀandꢀwhatꢀifꢀanyꢀchangeꢀ  
wouldꢀyieldꢀtheꢀgreatestꢀimprovement.ꢀEfficiencyꢀcanꢀbeꢀ  
expressedꢀas:  
ꢀ Efficiencyꢀ=ꢀ100%ꢀ–ꢀ(L1ꢀ+ꢀL2ꢀ+ꢀL3ꢀ+ꢀ...)  
whereꢀL1,ꢀL2,ꢀetc.ꢀareꢀtheꢀindividualꢀlossꢀtermsꢀasꢀaꢀper-  
centageꢀofꢀinputꢀpower.  
20  
BOTH cAPAcITORS ARE 1µF,  
10V, 0603 cASE SIZE  
0
Althoughꢀallꢀdissipativeꢀelementsꢀinꢀtheꢀcircuitꢀproduceꢀ  
losses,threemainsourcestypicallyaccountforthemajorityꢀ  
X5R  
–20  
–40  
ofthelossesintheLTC3541circuits:V ꢀquiescentcurrent,ꢀ  
IN  
2
I RlossesandlossacrossVLDOoutputdevice.Whenꢀ  
Y5V  
operatingꢀwithꢀbothꢀtheꢀbuckꢀandꢀVLDOꢀactiveꢀ(ENBUCKꢀ  
andꢀENVLDOꢀequalꢀtoꢀlogicꢀhigh),ꢀV ꢀquiescentꢀcurrentꢀ  
–60  
–80  
IN  
lossꢀandꢀlossꢀacrossꢀtheꢀVLDOꢀoutputꢀdeviceꢀdominateꢀ  
2
theꢀefficiencyꢀlossꢀatꢀlowꢀloadꢀcurrents,ꢀwhereasꢀtheꢀI Rꢀ  
lossꢀandꢀlossꢀacrossꢀtheꢀVLDOꢀoutputꢀdeviceꢀdominateꢀ  
theefficiencylossatmediumtohighloadcurrents.Atꢀ  
lowꢀloadꢀcurrentsꢀwithꢀtheꢀpartꢀoperatingꢀwithꢀtheꢀlinearꢀ  
regulatorꢀ(ENBUCKꢀequalꢀtoꢀlogicꢀlow,ꢀENVLDOꢀequalꢀtoꢀ  
logicꢀhigh),ꢀefficiencyꢀisꢀtypicallyꢀdominatedꢀbyꢀtheꢀlossꢀ  
–100  
0
8
2
4
6
10  
Dc BIAS VOLTAGE (V)  
3541 F08  
Figure 8. Change in Capacitor vs Bias Voltage  
20  
acrossthelinearregulatoroutputdeviceandV ꢀquiescentꢀ  
IN  
current.ꢀInꢀaꢀtypicalꢀefficiencyꢀplot,ꢀtheꢀefficiencyꢀcurveꢀatꢀ  
veryꢀlowꢀloadꢀcurrentsꢀcanꢀbeꢀmisleadingꢀsinceꢀtheꢀactualꢀ  
powerꢀlostꢀisꢀofꢀlittleꢀconsequence.  
0
X5R  
–20  
Y5V  
1.ꢀTheꢀV ꢀquiescentꢀcurrentꢀlossꢀinꢀtheꢀbuckꢀisꢀdueꢀtoꢀtwoꢀ  
IN  
–40  
–60  
components:ꢀtheꢀDCꢀbiasꢀcurrentꢀasꢀgivenꢀinꢀtheꢀElectricalꢀ  
Characteristicsꢀandꢀtheꢀinternalꢀmainꢀswitchꢀandꢀsynchro-  
nousswitchgatechargecurrents.Thegatechargecurrentꢀ  
resultsꢀfromꢀswitchingꢀtheꢀgateꢀcapacitanceꢀofꢀtheꢀinternalꢀ  
powerꢀswitches.ꢀEachꢀtimeꢀtheꢀgateꢀisꢀswitchedꢀfromꢀhighꢀ  
toꢀlowꢀtoꢀhighꢀagain,ꢀaꢀpacketꢀofꢀcharge,ꢀdQ,ꢀmovesꢀfromꢀ  
–80  
BOTH cAPAcITORS ARE 1µF,  
10V, 0603 cASE SIZE  
–100  
–50  
0
25  
50  
75  
–25  
TEMPERATURE (°c)  
