LTC3549EDCB#TR [Linear]

暂无描述;
LTC3549EDCB#TR
型号: LTC3549EDCB#TR
厂家: Linear    Linear
描述:

暂无描述

稳压器
文件: 总16页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3549  
250mA Low V Buck  
IN  
Regulator in 2mm × 3mm DFN  
U
DESCRIPTIO  
FEATURES  
TheLTC®3549isahighefficiency,monolithicsynchronous  
buck regulator using a constant-frequency, current mode  
architecture. The output voltage is adjusted via an external  
resistor divider.  
1.6V to 5.5V Input Voltage Range  
Internal Soft-Start  
Low Ripple Burst Mode® Operation  
Output Ripple: <20mV  
P-P  
I : 50µA  
Q
A fixed switching frequency of 2.25MHz is supported.  
This switching frequency allows the use of small surface  
mount inductors and capacitors, including ceramics.  
2.25MHz Constant-Frequency Operation  
High Efficiency: Up to 93%  
250mA Output Current (V = 1.8V, V  
= 1.2V)  
OUT  
IN  
Supply current during Burst Mode operation is only 50µA  
dropping to < 1µA in shutdown. The 1.6V to 5.5V input  
voltage range makes the LTC3549 ideally suited for single  
cell Li-Ion, Li-Metal and 2-cell alkaline, NiCd or NiMH  
battery-powered applications. 100% duty cycle capabil-  
ity provides low dropout operation, extending battery  
life in portable systems. Burst Mode operation can be  
user-enabled, increasing efficiency at light loads, further  
extending battery life.  
450mA Peak Inductor Current  
No Schottky Diode Required  
Low Dropout Operation: 100% Duty Cycle  
0.611V Reference Voltage  
Stable with Ceramic Capacitors  
Shutdown Mode Draws <1µA Supply Current  
Current Mode Operation for Excellent Line and Load  
Transient Response  
Overtemperature Protection  
Available in a Low Profile (0.75mm) 6-Lead  
(2mm x 3mm) DFN Package  
The internal synchronous switch increases efficiency and  
eliminatestheneedforanexternalSchottkydiode.Internal  
soft-startofferscontrolledoutputvoltagerisetimeatstart-  
up without the need for external components.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
Burst Mode is a registered trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Protected by U.S. Patents,  
including 5481178, 6580258, 6304066, 6127815, 6498466, 6611131.  
U
APPLICATIO S  
2 AA-Cell Applications  
Cellular Phones  
Digital Cameras  
MP3 Players  
U
TYPICAL APPLICATIO  
Burst Mode Efficiency, V  
= 1.5V  
OUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
High Efficiency Step-Down Converter  
0.1  
3.3µH*  
LTC3549  
V
OUT  
SW  
V
IN  
1.5V  
22pF  
200k  
V
IN  
1.8V TO  
5.5V  
4.7µF  
CER  
4.7µF  
CER  
RUN  
0.01  
0.001  
0.0001  
MODE  
V
FB  
137k  
V
= 1.8V  
= 2.5V  
= 3.1V  
IN  
IN  
IN  
V
GND  
V
POWER LOST  
3549 TA01  
*TDK VLF3012AT-3R3MR87  
AT V = 2.5V  
IN  
0.1  
1
10  
100  
1k  
LOAD CURRENT (mA)  
3549 TA02  
3549f  
1
LTC3549  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Input Supply Voltage................................... –0.3V to 6V  
RUN, V , MODE Voltages .............–0.3V to (V + 0.3V)  
FB  
IN  
IN  
6
5
7
4
SW Voltage < 100ns Pulse.............–0.3V to (V + 0.3V)  
Operating Temperature Range (Note 2) ... –40°C to 85°C  
Junction Temperature (Note 3) ........................... 125°C  
Storage Temperature Range.................. –65°C to 125°C  
1
2
3
DCB PACKAGE  
6-LEAD (2mm × 3mm) PLASTIC DFN  
T
JMAX  
= 125°C, θ = 64°C/W  
JA  
EXPOSED PAD (PIN 7) IS GND  
MUST BE SOLDERED TO PCB  
ORDER PART NUMBER  
DCB PART MARKING  
LBZR  
LTC3549EDCB  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C, V = 2.2V.  
A
IN  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
1.6  
TYP  
MAX  
5.5  
1.1  
1
UNITS  
V
V
Input Voltage Range  
RUN Threshold  
V
V
IN  
0.3  
0.7  
RUN  
RUN  
I
RUN Leakage Current  
MODE Threshold  
V
V
= 0 or 2.2V  
0.01  
0.65  
0.01  
µA  
V
RUN  
V
0.3  
1.1  
1
MODE  
MODE  
I
MODE Leakage Current  
Regulated Feedback Voltage  
= 0 or 2.2V  
µA  
MODE  
V
FB  
T = 25°C (Note 4)  
0.599  
0.597  
0.596  
0.611  
0.611  
0.611  
0.623  
0.623  
0.626  
V
V
V
A
0°C ≤ T ≤ 85°C (Note 4)  
A
–40°C ≤ T ≤ 85°C (Note 4)  
A
I
Feedback Current  
30  
80  
nA  
mV  
%/V  
%/V  
A
VFB  
ΔV  
ΔV  
ΔV  
ΔV  
FBOVL  
Overvoltage Lockout  
ΔV  
= ΔV  
– V (Note 6)  
40  
60  
OVL  
FB  
OVL  
FBOVL  
FB  
Reference Voltage Line Regulation  
Output Voltage Line Regulation  
Peak Inductor Current  
1.6V < V < 5.5V (Note 4)  
0.04  
0.04  
0.45  
0.5  
0.4  
0.4  
0.6  
IN  
I
= 100mA, 1.6V < V < 5.5V (Note 7)  
IN  
OUT  
OUT  
I
PK  
V
FB  
= 0.5V or V = 90%  
OUT  
0.3  
V
Output Voltage Load Regulation  
Pulse Skip Mode, V  
50mA < I  
= 1.2V,  
%
LOADREG  
OUT  
< 250mA (Note 7)  
LOAD  
3549f  
2
LTC3549  
ELECTRICAL CHARACTERISTICS The  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C, V = 2.2V.  
A
IN  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input DC Bias Current  
Active Mode  
(Note 5)  
S
V
V
V
= 90%, I  
= 0A  
LOAD  
300  
50  
0.1  
475  
95  
5
µA  
µA  
µA  
OUT  
OUT  
RUN  
LOAD  
Sleep Mode  
= 103%, I  
= 0V, V = 5.5V  
= 0A  
Shutdown  
IN  
f
t
Nominal Oscillator Frequency  
Soft-Start Period  
1.8  
2.25  
1
2.7  
MHz  
ms  
OSC  
RUN↑  
SS  
R
R
of P-Channel FET  
I
I
= 100mA, Wafer Level  
0.5  
Ω
Ω
PFET  
NFET  
LSW  
DS(ON)  
SW  
SW  
= 100mA, DD Package (Note 7)  
0.56  
R
R
of N-Channel FET  
I
SW  
I
SW  
= 100mA, Wafer Level  
= 100mA, DD Package (Note 7)  
0.35  
0.4  
Ω
Ω
DS(ON)  
I
SW Leakage  
V
= 0V, V = 0V or 5.5V, V = 5.5V  
0.1  
1
µA  
RUN  
SW  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime. Voltage on any pin may not exceed 6V.  
becomes active at a junction temperature greater than the maximum  
operating junction temperature. Continuous operation above the specified  
maximum operating junction temperature may impair device reliability.  
Note 4: The LTC3549 is tested in a proprietary test mode that connects V  
FB  
Note 2: The LTC3549E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
to the output of the error amplifier.  
Note 5: Dynamic supply current is higher due to the gate charge being  
delivered at the switching frequency.  
Note 6: ΔV  
is the amount V must exceed the regulated feedback  
FB  
OVL  
Note 3: T is calculated from the ambient temperature T and power  
J
A
voltage.  
dissipation P according to the following formula:  
D
Note 7: Determined by design, not production tested.  
LTC3549: T = T + (P )(64°C/W)  
J
A
D
This IC includes overtemperature protection that is intended to protect the  
device during momentary overload conditions. Overtemperature protection  
3549f  
3
LTC3549  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(From Typical Application on the front page, except for the resistive divider resistor values)  
Efficiency/Power Loss vs Load Efficiency/Power Loss vs Load  
Efficiency vs Input Voltage  
Current, V = 1.5V, Burst Mode Current, V = 1.5V, Pulse Skip  
V
= 1.2V, Burst Mode Operation  
OUT  
OUT  
OUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.1  
0.1  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
I
:
OUT  
0.1mA  
1mA  
10mA  
100mA  
300mA  
EFFICIENCY  
POWER LOSS  
V
V
V
= 1.8V  
= 2.5V  
= 3.1V  
V
V
V
= 1.8V  
= 2.5V  
= 3.1V  
IN  
IN  
IN  
IN  
IN  
IN  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
1.5  
2.5  
3.5  
4.5  
5.5  
LOAD CURRENT (mA)  
3549 G01a  
LOAD CURRENT (mA)  
3549 G01b  
INPUT VOLTAGE (V)  
3549 G02  
EFFICIENCY  
POWER LOSS  
V
IN  
V
IN  
V
IN  
= 1.8V  
= 2.5V  
= 3.1V  
V
V
V
= 1.8V  
= 2.5V  
= 3.1V  
IN  
IN  
IN  
Efficiency vs Input Voltage  
OUT  
Efficiency vs Load Current  
= 1.8V, Burst Mode  
Efficiency vs Load Current  
OUT  
V
= 1.2V, Pulse Skip  
V
V
= 1.8V, Pulse Skip  
OUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
L = 4.7µH  
L = 4.7µH  
0.1  
0.01  
EFFICIENCY  
V
V
V
= 2.5V  
= 3.6V  
= 4.2V  
IN  
IN  
IN  
0.001  
EFFICIENCY  
V
V
V
= 2.5V  
= 3.6V  
= 4.2V  
IN  
IN  
IN  
POWER LOSS  
= 3.6V  
V
IN  
0.0001  
1000  
1.5  
2.5  
3.5  
4.5  
5.5  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3549 G04b  
3549 G03  
3549 G04a  
I
:
OUT  
0.1mA  
1mA  
10mA  
100mA  
300mA  
Efficiency vs Load Current  
= 1.2V, Burst Mode  
Efficiency vs Load Current  
V = 1.2V, Pulse Skip  
OUT  
Reference Voltage  
vs Temperature  
V
OUT  
0.6132  
0.6111  
0.6090  
0.6069  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
= 1.6V  
= 2.5V  
= 3.1V  
V
V
V
= 1.6V  
= 2.2V  
= 4.2V  
IN  
IN  
IN  
IN  
IN  
IN  
V
V
V
= 1.6V  
= 2.5V  
= 3.1V  
IN  
IN  
IN  
–50 –25  
0
25  
50  
75 100 125  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
TEMPERATURE (ºC)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3549 G06  
3549f  
3549 G05b  
3549 G05a  
4
LTC3549  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(From Typical Application on the front page, except for the resistive divider resistor values)  
Oscillator Frequency  
vs Temperature  
Oscillator Frequency Shift  
vs Input Voltage  
Output Voltage vs Load Current  
V
= 1.6V, V  
= 1.2V  
IN  
OUT  
1.205  
1.204  
1.203  
1.202  
1.201  
1.200  
1.199  
2.5  
2.0  
2.35  
2.30  
V
= 2.7V  
IN  
V
= 1.6V  
IN  
1.5  
2.25  
2.20  
1.0  
0.5  
BURST  
V
= 4.2V  
IN  
0
2.15  
2.10  
2.05  
–0.5  
–1.0  
–1.5  
V
OUT  
PULSE SKIP  
–50 –25  
0
25  
50  
75 100 125  
1.5  
3.5  
5.5  
0
200  
100  
LOAD CURRENT (mA)  
300  
2.5  
4.5  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3549 G07  
3549 G08  
3549 G09  
Dynamic Input Current  
R
vs Input Voltage  
R
vs Temperature  
V
OUT  
= 1.5V, 247kΩ Load  
DS(ON)  
DS(ON)  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.95  
0.85  
0.75  
0.65  
0.55  
0.45  
0.35  
0.25  
0.15  
10000  
1000  
100  
70  
Burst Mode  
OPERATION  
60  
50  
40  
30  
20  
10  
0
MAIN SWITCH  
SYNCHRONOUS SWITCH  
PULSE SKIP MODE  
3.5  
1.5  
2.5  
4.5  
5.5  
–50 –25  
0
25  
50  
75 100 125  
2.0 2.5  
3.5  
4.5 5.0 5.5  
4.0 6.0  
1.5  
3.0  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3549 G11  
3549 G10  
3549 G12  
MAIN SWITCH  
SYNCHRONOUS SWITCH  
V
IN  
V
IN  
V
IN  
= 1.6V  
= 2.7V  
= 4.2V  
V
V
V
= 1.6V  
= 2.7V  
= 4.2V  
IN  
IN  
IN  
Dynamic Supply Current vs  
Switch Leakage vs Temperature  
= 5.5V  
Temperature, V = 3.6V,  
IN  
V
Switch Leakage vs Input Voltage  
V
= 1.5V, No Load  
IN  
OUT  
350  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
PULSE SKIP  
SYNCHRONOUS SWITCH  
MAIN SWITCH  
MAIN SWITCH  
BURST  
SYNCHRONOUS  
SWITCH  
0
0
4
–50 –25  
0
25  
50  
75 100 125  
0
2
6
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3549 G13  
3549 G15  
3549 G14  
3549f  
5
LTC3549  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(From Typical Application on the front page, except for the resistive divider resistor values)  
Start-Up from Shutdown  
Burst Mode Operation  
Burst Mode Operation  
= 20mA  
I
LOAD  
V
OUT  
20mV/DIV  
AC COUPLED  
V
OUT  
V
SWITCH  
2V/DIV  
500mV/DIV  
V
RUN  
1V/DIV  
I
L
100mA/DIV  
I
L
3549 G19  
3549 G16  
50mA/DIV  
1µs/DIV  
200µs/DIV  
V
= 2.5V  
V
V
= 3.6V  
OUT  
1kLoad  
IN  
IN  
V
= 1.2V  
= 1.2V  
OUT  
LOAD  
I
= 2OmA  
Load Step 0mA to 250mA  
Pulse Skip  
Load Step 25mA to 250mA  
Pulse Skip  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
I
I
LOAD  
LOAD  
200mA/DIV  
200mA/DIV  
I
L
I
L
200mA/DIV  
200mA/DIV  
3549 G17  
3549 G18  
20µs/DIV  
20µs/DIV  
V
V
= 2.2V  
OUT  
V
V
= 2.2V  
OUT  
IN  
IN  
= 1.2V  
= 1.2V  
Load Step 0mA to 250mA  
Burst Mode Operation  
Load Step 25mA to 250mA  
Burst Mode Operation  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
I
I
LOAD  
200mA/DIV  
LOAD  
200mA/DIV  
I
L
I
L
200mA/DIV  
200mA/DIV  
3549 G20  
3549 G21  
20µs/DIV  
20µs/DIV  
V
V
= 2.2V  
OUT  
V
V
= 2.2V  
IN  
= 1.2V  
OUT  
IN  
= 1.2V  
3549f  
6
LTC3549  
U
U
U
PI FU CTIO S  
V (Pin 1): Main Supply Pin. Must be closely decoupled  
RUN(Pin5):RunControlInput.Forcingthispinabove1.1V  
enables the part. Forcing this pin below 0.3V shuts down  
thedevice.Inshutdown,allfunctionsaredisableddrawing  
<1µA supply current. Do not leave RUN floating.  
IN  
to GND, Pins 2 and 7, with a 4.7µF or greater ceramic  
capacitor.  
GND (Pin 2): N/C. Ground this pin.  
V
(Pin 6): Feedback Pin. Receives the feedback voltage  
FB  
SW (Pin 3): Switch Node Connection to Inductor. This pin  
connectstothedrainsoftheinternalmainandsynchronous  
power MOSFET switches.  
from an external resistive divider across the output.  
GND (Pin 7): Exposed Pad. The Exposed Pad is ground. It  
must be soldered to PCB ground to provide both electrical  
contact and optimum thermal performance.  
MODE (Pin 4): Mode Select Input. To select pulse-skip-  
ping mode, force this pin above 1.1V. Forcing this pin  
below 0.3V selects Burst Mode operation. Do not leave  
MODE floating.  
U
U W  
FU CTIO AL DIAGRA  
MODE  
4
SLOPE  
COMP  
0.65V  
OSCILLATOR  
OSC  
V
IN  
1
+
V
FB  
EN  
+
6
SLEEP  
+
5Ω  
0.611V  
+
0.4V  
I
COMP  
EA  
BURST  
Q
Q
S
SOFT-  
START  
R
SWITCHING  
LOGIC  
AND  
RS LATCH  
V
ANTI-  
SHOOT-  
THRU  
IN  
BLANKING  
CIRCUIT  
SW  
3
2
RUN  
5
+
OV  
REFERENCE  
OVDET  
0.671  
+
SHUTDOWN  
I
RCMP  
GND  
GND  
7
3549 FD  
3549f  
7
LTC3549  
U
OPERATIO  
Main Control Loop  
state, the load current is being supplied solely from the  
output capacitor. As the output voltage droops, the EA  
amplifier’soutputrisesabovethesleepthresholdsignaling  
the BURST comparator to trip and turn the top MOSFET  
on. This process repeats at a rate that is dependent on  
the load demand.  
The LTC3549 uses a constant-frequency, current mode  
step-down architecture. Both the main (P-channel  
MOSFET)andsynchronous(N-channelMOSFET)switches  
are internal. During normal operation, the internal top  
power MOSFET is turned on each cycle when the oscil-  
lator sets the RS latch, and turned off when the current  
Short-Circuit Protection  
comparator, I  
, resets the RS latch. The peak inductor  
COMP  
COMP  
current at which I  
WhentheoutputisshortedtogroundtheLTC3549limitsthe  
synchronousswitchcurrentto0.45A.Ifthislimitisexceeded,  
the top power MOSFET is inhibited from turning on until  
the current in the synchronous switch falls below 0.45A.  
resets the RS latch is controlled by  
the output of error amplifier EA. The V pin, described in  
FB  
the Pin Functions section, allows EA to receive an output  
feedback voltage from an external resistive divider. When  
the load current increases, it causes a slight decrease in  
the feedback voltage relative to the 0.611V reference,  
which in turn, causes the EA amplifier’s output voltage to  
increase until the average inductor current matches the  
new load current. While the top MOSFET is off, the bottom  
MOSFETisturnedonuntileithertheinductorcurrentstarts  
toreverse,asindicatedbythecurrentreversalcomparator  
Dropout Operation  
Astheinputsupplyvoltagedecreasestoavalueapproach-  
ing the output voltage, the duty cycle increases toward the  
maximumon-time.Furtherreductionofthesupplyvoltage  
forcesthemainswitchtoremainonformorethanonecycle  
until it reaches 100% duty cycle. The output voltage will  
then be determined by the input voltage minus the voltage  
drop across the P-channel MOSFET and the inductor.  
I , or the beginning of the next clock cycle.  
RCMP  
Comparator OVDET guards against transient overshoots  
>10% by turning the main switch off and keeping it off  
until the transient has ended.  
Another important detail to remember is that at low input  
supply voltages, the R  
of the P-channel switch  
DS(ON)  
increases (see Typical Performance Characteristics).  
Therefore, the user should calculate the power dissipation  
when the LTC3549 is used at 100% duty cycle with low  
input voltage (see Thermal Considerations in the Applica-  
tions Information section).  
Burst Mode Operation  
The LTC3549 is capable of Burst Mode operation in which  
the internal power MOSFETs operate intermittently based  
on load demand. To enable Burst Mode operation, simply  
connect the MODE pin to GND. To disable Burst Mode  
operationandenablePWMpulse-skippingmode, connect  
Slope Compensation  
the MODE pin to V or drive it with a logic high (V  
>
IN  
MODE  
Slope compensation provides stability in constant-fre-  
quency architectures by preventing subharmonic oscil-  
lations at high duty cycles. It is accomplished internally  
by adding a compensating ramp to the inductor current  
signal at duty cycles in excess of 40%.  
1.1V). In this mode, the efficiency is lower at light loads,  
but becomes comparable to Burst Mode operation when  
the output load exceeds 50mA. The advantage of pulse-  
skipping mode is lower output ripple and less interference  
to audio circuitry. When the converter is in Burst Mode  
operation, the minimum peak current of the inductor is  
settoapproximately100mAregardlessoftheoutputload.  
Each burst event can last from a few cycles at light loads  
to almost continuously cycling with short sleep intervals  
at moderate loads. In between these burst events, the  
power MOSFETs and any unneeded circuitry are turned  
off, reducing the quiescent current to 50µA. In this sleep  
Internal Soft-Start  
At start-up when the RUN pin is brought high, the internal  
referenceislinearlyrampedfrom0Vto0.611Vin1ms.The  
regulated feedback voltage will follow this ramp, resulting  
in the output voltage ramping from 0% to 100% in 1ms.  
The average current in the inductor during soft-start will  
3549f  
8
LTC3549  
OPERATION  
be defined by the combination of the current needed to  
charge the output capacitance and the current provided  
to the load as the output voltage ramps up. The start-up  
waveform, shown in the Typical Performance Character-  
istics, shows the output voltage start-up from 0V to 1.2V  
with a 1kΩ load and V = 3.6V.  
IN  
U
W U U  
APPLICATIO S I FOR ATIO  
materials are small and don’t radiate much energy, but  
generally cost more than powdered iron core inductors  
with similar electrical characteristics. The choice of which  
style inductor to use often depends more on the price vs  
sizerequirementsandanyradiatedeld/EMIrequirements  
than on what the LTC3549 requires to operate. Table 1  
shows some typical surface mount inductors that work  
well in LTC3549 applications.  
The basic LTC3549 application circuit is shown on the first  
page of this data sheet. External component selection is  
drivenbytheloadrequirementandbeginswiththeselection  
of L followed by C and C  
.
IN  
OUT  
Inductor Selection  
For most applications, the value of the inductor will fall  
in the range of 1µH to 10µH. Its value is chosen based  
on the desired ripple current. Large value inductors  
lower ripple current and small value inductors result in  
Table 1. Representative Surface Mount Inductors  
MAX DC  
higher ripple currents. Higher V or V  
also increases  
IN  
OUT  
MANU-  
VALUE CURRENT  
HEIGHT  
(mm)  
the ripple current as shown in Equation 1. A reasonable  
FACTURER  
PART NUMBER  
(µH)  
(A)  
DCR  
starting point for setting ripple current is ΔI = 100mA  
(40% of 250mA).  
Taiyo  
Yuden  
LB2016T2R2M  
LB2012T2R2M  
LB2016T3R3M  
LB2016T4R7M  
2.2  
2.2  
3.3  
4.7  
315  
240  
280  
210  
0.13  
0.23  
0.2  
1.6  
1.25  
1.6  
L
0.25  
1.6  
VOUT  
f L  
VOUT  
VIN  
IL =  
1–  
Panasonic  
Murata  
TDK  
ELT5KT4R7M  
4.7  
4.7  
950  
450  
0.2  
0.2  
1.2  
2
(1)  
LQH32CN4R7M34  
The DC current rating of the inductor should be at least  
equal to the maximum load current plus half the ripple  
current to prevent core saturation. Thus, a 300mA rated  
inductor should be enough for most applications (250mA  
+ 50mA). For better efficiency, choose a low DC resistance  
inductor. The inductor value also has an effect on Burst  
Modeoperation.Thetransitiontolowcurrentoperationbe-  
gins when the inductor current peaks fall to approximately  
VLF3012AT2R2M1R0 2.2  
VLF3012AT3R3MR87 3.3  
VLF3012AT4R7MR74 4.7  
VLF3010AT2R2M1R0 2.2  
VLF3010AT3R3MR87 3.3  
VLF3010AT4R7MR70 4.7  
1
0.088  
0.11  
0.16  
0.10  
0.15  
0.24  
1.2  
1.2  
1.2  
1.0  
1.0  
1.0  
0.87  
0.74  
1
0.87  
0.74  
C and C  
IN  
Selection  
OUT  
Incontinuousmode, thesourcecurrentofthetopMOSFET  
100mA. Lower inductor values (higher ΔI ) will cause this  
L
is a square wave of duty cycle V /V . To prevent large  
OUT IN  
to occur at lower load currents, which can cause a dip in  
efficiency in the upper range of low current operation. In  
Burst Mode operation, lower inductance values will cause  
the burst frequency to increase.  
voltage transients, a low ESR input capacitor sized for the  
maximumRMScurrentmustbeused. ThemaximumRMS  
capacitor current is given by:  
1/2  
]
V
V – V  
OUT  
(
)
[
OUT IN  
CIN RequiredIRMS IOUT(MAX)  
Inductor Core Selection  
V
IN  
Different core materials and shapes will change the  
size/current and price/current relationship of an induc-  
tor. Toroid or shielded pot cores in ferrite or permalloy  
This formula has a maximum at V = 2V , where  
RMS OUT  
monly used for design because even significant devia-  
IN  
OUT  
I
= I /2. This simple worst-case condition is com-  
3549f  
9
LTC3549  
U
W U U  
APPLICATIO S I FOR ATIO  
tions do not offer much relief. Note that the capacitor  
manufacturer’s ripple current ratings are often based  
on 2000 hours of life. This makes it advisable to further  
derate the capacitor, or choose a capacitor rated at a  
higher temperature than required. Always consult the  
manufacturer if there is any question. The selection of  
value, lower cost ceramic capacitors are now available in  
smaller case sizes. Their high ripple current, high voltage  
ratingandlowESRmakethemidealforswitchingregulator  
applications.BecausetheLTC3549’scontrolloopdoesnot  
dependontheoutputcapacitor’sESRforstableoperation,  
ceramic capacitors can be used to achieve very low output  
ripple and small circuit size.  
C
is driven by the required effective series resistance  
OUT  
(ESR). Typically, once the ESR requirement for C  
has  
OUT  
However, care must be taken when these capacitors are  
usedattheinputandtheoutput.Whenaceramiccapacitor  
is used at the input and the power is supplied by a wall  
adapter through long wires, a load step at the output can  
been met, the RMS current rating generally far exceeds  
the I requirement. The output ripple ΔV  
RIPPLE(P-P)  
OUT  
is determined by:  
1
induce ringing at the input, V . At best, this ringing can  
IN  
VOUT = ∆I ESR +  
L
8 • f COUT  
couple to the output and be mistaken as loop instability. At  
worst, a sudden inrush of current through the long wires  
where f = operating frequency, C  
= output capacitance  
OUT  
can potentially cause a voltage spike at V , large enough  
IN  
and ΔI = ripple current in the inductor. For a fixed output  
L
to damage the part.  
voltage, the output ripple is highest at maximum input  
When choosing the input and output ceramic capacitors,  
choose the X5R or X7R dielectric formulations. These  
dielectrics have the best temperature and voltage charac-  
teristics of all the ceramics for a given value and size.  
voltage since ΔI increases with input voltage. Aluminum  
L
electrolytic and dry tantalum capacitors are both available  
in surface mount configurations. In the case of tantalum,  
it is critical that the capacitors are surge tested for use  
in switching power supplies. An excellent choice is the  
AVX TPS series of surface mount tantalum. These are  
specially constructed and tested for low ESR so they give  
the lowest ESR for a given volume. Other capacitor types  
include Sanyo POSCAP, Kemet T510 and T495 series, and  
Sprague 593D and 595D series. Consult the manufacturer  
for other specific recommendations.  
Output Voltage Programming  
The output voltage is set by a resistive divider according  
to the following formula:  
R1  
R2  
VOUT = 0.611V 1+  
(2)  
The external resistive divider is connected to the output,  
allowing remote voltage sensing as shown in Figure 1  
Using Ceramic Input and Output Capacitors  
The LTC3549 typically will require an output capacitor  
in the 4.7µF to 10µF range for optimum stability. Higher  
Table 2 gives 1% resistor values for selected output  
voltages.  
V
OUT  
Table 2. Resistor Values for Selected Output Voltages  
V
R1  
R2  
OUT  
R1  
LTC3549  
0.85V  
1.2V  
1.5V  
1.8V  
53.6k  
133k  
200k  
267k  
137k  
137k  
137k  
137k  
V
FB  
R2  
GND  
3549 F01  
Figure 1. Setting the LTC3549 Output Voltage  
3549f  
10  
LTC3549  
U
W U U  
APPLICATIO S I FOR ATIO  
Efficiency Considerations  
hightolowtohighagain, apacketofcharge, dQ, moves  
fromV toground.TheresultingdQ/dtisthecurrentout  
IN  
Theefficiencyofaswitchingregulatorisequaltotheoutput  
power divided by the input power times 100%. It is often  
useful to analyze individual losses to determine what is  
limiting the efficiency and which change would produce  
the most improvement. Efficiency can be expressed as:  
of V that is typically larger than the DC bias current. In  
IN  
continuous mode, I  
= f(Q + Q ) where Q and  
GATECHG  
T B T  
Q are the gate charges of the internal top and bottom  
B
switches. Both the DC bias and gate charge losses are  
proportional to V and thus their effects will be more  
IN  
Efficiency = 100% – (L1 + L2 + L3 + ...)  
pronounced at higher supply voltages.  
2
2. I R losses are calculated from the resistances of the  
where L1, L2, etc. are the individual losses as a percent-  
age of input power.  
internal switches, R , and external inductor R . In  
SW  
L
continuous mode, the average output current flowing  
through inductor L is “chopped” between the main  
switch and the synchronous switch. Thus, the series  
resistance looking into the SW pin is a function of both  
Although all dissipative elements in the circuit produce  
losses, two main sources usually account for most of  
the losses in LTC3549 circuits: V quiescent current and  
IN  
2
I R losses. The V quiescent current loss dominates  
IN  
top and bottom MOSFET R  
(DC) as follows:  
and the duty cycle  
DS(ON)  
the efficiency loss at very low load currents whereas the  
2
I R loss dominates the efficiency loss at medium to high  
R
= (R  
)(DC) + (R  
DS(ON)TOP  
)
DS(ON)BOT  
SW  
(1 – DC)  
load currents. In a typical efficiency plot, the efficiency  
curve at very low load currents can be misleading since  
the actual power lost is of no consequence, as illustrated  
in Figure 2.  
TheR  
forboththetopandbottomMOSFETscanbe  
DS(ON)  
obtainedfromtheTypicalPerformanceCharacteristics.  
2
Thus, to obtain I R losses, simply add R to R and  
SW  
L
1.TheV quiescentcurrentisduetotwocomponents:the  
IN  
multiply the result by the square of the average output  
current.  
DCbiascurrentasgivenintheElectricalCharacteristics  
and the internal main switch and synchronous switch  
gate charge currents. The gate charge current results  
fromswitchingthegatecapacitanceoftheinternalpower  
MOSFET switches. Each time the gate is switched from  
Other losses including C and C  
ESR dissipative los-  
IN  
OUT  
ses and inductor core losses generally account for less  
than 2% total additional loss.  
1.0000  
V
IN  
BURST  
2.5V  
V
PULSE SKIP  
2.5V  
V
= 1.8V  
OUT  
IN  
3.6V  
3.6V  
4.2V  
4.2V  
0.1000  
0.0100  
0.0010  
0.0001  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3549 F02  
Figure 2. Power Loss vs Load Current  
3549f  
11  
LTC3549  
U
W U U  
APPLICATIO S I FOR ATIO  
Thermal Considerations  
Checking Transient Response  
InmostapplicationstheLTC3549doesnotdissipatemuch  
heatduetoitshighefficiency.But,inapplicationswherethe  
LTC3549 is running at high ambient temperature with low  
supply voltage and high duty cycles, such as in dropout,  
the heat dissipated may exceed the maximum junction  
temperatureofthepart.Ifthejunctiontemperaturereaches  
approximately 150°C, both power switches will be turned  
off and the SW node will become high impedance.  
The regulator loop response can be checked by looking  
at the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
a load step occurs, V  
immediately shifts by an amount  
OUT  
equal to (ΔI  
• ESR), where ESR is the effective series  
LOAD  
resistance of C . ΔI  
also begins to charge or dis-  
OUT  
LOAD  
charge C , which generates a feedback error signal. The  
OUT  
regulator loop then acts to return V  
value. During this recovery time V  
to its steady state  
can be monitored  
OUT  
OUT  
To avoid the LTC3549 from exceeding the maximum  
junction temperature, the user will need to do a thermal  
analysis. The goal of the thermal analysis is to determine  
whether the operating conditions exceed the maximum  
junction temperature of the part. The temperature rise is  
given by:  
for overshoot or ringing that would indicate a stability  
problem. For a detailed explanation of switching control  
loop theory, see Application Note 76.  
A second, more severe transient is caused by switching  
in loads with large (> 1µF) supply bypass capacitors. The  
discharged bypass capacitors are effectively put in paral-  
T = (P )(θ )  
R
D
JA  
lel with C , causing a rapid drop in V . No regulator  
OUT  
OUT  
where P is the power dissipated by the regulator and θ  
D
JA  
can deliver enough current to prevent this problem if the  
load switch resistance is low and it is driven quickly. The  
only solution is to limit the rise time of the switch drive  
so that the load rise time is limited to approximately (25  
is the thermal resistance from the junction of the die to  
the ambient temperature.  
The junction temperature, T , is given by:  
J
• C  
). Thus, a 10µF capacitor charging to 3.3V would  
LOAD  
T = T + T  
R
J
A
require a 250µs rise time, limiting the charging current  
to about 130mA.  
where T is the ambient temperature.  
A
Asanexample,considertheLTC3549indropoutataninput  
voltage of 1.6V, a load current of 250mA and an ambient  
temperature of 75°C. In the Switch Resistance graph  
shown in the Typical Performance Characteristics, the  
R
of the P-channel switch at 75°C is approximately  
DS(ON)  
0.8Ω. Therefore, power dissipated by the part is:  
2
P = I  
D
• R  
= 50mW  
DS(ON)  
LOAD  
For the DCB6 package, the θ is 64°C/W. Thus, the junc-  
JA  
tion temperature of the regulator is:  
T = 75°C + (0.05)(64) = 78.2°C  
J
which is well below the maximum junction temperature  
of 125°C.  
Notethatathighersupplyvoltages,thejunctiontemperature  
is lower due to reduced switch resistance (R  
).  
DS(ON)  
3549f  
12  
LTC3549  
U
W U U  
APPLICATIO S I FOR ATIO  
signals V should be routed away from noisy compo-  
nents and traces, such as the SW line (Pin 3), and its  
trace should be minimized.  
Board Layout Considerations  
FB  
When laying out the printed circuit board, the following  
checklist should be used to ensure proper operation of  
the LTC3549. These items are also illustrated graphically  
in the layout diagram of Figure 3. Check the following in  
your layout.  
4. Keep sensitive components away from the SW pins.  
The input capacitor C and the resistors R1 and R2  
IN  
should be routed away from the SW traces and the  
inductors.  
1. Does the capacitor C connect to the power V (Pin 1)  
IN  
IN  
5. A ground plane is preferred, but if not available, keep  
the signal and power grounds segregated with small  
signal components returning to the GND pin at one  
point. They should not share the high current path of  
andGND(Pins2,7)ascloseaspossible?Thiscapacitor  
provides the AC current to the internal power MOSFETs  
and their drivers.  
2. Are the C  
and L1 closely connected? The (–) plate of  
returns current to GND and the (–) plate of C .  
OUT  
C or C  
.
IN  
OUT  
C
OUT  
IN  
6. Floodallunusedareasonalllayerswithcopper.Flooding  
with copper will reduce the temperature rise of power  
components. These copper areas should be connected  
3. The resistor divider, R1 and R2, must be connected  
between the (+) plate of C and a ground sense line  
OUT  
terminated near GND (Exposed Pad). The feedback  
to V or G .  
IN  
ND  
Figure 3a. Buck Regulator Top Layer  
Figure 3b. Buck Regulator Bottom Layer  
3549f  
13  
LTC3549  
U
W U U  
APPLICATIO S I FOR ATIO  
Design Example  
Substituting V  
= 1.5V, V = 3.1V, ΔI = 100mA and  
IN L  
OUT  
f = 2.25MHz in Equation 3 gives:  
As a design example, assume the LTC3549 is used in a  
2-alkalinecellbattery-poweredapplication.TheV willbe  
IN  
1
1.5  
3.1  
L =  
1.5 1–  
3.3µH  
operating from a maximum of 3.1V down to about 1.8V.  
The load current requirement is a maximum of 250mA  
but most of the time it will be in standby mode, requiring  
only 2mA. Efficiency at both low and high load currents  
is important. Output voltage is 1.5V. With this information  
we can calculate L using Equation 3:  
2.25MHz • 100mA  
For best efficiency choose a 350mA or greater inductor  
with less than 0.3Ω series resistance. C will require an  
IN  
RMS current rating of at least 0.125A I  
/2 at  
LOAD(MAX)  
temperature.  
For the feedback resistors, choose R2 = 137k. Then, from  
Equation3,R1is200k.Figure4showsthecompletecircuit  
along with its efficiency curve.  
VOUT  
f • I
L  
VOUT  
V
IN  
L =  
1–  
(3)  
L1  
3.3µH*  
V
IN  
V
OUT  
RUN  
SW  
1.8V TO  
3.1V  
1.5V  
C
CL  
22pF  
IN  
C
4.7µF  
OUT  
LTC3549  
4.7µF  
CERAMIC  
CERAMIC  
V
IN  
R1  
200k  
V
FB  
MODE  
GND  
R2  
137k  
*TDK VLF3012AT-3R3MR87  
3549 F04a  
Figure 4a. High Efficiency Step-Down Regulator  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 1.8  
IN  
V
OUT  
100mV/DIV  
V
= 3.1  
IN  
AC COUPLED  
V
= 2.5  
IN  
I
LOAD  
200mA/DIV  
I
L
200mA/DIV  
3549 F04c  
20µs/DIV  
= 100mA to 250mA  
V
V
= 2.5V  
OUT  
LOAD  
IN  
= 1.5V  
I
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3549 F04b  
Figure 4b. Burst Mode Efficiency, V  
= 1.5V  
Figure 4c. Load Step Response  
OUT  
3549f  
14  
LTC3549  
U
PACKAGE DESCRIPTIO  
DCB Package  
6-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1715)  
0.70 0.05  
1.65 0.05  
3.55 0.05  
(2 SIDES)  
2.15 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
1.35 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
2.00 0.10  
(2 SIDES)  
0.40 0.10  
R = 0.05  
TYP  
4
6
3.00 0.10 1.65 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1 NOTCH  
R0.20 OR 0.25  
× 45° CHAMFER  
(DCB6) DFN 0405  
3
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
1.35 0.10  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (TBD)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3549f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC3549  
U
TYPICAL APPLICATIO  
L1, 4.7µH*  
V
IN  
V
OUT  
RUN  
SW  
2.5V TO  
4.2V  
1.8V  
CL, 22pF  
C
IN  
C
OUT  
LTC3549  
4.7µF  
4.7µF  
CERAMIC  
V
IN  
CERAMIC  
R1, 267k  
V
FB  
MODE  
GND  
R2  
137k  
*TDK VLF3012AT-4R7MR74  
3549 TA03a  
Efficiency vs Load Current  
Load Step Response  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 2.5V  
IN  
V
OUT  
V
= 3.6V  
IN  
100mV/DIV  
AC COUPLED  
V
= 4.2V  
IN  
I
LOAD  
200mA/DIV  
I
L
200mA/DIV  
3549 TA03c  
20µs/DIV  
V
V
= 3.6V  
OUT  
LOAD  
IN  
V
= 1.8V  
1
OUT  
= 1.8V  
I
= 100mA to 250mA  
0.1  
10  
100  
1000  
LOAD CURRENT (mA)  
3549 TA03b  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1878  
600mA (I ), 550kHz, Synchronous  
96% Efficiency, V : 2.7V to 6V, V  
= 0.8V, I = 10µA, I < 1µA,  
OUT(MIN) Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
MS8 Package  
LTC1879  
1.20A (I ), 550kHz, Synchronous  
95% Efficiency, V : 2.7V to 10V, V  
= 0.8V, I = 15µA, I < 1µA,  
OUT(MIN) Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
16-Lead TSSOP  
LT3020  
100mA, Low Voltage VLDO  
V : 0.9V to 10V, V  
= 0.20V, Dropout Voltage = 0.15V, I = 120µA,  
IN  
OUT(MIN) Q  
I
< 3µA, V  
= ADJ, DFN/MS8 Packages  
SD  
OUT  
LTC3025  
100mA, Low Voltage VLDO  
V : 0.9V to 5.5V, V  
= 0.40V, Dropout Voltage = 0.05V, I = 54µA,  
OUT(MIN) Q  
IN  
I
< 1µA, V  
= ADJ, DFN Package  
SD  
OUT  
LTC3404  
600mA (I ), 1.4MHz, Synchronous  
96% Efficiency, V : 2.7V to 6V, V  
= 0.8V, I = 10µA, I < 1µA,  
OUT(MIN) Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
MS8 Package  
LTC3405/LTC3405A  
LTC3406/LTC3406B  
LTC3407/LTC3407-2  
LTC3409  
300mA (I ), 1.5MHz, Synchronous  
95% Efficiency, V : 2.5V to 5.5V, V  
= 0.8V, I = 20µA, I < 1µA,  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
Step-Down DC/DC Converter  
ThinSOT Package  
600mA (I ), 1.5MHz, Synchronous  
96% Efficiency, V : 2.5V to 5.5V, V  
= 0.6V, I = 20µA, I < 1µA,  
Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
ThinSOT Package  
Dual, 800mA (I ), 2.25MHz, Synchronous 95% Efficiency, V : 2.5V to 5.5V, V  
= 0.6V, I = 40µA, I < 1µA,  
Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
10-Lead MSE Package  
600mA, 2.6MHz Low V , Synchronous  
95% Efficiency, V : 1.6V to 5.5V, V  
= 0.6V, I = 65µA, I < 1µA,  
Q SD  
IN  
IN  
Step-Down DC/DC Converter  
DFN Package  
LTC3410/LTC3410B  
LTC3411  
300mA, 2.25MHz, Synchronous Step-Down 96% Efficiency, V : 2.5V to 5.5V, V  
DC/DC Converter  
= 0.8V, I = 26µA/200µA, I < 1µA,  
Q SD  
IN  
SC70 Package  
1.25A (I ), 4MHz, Synchronous  
95% Efficiency, V : 2.5V to 5.5V, V  
= 0.8V, I = 60µA, I < 1µA,  
Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
10-Lead MS Package  
VLDO and ThinSOT are trademarks of Linear Technology Corporation.  
3549f  
LT 0706 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3549EDCB#TRM

IC 0.6 A SWITCHING REGULATOR, 2700 kHz SWITCHING FREQ-MAX, PDSO6, 2 X 3 MM, 0.75 MM HEIGHT, PLASTIC, MO-229, DFN-6, Switching Regulator or Controller
Linear

LTC3549EDCB#TRMPBF

LTC3549 - 250mA Low VIN Buck Regulator in 2mm x 3mm DFN; Package: DFN; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3549EDCB#TRPBF

暂无描述
Linear

LTC3550

Dual Input USB/AC Adapter Li-Ion Battery Charger with 600mA Buck Converter
Linear

LTC3550-1

Dual Input USB/AC Adapter Li-Ion Battery Charger with 600mA Buck Converter
Linear

LTC3550EDHC

Dual Input USB/AC Adapter Li-Ion Battery Charger with 600mA Buck Converter
Linear

LTC3550EDHC#PBF

暂无描述
Linear

LTC3550EDHC#TR

暂无描述
Linear

LTC3550EDHC#TRPBF

LTC3550 - Dual Input USB/AC Adapter Li-Ion Battery Charger with 600mA Buck Converter; Package: DFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3550EDHC-1

Dual Input USB/AC Adapter Li-Ion Battery Charger with 600mA Buck Converter
Linear

LTC3550EDHC-1#TR

暂无描述
Linear

LTC3550EDHC-1#TRPBF

LTC3550-1 - Dual Input USB/AC Adapter Li-Ion Battery Charger with 600mA Buck Converter; Package: DFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear