LTC3611IWP-TRPBF [Linear]

10A, 32V Monolithic Synchronous Step-Down DC/DC Converter; 10A , 32V单片同步降压型DC / DC转换器
LTC3611IWP-TRPBF
型号: LTC3611IWP-TRPBF
厂家: Linear    Linear
描述:

10A, 32V Monolithic Synchronous Step-Down DC/DC Converter
10A , 32V单片同步降压型DC / DC转换器

转换器
文件: 总24页 (文件大小:397K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3611  
10A, 32V Monolithic  
Synchronous Step-Down  
DC/DC Converter  
DESCRIPTION  
FEATURES  
TheLTC®3611isahighefficiency,monolithicsynchronous  
step-down DC/DC converter that can deliver up to 10A  
output current from a 4.5V to 32V (36V maximum) input  
supply. It uses a constant on-time valley current mode  
control architecture to deliver very low duty cycle opera-  
tion at high frequency with excellent transient response.  
Theoperatingfrequencyisselectedbyanexternalresistor  
n
10A Output Current  
n
Wide V Range = 4.5V to 32V (36V Maximum)  
IN  
n
Internal N-Channel MOSFETs  
True Current Mode Control  
Optimized for High Step-Down Ratios  
n
n
n
t
≤ 100ns  
0N(MIN)  
n
n
n
n
n
n
n
n
n
n
n
Extremely Fast Transient Response  
Stable with Ceramic C  
and is compensated for variations in V and V  
.
OUT  
IN  
OUT  
1ꢀ 0.6V Voltage Reference  
The LTC3611 can be configured for discontinuous or  
forced continuous operation at light load. Forced continu-  
ous operation reduces noise and RF interference while  
discontinuous mode provides high efficiency by reducing  
switching losses at light loads.  
Power Good Output Voltage Monitor  
Adjustable On-Time/Switching Frequency (>1MHz)  
Adjustable Current Limit  
Programmable Soft-Start  
Output Overvoltage Protection  
Optional Short-Circuit Shutdown Timer  
Low Shutdown I : 15μA  
Available in a 9mm × 9mm 64-Pin QFN Package  
Fault protection is provided by internal foldback current  
limiting,anoutputovervoltagecomparatorandanoptional  
short-circuitshutdowntimer.Soft-startcapabilityforsup-  
ply sequencing is accomplished using an external timing  
capacitor.Theregulatorcurrentlimitisuserprogrammable.  
A power good output voltage monitor indicates when  
the output is in regulation. The LTC3611 is available in a  
compact 9mm × 9mm QFN package.  
Q
APPLICATIONS  
n
Point of Load Regulation  
Distributed Power Systems  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Protected by U.S. Patents including  
5481178, 6100678, 6580258, 5847554, 6304066.  
TYPICAL APPLICATION  
Efficiency and Power Loss vs  
Load Current  
High Efficiency Step-Down Converter  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10000  
1000  
100  
10  
V
= 2.5V  
182k  
OUT  
V
OUT  
V
I
0.1ꢀF  
ON  
ON  
V
IN  
= 5V  
V
IN  
4.5V TO 32V  
RUN/SS  
V
IN  
V
= 25V  
IN  
10ꢀF  
×3  
100pF  
LTC3611  
1ꢀH  
V
2.5V  
10A  
OUT  
SW  
POWER LOSS,  
= 5V  
680pF  
0.22ꢀF  
100ꢀF  
×2  
V
IN  
I
BOOST  
TH  
12.5k  
POWER LOSS,  
SGND INTV  
CC  
30.1k  
9.5k  
V
IN  
= 25V  
FCB  
39.2k  
11k  
1
4.7ꢀF  
V
INTV  
CC  
RNG  
0.01  
0.1  
1
10  
PGND  
LOAD CURRENT (A)  
PGOOD  
3611 TA01b  
EXTV  
CC  
V
FB  
3611 TA01a  
3611fb  
1
LTC3611  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Input Supply Voltage (V , I ).................. 36V to –0.3V  
IN ON  
Boosted Topside Driver Supply Voltage  
(BOOST) ................................................ 42V to –0.3V  
SW Voltage............................................... 36V to –5V  
INTV , EXTV , (BOOST – SW), RUN/SS,  
PGND 1  
65  
48 SGND  
47 SGND  
46 SGND  
45 SGND  
PGND 2  
PGND  
CC  
CC  
PGND 3  
SW 4  
PGOOD Voltages...................................... 7V to –0.3V  
FCB, V , V  
TH FB  
Operating Temperature Range  
Voltages............ INTV + 0.3V to –0.3V  
ON RNG  
CC  
SW 5  
44 EXTV  
CC  
SW 6  
43 V  
FB  
I , V Voltages....................................... 2.7V to –0.3V  
SW 7  
42 SGND  
41 I  
66  
SW  
SW 8  
SW 9  
ON  
(Note 4) ............................................. –40°C to 125°C  
Junction Temperature (Note 2) ............................. 125°C  
Storage Temperature Range...................55°C to 125°C  
40 SGND  
39 FCB  
SW 10  
SW 11  
68  
SGND  
38 I  
TH  
PV 12  
IN  
37 V  
RNG  
PV 13  
IN  
36 PGOOD  
35 V  
67  
PV  
PV 14  
IN  
ON  
IN  
PV 15  
IN  
34 SGND  
33 SGND  
PV 16  
IN  
WP PACKAGE  
64-LEAD (9mm × 9mm) QFN MULTIPAD  
T
= 125°C, θ = 28°C/W  
JA  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3611EWP#PBF  
LTC3611IWP#PBF  
LEAD BASED FINISH  
LTC3611EWP  
TAPE AND REEL  
PART MARKING*  
LTC3611WP  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTC3611EWP#TRPBF  
LTC3611IWP#TRPBF  
TAPE AND REEL  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
PACKAGE DESCRIPTION  
LTC3611WP  
–40°C to 125°C  
PART MARKING*  
LTC3611WP  
TEMPERATURE RANGE  
–40°C to 125°C  
LTC3611EWP#TR  
LTC3611IWP#TR  
64-Lead (9mm × 9mm) Plastic QFN  
64-Lead (9mm × 9mm) Plastic QFN  
LTC3611IWP  
LTC3611WP  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3611fb  
2
LTC3611  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 15V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Main Control Loop  
V
Operating Input Voltage Range  
4.5  
32  
V
IN  
I
Input DC Supply Current  
Normal  
Shutdown Supply Current  
Q
900  
15  
2000  
30  
ꢀA  
ꢀA  
V
Feedback Reference Voltage  
LTC3611E  
LTC3611I  
I
= 1.2V (Note 3)  
TH  
FB  
–40°C ≤ T ≤ 85°C  
0.594  
0.590  
0.600  
0.600  
0.606  
0.610  
V
V
J
l
–40°C ≤ T ≤ 125°C  
J
ΔV  
ΔV  
Feedback Voltage Line Regulation  
Feedback Voltage Load Regulation  
Feedback Input Current  
V
= 4V to 30V, I = 1.2V (Note 3)  
0.002  
–0.05  
–5  
%/V  
%
FB(LINEREG)  
FB(LOADREG)  
IN  
TH  
I
= 0.5V to 1.9V (Note 3)  
= 0.6V  
–0.3  
50  
TH  
I
V
nA  
mS  
V
FB  
FB  
l
l
g
Error Amplifier Transconductance  
Forced Continuous Threshold  
Forced Continuous Pin Current  
On-Time  
I
= 1.2V (Note 3)  
1.4  
1.7  
2
m(EA)  
TH  
V
0.54  
0.6  
0.66  
–2  
FCB  
I
t
V
= 0.6V  
FCB  
–1  
ꢀA  
FCB  
ON  
I
I
= 60μA, V = 1.5V  
190  
250  
120  
310  
ns  
ns  
ON  
ON  
ON  
= 60μA, V = 0V  
ON  
t
t
I
Minimum On-Time  
I
I
= 180μA, V = 0V  
60  
100  
500  
ns  
ns  
ON(MIN)  
ON  
ON  
ON  
Minimum Off-Time  
Maximum Valley Current  
= 30μA, V = 1.5V  
290  
OFF(MIN)  
ON  
l
l
V
V
= 0V, V = 0.56V, FCB = 0V  
6
8
10  
15  
A
A
VALLEY(MAX)  
RNG  
RNG  
FB  
= 1V, V = 0.56V, FCB = 0V  
FB  
I
Maximum Reverse Valley Current  
V
V
= 0V, V = 0.64V, FCB = 0V  
–4  
–6  
–6  
–8  
–8  
–10  
A
A
VALLEY(MIN)  
RNG  
RNG  
FB  
= 1V, V = 0.64V, FCB = 0V  
FB  
ΔV  
Output Overvoltage Fault Threshold  
RUN Pin Start Threshold  
7
10  
1.5  
4
13  
2
%
V
FB(OV)  
l
V
V
V
0.8  
RUN/SS(ON)  
RUN/SS(LE)  
RUN/SS(LT)  
RUN/SS(C)  
RUN/SS(D)  
RUN Pin Latchoff Enable Threshold  
RUN Pin Latchoff Threshold  
Soft-Start Charge Current  
RUN/SS Pin Rising  
RUN/SS Pin Falling  
4.5  
4.2  
–3  
3
V
3.5  
–1.2  
1.8  
3.4  
3.5  
V
I
I
V
V
V
V
= 0V  
–0.5  
0.8  
ꢀA  
ꢀA  
V
RUN/SS  
RUN/SS  
Soft-Start Discharge Current  
Undervoltage Lockout  
= 4.5V, V = 0V  
FB  
l
l
V
V
Falling  
3.9  
4
IN(UVLO)  
IN  
IN  
Undervoltage Lockout Release  
Rising  
V
IN(UVLOR)  
R
Top Switch On-Resistance  
Bottom Switch On-Resistance  
15  
9
22  
14  
mΩ  
mΩ  
DS(ON)  
3611fb  
3
LTC3611  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 15V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Internal V Regulator  
CC  
l
l
V
Internal V Voltage  
6V < V < 30V, V = 4V  
EXTVCC  
4.7  
5
5.6  
2
V
%
INTVCC  
CC  
IN  
ΔV  
Internal V Load Regulation  
I
I
I
= 0mA to 20mA, V  
= 4V  
–0.1  
4.7  
LDO(LOADREG)  
EXTVCC  
CC  
CC  
CC  
CC  
EXTVCC  
V
EXTV Switchover Voltage  
= 20mA, V  
= 20mA, V  
Rising  
4.5  
V
CC  
EXTVCC  
EXTVCC  
ΔV  
ΔV  
EXTV Switch Drop Voltage  
= 5V  
150  
500  
300  
m/V  
m/V  
EXTVCC  
CC  
EXTV Switchover Hysteresis  
EXTVCC(HYS)  
CC  
PGOOD Output  
ΔV  
ΔV  
ΔV  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
7
10  
–10  
1
13  
–13  
2.5  
0.4  
%
%
%
V
FBH  
FB  
Falling  
–7  
FBL  
FB  
Returning  
FB(HYS)  
FB  
V
PGOOD Low Voltage  
I
= 5mA  
0.15  
PGL  
PGOOD  
Note 3: The LTC3611 is tested in a feedback loop that adjusts V to  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
FB  
achieve a specified error amplifier output voltage (I ). The specification at  
TH  
85°C is not tested in production. This specification is assured by design,  
characterization, and correlation to testing at 125°C.  