3541 F09  
V ꢀtoꢀground.ꢀTheꢀresultingꢀdQ/dtꢀisꢀtheꢀcurrentꢀoutꢀofꢀ  
IN  
Figure 9. Change in Capacitor vs Temperature  
V ꢀthatꢀisꢀtypicallyꢀlargerꢀthanꢀtheꢀDCꢀbiasꢀcurrentꢀandꢀ  
IN  
3541fa  
ꢀꢃ  
LTC3541  
U U  
W U  
APPLICATIO S I FOR ATIO  
Forꢀsurfaceꢀmountꢀdevices,ꢀheatꢀsinkingꢀisꢀaccomplishedꢀ  
byꢀusingꢀtheꢀheat-spreadingꢀcapabilitiesꢀofꢀtheꢀPCꢀboardꢀ  
andꢀitsꢀcopperꢀtraces.ꢀCopperꢀboardꢀstiffenersꢀandꢀplatedꢀ  
throughꢀholesꢀcanꢀalsoꢀbeꢀusedꢀtoꢀspreadꢀtheꢀheatꢀgener-  
atedꢀbyꢀpowerꢀdevices.  
proportionaltofrequency.BoththeDCbiasandgatechargeꢀ  
lossesꢀareꢀproportionalꢀtoꢀV ꢀandꢀthusꢀtheirꢀeffectsꢀwillꢀ  
IN  
beꢀmoreꢀpronouncedꢀatꢀhigherꢀsupplyꢀvoltages.  
2
2.ꢀI Rꢀlossesꢀareꢀcalculatedꢀfromꢀtheꢀresistancesꢀofꢀtheꢀ  
internalꢀswitches,ꢀR ,ꢀandꢀexternalꢀinductorꢀR .ꢀInꢀcon-  
SW  
L
ToꢀavoidꢀtheꢀLTC3541ꢀexceedingꢀtheꢀmaximumꢀjunctionꢀ  
temperature,ꢀsomeꢀthermalꢀanalysisꢀisꢀrequired.ꢀTheꢀgoalꢀ  
ofꢀtheꢀthermalꢀanalysisꢀisꢀtoꢀdetermineꢀwhetherꢀtheꢀpowerꢀ  
dissipatedꢀexceedsꢀtheꢀmaximumꢀjunctionꢀtemperatureꢀofꢀ  
theꢀpart.ꢀTheꢀtemperatureꢀriseꢀisꢀgivenꢀby:  
tinuousmode,theaverageoutputcurrentowingthroughꢀ  
inductorꢀLꢀisꢀ“chopped”ꢀbetweenꢀtheꢀmainꢀswitchꢀandꢀtheꢀ  
synchronousꢀswitch.ꢀThus,ꢀtheꢀseriesꢀresistanceꢀlookingꢀ  
intotheSWpinisafunctionofbothtopandbottomꢀ  
MOSFETꢀR  
ꢀandꢀtheꢀdutyꢀcycleꢀ(DC)ꢀasꢀfollows:  
DS(ON)  
ꢀ T ꢀ=ꢀP •ꢀθ  
ꢀ R ꢀ=ꢀ(R  
)(DC)ꢀ+ꢀ(R )(1ꢀ–ꢀDC)  
DS(ON)TOP DS(ON)BOT  
R
Dꢀ JA  
SW  
whereꢀP ꢀisꢀtheꢀpowerꢀdissipatedꢀbyꢀtheꢀregulatorꢀandꢀθ ꢀ  
TheꢀR  
ꢀforꢀbothꢀtheꢀtopꢀandꢀbottomꢀMOSFETsꢀcanꢀ  
D
JA  
DS(ON)  
isꢀtheꢀthermalꢀresistanceꢀfromꢀtheꢀjunctionꢀofꢀtheꢀdieꢀtoꢀ  
beꢀobtainedꢀfromꢀtheꢀTypicalꢀPerformanceꢀCharacteristicsꢀ  
2
theꢀambientꢀtemperature.  
curves.Thus,toobtainI Rlosses,simplyaddR toꢀ  
SW  
R ꢀandꢀmultiplyꢀtheꢀresultꢀbyꢀtheꢀsquareꢀofꢀtheꢀaverageꢀ  
L
Theꢀjunctionꢀtemperature,ꢀT ,ꢀisꢀgivenꢀby:  
J
outputꢀcurrent.  
ꢀ T ꢀ=ꢀT ꢀ+ꢀT  
R
J
A
3.LossesintheVLDO/linearregulatorareduetotheDCbiasꢀ  
currentsasgivenintheElectricalCharacteristicsandtotheꢀ  
whereꢀT ꢀisꢀtheꢀambientꢀtemperature.  
A
(V V )voltagedropacrosstheinternaloutputdeviceꢀ  
IN  
OUT  
Asanexample,considertheLTC3541withaninputvoltageꢀ  
transistor.  
V ꢀofꢀ2.9V,ꢀanꢀLV ꢀvoltageꢀofꢀ1.8V,ꢀanꢀLV ꢀvoltageꢀofꢀ  
IN  
IN  
OUT  
1.5V,ꢀaꢀloadꢀcurrentꢀofꢀ200mAꢀforꢀtheꢀbuck,ꢀaꢀloadꢀcur-  
rentꢀofꢀ300mAꢀforꢀtheꢀVLDOꢀandꢀanꢀambientꢀtemperatureꢀ  
ofꢀ85°C.ꢀFromꢀtheꢀtypicalꢀperformanceꢀgraphꢀofꢀswitchꢀ  
OtherꢀlossesꢀwhenꢀtheꢀbuckꢀandꢀVLDOꢀareꢀinꢀoperationꢀ  
(ENBUCKꢀandꢀENVLDOꢀequalꢀlogicꢀhigh),ꢀincludingꢀC ꢀ  
IN  
andC ꢀESRdissipativelossesandinductorcorelosses,ꢀ  
OUT  
resistance,ꢀtheꢀR  
ꢀofꢀtheꢀP-channelꢀswitchꢀatꢀ85°Cꢀisꢀ  
DS(ON)  
generallyꢀaccountꢀforꢀlessꢀthanꢀ2%ꢀtotalꢀadditionalꢀloss.  
approximately0.25Ω.TheR  
isapproximately0.4Ω.Therefore,powerdissipatedbytheꢀ  
oftheN-channelswitchꢀ  
DS(ON)ꢀ  
THERMAL CONSIDERATIONS  
partꢀisꢀapproximately:  
TheꢀLTC3541ꢀrequiresꢀtheꢀpackageꢀbackplaneꢀmetalꢀ(GNDꢀ  
pin)ꢀtoꢀbeꢀwellꢀsolderedꢀtoꢀtheꢀPCꢀboard.ꢀThisꢀgivesꢀtheꢀ  
DFNꢀpackageꢀexceptionalꢀthermalꢀproperties.ꢀTheꢀpowerꢀ  
handlingcapabilityofthedevicewillbelimitedbytheꢀ  
maximumꢀ ratedꢀ junctionꢀ temperatureꢀ ofꢀ 125°C.ꢀ Theꢀ  
LTC3541ꢀhasꢀinternalꢀthermalꢀlimitingꢀdesignedꢀtoꢀprotectꢀ  
thedeviceduringmomentaryoverloadconditions.Forꢀ  
continuousꢀ normalꢀ conditions,ꢀ theꢀ maximumꢀ junctionꢀ  
temperatureꢀratingꢀofꢀ125°Cꢀmustꢀnotꢀbeꢀexceeded.ꢀItꢀisꢀ  
importantꢀtoꢀgiveꢀcarefulꢀconsiderationꢀtoꢀallꢀsourcesꢀofꢀ  
thermalꢀresistanceꢀfromꢀjunctionꢀtoꢀambient.ꢀAdditionalꢀ  
heatꢀsourcesꢀmountedꢀnearbyꢀmustꢀalsoꢀbeꢀconsidered.ꢀ  
2
ꢀ P =(I  
) R +(I  
)ꢀ  
D
LOADBUCK  
SW  
LOADVLDO ꢀ  
ꢀ ꢀ ꢀꢀꢀꢀ(LV ꢀ–ꢀLV )ꢀ=ꢀ167mW  
IN  
OUT  
Forꢀtheꢀ3mmꢀ×ꢀ3mmꢀDFNꢀpackage,ꢀtheꢀθ ꢀisꢀ43°C/W.  
JA  
Thus,ꢀtheꢀjunctionꢀtemperatureꢀofꢀtheꢀregulatorꢀis:  
ꢀ T ꢀ=ꢀ85°Cꢀ+ꢀ(0.167)(43)ꢀ=ꢀ92°C  
J
whichꢀisꢀwellꢀbelowꢀtheꢀmaximumꢀjunctionꢀtemperatureꢀ  
ofꢀ125°C.  
Noteꢀthatꢀatꢀhigherꢀsupplyꢀvoltages,ꢀtheꢀjunctionꢀtempera-  
tureꢀisꢀlowerꢀdueꢀtoꢀreducedꢀswitchꢀresistanceꢀR  
.
DS(ON)  
3541fa  
ꢀꢄ  
LTC3541  
U U  
W U  
APPLICATIO S I FOR ATIO  
PC BOARD LAYOUT CHECKLIST  
ingꢀupꢀtoꢀ0.3Aꢀofꢀcurrent.ꢀWithꢀthisꢀinformationꢀweꢀcanꢀ  
calculateꢀLꢀusingꢀEquationꢀ2:  
Whenꢀlayingꢀoutꢀtheꢀprintedꢀcircuitꢀboard,ꢀtheꢀfollowingꢀ  
checklistꢀshouldꢀbeꢀusedꢀtoꢀensureꢀproperꢀoperationꢀofꢀ  
theꢀLTC3541.ꢀCheckꢀtheꢀfollowingꢀinꢀyourꢀlayout:  
VOUT  
VIN  
1
f ΔI  
(
L =  
VOUT 1−  
(2)  
( )  
)
L
1.ꢀTheꢀpowerꢀtraces,ꢀconsistingꢀofꢀtheꢀGNDꢀtrace,ꢀtheꢀSWꢀ  
SubstitutingꢀV ꢀ=ꢀ1.8V,ꢀV ꢀ=ꢀ3.6Vꢀ(typ),ꢀΔI ꢀ=ꢀ0.2Aꢀandꢀ  
traceꢀandꢀtheꢀV ꢀtraceꢀshouldꢀbeꢀkeptꢀshort,ꢀdirectꢀandꢀ  
OUT  
IN  
L
IN  
fꢀ=ꢀ2.25MHzꢀinꢀEquationꢀ3ꢀgives:  
wide.  
2.ꢀDoesꢀtheꢀLFBꢀpinꢀconnectꢀdirectlyꢀtoꢀtheꢀfeedbackꢀre-  
sistors?ꢀTheꢀresistiveꢀdividerꢀR1/R2ꢀmustꢀbeꢀconnectedꢀ  
1.8V  
2.25MHz(200mA)  
1.8V  
3.6V  
L =  
1−  
= 2µH  
(3)  
betweenꢀtheꢀ(+)ꢀplateꢀofꢀC ꢀandꢀground.  
OUT  
Aꢀ2.2µHꢀinductorꢀworksꢀwellꢀforꢀthisꢀapplication.ꢀForꢀbestꢀ  
efficiencyꢀchooseꢀaꢀ600mAꢀorꢀgreaterꢀinductorꢀwithꢀlessꢀ  
thanꢀ0.2Ωꢀseriesꢀresistance.  
3.ꢀDoesꢀtheꢀ(+)ꢀplateꢀofꢀC ꢀconnectꢀtoꢀV ꢀasꢀcloselyꢀasꢀ  
IN  
IN  
possible?ꢀThisꢀcapacitorꢀprovidesꢀtheꢀACꢀcurrentꢀtoꢀtheꢀ  
internalꢀpowerꢀMOSFETs.  
C ꢀwillꢀrequireꢀanꢀRMSꢀcurrentꢀratingꢀofꢀatꢀleastꢀ0.25Aꢀ=ꢀ  
IN  
4.ꢀKeepꢀtheꢀswitchingꢀnode,ꢀSW,ꢀawayꢀfromꢀtheꢀsensitiveꢀ  
LFBꢀnode.  
I
/2ꢀatꢀtemperatureꢀ.ꢀC ꢀforꢀtheꢀbuckꢀisꢀchosenꢀ  
LOAD(MAX)  
OUT  
asꢀ22µFꢀwithꢀanꢀESRꢀofꢀlessꢀthanꢀ0.2Ω.ꢀInꢀmostꢀcases,ꢀaꢀ  
ceramicꢀcapacitorꢀwillꢀsatisfyꢀthisꢀrequirement.  
5.ꢀKeepꢀtheꢀ(–)ꢀplatesꢀofꢀC ꢀandꢀC ꢀasꢀcloseꢀasꢀpos-  
IN  
OUT  
sible.  
Forꢀtheꢀfeedbackꢀresistorsꢀofꢀtheꢀbuck,ꢀchooseꢀR1ꢀ=ꢀ80k.ꢀ  
R2ꢀcanꢀthenꢀbeꢀcalculatedꢀfromꢀEquationꢀ4ꢀtoꢀbe:  
DESIGN EXAMPLE  
V
0.8  
OUT  
Asadesignexample,assumetheLTC3541isusedinꢀ  
aꢀsingleꢀlithium-ionꢀbatteryꢀpoweredꢀcellularꢀphoneꢀap-  
R2=  
1 R1=100k  
(4)  
plication.ꢀTheꢀV ꢀwillꢀbeꢀoperatingꢀfromꢀaꢀmaximumꢀofꢀ  
IN  
ForthefeedbackresistorsoftheVLDO,chooseR1=200k.ꢀ  
R2ꢀcanꢀthenꢀbeꢀcalculatedꢀfromꢀEquationꢀ5ꢀtoꢀbe:  
4.2Vꢀdownꢀtoꢀaboutꢀ3V.ꢀTheꢀloadꢀcurrentꢀrequirementꢀisꢀ  
aꢀmaximumꢀofꢀ0.5Aꢀforꢀtheꢀbuckꢀoutputꢀbutꢀmostꢀofꢀtheꢀ  
timeꢀitꢀwillꢀbeꢀinꢀstandbyꢀmode,ꢀrequiringꢀonlyꢀ2mA.ꢀEf-  
ficiencyꢀatꢀbothꢀlowꢀandꢀhighꢀloadꢀcurrentsꢀisꢀimportant.ꢀ  
Theꢀoutputꢀvoltageꢀforꢀtheꢀbuckꢀisꢀ1.8V.ꢀTheꢀrequirementꢀ  
forꢀtheꢀoutputꢀvoltageꢀofꢀtheꢀVLDOꢀisꢀ1.5Vꢀwhileꢀprovid-  
V
OUT  
R2=  
1 R1= 550k  
0.4  
C
ꢀforꢀtheꢀVLDOꢀisꢀchosenꢀasꢀ2.2µF.  
OUT  
3541fa  
ꢀꢅ  
LTC3541  
U
TYPICAL APPLICATIO S  
Dual Output with Minimal External Components Using Auto Start-Up Sequence,  
Buck in Burst Mode Operation for High Efficiency Down to Low Load Currents  
V
IN  
3.2V TO 4.2V  
V
OUT  
2V/DIV  
SW  
ENVLDO  
MODE  
GND  
LV  
OUT  
V
IN  
2.2µH  
10µF  
2V/DIV  
ENBUCK  
165k  
576k  
LTC3541  
154k  
73k  
22pF  
V
IN  
V
2V/DIV  
OUT1  
2.5V  
BUCKFB  
LFB  
OUT  
V
OUT2  
1.8V  
LV  
IN  
LV  
PGND  
200mA  
300mA  
2.2µF  
3541 TA02b  
4ms/DIV  
I
I
= 200mA  
LVOUT  
VOUT  
3541 TA02a  
= 300mA  
Dual Output with Minimal External Components Using Auto Start-Up  
Sequence, Buck in Pulse Skip Mode for Low Noise Operation  
V
IN  
3.2V TO 4.2V  
V
OUT  
2V/DIV  
SW  
ENVLDO  
MODE  
GND  
LV  
OUT  
V
IN  
2.2µH  
2V/DIV  
ENBUCK  
165k  
576k  
LTC3541  
154k  
73k  
22pF  
V
IN  
V
2V/DIV  
OUT1  
2.5V  
BUCKFB  
LFB  
OUT  
V
OUT2  
1.8V  
LV  
IN  
LV  
PGND  
200mA  
300mA  
10µF  
2.2µF  
3541 TA03b  
4ms/DIV  
I
I
= 200mA  
LVOUT  
VOUT  
3541 TA03a  
= 300mA  
3541fa  
ꢀꢆ  
LTC3541  
U
TYPICAL APPLICATIO S  
Dual Output Using Minimal External Components with VOUT2 Controlled by External Logic  
Signal, Buck in Burst Mode Operation for High Efficiency Down to Low Load Currents  
V
IN  
3.2V TO 4.2V  
V
OUT  
2V/DIV  
SW  
ENVLDO  
MODE  
GND  
V
LV  
IN  
2.2µH  
10µF  
OUT  
2V/DIV  
ENBUCK  
165k  
576k  
LTC3541  
154k  
73k  
22pF  
V
IN  
V
OUT1  
2.5V  
BUCKFB  
LFB  
OUT  
2V/DIV  
V
OUT2  
1.8V  
LV  
IN  
LV  
PGND  
200mA  
300mA  
2.2µF  
3541 TA04b  
4ms/DIV  
I
I
= 200mA  
LVOUT  
3541 TA04a  
VOUT  
= 300mA  
Dual Output Using Minimal External Components with VOUT1 Controlled by External Logic  
Signal, Buck in Burst Mode Operation for High Efficiency Down to Low Load Currents  
V
IN  
2.9V TO 4.2V  
V
OUT  
2V/DIV  
SW  
ENVLDO  
MODE  
GND  
V
LV  
IN  
2.2µH  
OUT  
2V/DIV  
ENBUCK  
150k  
412k  
LTC3541  
143k  
115k  
22pF  
V
IN  
V
OUT1  
1.8V  
BUCKFB  
LFB  
OUT  
2V/DIV  
V
OUT2  
1.5V  
LV  
IN  
LV  
PGND  
200mA  
300mA  
10µF  
2.2µF  
3541 TA05b  
4ms/DIV  
I
I
= 200mA  
LVOUT  
VOUT  
3541 TA05a  
= 30mA  
3541fa  
ꢀꢇ  
LTC3541  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Referenꢀe LTc DWG # 05-08-1699)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PAcKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSc  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITcH AND DIMENSIONS  
R = 0.115  
TYP  
6
0.38 ± 0.10  
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSc  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEc PAcKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
cHEcK THE LTc WEBSITE DATA SHEET FOR cURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO ScALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PAcKAGE DO NOT INcLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXcEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENcE FOR PIN 1 LOcATION ON THE  
TOP AND BOTTOM OF PAcKAGE  
3541fa  
Information furnished by Linear Teꢀhnology corporation is believed to be aꢀꢀurate and reliable.  
However, no responsibility is assumed for its use. Linear Teꢀhnology corporation makes no represen-  
tation that the interꢀonneꢀtion of its ꢀirꢀuits as desꢀribed herein will not infringe on existing patent rights.  
ꢀꢈ  
LTC3541  
RELATED PARTS  
PART NUMBER  
LT®3023ꢀ  
DESCRIPTION  
COMMENTS  
V :ꢀ1.8Vꢀtoꢀ20V,ꢀV  
Dual,ꢀ2x100mA,ꢀLowꢀNoiseꢀMicropowerꢀLDOꢀ  
ꢀ=ꢀ1.22V,ꢀV ꢀ=ꢀ0.30V,ꢀI ꢀ=ꢀ40µA,ꢀI ꢀ<ꢀ1µA,ꢀꢀ  
IN  
OUT(MIN)  
DO  
Q
SD  
V
ꢀ=ꢀADJ,ꢀDFN,ꢀMSꢀPackages,ꢀLowꢀNoiseꢀ<ꢀ20µV  
,ꢀStableꢀwithꢀ  
OUT  
RMS(P-P)  
1µFꢀCeramicꢀCapacitorsꢀ  
LT3024ꢀ  
Dual,ꢀ100mA/500mA,ꢀLowꢀNoiseꢀMicropowerꢀLDO  
300mA,ꢀMicropowerꢀVLDOꢀLinearꢀRegulator  
V :ꢀ1.8Vꢀtoꢀ20V,ꢀV  
OUT  
1µFꢀCeramicꢀCapacitorsꢀ  
ꢀ=ꢀ1.22V,ꢀV ꢀ=ꢀ0.30V,ꢀI ꢀ=ꢀ60µA,ꢀI ꢀ<ꢀ1µA,ꢀꢀ  
IN  
OUT(MIN)  
DO  
Q
SD  
V
ꢀ=ꢀADJ,ꢀDFN,ꢀTSSOPꢀPackages,ꢀLowꢀNoiseꢀ<ꢀ20µV  
,ꢀStableꢀwithꢀ  
RMS(P-P)  
LTC3025ꢀ  
V :ꢀ0.9Vꢀtoꢀ5.5V,ꢀV  
ꢀ=ꢀ0.4V,ꢀ2.7Vꢀtoꢀ5.5VꢀBiasꢀVoltageꢀRequired,ꢀꢀ  
IN  
DO  
OUT(MIN)  
ꢀ=ꢀ45mV,ꢀI ꢀ=ꢀ50µA,ꢀI ꢀ<ꢀ1µA,ꢀV ꢀ=ꢀADJ,ꢀDFNꢀPackages,ꢀStableꢀwithꢀ  
Q SD OUT  
V
1µFꢀCeramicꢀCapacitors  
LTC3407  
LTC3407-2  
LTC3445  
DualꢀSynchronousꢀ600mAꢀSynchronousꢀStep-Downꢀ 1.5MHzꢀConstantꢀFrequencyꢀCurrentꢀModeꢀOperation,ꢀV ꢀfromꢀ2.5Vꢀtoꢀ  
IN  
DC/DCꢀRegulator  
5.5V,ꢀV ꢀDownꢀtoꢀ0.6V,ꢀDFN,ꢀMSꢀPackages  
OUT  
DualꢀSynchronousꢀ800mAꢀSynchronousꢀStep-Downꢀ 2.25MHzꢀConstantꢀFrequencyꢀCurrentꢀModeꢀOperation,ꢀV ꢀfromꢀ2.5Vꢀtoꢀ  
IN  
DC/DCꢀRegulator,ꢀ2.25MHz  
5.5V,ꢀV ꢀDownꢀtoꢀ0.6V,ꢀDFN,ꢀMSꢀPackages  
OUT  
2
2
I CꢀControllableꢀBuckꢀRegulatorꢀwithꢀTwoꢀLDOsꢀandꢀ 600mA,ꢀ1.5MHzꢀCurrentꢀModeꢀBuckꢀRegulator,ꢀI CꢀProgrammableꢀ  
BackupꢀBatteryꢀInput  
V
ꢀfromꢀ0.85Vꢀtoꢀ1.55V,ꢀtwoꢀ50mAꢀLDOs,ꢀBackupꢀBatteryꢀInputꢀwithꢀ  
OUT  
PowerPathꢀControl,ꢀQFNꢀPackageꢀ  
LTC3446  
LTC3448  
LTC3541-2  
LTC3541-3  
LTC3547  
TripleꢀOutputꢀStep-DownꢀConverterꢀ1AꢀOutputꢀBuck,ꢀ V :ꢀ2.7Vꢀtoꢀ5.5V,ꢀV ꢀBuckꢀ=ꢀ0.8V,ꢀV  
ꢀVLDOꢀ=ꢀ0.4V  
,ꢀ  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
TwoꢀEachꢀ300mAꢀVDLOs  
14-PinꢀDFNꢀPackage  
V :ꢀ2.7Vꢀtoꢀ5.5V,ꢀV ꢀ=ꢀ0.6V,ꢀSwitchesꢀtoꢀLDOꢀModeꢀatꢀ≤3A,ꢀꢀ  
OUT(MIN)  
600mAꢀ(I ),ꢀHighꢀEfficiency,ꢀ1.5MHz/2.25MHzꢀ  
OUT  
IN  
SynchronousꢀStep-DownꢀRegulatorꢀwithꢀLDOꢀMode  
DD8,ꢀMS8/EꢀPackages  
HighꢀEfficiencyꢀBuckꢀplusꢀVLDOꢀRegulator  
V :ꢀ2.9Vꢀtoꢀ5.5V,ꢀV  
ꢀ=ꢀ1.875V,ꢀV ꢀ=ꢀ1.5V,ꢀ3mmꢀ×ꢀ3mmꢀ  
OUT(BUCK) OUT(VLDO)  
IN  
10-PinꢀDFNꢀPackage  
HighꢀEfficiencyꢀBuckꢀplusꢀVLDOꢀRegulator  
V :ꢀ3Vꢀtoꢀ5.5V,ꢀV  
ꢀ=ꢀ1.8V,ꢀV  
ꢀ=ꢀ1.575V,ꢀ3mmꢀ×ꢀ3mmꢀꢀ  
IN  
OUT(BUCK)  
OUT(VLDO)  
10-PinꢀDFNꢀPackage  
Dualꢀ300mAꢀ(I ),ꢀ2.25MHz,ꢀSynchronousꢀꢀ  
95%ꢀEfficiency,ꢀV :ꢀ2.5Vꢀtoꢀ5.5V,ꢀV  
ꢀ=ꢀ0.6V,ꢀI ꢀ=ꢀ40µA,ꢀI ꢀ<ꢀ1µA,ꢀ  
Q SD  
OUT  
IN  
OUT(MIN)  
Step-DownꢀDC/DCꢀConverter  
8-PinꢀDFNꢀPackage  
LTC3548/LTC3548-1ꢀ Dualꢀ800mA/400mAꢀ(I ),ꢀ2.25MHz,ꢀSynchronousꢀꢀ  
95%ꢀEfficiency,ꢀV :ꢀ2.5Vꢀtoꢀ5.5V,ꢀV  
ꢀ=ꢀ0.6V,ꢀI ꢀ=ꢀ40µA,ꢀI ꢀ<ꢀ1µA,ꢀ  
OUT(MIN) Q SD  
OUT  
IN  
LTC3548-2  
Step-DownꢀDC/DCꢀConverter  
DFNꢀandꢀ10-PinꢀMSꢀPackages  
LTC3700  
Step-DownꢀDC/DCꢀControllerꢀwithꢀLDOꢀRegulator  
V ꢀfromꢀ2.65Vꢀtoꢀ9.8V,ꢀConstantꢀFrequencyꢀ550kHzꢀOperation  
IN  
PowerPathꢀisꢀaꢀtrademarkꢀofꢀLinearꢀTechnologyꢀCorporation.ꢀ  
3541fa  
LT 0407 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 Mꢀcarthy Blvd., Milpitas, cA 95035-7417  
ꢁ0  
LINEAR TECHNOLOGY CORPORATION 2006  
(408)432-1900 FAX: (408) 434-0507 www.linear.ꢀom  

相关型号:

LTC3541EDD-1#PBF

LTC3541-1 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-1#TRPBF

LTC3541-1 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-1-PBF

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-1-TRPBF

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-2

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-2#PBF

LTC3541-2 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-2#TRPBF

LTC3541-2 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-3

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-3#TR

IC 1.25 A SWITCHING REGULATOR, 2700 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, PLASTIC, M0-229WEED-2, DFN-10, Switching Regulator or Controller
Linear

LTC3541EDD-3#TRPBF

LTC3541-3 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3542

500mA, 2.25MHz Synchronous Step-Down DC/DC Converter
Linear

LTC3542-1

500mA, 2.25MHz 2.8V Output Synchronous Step-Down DC/DC Converter
Linear