Note 4: The LTC3611E is guaranteed to meet performance specifications  
from 0°C to 125°C. Specifications over the –40°C to 125°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls. The LTC3611I is guaranteed over the full  
–40°C to 125°C operating temperature range.  
Note 2: T is calculated from the ambient temperature T and power  
J
A
dissipation P as follows:  
D
T = T + (P • 28°C/W) (θ is simulated per JESD51-7 high  
J
A
D
JA  
effective thermal conductivity test board)  
θ
= 1°C/W (θ is simulated when heatsink is applied at the  
JC  
JC  
bottom of the package)  
TYPICAL PERFORMANCE CHARACTERISTICS  
Transient Response  
(Discontinuous Mode)  
Transient Response  
Start-Up  
V
V
OUT  
200mV/DIV  
OUT  
200mV/DIV  
RUN/SS  
2V/DIV  
IL  
5A/DIV  
IL  
5A/DIV  
V
OUT  
1V/DIV  
I
I
I
L
5A/DIV  
LOAD  
LOAD  
5A/DIV  
5A/DIV  
3611 G03  
3611 G01  
3611 G02  
40ms/DIV  
40ꢀs/DIV  
40ꢀs/DIV  
V
V
= 25V  
LOAD STEP 0A TO 8A  
LOAD = 1A TO 10A  
IN  
OUT  
= 2.5V  
= 0.5Ω  
V
V
= 25V  
V
V
= 25V  
IN  
IN  
OUT  
R
= 2.5V  
= 2.5V  
LOAD  
OUT  
FCB = 0  
FIGURE 6 CIRCUIT  
FCB = INTV  
CC  
FIGURE 6 CIRCUIT  
FIGURE 6 CIRCUIT  
3611fb  
4
LTC3611  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Current  
Efficiency vs Input Voltage  
Frequency vs Input Voltage  
100  
90  
80  
70  
60  
50  
100  
95  
90  
85  
80  
640  
600  
560  
520  
480  
440  
400  
FCB = 5V  
FIGURE 6 CIRCUIT  
DISCONTINUOUS  
I
= 10A  
LOAD  
CONTINUOUS  
I
= 10A  
LOAD  
I
= 0A  
30  
LOAD  
V
V
= 12V  
IN  
OUT  
= 2.5V  
I
= 1A  
LOAD  
20  
EXTV = 5V  
CC  
FCB = 0V  
FIGURE 6 CIRCUIT  
FIGURE 6 CIRCUIT  
0.01  
0.1  
1 10  
5
10  
15  
25  
30  
35  
5
10 15  
20  
25  
35  
LOAD CURRENT (A)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3611 G06  
3611 G04  
3611 G05  
Frequency vs Load Current  
CONTINUOUS MODE  
Load Regulation  
ITH Voltage vs Load Current  
0.80  
0.60  
0.40  
0.20  
0
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.5  
2.0  
1.5  
1.0  
0.5  
0
FIGURE 6 CIRCUIT  
FIGURE 6 CIRCUIT  
DISCONTINUOUS MODE  
CONTINUOUS  
MODE  
–0.20  
–0.40  
–0.60  
–0.80  
DISCONTINUOUS  
MODE  
0
15  
0
2
4
6
8
10  
0
2
4
6
8
10  
0
5 10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
3611 G07  
3611 G08  
3611 G09  
Load Current vs ITH Voltage and  
VRNG  
On-Time vs ION Current  
On-Time vs VON Voltage  
10000  
1000  
100  
1000  
800  
600  
400  
200  
0
25  
20  
15  
10  
5
V
VON  
= 0V  
I
= 30ꢀA  
ON  
V
RNG  
= 1V  
0.7V  
0.5V  
0
–5  
–10  
10  
0
1
2
3
0
0.5  
1
I
1.5  
2
2.5  
3
1
10  
100  
I
ON  
CURRENT (ꢀA)  
V
ON  
VOLTAGE (V)  
VOLTAGE (V)  
TH  
3611 G11  
3611 G12  
3611 G10  
3611fb  
5
LTC3611  
TYPICAL PERFORMANCE CHARACTERISTICS  
Maximum Valley Current Limit vs  
Maximum Valley Current Limit vs  
RUN/SS Voltage  
On-Time vs Temperature  
VRNG Voltage  
20  
18  
15  
12  
9
300  
250  
200  
150  
FIGURE 6 CIRCUIT  
I
= 30ꢀA  
VON  
ION  
V
= 0V  
15  
10  
5
6
100  
50  
0
3
0
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.65 1.9 2.15 2.4 2.65 2.9 3.15 3.4  
–50 –25  
0
25  
50  
75  
100 125  
V
RNG  
VOLTAGE (V)  
RUN/SS VOLTAGE (V)  
TEMPERATURE (°C)  
3611 G15  
3611 G16  
3611 G13  
Maximum Valley Current Limit vs  
Temperature  
Input Voltage vs Maximum  
Valley Current  
Maximum Valley Current Limit  
in Foldback  
20  
15  
10  
20  
18  
V
RNG  
= 1V  
V
RNG  
= 1V  
16  
14  
12  
15  
10  
5
10  
8
5
0
6
0
4
–50 –25  
0
25  
50  
75 100 125  
8
12 16 20 24 28 32 36  
INPUT VOLTAGE (V)  
3611 G27  
0
0.1  
0.2  
0.3  
(V)  
0.4  
0.5  
0.6  
4
TEMPERATURE (°C)  
V
FB  
3611 G17  
3611 G14  
Feedback Reference Voltage  
vs Temperature  
Error Amplifier gm vs Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.62  
0.61  
0.60  
0.59  
0.58  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75  
125  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3611 G18  
3611 G19  
3611fb  
6
LTC3611  
TYPICAL PERFORMANCE CHARACTERISTICS  
Input and Shutdown Currents  
vs Input Voltage  
INTVCC Load Regulation  
IEXTVCC vs Frequency  
1400  
1200  
1000  
800  
600  
400  
200  
0
40  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0.30  
0.20  
0.10  
0
V
V
= 24V  
IN  
OUT  
= 2.5V  
EXTV OPEN  
CC  
SHUTDOWN  
–0.10  
–0.20  
–0.30  
–0.40  
EXTV = 5V  
CC  
0
0
0
5
10  
15  
20  
25  
30  
400  
500  
600  
700  
800  
900 1000  
0
10  
20  
30  
40  
50  
INPUT VOLTAGE (V)  
FREQUENCY (KHz)  
INTV LOAD CURRENT (mA)  
CC  
3611 G20  
3611 G21  
3611 G28  
EXTVCC Switch Resistance  
vs Temperature  
RUN/SS Pin Current  
vs Temperature  
FCB Pin Current vs Temperature  
10  
8
3
2
0
–0.25  
–0.50  
–0.75  
PULL-DOWN CURRENT  
6
1
4
0
–1.00  
–1.25  
–1.50  
2
–1  
PULL-UP CURRENT  
0 25 50 75 100 125  
0
–2  
–50 –25  
0
25  
50  
75  
100 125  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3611 G24  
3611 G23  
3611 G22  
RUN/SS Pin Current  
vs Temperature  
Undervoltage Lockout Threshold  
vs Temperature  
5.0  
4.5  
4.0  
3.5  
4.0  
3.5  
3.0  
2.5  
LATCHOFF ENABLE  
LATCHOFF THRESHOLD  
3.0  
2.0  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3611 G25  
3611 G26  
3611fb  
7
LTC3611  
PIN FUNCTIONS  
PGND (Pins 1, 2, 3, 56, 57, 58, 59, 60, 61, 62, 63, 64,  
V
(Pin 37): Current Limit Range Input. The voltage  
RNG  
65): Power Ground. Connect this pin closely to the (–)  
at this pin adjusts maximum valley current and can be  
set from 0.7V to 1V by a resistive divider from INTV .  
terminal of C  
and the (–) terminal of C .  
VCC  
IN  
CC  
It defaults to 0.7V if the V  
results in a typical 10A current limit.  
I (Pin38):CurrentControlThresholdandErrorAmplifier  
TH  
Compensation Point. The current comparator threshold  
increases with this control voltage. The voltage ranges  
from 0V to 2.4V with 0.8V corresponding to zero sense  
voltage (zero current).  
pin is tied to ground which  
RNG  
SW (Pins 4, 5, 6, 7, 8, 9, 10, 11, 26, 55, 66): Switch  
Node Connection to the Inductor. The (–) terminal of the  
bootstrapcapacitorC alsoconnectshere.Thispinswings  
B
from a diode voltage drop below ground up to V .  
IN  
PV (Pins 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,  
IN  
23, 24, 25, 67): Main Input Supply. Decouple this pin to  
power PGND with the input capacitance C .  
IN  
FCB (Pin 39): Forced Continuous Input. Tie this pin to  
NC (Pin 27): No Connection.  
ground to force continuous synchronous operation at low  
SGND (Pins 28, 31, 32, 33, 34, 40, 42, 45, 46, 47, 48,  
49, 50, 68): Signal Ground. All small-signal components  
and compensation components should connect to this  
ground, which in turn connects to PGND at one point.  
load,toINTV to enable discontinuous mode operation at  
CC  
low load or to a resistive divider from a secondary output  
when using a secondary winding.  
I
(Pin41):On-TimeCurrentInput.TiearesistorfromV  
IN  
ON  
BOOST (Pin 29): Boosted Floating Driver Supply. The  
to this pin to set the one-shot timer current and thereby  
(+) terminal of the bootstrap capacitor C connects here.  
set the switching frequency.  
B
This pin swings from a diode voltage drop below INTV  
CC  
V
(Pin 43): Error Amplifier Feedback Input. This pin  
FB  
up to V + INTV .  
IN  
CC  
connects the error amplifier input to an external resistive  
RUN/SS (Pin 30): Run Control and Soft-Start Input. A  
capacitor to ground at this pin sets the ramp time to full  
output current (approximately 3s/μF) and the time delay  
for overcurrent latchoff (see Applications Information).  
Forcing this pin below 0.8V shuts down the device.  
divider from V  
.
OUT  
EXTV (Pin 44): External V Input. When EXTV ex-  
CC  
CC  
CC  
ceeds 4.7V, an internal switch connects this pin to INTV  
CC  
andshutsdowntheinternalregulatorsothatcontrollerand  
gate drive power is drawn from EXTV . Do not exceed  
CC  
V
(Pin 35): On-Time Voltage Input. Voltage trip point  
7V at this pin and ensure that EXTV < V .  
ON  
CC  
IN  
for the on-time comparator. Tying this pin to the output  
SV (Pins 51, 52): Supply pin for internal PWM controller.  
IN  
volt-age or an external resistive divider from the output  
makes the on-time proportional to V . The compara-  
INTV (Pins 53, 54): Internal 5V Regulator Output. The  
OUT  
CC  
tor input defaults to 0.7V when the pin is grounded and  
driver and control circuits are powered from this voltage.  
Decouple this pin to power ground with a minimum of  
4.7μF low ESR tantalum or ceramic capacitor.  
defaults to 2.4V when the pin is tied to INTV . Tie this  
CC  
pin to INTV in high V  
R
applications to use a lower  
CC  
OUT  
value.  
ON  
PGOOD (Pin 36): Power Good Output. Open drain logic  
output that is pulled to ground when the output voltage  
is not within 10% of the regulation point.  
3611fb  
8
LTC3611  
FUNCTIONAL DIAGRAM  
R
ON  
SV  
V
ON  
35  
I
FCB  
39  
EXTV  
44  
IN  
ON  
CC  
41  
51, 52  
4.7V  
PV  
IN  
0.7V  
2.4V  
1ꢀA  
+
12, 13, 14, 15,  
16, 17, 18, 19,  
20, 21, 22, 23,  
24, 25, 67  
0.6V  
REF  
C
IN  
0.6V  
5V  
REG  
INTV  
CC  
+
53, 54  
F
BOOST  
29  
V
I
VON  
ION  
t
=
(10pF)  
R
S
ON  
C
B
Q
FCNT  
M1  
ON  
L1  
20k  
D
B
SW  
+
+
V
OUT  
4, 5, 6, 7, 8, 9,  
10, 11, 26, 55,  
66  
SWITCH  
LOGIC  
I
I
REV  
CMP  
SHDN  
OV  
+
1.4V  
0.7V  
1
C
OUT  
M2  
C
VCC  
V
RNG  
37  
PGND  
×
1, 2, 3, 56, 57,  
58, 59, 60, 61,  
62, 63, 64, 65  
(0.5 TO 2)  
36  
PGOOD  
R2  
0.54V  
240k  
+
1V  
Q2 Q4  
UV  
Q6  
I
THB  
43  
V
FB  
Q3 Q1  
R1  
+
OV  
SGND  
+
0.66V  
0.8V  
28, 31, 32, 33, 34,  
40, 42, 45, 46, 47,  
48, 49, 50, 68  
RUN  
SHDN  
SS  
+
1.2ꢀA  
EA  
×3.3  
NC  
+
27  
6V  
0.6V  
0.4V  
38  
30  
3611 FD  
I
RUN/SS  
TH  
C
SS  
3611fb  
9
LTC3611  
OPERATION  
Main Control Loop  
Overvoltage and undervoltage comparators OV and UV  
pull the PGOOD output low if the output feedback volt-  
age exits a 10% window around the regulation point.  
Furthermore, in an overvoltage condition, M1 is turned  
off and M2 is turned on and held on until the overvoltage  
condition clears.  
The LTC3611 is a high efficiency monolithic synchronous,  
step-down DC/DC converter utilizing a constant on-time,  
currentmodearchitecture.Itoperatesfromaninputvoltage  
rangeof4.5Vto32Vandprovidesaregulatedoutputvoltage  
at up to 10A of output current. The internal synchronous  
powerswitchincreasesefficiencyandeliminatestheneed  
for an external Schottky diode. In normal operation, the  
top MOSFET is turned on for a fixed interval determined  
by a one-shot timer OST. When the top MOSFET is turned  
off, the bottom MOSFET is turned on until the current  
Foldback current limiting is provided if the output is  
shorted to ground. As V drops, the buffered current  
FB  
threshold voltage I  
is pulled down by clamp Q3 to  
THB  
a 1V level set by Q4 and Q6. This reduces the inductor  
valley current level to one sixth of its maximum value as  
comparator I  
trips, restarting the one-shot timer and  
V
approaches 0V.  
CMP  
FB  
initiating the next cycle. Inductor current is determined  
by sensing the voltage between the PGND and SW pins  
using the bottom MOSFET on-resistance. The voltage on  
Pulling the RUN/SS pin low forces the controller into its  
shutdown state, turning off both M1 and M2. Releasing  
the pin allows an internal 1.2μA current source to charge  
the I pin sets the comparator threshold corresponding  
TH  
up an external soft-start capacitor C . When this voltage  
SS  
to inductor valley current. The error amplifier EA adjusts  
reaches1.5V,thecontrollerturnsonandbeginsswitching,  
this voltage by comparing the feedback signal V from  
FB  
but with the I voltage clamped at approximately 0.6V  
TH  
the output voltage with an internal 0.6V reference. If the  
below the RUN/SS voltage. As C continues to charge,  
SS  
load current increases, it causes a drop in the feedback  
the soft-start current limit is removed.  
voltage relative to the reference. The I voltage then  
TH  
rises until the average inductor current again matches  
INTV /EXTV Power  
CC  
CC  
the load current.  
PowerforthetopandbottomMOSFETdriversandmostof  
the internal controller circuitry is derived from the INTV  
At light load, the inductor current can drop to zero and  
become negative. This is detected by current reversal  
CC  
pin. The top MOSFET driver is powered from a floating  
bootstrap capacitor C . This capacitor is recharged from  
INTV throughanexternalSchottkydiodeD whenthetop  
MOSFET is turned off. When the EXTV pin is grounded,  
comparator I  
which then shuts off M2 (see Func-  
REV  
B
tionalDiagram),resultingindiscontinuousoperation.Both  
CC  
B
switcheswillremainoffwiththeoutputcapacitorsupplying  
the load current until the I voltage rises above the zero  
CC  
TH  
an internal 5V low dropout regulator supplies the INTV  
CC  
current level (0.8V) to initiate another cycle. Discontinu-  
ous mode operation is disabled by comparator F when  
the FCB pin is brought below 0.6V, forcing continuous  
synchronous operation.  
power from V . If EXTV rises above 4.7V, the internal  
IN  
CC  
regulator is turned off, and an internal switch connects  
EXTV to INTV . This allows a high efficiency source  
CC  
CC  
connected to EXTV , such as an external 5V supply or  
CC  
a secondary output from the converter, to provide the  
INTV power. Voltages up to 7V can be applied to EX T V  
The operating frequency is determined implicitly by the  
top MOSFET on-time and the duty cycle required to main-  
tain regulation. The one-shot timer generates an on-time  
that is proportional to the ideal duty cycle, thus holding  
CC  
CC  
for additional gate drive. If the input voltage is low and  
INTV drops below 3.5V, undervoltage lockout circuitry  
CC  
prevents the power switches from turning on.  
frequency approximately constant with changes in V .  
IN  
The nominal frequency can be adjusted with an external  
resistor R .  
ON  
3611fb  
10  
LTC3611  
APPLICATIONS INFORMATION  
ThebasicLTC3611applicationcircuitisshownonthefront  
page of this data sheet. External component selection is  
primarily determined by the maximum load current. The  
LTC3611usestheon-resistanceofthesynchronouspower  
MOSFETfordeterminingtheinductorcurrent.Thedesired  
amount of ripple current and operating frequency also  
Operating Frequency  
The choice of operating frequency is a tradeoff between  
efficiency and component size. Low frequency operation  
improves ef ficiency by reducing MOSFET switching losses  
butrequireslargerinductanceand/orcapacitanceinorder  
to maintain low output ripple voltage.  
determinestheinductorvalue.Finally,C isselectedforits  
IN  
The operating frequency of LTC3611 applications is de-  
termined implicitly by the one-shot timer that controls the  
ability to handle the large RMS current into the converter  
and C  
is chosen with low enough ESR to meet the  
OUT  
on-time t of the top MOSFET switch. The on-time is set  
output voltage ripple and transient specification.  
ON  
by the current into the I pin and the voltage at the V  
ON  
ON  
V
ON  
and PGOOD  
pin according to:  
The LTC3611 has an open-drain PGOOD output that  
indicates when the output voltage is within 10% of the  
V
tON  
=
VON (10pF)  
IION  
regulation point. The LTC3611 also has a V pin that  
ON  
allows the on-time to be adjusted. Tying the V pin high  
ON  
Tying a resistor R from V to the I pin yields an  
ON  
IN  
ON  
resultsinlowervaluesforR which is useful in high V  
ON  
OUT  
on-time inversely proportional to V . The current out of  
IN  
applications. The V pin also provides a means to adjust  
ON  
the I pin is:  
ON  
the on-time to maintain constant frequency operation in  
V
applications where V  
changes and to correct minor  
IN  
OUT  
I
=
ION  
frequency shifts with changes in load current.  
RON  
V
Pin and I Adjust  
For a step-down converter, this results in approximately  
constant frequency operation as the input supply varies:  
RNG  
LIMIT  
The V  
pin is used to adjust the maximum inductor  
RNG  
valley current, which in turn determines the maximum  
average output current that the LTC3611 can deliver. The  
maximum output current is given by:  
VOUT  
VVON RON(10pF)  
f =  
[Hz]  
I
= I  
+ 1/2 ΔI ,  
Toholdfrequencyconstantduringoutputvoltagechanges,  
OUT(MAX)  
VALLEY(MAX)  
L
tie the V pin to V or to a resistive divider from V  
ON  
OUT  
OUT  
OUT  
The I  
CurrentLimitvsV  
Characteristics.  
is shown in the figure “Maximum Valley  
VALLEY(MAX)  
when V  
> 2.4V. The V pin has internal clamps that  
ON  
VoltageintheTypicalPerformance  
RNG  
limit its input to the one-shot timer. If the pin is tied below  
0.7V,theinputtotheone-shotisclampedat0.7V.Similarly,  
if the pin is tied above 2.4V, the input is clamped at 2.4V.  
An external resistor divider from INTV can be used to  
set the voltage on the V  
be simply tied to ground force a default value equivalent  
to 0.7V. Do not float the V pin.  
CC  
pin from 1V to 1.4V, or it can  
In high V  
applications, tying V to INTV so that  
RNG  
OUT  
ON CC  
the comparator input is 2.4V results in a lower value for  
R . Figures 1a and 1b show how R relates to switching  
RNG  
ON  
ON  
frequency for several common output voltages.  
3611fb  
11  
LTC3611  
APPLICATIONS INFORMATION  
1000  
ascurrentincreases, constantfrequencyoperationcanbe  
maintained. This is accomplished with a resistive divider  
from the I pin to the V pin and V . The values  
TH  
ON  
OUT  
required will depend on the parasitic resistances in the  
V
OUT  
= 3.3V  
specific application. A good starting point is to feed about  
V
OUT  
= 1.5V  
V
OUT  
= 2.5V  
25% of the voltage change at the I pin to the V pin  
TH  
ON  
as shown in Figure 2a. Place capacitance on the V pin  
ON  
to filter out the I variations at the switching frequency.  
TH  
The resistor load on I reduces the DC gain of the error  
TH  
amp and degrades load regulation, which can be avoided  
100  
100  
1000  
(kΩ)  
10000  
by using the PNP emitter follower of Figure 2b.  
R
ON  
3611 F01a  
Minimum Off-time and Dropout Operation  
Figure 1a. Switching Frequency vs RON (VON = 0V)  
The minimum off-time t  
is the smallest amount of  
OFF(MIN)  
1000  
time that the LTC3611 is capable of turning on the bottom  
MOSFET, tripping the current comparator and turning the  
MOSFET back off. This time is generally about 250ns.  
The minimum off-time limit imposes a maximum duty  
V
= 12V  
OUT  
V
= 5V  
OUT  
cycle of t /(t  
t
). If the maximum duty cycle  
ON ON + OFF(MIN)  
V
OUT  
= 3.3V  
is reached, due to a dropping input voltage for example,  
then the output will drop out of regulation. The minimum  
input voltage to avoid dropout is:  
t
ON + tOFF(MIN)  
100  
VIN(MIN) = VOUT  
100  
1000  
(kΩ)  
10000  
tON  
R
ON  
3611 F01b  
Figure 1b. Switching Frequency vs RON (VON = INTVCC  
)
A plot of maximum duty cycle vs frequency is shown in  
Figure 3.  
Because the voltage at the I pin is about 0.7V, the cur-  
ON  
rent into this pin is not exactly inversely proportional to  
Setting the Output Voltage  
V , especially in applications with lower input voltages.  
IN  
The LTC3611 develops a 0.6V reference voltage between  
To correct for this error, an additional resistor R  
con-  
ON2  
the feedback pin, V , and the signal ground as shown in  
FB  
nectedfromtheI pintothe5VINTV supply will fur ther  
ON  
CC  
Figure 6. The output voltage is set by a resistive divider  
stabilize the frequency.  
according to the following formula:  
5V  
0.7V  
RON2  
=
RON  
R2  
R1  
VOUT = 0.6V 1+  
Changes in the load current magnitude will also cause  
frequency shift. Parasitic resistance in the MOSFET  
switches and inductor reduce the effective voltage across  
the inductance, resulting in increased duty cycle as the  
loadcurrentincreases.Bylengtheningtheon-timeslightly  
Toimprovethefrequencyresponse,afeedforwardcapaci-  
tor C1 may also be used. Great care should be taken to  
route the V line away from noise sources, such as the  
FB  
inductor or the SW line.  
3611fb  
12  
LTC3611  
APPLICATIONS INFORMATION  
R
VON1  
ripple. Highest efficiency operation is obtained at low  
frequency with small ripple current. However, achieving  
this requires a large inductor. There is a tradeoff between  
component size, efficiency and operating frequency.  
30k  
V
V
OUT  
ON  
C
VON  
R
VON2  
100k  
0.01ꢀF  
LTC3611  
R
C
I
TH  
A reasonable starting point is to choose a ripple current  
C
C
that is about 40% of I  
. The largest ripple current  
OUT(MAX)  
occurs at the highest V . To guarantee that ripple current  
IN  
(2a)  
does not exceed a specified maximum, the inductance  
R
VON1  
3k  
should be chosen according to:  
V
V
ON  
OUT  
C
R
VON  
VON2  
10k  
ꢄ ꢁ  
VOUT  
f I  
VOUT  
0.01ꢀF  
10k  
LTC3611  
L =  
1ꢇ  
INTV  
ꢆ ꢃ  
CC  
R
C
V
ꢅ ꢂ  
L(MAX)  
IN(MAX)  
Q1  
2N5087  
I
TH  
C
C
3611 F02  
Once the value for L is known, the type of inductor must  
be selected. High efficiency converters generally cannot  
affordthecorelossfoundinlowcostpowderedironcores.  
A variety of inductors designed for high current, low volt-  
ageapplicationsareavailablefrommanufacturerssuchas  
Sumida, Panasonic, Coiltronics, Coilcraft and Toko.  
(2b)  
Figure 2. Correcting Frequency Shift with Load Current Changes  
2.0  
C and C  
Selection  
OUT  
IN  
1.5  
DROPOUT  
REGION  
The input capacitance C is required to filter the square  
IN  
wavecurrentatthedrainofthetopMOSFET.UsealowESR  
1.0  
0.5  
0
capacitor sized to handle the maximum RMS current.  
VOUT  
V
VOUT  
IN  
IRMS IOUT(MAX)  
–1  
V
IN  
0
0.25  
0.50  
0.75  
1.0  
This formula has a maximum at V = 2V , where  
IN  
OUT  
DUTY CYCLE (V /V  
)
OUT IN  
3611 F03  
I
= I  
/2. This simple worst-case condition is  
RMS  
OUT(MAX)  
Figure 3. Maximum Switching Frequency vs Duty Cycle  
commonly used for design because even significant de-  
viations do not offer much relief. Note that ripple current  
ratings from capacitor manufacturers are often based on  
only 2000 hours of life which makes it advisable to derate  
the capacitor.  
Inductor Selection  
Given the desired input and output voltages, the induc-  
tor value and operating frequency determine the ripple  
current:  
The selection of C  
is primarily determined by the ESR  
OUT  
requiredtominimizevoltagerippleandloadsteptransients.  
The output ripple ΔV  
is approximately bounded by:  
OUT  
OUT ꢄ  
V
VOUT  
f L  
I =  
1ꢇ  
L
1
V
IN  
VOUT ꢁ ꢀIL ESR+  
8fC  
OUT ꢆ  
Lower ripple current reduces core losses in the inductor,  
ESR losses in the output capacitors and output voltage  
3611fb  
13  
LTC3611  
APPLICATIONS INFORMATION  
Since ΔI increases with input voltage, the output ripple  
Discontinuous Mode Operation and FCB Pin  
L
is highest at maximum input voltage. Typically, once the  
ESR requirement is satisfied, the capacitance is adequate  
for filtering and has the necessary RMS current rating.  
The FCB pin determines whether the bottom MOSFET  
remains on when current reverses in the inductor. Tying  
this pin above its 0.6V threshold enables discontinuous  
operation where the bottom MOSFET turns off when in-  
ductor current reverses. The load current at which current  
reverses and discontinuous operation begins depends on  
the amplitude of the inductor ripple current and will vary  
Multiple capacitors placed in parallel may be needed to  
meet the ESR and RMS current handling requirements.  
Dry tantalum, special polymer, aluminum electrolytic and  
ceramiccapacitorsareallavailableinsurfacemountpack-  
ages. Special polymer capacitors offer very low ESR but  
havelowercapacitancedensitythanothertypes.Tantalum  
capacitors have the highest capacitance density but it is  
important to only use types that have been surge tested  
foruseinswitchingpowersupplies.Aluminumelectrolytic  
capacitors have significantly higher ESR, but can be used  
incost-sensitiveapplicationsprovidingthatconsideration  
is given to ripple current ratings and long term reliability.  
Ceramic capacitors have excellent low ESR characteris-  
tics but can have a high voltage coefficient and audible  
piezoelectriceffects.ThehighQofceramiccapacitorswith  
traceinductancecanalsoleadtosignificantringing.When  
usedasinputcapacitors,caremustbetakentoensurethat  
ringing from inrush currents and switching does not pose  
an overvoltage hazard to the power switches and control-  
ler. To dampen input voltage transients, add a small 5μF  
to 50μF aluminum electrolytic capacitor with an ESR in  
the range of 0.5Ω to 2Ω. High performance through-hole  
capacitors may also be used, but an additional ceramic  
capacitor in parallel is recommended to reduce the effect  
of their lead inductance.  
with changes in V . Tying the FCB pin below the 0.6V  
IN  
threshold forces continuous synchronous operation, al-  
lowing current to reverse at light loads and maintaining  
high frequency operation.  
In addition to providing a logic input to force continuous  
operation, the FCB pin provides a means to maintain a  
flyback winding output when the primary is operating  
in discontinuous mode. The secondary output V  
is  
OUT2  
normally set as shown in Figure 4 by the turns ratio N  
of the transformer. However, if the controller goes into  
discontinuous mode and halts switching due to a light  
primary load current, then V  
will droop. An external  
OUT2  
resistor divider from V  
to the FCB pin sets a minimum  
OUT2  
voltage V  
below which continuous operation is  
has risen above its minimum:  
OUT2(MIN)  
forced until V  
OUT2  
R4  
R3  
VOUT2(MIN) = 0.6V 1+  
Fault Conditions: Current Limit and Foldback  
The LTC3611 has a current mode controller which inher-  
ently limits the cycle-by-cycle inductor current not only  
in steady state operation but also in transient. To further  
limit current in the event of a short circuit to ground, the  
LTC3611 includes foldback current limiting. If the output  
fallsbymorethan25%,thenthemaximumsensevoltageis  
progressively lowered to about one sixth of its full value.  
Top MOSFET Driver Supply (C , D )  
B
B
AnexternalbootstrapcapacitorC connectedtotheBOOST  
B
pinsuppliesthegatedrivevoltageforthetopsideMOSFET.  
This capacitor is charged through diode D from INTV  
B
CC  
when the switch node is low. When the top MOSFET turns  
on, the switch node rises to V and the BOOST pin rises  
IN  
toapproximatelyV +INTV . Theboostcapacitorneeds  
IN  
CC  
INTV Regulator and EXTV Connection  
CC  
CC  
to store about 100 times the gate charge required by the  
top MOSFET. In most applications an 0.1μF to 0.47μF, X5R  
or X7R dielectric capacitor is adequate.  
An internal P-channel low dropout regulator produces the  
5V supply that powers the drivers and internal circuitry  
withintheLTC3611.TheINTV pincansupplyupto50mA  
CC  
3611fb  
14  
LTC3611  
APPLICATIONS INFORMATION  
SW  
PGND  
SGND  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
IN4148  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGND  
SGND  
SGND  
SGND  
SGND  
V
OUT2  
PGND  
PGND  
SW  
+
C
SEC  
1ꢀF  
3
4
V
OUT1  
T1  
1:N  
5
+
SW  
EXTV  
CC  
C
OUT  
6
SW  
V
FB  
7
SW  
SGND  
R4  
8
SW  
I
ON  
LTC3611  
9
SW  
SGND  
FCB  
OPTIONAL EXTV  
CC  
10  
11  
12  
13  
14  
15  
16  
SW  
CONNECTION  
5V < V < 7V  
OUT2  
SW  
I
TH  
V
IN  
PV  
PV  
PV  
PV  
PV  
V
RNG  
IN  
IN  
IN  
IN  
IN  
+
R3  
PGOOD  
C
IN  
V
ON  
SGND  
SGND  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
3611 F04  
SGND  
SW  
Figure 4. Secondary Output Loop and EXTVCC Connection  
3. EXTV connectedtoanoutputderivedboostnetwork.  
RMS and must be bypassed to ground with a minimum of  
4.7μF tantalum or ceramic capacitor. Good bypassing is  
necessary to supply the high transient currents required  
by the MOSFET gate drivers.  
CC  
The low voltage output can be boosted using a charge  
pump or flyback winding to greater than 4.7V. The system  
will start-up using the internal linear regulator until the  
boosted output supply is available.  
TheEXTV pin can be used to provide MOSFET gate drive  
CC  
and control power from the output or another external  
Soft-Start and Latchoff with the RUN/SS Pin  
source during normal operation. Whenever the EXTV  
CC  
The RUN/SS pin provides a means to shut down the  
LTC3611 as well as a timer for soft-start and overcurrent  
latchoff. Pulling the RUN/SS pin below 0.8V puts the  
pin is above 4.7V the internal 5V regulator is shut off and  
an internal 50mA P-channel switch connects the EXTV  
CC  
pin to INTV . INTV power is supplied from EXTV  
CC  
CC  
CC  
LTC3611 into a low quiescent current shutdown (I <  
Q
until this pin drops below 4.5V. Do not apply more than  
7V to the EXTV pin and ensure that EXTV ≤ V . The  
30μA). Releasing the pin allows an internal 1.2μA current  
CC  
CC  
IN  
source to charge up the external timing capacitor C . If  
SS  
following list summarizes the possible connections for  
RUN/SS has been pulled all the way to ground, there is a  
EXTV :  
CC  
delay before starting of about:  
1. EXTV grounded. INTV is always powered from the  
CC  
CC  
internal 5V regulator.  
1.5V  
1.2μA  
tDELAY  
=
C = 1.3s/μF C  
SS SS  
(
)
2. EXTV connectedtoanexternalsupply.Ahighefficiency  
CC  
supply compatible with the MOSFET gate drive require-  
When the voltage on RUN/SS reaches 1.5V, the LTC3611  
ments (typically 5V) can improve overall efficiency.  
begins operating with a clamp on I of approximately  
TH  
3611fb  
15  
LTC3611  
APPLICATIONS INFORMATION  
0.9V. As the RUN/SS voltage rises to 3V, the clamp on I  
is raised until its full 2.4V range is available. This takes an  
additional 1.3s/μF, during which the load current is folded  
back until the output reaches 75% of its final value.  
INTV  
CC  
R
TH  
*
SS  
V
IN  
RUN/SS  
3.3V OR 5V  
RUN/SS  
*
D2*  
R
SS  
D1  
After the controller has been started and given adequate  
2N7002  
C
SS  
C
SS  
time to charge up the output capacitor, C is used as a  
SS  
3611 F05  
short-circuittimer.AftertheRUN/SSpinchargesabove4V,  
iftheoutputvoltagefallsbelow75%ofitsregulatedvalue,  
then a short-circuit fault is assumed. A 1.8μA current then  
*OPTIONAL TO OVERRIDE  
OVERCURRENT LATCHOFF  
(5a)  
(5b)  
beginsdischargingC . Ifthefaultconditionpersistsuntil  
SS  
Figure 5. RUN/SS Pin Interfacing with Latchoff Defeated  
the RUN/SS pin drops to 3.5V, then the controller turns  
off both power MOSFETs, shutting down the converter  
permanently. The RUN/SS pin must be actively pulled  
down to ground in order to restart operation.  
Efficiency Considerations  
The percent efficiency of a switching regulator is equal to  
the output power divided by the input power times 100%.  
It is often useful to analyze individual losses to determine  
what is limiting the efficiency and which change would  
produce the most improvement. Although all dissipative  
elements in the circuit produce losses, four main sources  
account for most of the losses in LTC3611 circuits:  
Theovercurrentprotectiontimerrequiresthatthesoft-start  
timing capacitor C be made large enough to guarantee  
SS  
thattheoutputisinregulationbythetimeC hasreached  
SS  
the 4V threshold. In general, this will depend upon the  
size of the output capacitance, output voltage and load  
current characteristic. A minimum soft-start capacitor  
can be estimated from:  
2
1. DC I R losses. These arise from the resistance of the  
internalresistanceoftheMOSFETs,inductorandPCboard  
traces and cause the efficiency to drop at high output  
currents. In continuous mode the average output current  
flows through L, but is chopped between the top and bot-  
–4  
C
> C  
V
R
(10 [F/V s])  
SS  
OUT OUT SENSE  
Generally 0.1μF is more than sufficient.  
Overcurrentlatchoffoperationisnotalwaysneededorde-  
sired. Loadcurrentisalreadylimitedduringashort-circuit  
by the current foldback circuitry and latchoff operation  
can prove annoying during troubleshooting. The feature  
can be overridden by adding a pull-up current greater than  
5μA to the RUN/SS pin. The additional current prevents  
tom MOSFETs. If the two MOSFETs have approximately  
2
the same R  
, then the DC I R loss for one MOSFET  
DS(ON)  
can simply be determined by [R  
+ R ] • I .  
DS(ON)  
L O  
2. Transition loss. This loss arises from the brief amount  
of time the top MOSFET spends in the saturated region  
during switch node transitions. It depends upon the  
input voltage, load current, driver strength and MOSFET  
capacitance, among other factors. The loss is significant  
at input voltages above 20V and can be estimated from:  
the discharge of C during a fault and also shortens  
SS  
the soft-start period. Using a resistor to V as shown  
IN  
in Figure 5a is simple, but slightly increases shutdown  
current. Connecting a resistor to INTV as shown in  
CC  
–1  
2
Figure 5b eliminates the additional shutdown current,  
Transition Loss (1.7A ) V  
I
C
f
IN OUT RSS  
but requires a diode to isolate C . Any pull-up network  
SS  
3. INTV current. This is the sum of the MOSFET driver  
CC  
must be able to pull RUN/SS above the 4.2V maximum  
threshold of the latchoff circuit and overcome the 4μA  
maximum discharge current.  
and control currents. This loss can be reduced by sup-  
plying INTV current through the EXTV pin from a  
CC  
CC  
high efficiency source, such as an output derived boost  
network or alternate supply if available.  
3611fb  
16  
LTC3611  
APPLICATIONS INFORMATION  
4. C loss.Theinputcapacitorhasthedifficultjobofltering  
Selecting a standard value of 1μH results in a maximum  
ripple current of:  
IN  
the large RMS input current to the regulator. It must have  
2
a very low ESR to minimize the AC I R loss and sufficient  
2.5V  
550kHz 1μH  
2.5V  
12V  
capacitance to prevent the RMS current from causing ad-  
ditional upstream losses in fuses or batteries.  
IL =  
1–  
= 3.6A  
(
)(  
)
Other losses, including C  
conduction loss during dead time and inductor core loss  
generally account for less than 2% additional loss.  
ESR loss, Schottky diode D1  
OUT  
Next, set up V  
voltage and check the I  
. Tying  
RNG  
LIMIT  
V
to 1V will set the typical current limit to 15A, and  
RNG  
tying V  
to GND will result in a typical current around  
RNG  
IN  
10A. C is chosen for an RMS current rating of about 5A  
Whenmakingadjustmentstoimproveefficiency,theinput  
current is the best indicator of changes in efficiency. If  
you make a change and the input current decreases, then  
the efficiency has increased. If there is no change in input  
current, then there is no change in efficiency.  
at 85°C. The output capacitors are chosen for a low ESR  
of 0.013Ω to minimize output voltage changes due to  
inductor ripple current and load steps. The ripple voltage  
will be only:  
ΔV  
= ΔI  
(ESR)  
OUT(RIPPLE)  
L(MAX)  
Checking Transient Response  
= (3.6A) (0.013Ω) = 47mV  
The regulator loop response can be checked by looking  
at the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
However, a 0A to 10A load step will cause an output  
change of up to:  
a load step occurs, V  
immediately shifts by an amount  
ΔV  
= ΔI  
(ESR) = (10A) (0.013Ω) =130mV  
OUT  
OUT(STEP)  
LOAD  
equal to ΔI  
(ESR), where ESR is the effective series  
LOAD  
An optional 22μF ceramic output capacitor is included  
to minimize the effect of ESL in the output ripple. The  
complete circuit is shown in Figure 6.  
resistance of C . ΔI  
also begins to charge or dis-  
OUT  
LOAD  
chargeC  
generating a feedback error signal used by the  
OUT  
regulator to return V  
this recovery time, V  
to its steady-state value. During  
can be monitored for overshoot  
OUT  
OUT  
PC Board Layout Checklist  
or ringing that would indicate a stability problem. The I  
TH  
When laying out a PC board follow one of the two sug-  
gested approaches. The simple PC board layout requires  
a dedicated ground plane layer. Also, for higher currents,  
a multilayer board is recommended to help with heat  
sinking of power components.  
pin external components shown in Figure 6 will provide  
adequate compensation for most applications. For a  
detailed explanation of switching control loop theory see  
Application Note 76.  
Design Example  
• The ground plane layer should not have any traces and  
it should be as close as possible to the layer with the  
LTC3611.  
As a design example, take a supply with the following  
specifications: V = 5V to 36V (12V nominal), V  
=
IN  
OUT  
2.5V 5%, I  
= 10A, f = 550kHz. First, calculate  
OUT(MAX)  
• Place C and C  
all in one compact area, close to  
OUT  
IN  
the timing resistor with V = V  
:
ON  
OUT  
the LTC3611. It may help to have some components  
2.5V  
on the bottom side of the board.  
RON  
=
=187k  
(2.4) 550kHz 10pF  
)(  
(
)
• Keep small-signal components close to the LTC3611.  
• Ground connections (including LTC3611 SGND and  
PGND) should be made through immediate vias to  
the ground plane. Use several larger vias for power  
components.  
and choose the inductor for about 40% ripple current at  
the maximum V :  
IN  
2.5V  
550kHz 0.4 10A  
2.5V  
36V  
L =  
1ꢀ  
=1μ H  
(
)( )(  
)
3611fb  
17  
LTC3611  
APPLICATIONS INFORMATION  
INTV  
CC  
V
IN  
C
0.1ꢀF  
50V  
F
C
4.7ꢀF  
6.3V  
VCC  
SW  
PGND  
SGND  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGND  
SGND  
SGND  
SGND  
SGND  
EXTV  
CC  
C4  
PGND  
PGND  
SW  
0.01ꢀF  
3
(OPTIONAL)  
C2  
R1  
9.5k  
1%  
R2  
30.1k  
1%  
V
OUT  
4
C1  
2.5V AT  
10A  
L1  
1ꢀH  
5
C5  
22ꢀF  
6.3V  
C
SW  
EXTV  
CC  
OUT1  
(OPTIONAL)  
V
OUT  
6
100ꢀF  
×2  
SW  
V
FB  
R
182k  
1%  
ON  
7
SW  
SGND  
(OPTIONAL)  
8
SW  
I
V
IN  
GND  
ON  
LTC3611  
9
C
ON  
0.01ꢀF  
SW  
SGND  
FCB  
(OPTIONAL)  
C
C1  
680pF  
10  
11  
12  
13  
14  
15  
16  
R5  
12.5k  
SW  
SW  
I
TH  
V
IN  
V
IN  
5V TO 32V  
PV  
PV  
PV  
PV  
PV  
V
RNG  
IN  
IN  
IN  
IN  
IN  
GND  
39.2k  
R3  
PGOOD  
+
C
C6  
100ꢀF  
50V  
IN  
11k  
V
ON  
4.7ꢀF  
50V  
×2  
C
C2  
100pF  
R
PG1  
100k  
SGND  
(OPTIONAL)  
R
VON  
0Ω  
INTV  
CC  
V
OUT  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
SGND  
SW  
2Ω  
R
SS1  
0.01ꢀF  
3611 F06  
510k  
C
C
L
= MURATA GRM32ER71H475K  
= MURATA GRM43SR60J107M  
V
IN  
OUT  
1
IN  
C
SS  
0.1ꢀF  
INTV  
CC  
(OPTIONAL)  
= COOPER HCP0703-IRO  
C
B1  
0.22ꢀF  
D
B
C5: MURATA GRM31CR60J226KE19  
CMDSH-3  
KEEP POWER AND SIGNAL GROUNDS SEPARATE.  
CONNECT TO ONE POINT.  
SW  
Figure 6. Design Example: 5V to 32V Input to 2.5V/10A at 550kHz  
• Useacompactplanefortheswitchnode(SW)toimprove  
cooling of the MOSFETs and to keep EMI down.  
• Segregate the signal and power grounds. All small  
signal components should return to the SGND pin at  
one point, which is then tied to the PGND pin.  
• Use planes for V and V  
to maintain good voltage  
IN  
OUT  
filtering and to keep power losses low.  
• Connect the input capacitor(s) C close to the IC. This  
IN  
capacitor carries the MOSFET AC current.  
• Flood all unused areas on all layers with copper. Flood-  
ing with copper reduces the temperature rise of power  
components. Connect these copper areas to any DC  
• Keep the high dV/dT SW, BOOST and TG nodes away  
from sensitive small-signal nodes.  
net (V , V , GND or to any other DC rail in your  
IN OUT  
• Connect the INTV decoupling capacitor C  
closely  
VCC  
CC  
system).  
to the INTV and PGND pins.  
CC  
When laying out a printed circuit board without a ground  
plane, use the following checklist to ensure proper opera-  
tion of the controller. These items are also illustrated in  
Figure 7.  
• Connect the top driver boost capacitor C closely to  
B
the BOOST and SW pins.  
• Connect the V pin decoupling capacitor C closely to  
IN  
F
the V and PGND pins.  
IN  
3611fb  
18  
LTC3611  
APPLICATIONS INFORMATION  
C
VCC  
SW  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGND  
SGND  
SGND  
SGND  
SGND  
PGND  
PGND  
SW  
3
R1  
R2  
4
5
SW  
EXTV  
CC  
C
OUT  
6
SW  
V
FB  
7
SW  
SGND  
R
ON  
8
SW  
I
ON  
LTC3611  
V
OUT  
9
SW  
SGND  
FCB  
10  
11  
12  
13  
14  
15  
16  
C
C1  
SW  
R
C
SW  
I
TH  
PV  
PV  
PV  
PV  
PV  
V
RNG  
IN  
IN  
IN  
IN  
IN  
PGOOD  
C
IN  
V
ON  
SGND  
C
C2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
D
B
C
C
SS  
B
R
F
3611 F07  
Figure 7. LTC3611 Layout Diagram  
3611fb  
19  
LTC3611  
TYPICAL APPLICATIONS  
3.3V Input to 1.5V/10A at 750kHz  
INTV  
CC  
C
0.1ꢀF  
50V  
F
C
4.7ꢀF  
6.3V  
VCC  
SW  
PGND  
SGND  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGND  
SGND  
SGND  
SGND  
SGND  
V
= 5V  
IN2  
C4  
0.01ꢀF  
PGND  
PGND  
SW  
3
(OPTIONAL)  
C2  
R2  
30.1k  
1%  
V
OUT  
4
R1  
20.43k  
1%  
C1  
1.5V AT  
10A  
L1  
0.47ꢀH  
5
C5  
22ꢀF  
6.3V  
C
SW  
EXTV  
CC  
OUT1  
(OPTIONAL)  
V
OUT  
6
100ꢀF  
×2  
SW  
V
FB  
R
113k  
1%  
ON  
7
SW  
SGND  
(OPTIONAL)  
8
SW  
I
V
IN  
GND  
ON  
LTC3611  
9
C
ON  
0.01ꢀF  
SW  
SGND  
FCB  
(OPTIONAL)  
C
C1  
1500pF  
10  
11  
12  
13  
14  
15  
16  
R5  
12.5k  
SW  
SW  
I
TH  
V
IN  
V
IN  
3.3V  
PV  
PV  
PV  
PV  
PV  
V
RNG  
IN  
IN  
IN  
IN  
IN  
GND  
39.2k  
PGOOD  
11k  
+
C
C6  
100ꢀF  
50V  
IN  
V
ON  
4.7ꢀF  
C
C2  
100pF  
R
PG1  
100k  
50V  
×2  
SGND  
(OPTIONAL)  
INTV  
CC  
V
OUT  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
SGND  
C
VON  
R
3611 TA02  
(OPTIONAL)  
SS1  
510k  
C
B1  
0.22ꢀF  
2Ω  
C5: TAIYO YUDEN JMK316BJ226ML-T  
V
IN  
C
C
: MURATA GRM31CR71H475K  
: MURATA GRM435R60J107M  
C
SS  
0.1ꢀF  
IN  
OUT1  
(OPTIONAL)  
INTV  
CC  
L1: TOKO FDV0630-R47M  
KEEP POWER AND SIGNAL GROUNDS SEPARATE.  
CONNECT TO ONE POINT.  
3611fb  
20  
LTC3611  
TYPICAL APPLICATIONS  
5V to 24V Input to 1.2V/10A at 550kHz  
INTV  
CC  
V
IN  
C
0.1ꢀF  
50V  
F
C
4.7ꢀF  
6.3V  
VCC  
SW  
PGND  
SGND  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGND  
SGND  
SGND  
SGND  
SGND  
EXTV  
CC  
C4  
PGND  
PGND  
SW  
0.01ꢀF  
3
(OPTIONAL)  
R2  
R1  
30k  
1%  
V
OUT  
4
C1  
30.1k  
1%  
C2  
1.2V AT  
10A  
L1  
0.47ꢀH  
5
C5  
22ꢀF  
6.3V  
C
SW  
EXTV  
CC  
OUT1  
V
(OPTIONAL)  
OUT  
IN  
6
100ꢀF  
×2  
SW  
V
FB  
R
182k  
1%  
ON  
7
SW  
SGND  
(OPTIONAL)  
8
SW  
I
V
GND  
ON  
LTC3611  
9
C
ON  
0.01ꢀF  
SW  
SGND  
FCB  
(OPTIONAL)  
C
C1  
10  
11  
12  
13  
14  
15  
16  
R5  
4.75k  
1500pF  
SW  
SW  
I
TH  
V
IN  
V
IN  
5V TO 24V  
PV  
PV  
PV  
PV  
PV  
V
RNG  
IN  
IN  
IN  
IN  
IN  
GND  
39.2k  
PGOOD  
11k  
+
C
C6  
100ꢀF  
50V  
IN  
V
ON  
4.7ꢀF  
50V  
×2  
C
C2  
100pF  
R
PG1  
100k  
SGND  
(OPTIONAL)  
INTV  
CC  
V
OUT  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
SGND  
SGND  
C
B1  
0.22ꢀF  
C
VON  
R
3611 TA03  
(OPTIONAL)  
SS1  
510k  
C5: TAIYO YUDEN JMK316BJ226ML-T  
INTV  
V
IN  
CC  
2Ω  
C
C
: MURATA GRM32ER71H475K  
: MURATA GRM435R60J167M  
C
SS  
0.1ꢀF  
IN  
OUT1  
(OPTIONAL)  
D
B
CMDSH-3  
L1: TOKO HCPO703-OR47  
KEEP POWER AND SIGNAL GROUNDS SEPARATE.  
CONNECT TO ONE POINT.  
3611fb  
21  
LTC3611  
TYPICAL APPLICATIONS  
5V to 28V Input to 1.8V/10A All Ceramic 1MHz  
INTV  
CC  
V
IN  
C
0.1ꢀF  
50V  
F
C
4.7ꢀF  
6.3V  
VCC  
SW  
PGND  
SGND  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGND  
SGND  
SGND  
SGND  
SGND  
EXTV  
CC  
C4  
0.01ꢀF  
PGND  
PGND  
SW  
3
(OPTIONAL)  
C2  
R1  
10k  
1%  
R2  
20k  
1%  
V
OUT  
C1  
4
1.8V AT  
10A  
47pF  
L1  
0.68ꢀH  
5
C5  
22ꢀF  
6.3V  
C
SW  
EXTV  
CC  
OUT  
V
OUT  
6
100ꢀF  
×2  
SW  
V
FB  
R
102k  
1%  
ON  
7
SW  
SGND  
(OPTIONAL)  
8
SW  
I
V
IN  
GND  
ON  
LTC3611  
9
C
ON  
0.01ꢀF  
SW  
SGND  
FCB  
(OPTIONAL)  
39.2k  
C
C1  
680pF  
10  
11  
12  
13  
14  
15  
16  
R5  
12.7k  
SW  
SW  
I
TH  
V
IN  
V
IN  
5V TO 28V  
PV  
PV  
PV  
PV  
PV  
V
RNG  
IN  
IN  
IN  
IN  
IN  
PGOOD  
9.31k  
C
IN  
V
ON  
4.7ꢀF  
50V  
×2  
C
C2  
100pF  
R
PG1  
SGND  
100k  
INTV  
CC  
V
OUT  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
SGND  
C
B1  
0.22ꢀF  
C
VON  
R
3611 TA04  
(OPTIONAL)  
SS1  
510k  
C
C
: MURATA GRM32ER60J107ME20L  
INTV  
V
IN  
OUT  
: MURATA GRM32ER71H475K  
CC  
2Ω  
C
SS  
0.1ꢀF  
IN  
(OPTIONAL)  
D
B
L1: VISHAY IHLP2525CZERR68M01  
KEEP POWER AND SIGNAL GROUNDS SEPARATE.  
CONNECT TO ONE POINT.  
CMDSH-3  
3611fb  
22  
LTC3611  
PACKAGE DESCRIPTION  
WP Package  
64-Lead QFN Multipad (9mm × 9mm)  
(Reference LTC DWG # 05-08-1812 Rev A)  
SEATING PLANE  
1.39  
3.30  
0.50  
A
0.00 – 0.05  
9.00  
BSC  
1.19  
49 50 51 52 53 54  
64  
0.20 REF  
0.30 – 0.50  
B
1.92  
48  
0.53  
(2x)  
1
PAD 1  
CORNER  
2.01  
3.06  
0.87  
3.50  
1.17  
0.30  
(2x)  
2.98  
3.60  
0.95  
5
4.53  
9.00  
BSC  
1.30  
1.81  
4.10  
3.30  
NX b  
3.99  
2.04  
33  
16  
WP64 QFN REV A 0707  
17  
32  
0.20 – 0.30  
aaa C 2x  
TOP VIEW  
1.42  
3.85  
0.90 ± 0.10  
NX  
// ccc C  
0.08 C  
BOTTOM VIEW  
(BOTTOM METALLIZATION DETAILS)  
6
3.30  
0.50  
1.39  
1.19  
0.30 – 0.50  
PIN1  
0.53  
(2x)  
1.92  
0.87  
3.50  
2.01  
NOTE:  
1.17  
3.06  
1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M-1994  
2. ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES (°)  
3. N IS THE TOTAL NUMBER OF TERMINALS  
4. THE LOCATION OF THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING  
CONVENTION CONFORMS TO JEDEC PUBLICATION 95 SPP-002  
0.30  
(2x)  
2.98  
1.30  
0.95  
5
6
DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED  
BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP.  
3.60  
4.53  
COPLANARITY APPLIES TO THE TERMINALS AND ALL OTHER SURFACE  
METALLIZATION  
1.81  
2.04  
4.10  
2.30  
SYMBOL TOLERANCE  
3.30  
aaa  
bbb  
ccc  
0.15  
0.10  
0.10  
3.99  
0.20 – 0.30  
3.85  
1.42  
RECOMMENDED SOLDER PAD LAYOUT  
TOP VIEW  
3611fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
t ion t h a t t he in ter c onne c t ion o f i t s cir cui t s a s de s cr ib e d her ein w ill no t in fr inge on ex is t ing p a ten t r igh t s.  
23  
LTC3611  
TYPICAL APPLICATION  
14V to 32V Input to 12V/5A at 500kHz  
C
VCC  
4.7ꢀF  
6.3V  
INTV  
V
CC  
IN  
C
0.1ꢀF  
50V  
F
SW  
PGND  
SGND  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
PGND  
SGND  
SGND  
SGND  
SGND  
EXTV  
CC  
C4  
0.01ꢀF  
PGND  
PGND  
SW  
3
(OPTIONAL)  
C2  
R1  
1.58k  
1%  
R2  
30.1k  
1%  
V
OUT  
4
C1  
12V AT  
5A  
L1  
4.7ꢀH  
5
+
C5  
22ꢀF  
25V  
C
SW  
EXTV  
CC  
OUT  
(OPTIONAL)  
V
OUT  
6
180ꢀF  
16V  
SW  
V
FB  
R
1M  
1%  
ON  
7
SW  
SGND  
(OPTIONAL)  
8
SW  
I
V
IN  
GND  
ON  
LTC3611  
9
C
ON  
0.01ꢀF  
SW  
SGND  
FCB  
(OPTIONAL)  
C
C1  
560pF  
10  
11  
12  
13  
14  
15  
16  
R5  
20k  
SW  
SW  
I
TH  
V
IN  
V
IN  
14V TO 32V  
PV  
IN  
PV  
IN  
PV  
IN  
PV  
IN  
PV  
IN  
V
RNG  
GND  
PGOOD  
+
C
C6  
100ꢀF  
50V  
IN  
V
4.7ꢀF  
50V  
×2  
ON  
C
C2  
100pF  
R
PG1  
SGND  
100k  
(OPTIONAL)  
INTV  
CC  
I
NTVCC  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
SGND  
C
R
SS1  
B1  
0.22ꢀF  
C
3611 TA05  
(OPTIONAL)  
VON  
510k  
INTV  
V
IN  
CC  
C
C
: GRM31CR71H475K  
IN  
C
SS  
0.1ꢀF  
: SANYO 16SVP180MX  
OUT  
(OPTIONAL)  
D
B
L1: HCP0703-4R7-R  
CMDSH-3  
RUN/SS  
KEEP POWER AND SIGNAL GROUNDS SEPARATE.  
CONNECT TO ONE POINT.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC1778  
LTC3411  
LTC3412  
LTC3414  
LTC3418  
LTC3610  
LTC3770  
No R  
Current Mode Synchronous Step-Down Controller Up to 97% Efficiency, V : 4V to 36V, 0.8V ≤ V  
≤ (0.9)(V ),  
OUT IN  
SENSE  
IN  
I
Up to 20A  
OUT  
1.25A (I ), 4MHz, Synchronous Step-Down DC/DC Converter 95% Efficiency, V : 2.5V to 5.5V, V : 0.8V, I : 60μA, I : <1μA,  
OUT  
IN  
OUT  
Q
SD  
MS Package  
95% Efficiency, V : 2.5V to 5.5V, V  
2.5A (I ) 4MHz Synchronous Step-Down DC/DC Converter  
: 0.8V, I : 60mA,  
Q
OUT  
IN  
OUT(MIN)  
I
: <1mA, TSSOP16E  
SD  
4A (I ), 4MHz, Synchronous Step-Down DC/DC Converter  
95% Efficiency, V : 2.25V to 5.5V, V  
SD  
= 0.8V, I = 64μA,  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
Q
I
: <1μA, TSSOP20E Package  
8A (I ), 4MHz, Synchronous Step-Down DC/DC Converter  
95% Efficiency, V : 2.25V to 5.5V, V  
= 0.8V, Thermally  
OUT  
IN  
Enhanced 38-Lead QFN Package  
12A Current Mode Monolithic Synchronous Step-Down Converter Up to 24V Input (28V Maximum), Current Mode Extremely Fast  
Transient Response  
Fast, No R  
Step-Down Synchronous Controller with  
0.67% 0.6V Reference Voltage; Programmable Margining;  
True Current Mode; 4V ≤ V ≤ 32V  
SENSE  
Margining, Tracking, PLL  
Low V , No R Synchronous Step-Down Controller  
IN  
LTC3778  
LT3800  
0.6V ≤ V  
≤ (0.9) V , 4V ≤ V ≤ 36V, I  
Up to 20A  
OUT  
OUT  
SENSE  
OUT  
IN  
IN  
60V Synchronous Step-Down Controller  
10A Complete Switch Mode Power Supply  
Current Mode, Output Slew Rate Control  
92% Efficiency, V : 4.5V to 28V, V : 0.6V, True Current Mode  
LTM4600HV  
IN  
OUT  
Control, Ultrafast Transient Response  
92% Efficiency, V : 4.5V to 28V, V : 0.6V, True Current Mode  
LTM4601HV  
LTM4602HV  
LTM4603HV  
12A Complete Switch Mode Power Supply  
6A Complete Switch Mode Power Supply  
6A Complete Switch Mode Power Supply  
IN  
OUT  
Control, Ultrafast Transient Response  
92% Efficiency, V : 4.5V to 28V, V : 0.6V, True Current Mode  
IN  
OUT  
Control, Ultrafast Transient Response  
93% Efficiency, V : 4.5V to 28V, with PLL, Output Tracking and Margining  
IN  
3611fb  
LT 0808 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY