LTC3676_15 [Linear]

Power Management Solution for Application Processors;
LTC3676_15
型号: LTC3676_15
厂家: Linear    Linear
描述:

Power Management Solution for Application Processors

文件: 总38页 (文件大小:559K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3676/LTC3676-1  
Power Management Solution  
for Application Processors  
FeaTures  
DescripTion  
2
The LTC®3676 is a complete power management solution  
for advanced portable application processor-based sys-  
tems. The device contains four synchronous step-down  
DC/DC converters for core, memory, I/O, and system  
on-chip (SoC) rails and three 300mA LDO regulators for  
low noise analog supplies. The LTC3676-1 has a 1.ꢀA  
buck regulator configured to support DDR termination  
n
Quad I C Adjustable High Efficiency Step Down  
DC/DC Converters: 2.5A, 2.5A, 1.5A, 1.5A  
n
Three 300mA LDO Regulators (Two Adjustable)  
n
DDR Power Solution with V and VTTR Reference  
TT  
n
n
n
n
n
n
n
n
n
Pushbutton ON/OFF Control with System Reset  
2
Independent Enable Pin-Strap or I C Sequencing  
Programmable Autonomous Power-Down Control  
Dynamic Voltage Scaling  
2
plus a VTTR reference output. An I C serial port is used  
Power Good and Reset Functions  
Selectable 2.2ꢀMHz or 1.12MHz Switching Frequency  
Always Alive 2ꢀmA LDO Regulator  
12µA Standby Current  
Low Profile 40-Lead 6mm 6mm QFN and 48-Lead  
Exposed Pad LQFP  
to control regulator enables, power-down sequencing,  
output voltage levels, dynamic voltage scaling, operating  
modes and status reporting.  
Regulator start-up is sequenced by connecting outputs to  
2
enable pins in the desired order or via the I C port. System  
power-on, power-off and reset functions are controlled by  
2
pushbutton interface, pin inputs, or I C.  
applicaTions  
The LTC3676 supports i.MX, PXA and OMAP processors  
with eight independent rails at appropriate power levels.  
Other features include interface signals such as the VSTB  
pin that toggles between programmed run and standby  
output voltages on up to four rails simultaneously. The  
device is available in a 40-lead 6mm 6mm QFN and  
48-lead exposed pad LQFP packages.  
n
Supports Freescale i.MX6, ARM Cortex, and Other  
Application Processors  
n
Handheld Instruments and Scanners  
n
Portable Industrial and Medical Devices  
n
Automotive Infotainment  
n
High End Consumer Devices  
n
Multi-Rail Systems  
L, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
Typical applicaTion  
V
IN  
2.7V TO 5.5V  
Start-Up Sequence  
V
1.5µH  
1.5µH  
1.5µH  
1.5µH  
IN  
V
V
ARM  
RTC  
3V  
WAKE  
LDO1  
SW3  
LTC3676-1  
LDO2  
1.38V  
2.5A  
25mA  
5V/DIV  
1µF  
1µF  
1µF  
47µF  
47µF  
47µF  
47µF  
V
DD(HIGH)  
V
SOC  
V
DD(HIGH)  
2.97V  
300mA  
SW2  
SW4  
SW1  
1.38V  
1.5A  
V
LDO3  
ARM  
1V/DIV  
1V/DIV  
V
V
1.5V  
2.5A  
(V )  
LDO3  
1.8V  
DDR DDQ  
V
AND V  
SOC  
LDO3  
LDO4  
300mA  
V
DDR  
AND V  
V
TT  
3V  
V
TT  
TTR  
1/2 V  
1.5A  
DDQ  
300mA  
1µF  
6
VTTR (1/2 V  
WAKE  
)
ENABLES VTTR  
PWR_ON WAKE  
DDQ  
3676 TA01b  
1ms/DIV  
ON  
PGOOD  
2
2
TO µPROCESSOR  
I C  
GND  
3676 TA01a  
3676fd  
1
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
absoluTe MaxiMuM raTings (Note 1)  
V , DV , SW1, SW2, SW3, SW4............... –0.3V to 6V  
WAKE, RSTO, PWR_ON, IRQ, VTTR,  
IN  
DD  
SW1, SW2, SW3, SW4  
VDDQIN ....................................................... –0.3V to 6V  
(Transient t < 1µs, Duty Cycle < ꢀ%)............... –2V to 7V  
SDA, SCL ......................................–0.3V to DV + 0.3V  
Operating Junction Temperature Range  
(Notes 2, 3)............................................ –40°C to 1ꢀ0°C  
Storage Temperature Range ......................–6ꢀ to 1ꢀ0°C  
DD  
PV , PV , PV , PV , V ,  
IN1  
IN2  
IN3  
IN4 IN_L2  
V
, V  
.................................. –0.3V to V + 0.3V  
IN_L3 IN_L4  
IN  
LDO1, FB_L1, LDO2, FB_L2, LDO3, LDO4, FB_L4,  
FB_B1, FB_B2, FB_B3, FB_B4, PGOOD, VSTB, EN_B1,  
EN_B2, EN_B3, EN_B4, EN_L2, EN_L3, EN_L4, ON,  
pin conFiguraTion  
LTC3676  
LTC3676-1  
TOP VIEW  
TOP VIEW  
40 39 38 37 36 35 34 33 32 31  
40 39 38 37 36 35 34 33 32 31  
FB_L2  
1
2
3
4
5
6
7
8
9
30  
29  
28  
27  
FB_L2  
1
2
3
4
5
6
7
8
9
30  
29  
28  
27  
EN_L2  
ON  
EN_L2  
ON  
V
V
IN_L2  
IN_L2  
LDO2  
LDO3  
LDO2  
LDO3  
LDO1  
LDO1  
V
V
IN  
IN  
V
V
26 FB_L1  
25  
26 FB_L1  
25  
IN_L3  
IN_L3  
41  
GND  
41  
GND  
LDO4  
LDO4  
FB_B2  
24 FB_B1  
23  
FB_B2  
24 FB_B1  
V
V
IN_L4  
IN_L4  
FB_L4  
EN_L4  
VDDQIN  
VTTR  
23  
22  
21  
FB_B4  
22 FB_B3  
21  
FB_B4  
FB_B3  
EN_L3 10  
EN_L3 10  
PWR_ON  
PWR_ON  
11 12 13 14 15 16 17 18 19 20  
11 12 13 14 15 16 17 18 19 20  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
UJ PACKAGE  
40-LEAD (6mm × 6mm) PLASTIC QFN  
T
= 1ꢀ0°C, = 33°C/W  
T
= 1ꢀ0°C, = 33°C/W  
JMAX JA  
JMAX  
JA  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 41) IS GND, MUST BE SOLDERED TO PCB  
LTC3676  
LTC3676-1  
TOP VIEW  
TOP VIEW  
NC  
1
2
3
4
5
6
7
8
9
36 NC  
NC  
1
2
3
4
5
6
7
8
9
36 NC  
FB_L2  
35 EN_L2  
34 ON  
FB_L2  
35 EN_L2  
34 ON  
V
V
IN_L2  
IN_L2  
LDO2  
33 LDO1  
LDO2  
33 LDO1  
LDO3  
32 V  
LDO3  
32 V  
IN  
IN  
49  
GND  
V
V
31 FB_L1  
30 FB_B2  
29 FB_B1  
28 FB_B4  
27 FB_B3  
26 PWR_ON  
25 NC  
49  
GND  
IN_L3  
V
V
31 FB_L1  
30 FB_B2  
29 FB_B1  
28 FB_B4  
27 FB_B3  
26 PWR_ON  
25 NC  
IN_L3  
LD04  
LD04  
IN_L4  
IN_L4  
FB_L4  
VDDQIN  
EN_L4 10  
EN_L3 11  
NC 12  
VTTR 10  
EN_L3 11  
NC 12  
LXE PACKAGE  
48-LEAD (7mm × 7mm) PLASTIC LQFP  
LXE PACKAGE  
48-LEAD (7mm × 7mm) PLASTIC LQFP  
T
= 1ꢀ0°C, = 19°C/W  
T
= 1ꢀ0°C, = 19°C/W  
JMAX JA  
JMAX  
JA  
EXPOSED PAD (PIN 49) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 49) IS GND, MUST BE SOLDERED TO PCB  
3676fd  
2
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
orDer inForMaTion  
LEAD FREE FINISH  
LTC3676EUJ#PBF  
LTC3676IUJ#PBF  
LTC3676HUJ#PBF  
LTC3676EUJ-1#PBF  
LTC3676IUJ-1#PBF  
LTC3676HUJ-1#PBF  
TAPE AND REEL  
PART MARKING*  
LTC3676UJ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 12ꢀ°C  
–40°C to 12ꢀ°C  
–40°C to 1ꢀ0°C  
–40°C to 12ꢀ°C  
–40°C to 12ꢀ°C  
–40°C to 1ꢀ0°C  
LTC3676EUJ#TRPBF  
LTC3676IUJ#TRPBF  
LTC3676HUJ#TRPBF  
LTC3676EUJ-1#TRPBF  
LTC3676IUJ-1#TRPBF  
LTC3676HUJ-1#TRPBF  
40-Lead (6mm 6mm) Plastic QFN  
40-Lead (6mm 6mm) Plastic QFN  
40-Lead (6mm 6mm) Plastic QFN  
40-Lead (6mm 6mm) Plastic QFN  
40-Lead (6mm 6mm) Plastic QFN  
40-Lead (6mm 6mm) Plastic QFN  
LTC3676UJ  
LTC3676UJ  
LTC3676UJ-1  
LTC3676UJ-1  
LTC3676UJ-1  
LEAD FREE FINISH  
LTC3676ELXE#PBF  
LTC3676ILXE#PBF  
LTC3676HLXE#PBF  
LTC3676ELXE-1#PBF  
LTC3676ILXE-1#PBF  
LTC3676HLXE-1#PBF  
TRAY  
PART MARKING*  
LTC3676LXE  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 12ꢀ°C  
–40°C to 12ꢀ°C  
–40°C to 1ꢀ0°C  
–40°C to 12ꢀ°C  
–40°C to 12ꢀ°C  
–40°C to 1ꢀ0°C  
LTC3676ELXE#PBF  
LTC3676ILXE#PBF  
LTC3676HLXE#PBF  
LTC3676ELXE-1#PBF  
LTC3676ILXE-1#PBF  
LTC3676HLXE-1#PBF  
48-Lead (7mm 7mm) Plastic eLQFP  
48-Lead (7mm 7mm) Plastic eLQFP  
48-Lead (7mm 7mm) Plastic eLQFP  
48-Lead (7mm 7mm) Plastic eLQFP  
48-Lead (7mm 7mm) Plastic eLQFP  
48-Lead (7mm 7mm) Plastic eLQFP  
LTC3676LXE  
LTC3676LXE  
LTC3676LXE-1  
LTC3676LXE-1  
LTC3676LXE-1  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3676fd  
3
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
elecTrical characTerisTics The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = PVIN1 = PVIN2 = PVIN3 = PVIN4 = VIN_L2 = VIN_L3  
VIN_L4 = DVDD = 3.8V. All regulators disabled unless otherwise noted.  
=
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
ꢀ.ꢀ  
UNITS  
V
l
l
Operating Input Supply Voltage, V  
2.7  
IN  
V
Standby Current  
PWR_ON = 0V  
12  
21  
µA  
IN  
Step-Down Switching Regulators 1, 2, 3 and 4  
Output Voltage Range  
V
FB  
PV  
V
IN  
Burst Mode® V Quiescent Current  
V
FB  
V
FB  
V
FB  
= 8ꢀ0mV (Note ꢀ)  
= 8ꢀ0mV (Note ꢀ)  
= 0V (Note ꢀ)  
23  
120  
170  
ꢀ0  
200  
300  
µA  
µA  
µA  
l
l
l
IN  
Pulse-Skipping Mode V Quiescent Current  
IN  
Forced Continuous V Quiescent Current  
IN  
Feedback Pin Input Current  
Maximum Duty Cycle  
V
FB  
V
FB  
= 8ꢀ0mV  
= 0V  
–0.0ꢀ  
100  
0.0ꢀ  
µA  
%
SW Pull-Down Resistance  
Feedback Reference Soft-Start Rate  
Regulator Disabled  
62ꢀ  
0.8  
Ω
(Note 6)  
V/ms  
mV  
l
l
l
High Feedback Regulation Voltage (V  
)
DVBxA[4:0] = DVBxB[4:0] = 11111,  
788  
714  
404  
800  
812  
736  
421  
FB  
V
= 2.7V to ꢀ.ꢀV  
IN  
Default Feedback Regulation Voltage (V  
)
DVBxA[4:0] = DVBxB[4:0] = 11001,  
= 2.7V to ꢀ.ꢀV  
72ꢀ  
412.ꢀ  
12.ꢀ  
mV  
mV  
mV  
FB  
V
IN  
Low Feedback Regulation Voltage (V  
)
DVBxA[4:0] = DVBxB[4:0] = 00000,  
= 2.7V to ꢀ.ꢀV  
FB  
V
IN  
Feedback LSB Step Size  
Switching Frequency  
l
l
BUCKx[2] = 0  
BUCKx[2] = 1  
1.7  
0.8ꢀ  
2.2ꢀ  
1.12ꢀ  
2.7  
1.3ꢀ  
MHz  
MHz  
1.5A Step-Down Switching Regulators 1 and 2  
PMOS Current Limit  
l
2
A
mΩ  
mΩ  
PMOS On-Resistance (Note 7)  
NMOS On-Resistance (Note 7)  
2.5A Step-Down Switching Regulators 3 and 4  
PMOS Current Limit  
160  
80  
l
3.0  
A
mΩ  
mΩ  
PMOS On-Resistance (Note 7)  
NMOS On-Resistance (Note 7)  
120  
70  
Step-Down Switching Regulator 1 and VTTR (LTC3676-1)  
l
l
l
Buck 1 Feedback Regulation Voltage  
VTTR Output Voltage  
VDDQIN = 1.ꢀV  
VTTR – 10  
VTTR  
VTTR + 10  
mV  
mV  
mA  
mA  
VDDQIN = 1.ꢀV  
0.49•VDDQIN 0.5•VDDQIN 0.51•VDDQIN  
VTTR Maximum Output Current  
–10  
10  
I
VTTR Enabled  
1
VIN  
LDO Regulators 2, 3 and 4  
Feedback Reference Soft-Start Rate  
Output Pull-Down Resistance  
LDO Regulator 1  
10  
V/ms  
Ω
Regulator Disabled  
62ꢀ  
Output Voltage Range  
V
V
IN  
FB_L1  
l
Feedback Regulation Voltage (V  
Line Regulation  
)
689  
72ꢀ  
761  
mV  
FB_L1  
I
= 1mA, V  
= 1.2V,  
0.1ꢀ  
%/V  
LDO1  
IN  
LDO1  
V
= 2.7V to ꢀ.ꢀV  
Load Regulation  
I
= 0.1mA to 2ꢀmA,  
= 3.3V  
0.1  
%
LDO1  
LDO1  
V
3676fd  
4
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
elecTrical characTerisTics The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = PVIN1 = PVIN2 = PVIN3 = PVIN4 = VIN_L2 = VIN_L3  
VIN_L4 = DVDD = 3.8V. All regulators disabled unless otherwise noted.  
=
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
mA  
l
Available Output Current  
Short-Circuit Output Current Limit  
Dropout Voltage (Note 4)  
Feedback Pin Input Current  
LDO Regulator 2  
2ꢀ  
6ꢀ  
100  
280  
0.0ꢀ  
mA  
I
= 2ꢀmA, V  
= 3.3V  
200  
mV  
LDO1  
LDO1  
V
FB_L1  
= 8ꢀ0mV  
–0.0ꢀ  
1.7  
µA  
l
l
V
Input Voltage  
V
IN  
V
V
IN_L2  
LDO2 Output Voltage Range  
Available Output Current  
I
= 1mA  
V
V
IN_L2  
LDO2  
FB_L2  
300  
mA  
l
l
V
IN_L2  
V
IN_L2  
Quiescent Current  
Shutdown Current  
Regulator Enabled, I  
= 0A  
LDO2  
12  
0
2ꢀ  
1
µA  
µA  
Regulator Disabled  
l
l
V
Quiescent Current  
Regulator Enabled  
ꢀ0  
8ꢀ  
µA  
V
IN  
Feedback Regulation Voltage (V  
Line Regulation  
)
0.707  
0.72ꢀ  
0.01  
0.01  
0.743  
FB_L2  
I
I
=1mA, V = 2.7V to ꢀ.ꢀV  
%/V  
%
LDO2  
IN  
Load Regulation  
= 1mA to 300mA  
LDO2  
Short-Circuit Current Limit  
Dropout Voltage (Note 4)  
770  
mA  
I
I
= 300mA, V  
= 300mA, V  
= 2.ꢀV  
= 1.2V  
210  
4ꢀ0  
260  
61ꢀ  
mV  
mV  
LDO2  
LDO2  
LDO2  
LDO2  
Feedback Pin Input Current  
V
FB_L2  
= 72ꢀmV  
–0.0ꢀ  
0.0ꢀ  
µA  
LDO Regulator 3  
l
l
l
V
Input Voltage  
2.3ꢀ  
1.746  
300  
V
V
V
IN_L3  
IN  
Output Voltage  
V
= V , I  
= 1mA  
1.8  
1.8ꢀ4  
IN_L3  
IN LDO3  
Available Output Current  
mA  
l
l
V
IN_L3  
V
IN_L3  
Quiescent Current  
Shutdown Current  
Regulator Enabled, I  
= 0A  
LDO3  
14  
0
2ꢀ  
1
µA  
µA  
Regulator Disabled  
l
V
Quiescent Current  
Regulator Enabled  
ꢀ0  
8ꢀ  
µA  
%/V  
%
IN  
Line Regulation  
I
I
=1mA, V = 2.7V to ꢀ.ꢀV  
0.01  
0.0ꢀ  
LDO3  
LDO3  
IN  
Load Regulation  
= 1mA to 300mA  
Short-Circuit Current Limit  
Dropout Voltage (Note 4)  
LDO Regulator 4  
770  
3ꢀ0  
mA  
mV  
I
= 300mA, V = 1.8V  
LDO3  
280  
LDO3  
l
l
V
Input Voltage  
1.7  
V
V
V
V
IN_L4  
IN  
LDO4 Output Voltage Range (LTC3676)  
Feedback Regulation Voltage (LTC3676) (V  
Output Voltage (LTC3676-1)  
I
I
= 1mA  
V
V
IN_L4  
LDO4  
FB_L4  
)
0.707  
0.72ꢀ  
0.743  
FB_L4  
l
l
l
l
= 1mA, LDOB[4:3] = 00  
1.164  
2.42ꢀ  
2.716  
2.91  
1.2  
2.ꢀ  
2.8  
3.0  
1.236  
2.ꢀ7ꢀ  
2.884  
3.09  
V
V
V
V
LDO4  
LDOB[4:3] = 01  
LDOB[4:3] = 10  
LDOB[4:3] = 11  
l
Available Output Current  
300  
mA  
l
l
V
IN_L4  
V
IN_L4  
Quiescent Current  
Shutdown Current  
Regulator Enabled, I  
= 0A  
LDO4  
12  
0
2ꢀ  
1
µA  
µA  
Regulator Disabled  
l
V
IN  
Quiescent Current  
Regulator Enabled  
ꢀ0  
8ꢀ  
µA  
Line Regulation  
I
=1mA, V = 2.7V to ꢀ.ꢀV  
0.01  
%/V  
LDO4  
IN  
3676fd  
5
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
elecTrical characTerisTics The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = PVIN1 = PVIN2 = PVIN3 = PVIN4 = VIN_L2 = VIN_L3  
VIN_L4 = DVDD = 3.8V. All regulators disabled unless otherwise noted.  
=
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Load Regulation (LTC3676)  
Load Regulation (LTC3676-1)  
I
= 1mA to 300mA  
0.01  
0.0ꢀ  
%
%
LDO4  
Short-Circuit Current Limit  
Dropout Voltage (Note 4)  
770  
mA  
I
I
= 300mA, V  
= 300mA, V  
= 2.ꢀV  
= 1.2V  
210  
4ꢀ0  
260  
61ꢀ  
mV  
mV  
LDO4  
LDO4  
LDO4  
LDO4  
Feedback Pin Input Current (LTC3676)  
Enable Inputs  
V
FB_L4  
= 72ꢀmV  
–0.0ꢀ  
0.0ꢀ  
µA  
l
l
l
Threshold Rising  
All Enables Low  
One Enable High  
0.7ꢀ  
0.7  
1.2  
V
Threshold Falling  
0.4  
Precision Threshold  
Input Pull-Down Resistance  
VSTB, PWR_ON Inputs  
Threshold  
One or More Enables  
0.370  
0.400  
4.ꢀ  
0.430  
V
MΩ  
l
0.370  
0.400  
4.ꢀ  
0.430  
V
Pull-Down Resistance  
Pushbutton Interface  
MΩ  
l
l
ON Threshold Rising  
ON Threshold Falling  
0.7ꢀ  
0.7  
1.2  
1
V
V
0.4  
–1  
ON Input Current  
ON = V  
µA  
µA  
IN  
ON = 0V  
–40  
ꢀ0  
0.2  
400  
10  
ꢀ0  
1
ON Low Time to IRQ Low  
ms  
µs  
ON High Time to IRQ High  
ON Low Time to WAKE High  
ON Low Time to Hard Reset  
ms  
sec  
ms  
sec  
sec  
sec  
ms  
ms  
CNTRL[6] = 0  
IRQ Minimum Pulse Width  
IRQ Blanking from WAKE Low  
Minimum WAKE Low Time  
1
WAKE High Time with PWR_ON = 0V  
PWR_ON High to WAKE High  
PWR_ON Low to WAKE Low  
Status Output Pins (WAKE, PGOOD, RSTO, IRQ)  
WAKE Output Low Voltage  
3
3
I
= 3mA  
= 3.8V  
0.1  
0.1  
0.4  
0.1  
0.4  
0.1  
V
µA  
V
WAKE  
WAKE Output High Leakage Current  
PGOOD Output Low Voltage  
V
–0.1  
–0.1  
WAKE  
I
= 3mA  
= 3.8V  
PGOOD  
PGOOD Output High Leakage Current  
V
µA  
PGOOD  
PGOOD Threshold Rising  
PGOOD Threshold Falling  
–6  
–8  
%
%
RSTO Output Low Voltage  
I
= 3mA  
= 3.8V  
0.1  
0.4  
0.1  
V
RSTO  
RSTO Output High Leakage Current  
V
–0.1  
–0.1  
µA  
RSTO  
LDO1 Power Good Threshold Rising  
LDO1 Power Good Threshold Falling  
–7.ꢀ  
–10  
%
%
IRQ Output Low Voltage  
I
= 3mA  
= 3.8V  
0.1  
0.4  
0.1  
V
IRQ  
IRQ Output High Leakage Current  
V
µA  
IRQ  
3676fd  
6
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
elecTrical characTerisTics The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2). VIN = PVIN1 = PVIN2 = PVIN3 = PVIN4 = VIN_L2 = VIN_L3  
VIN_L4 = DVDD = 3.8V. All regulators disabled unless otherwise noted.  
=
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
Undervoltage Lockout Rising  
Undervoltage Lockout Falling  
2.ꢀꢀ  
2.4ꢀ  
2.6ꢀ  
V
V
2.3ꢀ  
Undervoltage Warning  
CNTRL[4:2] = 000 (POR Default)  
CNTRL[4:2] = 001  
CNTRL[4:2] = 010  
CNTRL[4:2] = 011  
CNTRL[4:2] = 100  
CNTRL[4:2] = 101  
CNTRL[4:2] = 110  
CNTRL[4:2] = 111  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
V
V
V
V
V
V
V
V
SYMBOL  
PARAMETER  
DV Input Supply Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
2
I C Port  
l
DV  
VDD  
1.6  
ꢀ.ꢀ  
1
V
µA  
V
DD  
I
DV Quiescent Current  
DD  
SCL/SDA = 0kHz  
0.3  
1
DVDD  
DV  
VDD_UVLO  
DV UVLO Level  
DD  
ADDRESS  
LTC3676 Device Address  
LTC3676-1 Device Address  
0111100[R/W]  
0111101[R/W]  
V
V
SDA/SCL Input Threshold Rising  
SDA/SCL Input Threshold Falling  
SDA/SCL High Input Current  
SDA/SCL Low Input Current  
SDA Output Low Voltage  
70  
30  
0
%DV  
%DV  
IH  
DD  
IL  
DD  
I
IH  
I
IL  
SDA = SCL = ꢀ.ꢀV  
SDA = SCL = 0V  
–1  
–1  
1
1
µA  
µA  
V
0
V
I
= 3mA  
SDA  
0.4  
400  
OL_SDA  
SCL  
f
t
Clock Operating Frequency  
kHz  
µs  
Bus Free Time Between Stop and Start  
Condition  
1.3  
BUF  
t
t
t
t
t
t
t
t
t
t
t
Hold Time After Repeated Start Condition  
Repeated Start Condition Setup Time  
Stop Condition Setup Time  
Data Hold Time Output  
0.6  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
ns  
HD_STA  
SU_STA  
SU_STO  
HD_DAT(O)  
HD_DAT(I)  
SU_DAT  
LOW  
0.6  
0.6  
0
0
900  
Data Hold Time Input  
Data Setup Time  
100  
SCL Clock Low Period  
1.3  
SCL Clock High Period  
0.6  
HIGH  
Clock/Data Fall Time  
C = Capacitance of BUS Line (pF)  
20 + 0.1C  
20 + 0.1C  
300  
300  
ꢀ0  
f
B
B
B
Clock/Data Rise Time  
C = Capacitance of BUS Line (pF)  
B
r
Input Spike Suppression Pulse Width  
SP  
Note 1: Stresses beyond those listed Under Absolute Maximum ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum rating condition for extended periods may affect device  
reliability and lifetime.  
degrade operating lifetimes; operating lifetime is derated for junction  
temperatures greater than 12ꢀ°C. The junction temperature (T in °C) is  
J
calculated from the ambient temperature (T in °C) and power dissipation  
A
(P , in Watts), and package to junction ambient thermal impedance  
D
(J in Watts/°C ) according to the formula:  
A
Note 2: The LTC3676 is tested under pulsed load conditions such that  
T ≈ T . The LTC3676E is guaranteed to meet specifications from  
T = T + (P J ).  
J A D A  
J
A
0°C to 8ꢀ°C junction temperature. Specifications over the –40°C to  
12ꢀ°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3676I is guaranteed over the –40°C to 12ꢀ°C operating junction  
temperature range and the LTC3676H is guaranteed over the full –40°C to  
1ꢀ0°C operating junction temperature range. High junction temperatures  
Note that the maximum ambient temperature consistent with these  
specifications is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal impedance and  
other environmental factors.  
3676fd  
7
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
elecTrical characTerisTics  
Note 3: The LTC3676 includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 1ꢀ0°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 5: Dynamic supply current is higher due to the gate charge being  
delivered at the switching frequency.  
Note 6: Soft-Start measured in test mode with regulator error amplifier in  
unity-gain mode.  
Note 7: The switching regulator PMOS and NMOS on-resistance is  
guaranteed by correlation to wafer level measurements.  
Note 4: Dropout voltage is defined as (V – V  
) for LDO1 or  
LDO1  
IN  
(V  
– V ) for other LDOs when V is 3% lower than V  
LDOx LDOx LDOx  
IN_Lx  
measured with V = V  
= 4.3V.  
IN  
IN_Lx  
Typical perForMance characTerisTics VIN = 3.8V, TA = 25°C unless otherwise noted  
Step-Down Switching Regulator  
IVIN vs VIN  
Standby IVIN vs VIN  
LDO2 to LDO4 IVIN vs VIN  
900  
800  
700  
600  
500  
400  
300  
200  
100  
16  
14  
12  
10  
8
250  
200  
150  
100  
50  
PULSE-SKIPPING MODE  
ENABLE FOUR BUCKS  
ENABLE 3 LDOs  
ENABLE THREE BUCKS  
ENABLE 2 LDOs  
ENABLE 1 LDO  
ENABLE TWO BUCKS  
ENABLE ONE BUCK  
6
4
2
0
0
0
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
5.5  
2.50  
3.50  
4.50  
5.50  
2.5  
3.0  
3.5  
4.0  
5.5  
4.5  
5.0  
VOLTAGE (V)  
VOLTAGE (V)  
V
(V)  
IN  
3676 G01  
3676 G02  
3676 G03  
Step-Down Switching Regulator  
IVIN vs VIN  
Input Supply Current  
vs Temperature  
Oscillator Frequency  
vs Temperature  
180  
160  
140  
120  
100  
80  
2.30  
2.25  
1200  
1000  
Burst Mode OPERATION  
ALL REGULATORS ENABLED  
ENABLE FOUR BUCKS  
ENABLE THREE BUCKS  
PULSE-SKIPPING  
2.20  
2.15  
800  
600  
ENABLE TWO BUCKS  
ENABLE ONE BUCK  
Burst Mode OPERATION  
STANDBY  
60  
2.10  
2.05  
2.00  
400  
200  
0
40  
20  
0
–50  
0
50  
TEMPERATURE (°C)  
100  
150  
2.5  
3.0  
3.5  
4.0  
5.5  
–50  
0
50  
100  
150  
4.5  
5.0  
VOLTAGE (V)  
TEMPERATURE (°C)  
3676 G06  
3676 G04  
3676 G05  
3676fd  
8
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
Typical perForMance characTerisTics  
Oscillator Frequency Change  
vs VIN  
Step-Down Switching Regulators 1  
and 2 Efficiency vs IOUT  
Step-Down Switching Regulators 1  
and 2 Efficiency vs IOUT  
0.8  
0.6  
100  
90  
100  
90  
80  
70  
60  
80  
0.4  
BURST  
BURST  
70  
0.2  
60  
PULSE  
PULSE  
SKIPPING  
50  
0
50  
40  
SKIPPING  
40  
–0.2  
–0.4  
–0.6  
–0.8  
FORCED  
FORCED  
CONTINUOUS  
30  
20  
10  
0
30  
CONTINUOUS  
20  
V
V
= 3.3V  
V
IN  
V
OUT  
= 5V  
IN  
OUT  
10  
0
= 1.2V  
= 1.2V  
3.5  
4.0  
(V)  
4.5  
5.0  
2.5  
3.0  
5.5  
1
100  
LOAD CURRENT (mA)  
1000  
1
100  
LOAD CURRENT (mA)  
1000  
10  
10  
V
IN  
3676 G07  
3676 G08  
3676 G09  
Step-Down Switching Regulators 3  
and 4 Efficiency vs IOUT  
Buck RDS(ON) vs Temperature  
Buck RDS(ON) vs VIN  
200  
180  
160  
140  
120  
100  
80  
100  
90  
250  
200  
150  
100  
50  
V
= 3.3V  
IN  
PULSE-SKIPPING MODE  
BUCK 3, 4 PMOS  
80  
70  
60  
V
= 2.5V  
OUT  
BUCK 1, 2 PMOS  
V
= 1.2V  
OUT  
BUCK 1, 2 PMOS  
BUCK 3, 4 NMOS  
BUCK 3, 4 PMOS  
BUCK 1, 2 NMOS  
50  
40  
BUCK 1, 2 NMOS  
60  
30  
20  
10  
0
BUCK 3, 4 NMOS  
40  
20  
0
0
2.5  
3.5  
4.5  
5.5  
1
100  
10  
LOAD CURRENT (mA)  
1000  
50  
TEMPERATURE (°C)  
–50  
0
100  
150  
V
(V)  
IN  
3676 G12  
3676 G10  
3676 G11  
Step-Down Switching Regulator  
Current Limit vs Temperature  
LTC3676-1 VDDQIN, VTTR and  
VTT Start-Up  
Step-Down Switching Regulator  
Load Step  
4.5  
4.0  
PGOOD  
5V/DIV  
BUCK 3, 4  
V
= 1.2V  
OUT  
VDDQIN  
1V/DIV  
100mV/DIV  
500mA/DIV  
3.5  
3.0  
I
= 0.5A TO 1.5A  
LOAD  
VTTR  
1V/DIV  
BUCK 1, 2  
VTT (BUCK1)  
1V/DIV  
2.5  
2.0  
1.5  
3676 G14  
3676 G15  
400µs/DIV  
C
OUT  
= 44µF  
10µs/DIV  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
3676 G13  
3676fd  
9
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
Typical perForMance characTerisTics  
LDO1 Dropout Voltage  
LDO1 Short-Circuit Current  
vs Temperature  
vs Temperature  
LTC3676-1 VTT Load Step  
400  
350  
300  
250  
200  
150  
100  
50  
80  
75  
70  
65  
60  
55  
50  
45  
40  
I
= 25mA  
LTC3676-1  
LDO1  
V
= 0.75V  
TT  
V
V
= 1.8V  
= 3.3V  
100mV/DIV  
1A/DIV  
LDO1  
LDO1  
I
= –1.2A TO 1.2A  
LOAD  
3676 G16  
C
= 88µF  
40µs/DIV  
OUT  
0
50  
TEMPERATURE (°C)  
–55  
0
100  
150  
50  
–55  
0
100  
150  
TEMPERATURE (°C)  
3676 G17  
3676 G18  
LDO2 to LDO4 Dropout Voltage  
vs Temperature  
LDO1 Load Step Response  
450  
400  
350  
300  
250  
200  
150  
100  
50  
I
= 200mA  
LDO  
V
= 1.2V  
1.2V  
LDO  
V
LDO1  
50mV/DIV  
V
V
= 1.8V  
= 3.3V  
20mA  
LDO  
LDO  
I
LDO1  
10mA/DIV  
1mA  
3676 G19  
40µs/DIV  
0
50  
TEMPERATURE (°C)  
–50  
0
100  
150  
3676 G20  
LDO2 to LDO4 Short-Circuit  
Current vs Temperature  
LDO2 to LDO4 Load Step Response  
800  
750  
700  
650  
600  
550  
500  
450  
400  
350  
300  
V
= 1.8V  
LDO  
50mV/DIV  
I
= 220mA  
LOAD  
100mA/DIV  
10mA  
3676 G22  
10µs/DIV  
–50  
0
50  
100  
150  
TEMPERATURE (°C)  
3676 G21  
3676fd  
10  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
(QFN/LQFP)  
pin FuncTions  
FB_L2 (Pin 1/Pin 2): Feedback Input for LDO2. Set full-  
scale output voltage using a resistor divider connected  
from LDO2 to this pin to ground.  
SW4 (Pin 11/Pin 14): Switch Pin for Step-Down Switch-  
ing Regulator 4. Connect one side of step-down switching  
regulator 4 inductor to this pin.  
2
V
(Pin 2/Pin 3): Power Input for LDO2. This pin  
DV (Pin 12/Pin 15): Supply Voltage for I C Serial Port.  
IN_L2  
DD  
2
should be bypassed to ground with a 1μF or greater  
This pin sets the logic reference level of SCL and SDA I C  
2
ceramic capacitor.Voltage on V should not exceed  
voltage on V pin.  
pins. DV resets I C registers to power-on state when  
IN_L2  
DD  
driven to <1V. SCL and SDA logic levels are scaled to  
IN  
DV . Connect a 0.1µF decoupling capacitor from this  
DD  
LDO2 (Pin 3/Pin 4): Output Voltage of LDO2. Nominal  
output voltage is set with a resistor feedback divider that  
servos to a fixed 72ꢀmV reference. This pin must be by-  
passed to ground with a 1µF or greater ceramic capacitor.  
pin to ground.  
2
SDA (Pin 13/Pin 16): Data Pin for the I C Serial Port. The  
I C logic levels are scaled with respect to DV .  
2
DD  
2
LDO3 (Pin 4/Pin 5): Output Voltage of LDO3. Nominal  
output voltage is a fixed 1.8V. This pin must be bypassed  
to ground with a 1µF or greater ceramic capacitor.  
SCL (Pin 14/Pin 17): Clock Pin for the I C Serial Port. The  
2
I C logic levels are scaled with respect to DV .  
DD  
PV (Pin15/Pin18):PowerInputforStep-DownSwitch-  
IN4  
V
(Pin 5/Pin 6): Power Input for LDO3. This pin  
ing Regulator 4. Tie this pin to V supply. This pin should  
IN_L3  
IN  
should be bypassed to ground with a 1µF or greater  
be bypassed to ground with a 10μF or greater ceramic  
ceramic capacitor.Voltage on V should not exceed  
voltage on V pin.  
capacitor.  
IN_L3  
IN  
PV (Pin16/Pin19):PowerInputforStep-DownSwitch-  
IN3  
LDO4 (Pin 6/Pin 7): Output Voltage of LDO4. Nominal  
output voltage is set with a resistor feedback divider that  
servos to a fixed 72ꢀmV reference. This pin must be by-  
passed to ground with a 1µF or greater ceramic capacitor.  
ing Regulator 3. Tie this pin to the V supply. This pin  
IN  
should be bypassed to ground with a 10μF or greater  
ceramic capacitor.  
EN_B4 (Pin 17/Pin 20): Enable Step-Down Switching  
Regulator4.Activehighinputenablesstep-downswitching  
regulator 4. A weak pull-down pulls EN_B4 low when left  
floating.  
V
(Pin 7/Pin 8): Power Input for LDO4. This pin  
IN_L4  
should be bypassed to ground with a 1μF or greater  
ceramic capacitor.Voltage on V should not exceed  
voltage on V pin.  
IN_L4  
IN  
EN_B3 (Pin 18//Pin 21): Enable Step-Down Switching  
Regulator3.Activehighinputenablesstep-downswitching  
regulator 3. A weak pull-down pulls EN_B3 low when left  
floating.  
FB_L4 (Pin 8/Pin 9): Feedback Input for LTC3676 LDO4.  
Set full-scale output voltage using a resistor divider con-  
nected from LDO4 to this pin to ground.  
VDDQIN (Pin 8/Pin 9): V Sense Input for LTC3676-1.  
VSTB (Pin 19/Pin 22): Voltage Standby. When VSTB is  
low, the DAC registers are selected by command register  
bit DVBxA[ꢀ]. When VSTB is high, the DAC registers are  
forced to DVBxB registers. Tie VSTB to ground if unused.  
DD  
Tie DDR memory V supply to this pin.  
DD  
EN_L4 (Pin 9/Pin 10): Enable LDO4 Input for LTC3676.  
Active high enables LDO4. A weak pull-down pulls EN_L4  
low when left floating.  
SW3 (Pin 20/Pin 23): Switch Pin for Step-Down Switch-  
ing Regulator 3. Connect one side of step-down switching  
regulator 3 inductor to this pin.  
VTTR (Pin9/Pin10):DDRV OutputPinforLTC3676-1.  
REF  
Buffered reference equal to one-half VDDQIN voltage on  
Pin 8.  
PWR_ON(Pin21/Pin26):ExternalPowerOn.Handshaking  
pin to acknowledge successful power-on sequence.  
PWR_ON must be driven high within five seconds of  
WAKE going high to keep power on. PWR_ON can be  
EN_L3 (Pin 10/Pin 11): Enable LDO3 Input. Active high  
enables LDO3. A weak pull-down pulls EN_L3 low when  
left floating.  
3676fd  
11  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
pin FuncTions  
used to activate the WAKE output by driving high. Drive  
low to shut down WAKE.  
IRQ(Pin32/Pin39):InterruptRequestOutput.Open-drain  
driver is pulled low for power good, undervoltage, and  
overtemperature warning and fault conditions. Clear IRQ  
FB_B3 (Pin 22/Pin 27): Feedback Input for Step-Down  
Switching Regulator 3. Set full-scale output voltage using  
resistor divider connected from the output of step-down  
switching regulator 3 to this pin to ground.  
2
by writing to the I C CLIRQ command register.  
WAKE (Pin 33/Pin 40): System Wake Up. Open-drain  
driver output releases high when signaled by pushbutton  
activation or PWR_ON input. It may be used to initiate  
a pin-strapped power-up sequence by connecting to a  
regulator enable pin.  
FB_B4 (Pin 23/Pin 28): Feedback Input for Step-Down  
Switching Regulator 4. Set full-scale output voltage using  
resistor divider connected from the output of step-down  
switching regulator 4 to this pin to ground.  
EN_B2 (Pin 34/Pin 41): Enable Step-Down Switching  
Regulator 2. Active high input enables step-down switching  
regulator 2. Aweak pull-down pulls EN_B2 low when left floating.  
FB_B1 (Pin 24/Pin 29): Feedback Input for Step-Down  
Switching Regulator 1. Set full-scale output voltage using  
resistor divider connected from the output of step-down  
switching regulator 1 to this pin to ground.  
PV (Pin35/Pin42):PowerInputforStep-DownSwitch-  
IN2  
ing Regulator 2. Tie this pin to V supply. This pin should  
IN  
be bypassed to ground with a 10μF or greater ceramic  
FB_B2 (Pin 25/Pin 30): Feedback Input for Step-Down  
Switching Regulator 2. Set full-scale output voltage using  
resistor divider connected from the output of step-down  
switching regulator 2 to this pin to ground.  
capacitor.  
PV (Pin 36/Pin 43): Power Input for Step-Down Switching  
IN1  
Regulator1.TiethispintoV supply.Thispinshouldbebypassed  
IN  
to ground with a 10μF or greater ceramic capacitor.  
FB_L1 (Pin 26/Pin 31): Feedback Input for LDO1. Set  
output voltage using a resistor divider connected from  
LDO1 to this pin to ground.  
EN_B1 (Pin 37/Pin 44): Enable Step-Down Switching  
Regulator 1. Active high enables step-down switching  
regulator1. TheLTC3676-1EN_B1pinenablesbothVTTR  
output and switching regulator 1. A week pull-down pulls  
EN_B1 low when left floating.  
V (Pin 27/Pin 32): Supply Voltage Input. This pin should  
IN  
be bypassed to ground with a 1μF or greater ceramic  
capacitor. All switching regulator PV supplies should  
IN  
be tied to V .  
RSTO (Pin 38/Pin 45): Reset Output. Open-drain output  
pulls low when the always-on regulator LDO1 is below  
regulation or during a hard reset initiated by a pushbutton  
input or command registers.  
IN  
LDO1 (Pin 28/Pin 33): Always On LDO1 Output. This pin  
providesanalways-onsupplyvoltageusefulforlightloads  
such as a watchdog microprocessor or a real time clock.  
Connect a 1μF capacitor from LDO1 to ground.  
PGOOD (Pin 39/Pin 46): Power Good Output. Open-drain  
output pulls low when any enabled regulator falls below  
power good threshold or during dynamic voltage slew  
unless disabled in command register. Pulls low when all  
regulators are disabled.  
ON (Pin 29/Pin 34): Pushbutton Input. A weak internal  
pull-up forces ON high when left floating. A normally open  
pushbutton is connected from ON to ground forcing a low  
state when pushed.  
SW1 (Pin 40/Pin 47): Switch Pin for Step-Down Switch-  
ing Regulator 1. Connect one side of step-down switching  
regulator 1 inductor to this pin.  
EN_L2 (Pin 30/Pin 35): Enable LDO2 Input. Active high  
enables LDO2. A weak pull-down pulls EN_L2 low when  
left floating.  
GND (Exposed Pad Pin 41/Pin 49): Ground. The exposed  
pad must be connected to a continuous ground plane of  
the printed circuit board by multiple interconnect vias  
directly under the LTC3676 to maximize electrical and  
SW2 (Pin 31/Pin 38): Switch Pin for Step-Down Switch-  
ing Regulator 2. Connect one side of step-down switching  
regulator 2 inductor to this pin.  
thermal conduction.  
3676fd  
12  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
block DiagraM—lTc3676  
PV  
IN1  
V
LDO1  
EN  
IN  
BUCK1  
BUCK2  
BUCK3  
BUCK4  
725mV  
DEFAULT = 725mV  
V
REF  
DAC  
DAC  
DAC  
DAC  
SW1  
RANGE = 800mV  
TO 412.5mV  
LDO1  
FB_L1  
EN  
OK  
FB_B1  
ON  
WAKE  
PV  
IN2  
DEFAULT = 725mV  
V
PUSHBUTTON  
ON/OFF  
CONTROL  
REF  
SW2  
RANGE = 800mV  
TO 412.5mV  
PWR_ON  
EN  
OK  
RSTO  
FB_B2  
PV  
IN3  
EN_B1  
EN_B2  
EN_B3  
EN_B4  
EN_L2  
EN_L3  
EN_L4  
DEFAULT = 725mV  
V
REF  
SW3  
RANGE = 800mV  
TO 412.5mV  
PRECISION ENABLE  
THRESHOLD AND  
SEQUENCE DELAY  
EN  
OK  
FB_B3  
7
7
7
PV  
IN4  
DEFAULT = 725mV  
V
REF  
DV  
DD  
SW4  
RANGE = 800mV  
TO 412.5mV  
2
SDA  
SCL  
I C COMMAND  
REGISTERS  
EN  
OK  
FB_B4  
IRQ  
V
IN_L2  
LDO2  
LDO3  
V
REF  
FAULT DETECTION  
725mV  
UNDER VOLTAGE  
OVER TEMPERATURE  
PGOOD  
LDO2  
EN  
OK  
FB_L2  
VSEL  
VA 4x5  
VB 4x5  
V
IN_L3  
V
REF  
LDO3  
5
5
5
5
EN  
OK  
VSTB  
DYNAMIC VOLTAGE  
SCALING CONTROL  
V
IN_L4  
LDO4  
V
REF  
LDO4  
EN  
OK  
FB_L4  
GND  
(EXPOSED PAD)  
3676 BD  
3676fd  
13  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
block DiagraM—lTc3676-1  
PV  
IN1  
V
LDO1  
EN  
IN  
BUCK1  
BUCK2  
BUCK3  
BUCK4  
725mV  
V
REF  
SW1  
LDO1  
FB_L1  
EN  
OK  
FB_B1  
ON  
WAKE  
PV  
IN2  
DEFAULT = 725mV  
V
PUSHBUTTON  
ON/OFF  
CONTROL  
REF  
DAC  
DAC  
DAC  
SW2  
RANGE = 800mV  
TO 412.5mV  
PWR_ON  
EN  
OK  
RSTO  
FB_B2  
PV  
IN3  
EN_B1  
EN_B2  
EN_B3  
EN_B4  
EN_L2  
EN_L3  
DEFAULT = 725mV  
V
REF  
SW3  
RANGE = 800mV  
TO 412.5mV  
PRECISION ENABLE  
THRESHOLD AND  
SEQUENCE DELAY  
EN  
OK  
FB_B3  
7
7
PV  
IN4  
DEFAULT = 725mV  
V
REF  
VTTR  
SW4  
RANGE = 800mV  
TO 412.5mV  
VDDQIN  
EN  
OK  
VDDQIN/2  
FB_B4  
V
IN_L2  
LDO2  
LDO3  
V
REF  
DV  
DD  
7
725mV  
2
SDA  
SCL  
I C COMMAND  
LDO2  
REGISTERS  
EN  
OK  
FB_L2  
IRQ  
V
IN_L3  
V
REF  
FAULT DETECTION  
UNDER VOLTAGE  
OVER TEMPERATURE  
LDO3  
PGOOD  
EN  
OK  
VSEL  
VA 4x5  
VB 4x5  
V
IN_L4  
LDO4  
V
REF  
5
5
5
VSTB  
DYNAMIC VOLTAGE  
SCALING CONTROL  
LDO4  
EN  
OK  
GND  
(EXPOSED PAD)  
36761 BD  
3676fd  
14  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
INTRODUCTION  
PVINB1  
VTTR  
VDDQIN  
The LTC3676 is a complete power management solution  
for portable microprocessors and peripheral devices. It  
generates a total of eight voltage rails for supplying power  
to the processor core, DDR memory, I/O, always-on real-  
time clock and HDD functions. Supplying the voltage rails  
are an always-on low quiescent current 2ꢀmA LDO, two  
2.ꢀA step-down regulators, two 1.ꢀA step-down regula-  
tors,andthree300mAlowdropoutregulators.Supporting  
the multiple regulators is a highly configurable power-on  
sequencingcapability,dynamicvoltagescalingDACoutput  
voltage control, a pushbutton interface controller, control  
BUCK1  
SW1  
VDDQIN/2  
R1  
VDDQIN/2  
DDR  
REF  
C
FB  
C
OUT  
ERROR  
AMP  
FB_B1  
3676 F01  
Figure 1. VTT Buck Regulator and VTTR Reference Block Diagram  
Always-On 25mA Low Dropout Regulator  
TheLTC3676includesalowquiescentcurrentlowdropout  
regulatorthatremainspoweredwheneveravalidsupplyis  
present on V . The always-on LDO1 remains active until  
2
IN  
via an I C interface, and extensive status and interrupt  
V
drops below 2.0V (typical). This is below the 2.ꢀV  
IN  
outputs.  
undervoltagethresholdineffectfortherestoftheLTC3676  
circuits. The always-on LDO is used to provide power to a  
standbymicrocontroller,real-timeclock,orotherkeep-alive  
circuits. The LDO is guaranteed to support a 2ꢀmA load. A  
FlowimpedanceceramicbypasscapacitorfromLDO1to  
GND is required for compensation. A power good monitor  
pullsRSTOlowwheneverLDO1is8%belowitsregulation  
target. LDO1 has current limit circuitry to protect from  
short circuit and overloading. The output voltage of LDO1  
is set with a resistor divider connected from LDO1 output  
pin to the feedback pin FB_L1, as shown in Figure 2. The  
output voltage is calculated using the following formula:  
The LTC3676-1 supports DDR memory applications by  
replacing the LTC3676 LDO4 feedback and enable pins  
with VDDQIN and VTTR pins. The DDR V supply is  
DD  
connected to the LTC3676-1 VDDQIN pin. A buffered DDR  
termination voltage equal to one half the voltage on VD-  
DQIN is output on VTTR. The VTTR voltage is connected  
internally on the LTC3676-1 to the reference side of the  
Buck1 error amplifier. When Buck1 is configured with a  
gain of one, its output can be used as at DDR termination  
supply. Table 1 shows the functional differences between  
the LTC3676 and LTC3676-1.  
Table 1. Functional Differences LTC3676 vs LTC3676-1  
R1  
R2  
VLDO1= 7251+  
mV  
( )  
LTC3676  
LTC3676-1  
Buck1 Default  
Frequency  
2.2ꢀMHz  
1.12ꢀMHz  
300mA Low Dropout Regulators  
Buck1 Default  
Mode  
Pulse-Skipping  
Forced Continuous  
Three LDO regulators on the LTC3676 will each deliver  
up to 300mA output. Each LDO regulator has separate  
input supply to help manage power loss in the LDO output  
Buck1 Output  
External Resistor Divider. External Unity Gain.  
Slewing DAC Reference  
VTTR Reference  
2
2
LDO4 Enable  
LDO4 Output  
EN_L4 Pin or I C  
I C  
2
devices.TheLDOregulatorsareenabledbypininputorI C  
2
External Resistor Divider. I C Select 1 of 4 Fixed  
command register. When disabled, the regulator outputs  
are pulled to ground through a 62ꢀΩ resistor. A low ESR  
1µF ceramic capacitor should be tied from the LDO output  
to ground. The 300mA LDO regulators have current limit  
72ꢀmV Reference  
External Resistor Divider  
Enable LDO4.  
Outputs  
FB_L4 Pin  
EN_L4 Pin  
VDDQIN Pin  
Connect to DDR Memory  
Supply  
control circuits. The LDO input voltages, V  
, V  
,
IN_L2 IN_L3  
VTTR Pin  
Buffered Output Equals  
One-Half VDDQIN  
and V  
must be at potential of V or less.  
IN_L4  
IN  
2
The LDO regulator I C command register controls are  
shown in Table 2 and Table 3.  
2
I C Device  
Write = 0x78  
Read = 0x79  
Write = 0x7A  
Read = 0x7B  
Address  
3676fd  
15  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
LTC3676 Resistor Programmable LDO2 and LDO4  
output is 1.2V with selectable outputs of 2.ꢀV, 2.8V, and  
3.0V. LDO4isenabledonlythroughthecommandregister  
bit LDOB[2].  
LDO2andLDO4outputvoltagesareprogrammedbyresis-  
tor dividers tied from the LDO output pin to the feedback  
pin as shown in Figure 2. The output voltage is calculated  
using the following formula:  
LDO4 Command Register Controls  
Table 3. LDO4 Control Command Register Settings  
COMMAND  
REGISTER[BIT] VALUE SETTING  
R1  
R2  
VLDO = 7251+  
mV  
(
)
LDOB[0]  
LDOB[1]  
0* Do Not Keep Alive LDO4 in Standby  
Keep Alive LDO4 in Standby  
1
V
IN  
0* Enable LDO4 at Any Output Voltage  
Enable LDO4 Only if Output Voltage is <300mV  
0.725V  
+
1
LDO  
FB  
LDOB[2]  
(LTC3676)  
0* LDO4 Disabled if EN_L4 is Low  
1 LDO4 Enabled  
R1  
1µF  
LDOB[2]  
(LTC3676-1)  
0* LDO4 Disabled  
1 LDO4 Enabled  
R2  
LDOB[4:3]  
(LTC3676-1)  
00* LDO4 Output = 1.2V  
3676 F02  
LDOB[4:3]  
01  
10  
11  
LDO4 Output = 2.ꢀV  
LDO4 Output = 2.8V  
LDO4 Output = 3V  
Figure 2. LDO1, LDO2 and LDO4 Application Circuit  
(LTC3676-1)  
LDOB[4:3]  
(LTC3676-1)  
Fixed Output LDO3  
LDOB[4:3]  
(LTC3676-1)  
Regulator LDO3 has a fixed voltage output of 1.8V.  
*denotes default power-on value.  
Table 2. LDO2 and LDO3 Control Command Register Settings  
COMMAND  
REGISTER[BIT] VALUE SETTING  
STEP-DOWN SWITCHING REGULATORS  
LDOA[0]  
LDOA[1]  
LDOA[2]  
LDOA[3]  
LDOA[4]  
LDOA[ꢀ]  
0* Do Not Keep Alive LDO2 in Standby  
Keep Alive LDO2 in Standby  
The LTC3676 contains four buck regulators. Two of the  
buck regulators are capable of delivering up to 2.ꢀA load  
current and the other two can deliver up to 1.ꢀA each. The  
regulatorshaveforwardandreversecurrentlimiting, soft-  
start, and switch slew rate control for lower radiated EMI.  
1
0* Enable LDO2 at Any Output Voltage  
Enable LDO2 Only if Output Voltage is <300mV  
1
0* LDO2 Disabled if EN_L2 is Low  
LDO2 Enable  
1
0* Do Not Keep Alive LDO3 in Standby  
Keep Alive LDO3 in Standby  
The LTC3676 buck regulators are capable of 100% duty  
cycle,ordropout,regulation.Whenindropouttheregulator  
1
0* Enable LDO3 at Any Output Voltage  
Enable LDO3 0nly if Output Voltage is <300mV  
1
outputvoltageisequaltoPV minustheloadcurrenttimes  
IN  
0* LDO3 Disabled if EN_L3 is Low  
LDO3 Enabled  
R
oftheconvertersPMOSdeviceandinductorDCR.  
DS(ON)  
1
2
Each buck regulator is enabled using its enable pin or I C  
command register control. Operating modes, start-up op-  
tion, referencevoltage, andswitchslewratearecontrolled  
*denotes default power-on value.  
LDO4 Operation LTC3676-1  
2
using the I C port.  
LDO4 on the LTC3676-1 has neither enable nor feedback  
pins. There are four LDO4 output voltages selectable by  
command register bits LDOB[4:3]. The power-on default  
2
The buck converter I C command register controls are  
shown in Table 4, Table ꢀ, Table 6, and Table 7.  
3676fd  
16  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
Operating Modes  
voltage of 72ꢀmV. Typical values for R1 are in the range  
of 40k to 1M. Capacitor C cancels the pole created by  
FB  
The buck regulators can operate in either pulse-skipping,  
Burst Mode operation, or forced continuous mode. In  
pulse-skipping setting the regulator will skip pulses at  
light loads but will operate at constant frequency. In Burst  
Mode setting the regulator operates in Burst Mode opera-  
tion at light loads and in constant frequency PWM mode  
at higher load. In forced continuous setting the inductor  
current is allowed to be less than zero over the full range  
of duty cycles. In forced continuous operation the buck  
regulator has the ability to sink output current. Because  
the regulator is switching every cycle regardless of output  
load, forced continuous mode results in the least output  
voltage ripple at light load.  
the feedback resistors and the input capacitance on the  
FB pin and helps to improve load step transient response.  
A value of 10pF is recommended.  
Inductor Selection  
The choice of step-down switching regulator inductor  
influences the efficiency and output voltage ripple of the  
converter. A larger inductor improves efficiency since the  
peakcurrentisclosertotheaverageoutputcurrent.Larger  
inductors generally have higher series resistance that  
counterstheefficiencyadvantageofreducedpeakcurrent.  
Inductorripplecurrentisafunctionofswitchingfrequency,  
inductance, V , and V  
as shown in this equation:  
IN  
OUT  
Output Voltage Programming  
1
fL  
VOUT  
Eachofthestep-downconvertersusesadynamicallyslew-  
ing DAC for its reference. The output voltage of the DAC  
ΔIL =  
VOUT 1–  
V
IN  
2
referenceisselectableusinga-bitI Ccommandregister.  
A good starting design point is to use an inductor that  
gives ripple equal to 30% output current. Select an induc-  
tor with a DC current rating at least 1.ꢀ times larger than  
the maximum load current to ensure the inductor does  
not saturate.  
The output voltage is set by using a resistor divider con-  
nected from the step-down switching regulator output to  
its feedback pin as shown in Figure 3. The output voltage  
is calculated using the following formula:  
R1  
R2  
VOUT = 1+  
DVBx 12.5+412.5 mV  
( ) (  
)
Input and Output Capacitor Selection  
Low ESR ceramic capacitors should be used at both the  
output and input supply of the switching regulators. Only  
XꢀR or X7R ceramic capacitors should be used since they  
have better temperature and voltage stability than other  
ceramic types.  
DVBx is the decimal value of the ꢀ-bit binary number in  
2
the I C command registers. The default DAC input code is  
11001 (2ꢀ in decimal) which corresponds to a reference  
PV  
IN  
Operating Frequency  
TheswitchingfrequencyofeachoftheLTC3676switching  
EN  
SW  
2
PWM  
CONTROL  
regulators may be set using the I C command registers.  
2
C
OUT  
MODE  
Thedefaultswitchingfrequencyis2.2ꢀMHzandtheselect-  
able frequency is 1.12ꢀMHz. Operation at lower frequency  
improves efficiency by reducing internal gate charge and  
switching losses at the expense of a larger inductor.  
C
FB  
R1  
R2  
FB  
5
The lowest duty cycle of the step-down converter is de-  
termined by minimum on-time. Minimum on-time is the  
shortest time duration that the converter can turn its top  
PMOS on and off again. The time is the sum of gate charge  
3676fd  
DAC  
DEFAULT  
725mV  
3676 F03  
Figure 3. Step-Down Switching Regulator Application Circuit  
17  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
time plus internal delays of the peak current sense and  
PWM control. If the converters duty cycle will be 20% or  
less at 2.2ꢀMHz it is recommended to use the 1.12ꢀMHz  
setting to avoid minimum duty cycle. If the duty cycle falls  
below the minimum on-time of the converter, the output  
voltage ripple will increase as the converter skips cycles.  
Table 4. Buck1 Control Command Register  
COMMAND  
REGISTER[BIT]  
VALUE SETTING  
BUCK1[0]  
0*  
1
Switch Slew Rate Normal  
Switch Slew Rate Fast  
BUCK1[1]  
0*  
1
Do Not Keep Enabled in Device Standby  
Keep Enabled in Device Standby  
The default setting for the LTC3676-1 Buck1 switching  
frequency is 1.12ꢀMHz to ensure minimum on time ef-  
fects are avoided at DDR termination reference voltages.  
BUCK1[2]  
(LTC3676)  
0*  
1
Switching Frequency 2.2ꢀMHz  
Switching Frequency 1.12ꢀMHz  
BUCK1[2]  
(LTC3676-1)  
0*  
1
Switching Frequency 1.12ꢀMHz  
Switching Frequency 2.2ꢀMHz  
BUCK1[3]  
BUCK1[4]  
BUCK1[6:ꢀ]  
0*  
1
Clock Phase 1  
Clock Phase 2  
Phase Selection  
0*  
1
Enable at Any Output Voltage  
Enable Only if Output Voltage Is <300mV  
To reduce the cycle by cycle peak current drawn by the  
switching regulators, the clock phase at which each of the  
LTC3676 buck’s PMOS switch turns on can be set using  
00* Pulse-Skipping Mode  
01  
10  
Burst Mode Operation  
Forced Continuous Mode  
2
I C command register settings.  
BUCK1[7]  
0*  
1
Buck1 Disabled if EN_B1 Pin Is Low  
Buck1 Enabled  
φ1  
φ2  
φ1  
φ2  
2.25MHz  
*denotes default power on-value.  
Table 5. Buck2 Control Command Register  
COMMAND  
REGISTER[BIT]  
φ1  
1.125MHz  
3676 F04  
VALUE SETTING  
BUCK2[0]  
0*  
1
Switch Slew Rate Normal  
Switch Slew Rate Fast  
Figure 4. Phase Settings Full- and Half-Speed Buck Clock  
BUCK2[1]  
BUCK2[2]  
BUCK2[3]  
BUCK2[4]  
BUCK2[6:ꢀ]  
0*  
1
Do Not Keep Enabled in Device Standby  
Keep Enabled in Device Standby  
Switch Slew Rate Control  
0*  
1
Switching Frequency 2.2ꢀMHz  
Switching Frequency 1.12ꢀMHz  
To helpreduceEMItheswitchrisetimeofeachbuckregula-  
tor is slew limited by default. A faster setting is selectable  
0*  
1
Clock Phase 1  
Clock Phase 2  
2
using the I C buck command registers. The faster setting  
will improve efficiency if limited edge rate is not required.  
0*  
1
Enable at Any Output Voltage  
Enable Only if Output Voltage Is <300mV  
Soft-Start  
00* Pulse-Skipping Mode  
01  
10  
Burst Mode Operation  
Forced Continuous Mode  
To reduce inrush current at start-up each buck regulator  
soft starts when enabled. When enabled the internal ref-  
erence voltage is ramped from ground to the level of the  
slewing DAC output at a rate of 0.8V/ms. During soft-start  
the converter is forced to pulse-skipping mode regardless  
of command register mode settings.  
BUCK2[7]  
0*  
1
Buck2 Disabled if EN_B2 Pin Is Low  
Buck2 Enabled  
*denotes default power-on value.  
3676fd  
18  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
Dynamic Voltage Scaling  
Table 6. Buck3 Control Command Register  
COMMAND  
Table 8 shows the command registers used to control  
dynamicvoltagescaling(DVS)ofthestep-downswitching  
regulators input reference DAC. The command register  
bits DVB1A[4:0] and DVB1B[4:0] store two ꢀ-bit inputs  
to the DAC reference for Buck1. The bit stored in com-  
mand register DVB1A[ꢀ] selects either the ꢀ bits stored  
in DVB1A[4:0] or DVB1B[4:0] DAC as input to the DAC  
reference. Buck2, Buck3, and Buck4 operate the same  
way using their assigned “A” and “B” command registers  
shown in Table 8. When the DAC detects a change in its  
input code it automatically slews to the new value at a rate  
REGISTER[BIT]  
VALUE SETTING  
BUCK3[0]  
0*  
1
Switch Slew Rate Normal  
Switch Slew Rate Fast  
BUCK3[1]  
BUCK3[2]  
BUCK3[3]  
BUCK3[4]  
BUCK3[6:ꢀ]  
0*  
1
Do Not Keep Enabled in Device Standby  
Keep Enabled in Device Standby  
0*  
1
Switching Frequency 2.2ꢀMHz  
Switching Frequency 1.12ꢀMHz  
0*  
1
Clock Phase 1  
Clock Phase 2  
0*  
1
Enable at Any Output Voltage  
Enable Only if Output Voltage Is <300mV  
00* Pulse-Skipping Mode  
01  
10  
2
of 3.ꢀmV/µs. A DVS can be initiated using the I C select  
bit or using the VSTB pin.  
Burst Mode Operation  
Forced Continuous Mode  
BUCK3[7]  
0*  
1
Buck3 Disabled if EN_B3 Pin Is Low  
Buck3 Enabled  
The LTC3676 VSTB pin HIGH selects the ꢀ bits stored in  
all four DVBx “B” registers. This facilitates a simultaneous  
DAC slew between the values in the “A” registers and the  
values in the “B” registers. The VSTB pin is logically ORed  
*denotes default power-on value.  
Table 7. Buck4 Control Command Register  
COMMAND  
2
2
REGISTER[BIT]  
VALUE SETTING  
with the I C command register bit. If the I C select bit is  
already set high, the “B” registers are already selected and  
VSTB will have no effect. If no change in output is desired  
using the VSTB pin, set the value in the “A” register equal  
to the value in the “B”.  
BUCK4[0]  
0*  
1
Switch Slew Rate Normal  
Switch Slew Rate Fast  
BUCK4[1]  
BUCK4[2]  
BUCK4[3]  
BUCK4[4]  
BUCK4[6:ꢀ]  
0*  
1
Do Not Keep Enabled in Device Standby  
Keep Enabled in Device Standby  
0*  
1
Switching Frequency 2.2ꢀMHz  
Switching Frequency 1.12ꢀMHz  
Command register bits DVB1B[ꢀ], DVB2B[ꢀ], DVB3B[ꢀ],  
and DVB4B[ꢀ] control whether the PGOOD status pin is  
pulled low while the DAC output is slewing. The default  
command register setting is to pull PGOOD pin low dur-  
ing DAC slew. During the DVS, PGOOD will be held low  
for just the duration of the DVS and the PGSTAT register  
is not affected.  
0*  
1
Clock Phase 1  
Clock Phase 2  
0*  
1
Enable at Any Output Voltage  
Enable Only if Output Voltage Is <300mV  
00* Pulse-Skipping Mode  
01  
10  
Burst Mode Operation  
Forced Continuous Mode  
BUCK4[7]  
0*  
1
Buck4 Disabled if EN_B4 Pin Is Low  
Buck4 Enabled  
*denotes default power-on value.  
V
OUT  
200mV/DIV  
SLEWING DAC REFERENCE OPERATION  
Each LTC3676 step-down switching regulators error am-  
plifier reference voltage is supplied by a ꢀ-bit DAC with  
an output voltage range of 412.ꢀmV to 800mV in 12.ꢀmV  
PGOOD  
5V/DIV  
VSTB  
5V/DIV  
2
steps. One of two ꢀ-bit codes stored in I C command  
registers is selected for input to the DAC. When a change  
in code is detected by the DAC control circuits, the output  
of the DAC is slewed at 3.ꢀmV/µs to the new value.  
3676 F05  
100µs/DIV  
Figure 5. Dynamic Voltage Scaling  
3676fd  
19  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
Table 8. Buck1, Buck2, Buck3, and Buck4 Slewing DAC Control  
Command Registers  
V
IN  
HIGH  
COMMAND  
ENABLE  
INHIBITED AND  
WAKE LOW  
REGISTER[BIT]  
DVB1A[4:0]  
DVB1A[ꢀ]  
VALUE SETTING  
POR/HRST  
bbbbb Buck1 Reference DAC Input A  
0*  
1
Select DVB1A[4:0]  
Select DVB1B[4:0]  
ON 400ms  
OR PWR_ON  
DVB1B[4:0]  
DVB1B[ꢀ]  
bbbbb Buck1 Reference DAC Input B  
ENABLE  
ALLOWED AND  
WAKE HIGH  
0*  
1
Pull PGOOD Low Slewing Buck1  
Do Not Pull PGOOD Slewing Buck1  
5 SEC  
PWR_ON  
TIMER  
DVB2A[4:0]  
DVB2A[ꢀ]  
bbbbb Buck2 Reference DAC Input A  
0*  
1
Select DVB2A[4:0]  
Select DVB2B[4:0]  
DVB2B[4:0]  
DVB2B[ꢀ]  
bbbbb Buck2 Reference DAC Input B  
0*  
1
Pull PGOOD Low Slewing Buck2  
Do Not Pull PGOOD Slewing Buck2  
ON 400ms  
OR PWR_ON  
STANDBY  
ON  
ON 10 SEC  
DVB3A[4:0]  
DVB3A[ꢀ]  
bbbbb Buck3 Reference DAC Input A  
2
OR I C HRST  
0*  
1
Select DVB3A[4:0]  
Select DVB3B[4:0]  
ON 10 SEC  
2
OR I C HRST  
PWR_ON  
OR FAULT  
DVB3B[4:0]  
DVB3B[ꢀ]  
bbbbb Buck3 Reference DAC Input B  
0*  
1
Pull PGOOD Low Slewing Buck3  
Do Not Pull PGOOD Slewing Buck3  
1 SEC OFF  
TIMER  
STANDBY  
1 SEC OFF  
TIMER  
HRST  
3676 F06  
ON 10 SEC  
DVB4A[4:0]  
DVB4A[ꢀ]  
bbbbb Buck4 Reference DAC Input A  
2
OR I C HRST  
0*  
1
Select DVB4A[4:0]  
Select DVB4B[4:0]  
DVB4B[4:0]  
DVB4B[ꢀ]  
bbbbb Buck4 Reference DAC Input B  
Figure 6. LTC3676 Operating Mode State Diagram  
0*  
1
Pull PGOOD Low Slewing Buck4  
Do Not Pull PGOOD Slewing Buck4  
Power Up Using Pushbutton  
*denotes default power-on value.  
When the ON pin is held low for 400ms the WAKE pin is  
pulledhigh,enablepinsarerecognized,andthefivesecond  
PWR_ON timer is started. If in the ON state and PWR_ON  
is low or a fault is detected, then WAKE is brought low and  
after a 1 second power-down time, the STANDBY state  
is entered. In STANDBY, the enable bits in the command  
registers are cleared and enable pins are ignored. Table 9  
shows the control of command registers, enables, and  
WAKE at each state.  
PUSHBUTTON OPERATION  
Operating Mode State Diagram  
Figure 6 shows the state diagram of the LTC3676 enable  
and sequence controller. First application of power to  
V
IN  
pin brings the controller to the power-on reset/hard  
2
reset (POR/HRST) state. In this state the I C command  
registers have been set to their default values, only LDO1  
is operating, and the device is waiting for pushbutton or  
PWR_ON inputs. Regulator enable pins and command  
register enable bits are ignored in POR/HRST state. In the  
The ꢀ second power-on state is intended for the system to  
detectthatpowerrailsarecorrectandeitherdrivePWR_ON  
pin high or set command register bit CNTRL[7] high to  
keep the rails active. If there were a system level problem  
POR/HRST state V draws typically 12µA.  
IN  
3676fd  
20  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
status register bit, the controller can detect a pushbutton  
request. If a power-down into standby state is desired  
then the controller should drive PWR_ON low and set  
command register bit CNTRL[7] low.  
ON (PB)  
400ms  
WAKE  
<5 SEC  
Button Status Indication  
PWR_ON  
µC/µP CONTROL  
2
3676 F07  
(PIN OR I C)  
When a pushbutton pulls ON low for ꢀ0ms in the ON state,  
IRQ is pulled low and the PB status bit in the IRQSTAT[0]  
status register is set. IRQ and the IRQSTAT status bit are  
active while ON is low or for a minimum of ꢀ0ms.  
Figure 7. Power Up Using Pushbutton  
keeping the processor from driving PWR_ON, then the  
LTC3676 will pull WAKE low, shut off all regulators, and  
enter the STANDBY state. The STANDBY state is also a  
low power, 12µA (typical) state.  
Power Up and Down with PWR_ON  
The PWR_ON pin is an alternative way to power up the  
LTC3676 instead of using the ON pin. When PWR_ON is  
driven high or command register CNTRL[7] is set high,  
WAKE is pulled HIGH and the LTC3676 passes through  
the ꢀ second PWR_ON timer to the ON state. Figure 9  
shows PWR_ON and WAKE timing. WAKE stays high for  
a minimum of ꢀ seconds.  
Table 9. Register, Enable, WAKE Control During Operating  
Mode State Control  
STATE  
REGISTERS ENABLES  
WAKE  
LOW  
POR/HRST DEFAULT  
ꢀ SEC PWR_ON TIMER  
ON  
R/W  
R/W  
R/W  
Inhibited  
Allowed  
Allowed  
HIGH  
HIGH  
1 SEC OFF TIMER HRST  
Set to POR Sequence Down LOW  
Defaults  
5 SEC  
PWR_ON  
(PIN OR I C)  
µC/µP CONTROL  
2
2
1 SEC OFF TIMER  
STANDBY  
I C Enable Sequence Down LOW  
and SW  
Mode Bits  
Cleared  
3ms  
3ms  
WAKE  
3676 F09  
STANDBY  
R/W  
Inhibited  
LOW  
Figure 9. Power Up and Down with PWR_ON  
Power Down Using Pushbutton  
When in the ON state, the system controller is responsible  
for deciding what action to take when a pushbutton event  
occurs. By monitoring the IRQ status pin and IRQSTAT[0]  
POWER ON SEQUENCING  
Enable Pin Operation  
<10 SEC  
The LTC3676 enable pins facilitate pin-strapping output  
railstoenablepinstoup-sequencetheLTC3676regulators  
in any order. Figure 10 shows an example of pin-strapped  
sequence connections. The enable pins normally have a  
0.8V (typical) input voltage threshold.  
ON (PB)  
50ms  
IRQ  
IRQSTAT[0]  
WAKE  
If any enable is driven high, the remaining enable input  
thresholds switches to an accurate 400mV threshold. To  
ensure separation of the sequenced rails, there is a built-  
in 4ꢀ0µs delay from the enable pin threshold crossing to  
the internal enable of the regulator. Figure 11 shows the  
start-up timing of the example shown in Figure 10.  
3ms  
PWR_ON  
µC/µP CONTROL  
2
(PIN OR I C)  
3676 F08  
Figure 8. Power-Down Using Pushbutton  
3676fd  
21  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
bits, or the operating state of the LTC3676. A hard reset  
or fault shutdown resets the keep alive bits.  
LTC3676  
EN_B1  
EN_B2  
EN_B3  
EN_B4  
EN_L2  
EN_L3  
EN_L4  
ON  
WAKE  
SW1  
SW2  
SW3  
SW4  
LDO2  
LDO3  
LDO4  
V
IN  
POWER OFF SEQUENCING  
V
B1  
V
B2  
V
B3  
V
B4  
V
L2  
V
L3  
V
L4  
= 1.2V  
= 1.8V  
= 2.5V  
= 1.2V  
= 1.2V  
= 1.8V  
= 2.8V  
Sequence down command registers SQD1 and SQD2  
are used to set the time, relative to WAKE falling, that a  
regulator is disabled either by lowering PWR_ON, or a  
fault induced shutdown. Table 10 shows register settings  
for SQD1 and SQD2.  
PWR_ON  
PWR_ON  
3676 F10  
Table 10.Sequence Down Control Command Register Settings  
COMMAND  
Figure 10. Pin-Strapped Power-On Sequence Application  
REGISTER[BIT]  
VALUE SETTING  
SQD1[1:0]  
00*  
01  
Disable Buck1 at Falling WAKE  
WAKE  
1.2V  
1.8V  
450µs  
Disable Buck1 at Falling WAKE + 100ms  
Disable Buck1 at Falling WAKE + 200ms  
Disable Buck1 at Falling WAKE + 300ms  
0.4V  
0.4V  
10  
V
B1  
B2  
11  
450µs  
SQD1[3:2]  
SQD1[ꢀ:4]  
SQD1[7:6]  
SQD2[1:0]  
SQD2[3:2]  
SQD2[ꢀ:4]  
00*  
01  
10  
11  
Disable Buck2 at Falling WAKE  
V
2.5V  
1.2V  
Disable Buck2 at Falling WAKE + 100ms  
Disable Buck2 at Falling WAKE + 200ms  
Disable Buck2 at Falling WAKE + 300ms  
V
V
B3  
B4  
00*  
01  
10  
11  
Disable Buck3 at Falling WAKE  
1.2V  
1.8V  
2.8V  
450µs  
Disable Buck3 at Falling WAKE + 100ms  
Disable Buck3 at Falling WAKE + 200ms  
Disable Buck3 at Falling WAKE + 300ms  
V
V
L2  
L3  
00*  
01  
10  
11  
Disable Buck4 at Falling WAKE  
Disable Buck4 at Falling WAKE + 100ms  
Disable Buck4 at Falling WAKE + 200ms  
Disable Buck4 at Falling WAKE + 300ms  
3676 F11  
V
L4  
00*  
01  
10  
11  
Disable LDO2 at Falling WAKE  
Figure 11. Pin-Strapped Power-On Sequence  
Disable LDO2 at Falling WAKE + 100ms  
Disable LDO2 at Falling WAKE + 200ms  
Disable LDO2 at Falling WAKE + 300ms  
Software Control Mode  
00*  
01  
10  
11  
Disable LDO3 at Falling WAKE  
Disable LDO3 at Falling WAKE + 100ms  
Disable LDO3 at Falling WAKE + 200ms  
Disable LDO3 at Falling WAKE + 300ms  
Once a power-up sequence is completed, each regulator  
may be enabled and disabled individually by the system  
as needed for power management requirements by using  
the command register bit CNTRL[ꢀ]. When CNTRL[ꢀ] is  
set high the regulators ignore the state of their enable pins  
00*  
01  
10  
11  
Disable LDO4 at Falling WAKE  
Disable LDO4 at Falling WAKE + 100ms  
Disable LDO4 at Falling WAKE + 200ms  
Disable LDO3 at Falling WAKE + 300ms  
2
and respond only to I C command register bit settings.  
*denotes default power-on value.  
The software control mode bit is reset in the one second  
standby and hard reset timer states so a pin strapped  
sequence begins at the next LTC3676 power on.  
Figure 12 shows an example of a shutdown sequence. In  
this example, the bits in command registers SQD1 and  
SQD2 are set so that LDO2, LDO3, and LDO4 shut off at  
the same time as WAKE. Buck2 and Buck4 shut off 100ms  
after WAKE. Buck3 shuts off 200ms after wake and Buck1  
shuts off 300ms after WAKE.  
Keep Alive Operation  
Each regulator has a dedicated command register keep  
alive bit that, when set, forces a regulator to be enabled  
regardless of the enable pins, command register enable  
3676fd  
22  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
Over Temperature  
WAKE  
1.2V  
300ms  
To prevent thermal damage the LTC3676 incorporates an  
overtemperature (OT) circuit. When the die temperature  
reaches 1ꢀꢀ°C the OT circuits create a FAULT condition  
that forces the LTC3676 into standby. When the OT cir-  
cuit detects the temperature falls below 140°C the FAULT  
condition is cleared. The LTC3676 also has an OT warning  
circuit that indicates the die temperature is approaching  
the OT fault threshold. The OT warning threshold is user  
programmable as shown in Table 12.  
V
V
B1  
B2  
200ms  
1.8V  
2.5V  
1.2V  
100ms  
V
V
B3  
B4  
1.2V  
1.8V  
2.8V  
V
V
V
L2  
L3  
L4  
Table 12. Overtemperature Warning Threshold Command  
Register Settings  
COMMAND  
REGISTER[BIT]  
VALUE OT WARNING THRESHOLD  
CNTRL[1:0]  
00*  
01  
10°C Below OT Fault  
20°C Below OT Fault  
30°C Below OT Fault  
40°C Below OT Fault  
10  
11  
3676 F12  
*denotes default power-on value.  
Figure 12. Power-Down Sequence  
PGOOD Status Pin  
FAULT DETECTION AND REPORTING  
The PGOOD open-drain status pin is pulled low when all  
regulatorsaredisabled.PGOODisreleasedwhenallenabled  
regulator outputs are above 93% of programmed value.  
When any enabled regulator output falls below 92% of its  
programmed value for longer than ꢀ0µs the PGOOD pin is  
pulled low. The ꢀ0µs transient filter on PGOOD prevents  
PGOOD glitches due to transients. If the error condition  
persistsforlongerthan20ms,theIRQpinispulledlowand  
status register IRQSTAT bit 2 is set to indicate a persistent  
PGOOD fault. The PGOOD pin is held low for the duration  
of the low output condition plus 1ms. Figure 13 shows the  
timing of PGOOD during enable and fault events.  
The LTC3676 has fault detection circuits that monitor  
for V undervoltage, die overtemperature, and regulator  
IN  
output undervoltage. Status of the fault detect circuits is  
indicated by the IRQ and PGOOD pins and the IRQSTAT  
and PGSTAT status registers.  
V Undervoltage  
IN  
The undervoltage (UV) circuit monitors the input supply  
voltage, V , and when the voltage falls below 2.4ꢀV cre-  
IN  
ates a FAULT condition that forces the LTC3676 into the  
standby state. The LTC3676 also provides a (UV) warning  
that is triggered at user programmable V voltages as  
IN  
shown in Table 11.  
Table 11. Undervoltage Warning Threshold Command Register  
Settings  
ENx  
450µs  
COMMAND  
REGISTER[BIT]  
50µs  
50µs  
V
OUTx  
VALUE  
FALLING V THRESHOLD  
1ms  
1ms  
IN  
20ms  
CNTRL[4:2]  
000*  
001  
010  
011  
100  
101  
110  
111  
2.7V  
2.8V  
2.9V  
3.0V  
3.1V  
3.2V  
3.3V  
3.4V  
PGOOD  
IRQ  
3676 F13  
Figure 13. Output Low Voltage PGOOD and IRQ Timing  
*denotes default power-on value.  
3676fd  
23  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
PGSTAT and MSKPG Registers  
Table 14. Power Good Status Masking Command Register  
COMMAND  
The power good status of each regulator is accessible  
REGISTER[BIT]  
VALUE  
2
throughtheLTC3676I Cinterfacebyreadingthecontents  
MSKPG [0]  
0
1*  
Mask Buck1 PGOOD Status  
Pass Buck1 PGOOD Status  
ofthePGSTATstatusregister. Table13showsthePGSTAT  
register contents. The data in the PGSTATL register is held  
for the length of the low voltage condition plus 1ms. The  
data in the PGSTATRT register is held only for the duration  
of the low voltage condition.  
MSKPG [1]  
MSKPG [2]  
MSKPG [3]  
MSKPG [ꢀ]  
MSKPG [6]  
MSKPG [7]  
0
Mask Buck2 PGOOD Status  
Pass Buck2 PGOOD Status  
1*  
0
1*  
Mask Buck3 PGOOD Status  
Pass Buck3 PGOOD Status  
0
1*  
Mask Buck4 PGOOD Status  
Pass Buck4 PGOOD Status  
Table 13. Power Good Status Register  
STATUS  
0
1*  
Mask LDO2 PGOOD Status  
Pass LDO2 PGOOD Status  
REGISTER[BIT]  
VALUE  
REGULATOR OUTPUT LOW STATUS  
0
1*  
Mask LDO3 PGOOD Status  
Pass LDO3 PGOOD Status  
PGSTAT[0]  
0
1
Buck1 Output Low  
Buck1 Output OK  
0
1*  
Mask LDO4 PGOOD Status  
Pass LDO4 PGOOD Status  
PGSTAT[1]  
PGSTAT[2]  
PGSTAT[3]  
PGSTAT[4]  
PGSTAT[ꢀ]  
PGSTAT[6]  
PGSTAT[7]  
0
1
Buck2 Output Low  
Buck2 Output OK  
*denotes default power-on value.  
0
1
Buck3 Output Low  
Buck3 Output OK  
0
1
Buck4 Output Low  
Buck4 Output OK  
IRQ Status Pin  
The IRQ pin is pulled and latched low when undervoltage,  
overtemperature or persistent PGOOD events occur. The  
IRQ pin is cleared by addressing the CLIRQ command  
register or by holding ON low for ꢀ0ms.  
0
1
LDO1 Output Low  
LDO1 Output OK  
0
1
LDO2 Output Low  
LDO2 Output OK  
0
1
LDO3 Output Low  
LDO3 Output OK  
Table 15. Interrupt Request Status Register  
STATUS  
0
1
LDO4 Output Low  
LDO4 Output OK  
REGISTER[BIT]  
VALUE  
IRQSTAT REGISTER BIT MEANING  
Pushbutton Status Active (Real Time)  
Hard Reset Occurred  
IRQSTAT [0]  
0
1
EachregulatorhasacorrespondingbitintheMSKPGstatus  
register as shown in Table 14. When set, a bit blocks the  
PGOOD pin from being pulled low in the event of a low  
output voltage fault from its matching regulator. Setting  
a bit in the MSKPG command register does not mask the  
status in the PGSTAT status register.  
IRQSTAT [1]  
IRQSTAT [2]  
IRQSTAT [3]  
IRQSTAT [4]  
IRQSTAT [ꢀ]  
IRQSTAT [6]  
0
1
0
1
PGOOD Timeout Occurred  
0
1
Undervoltage Warning  
0
1
Undervoltage Standby Occurred  
Overtemperature Warning  
0
1
0
1
Overtemperature Standby Occurred  
3676fd  
24  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
IRQSTAT and MSKIRQ Registers  
CNTRL command register determines how long ON must  
remain low to initiate the hard reset. A hard reset sets  
2
The bits in the MSKIRQ command register are set to mask  
warning, fault, and pushbutton status reporting to the IRQ  
pin. When set to mask, the IRQ pin is not pulled low as a  
result of a fault or warning. Even though the IRQ pin is not  
pulled low the masked bit is set in the IRQSTAT register.  
When undervoltage, overtemperature faults, and hard  
reset signals are masked, the IRQ pin is not pulled low  
but LTC3676 state controller is pushed into the STANDBY  
or POR/HRST state. Accessing the CLIRQ status register  
clears the latched bits in the IRQSTAT status register and  
releases the IRQ pin.  
all I C command register bits to their default power-on  
state. Table 17 shows the command register control of  
hard reset function.  
Table 17. Hard Reset Time Control Command Register  
COMMAND  
REGISTER[BIT]  
VALUE  
SETTING  
CNTRL[6]  
0*  
1
10 seconds  
ꢀ seconds  
*denotes default power-on value.  
A hard reset command will push the LTC3676 state con-  
troller through the 1 second HRST timer state and into  
the POR/HRST state.  
Table 16. Interrupt Request Mask Command Register  
COMMAND  
REGISTER[BIT]  
VALUE  
Fault Shutdown  
MSKIRQ [0]  
0*  
1
Pass Pushbutton Status  
Mask Pushbutton Status  
An undervoltage or overtemperature fault will push the  
LTC3676 state controller through the 1 second standby  
timer state and into standby state. If a down sequence  
is selected in the command registers, it will be executed  
during the 1 second power down interval.  
MSKIRQ [2]  
MSKIRQ [3]  
MSKIRQ [4]  
MSKIRQ [ꢀ]  
MSKIRQ [6]  
0*  
1
Pass PGOOD Timeout  
Mask PGOOD Timeout  
0*  
1
Pass Undervoltage Warning  
Mask Undervoltage Warning  
0*  
1
Pass Undervoltage Shutdown  
Mask Undervoltage Shutdown  
LTC3676-1 Operation  
0*  
1
Pass Overtemperature Warning  
Mask Overtemperature Warning  
The LTC3676-1 option supports DDR memory operation  
by generating a DDR termination reference and supply  
rail equal to one-half the voltage applied to VDDQIN Pin 8.  
0*  
1
Pass Overtemperature Shutdown  
Mask Overtemperature Shutdown  
*denotes default power-on value.  
An internal resistive divider creates a reference voltage of  
one-half the voltage on VDDQIN. This reference is used  
IRQ and IRQSTAT are not cleared by hard reset or fault  
shutdown. If V remains applied while the LTC3676 is in  
IN  
by the V reference buffer to output one-half of VDDQIN  
TT  
STANDBY or POR/HRST then IRQSTAT may be read on  
the subsequent power up to determine if a fault or hard  
reset occurred.  
on VTTR Pin 9. The VTTR voltage is used as the reference  
for 1.ꢀA switching regulator 1 which is used as the DDR  
termination supply. The LTC3676-1 EN_B1 pin and com-  
mand register bit Buck1[7] enable both VTTR output and  
switching regulator 1.  
RSTO Status Pin  
The LTC3676 RSTO status pin is pulled low when always-  
on LDO1 is 8% below its programmed value or when the  
LTC3676 is in the one second HRST timer state.  
Figure 1 shows typical application connections for the  
LTC3676-1 DDR termination reference and termination  
supply.  
Hard Reset  
2
LDO4 has I C command register selectable output volt-  
ages of 1.2V (default), 2.ꢀV, 2.8V and 3V and is enabled  
A hard reset can be initiated by holding the ON pin low  
or writing to the HRST command register. Bit six of the  
2
only using the I C command register. Table 18 shows  
the LDO4 command register controls for the LTC3676-1.  
3676fd  
25  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
Table 18. LDO4 Control Command Register Setting (LTC3676-1)  
2
I C START and STOP Conditions  
COMMAND  
A bus master signals the beginning of communications  
by transmitting a START condition. A START condition is  
generated by transitioning SDA from HIGH to LOW while  
SCL is HIGH. The master may transmit either the slave  
write or the slave read address. Once data is written to the  
LTC3676,themastermaytransmitaSTOPconditionwhich  
commands the LTC3676 to act upon its new command  
set. A STOP condition is sent by the master by transition-  
ing SDA from LOW to HIGH while SCL is HIGH. The bus  
REGISTER[BIT] VALUE SETTING  
LDOB[0]  
LDOB[1]  
LDOB[2]  
LDOB[4:3]  
0* Do Not Keep Alive LDO4 in Standby  
Keep Alive LDO4 in Standby  
1
0* Enable LDO4 at Any Output Voltage  
Enable LDO4 Only if Output Voltage Is <300mV  
1
0* LDO4 Disabled  
LDO4 Enable  
1
00* 1.2V  
01  
10  
11  
2.ꢀV  
2.8V  
3.0V  
2
is then free for communication with another I C device.  
*denotes default power-on value.  
2
I C Byte Format  
2
I C OPERATION  
Each byte sent to or received from the LTC3676 must  
be 8 bits long followed by an extra clock cycle for the  
acknowledge bit. The data should be sent to the LTC3676  
most significant bit (MSB) first.  
The LTC3676 communicates with a bus master using  
the standard I C 2-wire interface. The timing diagram in  
2
Figure 14 shows the relationship of the signals on the  
bus. The two bus lines, SDA and SCL must be high when  
the bus is not in use. External pull-up resistors or current  
sources, such as the LTC1694 SMBus accelerator, are  
required on SDA and SCL. The LTC3676 is both a slave  
2
I C Acknowledge  
The acknowledge signal is used for handshaking between  
the master and the slave. When the LTC3676 is written  
to, it acknowledges its write address and subsequent data  
bytes. When it is read from, the LTC3676 acknowledges  
itsreadaddressonly.Thebusmastershouldacknowledge  
data returned from the LTC3676.  
2
receiver and slave transmitter. The I C control signals,  
SDA and SCL are scaled internally to the DV supply.  
DD  
DV must be connected to the same power supply as  
DD  
the bus pull-up resistors.  
2
The I C port has an undervoltage lockout on the DV  
AnacknowledgegeneratedbytheLTC3676letsthemaster  
know that the latest byte of information was received.  
The master generates the acknowledge related clock and  
releases the SDA line during the acknowledge clock cycle.  
The LTC3676 pulls down the SDA line during the write  
acknowledge clock pulse so that it is a stable LOW during  
the HIGH period of this clock pulse.  
DD  
2
pin. When DV is below approximately 1V, the I C  
DD  
serial port is cleared and the command registers are set  
to default POR values.  
2
The complete I C command register table is shown in  
Table 20.  
2
I C Bus Speed  
At the end of a byte of data transferred from the LTC3676  
during a READ operation, the LTC3676 releases the SDA  
line to allow the master to acknowledge receipt of the  
data. Failure of the master to acknowledge data from the  
2
The I C port operates at speeds up to 400kHz. It has  
built in timing delays to ensure correct operation when  
2
addressed from an I C compliant master device. It also  
2
LTC3676 has no effect on the operation of the I C port.  
containsinputfiltersdesignedtosuppressglitchesshould  
the bus become corrupted.  
3676fd  
26  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
SDA  
t
t
t
SU, STA  
BUF  
SU, DAT  
t
t
t
t
LOW  
HD, STA  
SU, STO  
HD, DAT  
3676 F14  
SCL  
t
t
HIGH  
t
HD, STA  
SP  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
t
r
t
f
Figure 14. LTC3676 I2C Serial Port Timing  
2
TheLTC3676willkeepinterimwritestotheregisterswhen  
a repeat START condition occurs. A repeat start may be  
I C Slave Address  
The LTC3676 responds to factory programmed read and  
writeaddresses.Theleastsignificantbitoftheaddressbyte  
is 0 when writing data and 1 when reading data. Table 19  
shows read and write addresses for the LTC3676 options.  
2
used to set up other devices on the I C bus prior to send-  
ing a STOP condition. The LTC3676 will act on the data  
written prior to the repeat start when a STOP condition  
is detected.  
Table 19. LTC3676 and LTC3676-1 I2C Read and Write  
Addresses  
LTC PART NUMBER  
LTC3676  
2
I C Read Operation  
R/W  
W
ADDRESS  
Figure 16 shows the LTC3676 command register read  
sequence. The bus master reads a byte of data from a  
LTC3676 command or status register by first writing the  
LTC3676 write address followed by the sub-address to  
be read from. The LTC3676 acknowledges each of the  
two bytes. Next, the bus master initiates a new START  
condition and sends the LTC3676 read address. Follow-  
ing the acknowledge of the read address by the LTC3676,  
0111 1000, 0x78  
0111 1001, 0x79  
0111 1010, 0x7A  
0111 1011, 0x7B  
LTC3676  
R
LTC3676-1  
LTC3676-1  
W
R
2
I C Write Operation  
The LTC3676 has twenty-two command registers for  
2
2
control input. They are accessed by the I C port via a  
the LTC3676 pushes data onto the I C bus for the 8 clock  
sub-addressed writing system.  
cycles. The bus master then acknowledges the data on  
its ninth clock.  
A single write cycle of the LTC3676 consists of exactly  
three bytes except when a clear interrupt or hard reset  
command is written. The first byte is always the LTC3676  
write address. The second byte represents the LTC3676  
sub-address. The sub-address is a pointer which directs  
the subsequent data byte within the LTC3676. The third  
byte consists of the data to be written to the location  
pointed to by the sub-address.  
The last read sub-address that is written to the LTC3676  
is stored. This allows repeated polling of a command or  
statusregisterwithouttheneedtore-writeitssub-address.  
Additionally, the last register written may be immedi-  
ately read by issuing a START condition followed by read  
address and clocking out the data.  
As shown in Figure 1ꢀ, the LTC3676 supports multiple  
sub-addressed write operations. Data pairs sent following  
the chip write address are interpreted as sub-address and  
data. Any number of sub-address and data pairs may be  
sent. The data in the command registers is not acted on  
by the LTC3676 until a STOP signal is issued.  
3676fd  
27  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
3676fd  
28  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
Table 20. LTC3676 Command Registers  
REG NAME B[7]  
B[6]  
B[5]  
B[4]  
B[3]  
B[2]  
B[1]  
B[0]  
DEFAULT  
0x01 BUCK1 Enable:  
Mode:  
Start-Up:  
0 = Enable at  
Any Output  
Voltage  
Phase Select: Clock Rate:  
Keep Alive  
Switch DV/DT 0000 0000  
Control:  
0 = Disabled if 00 = Pulse-Skipping  
EN_B1 Low 01 = Burst  
0 = Clock  
Phase 1  
0 = 2.2ꢀMHz Buck1:  
1 = 1.12ꢀMHz 0 = Do Not  
Keep Alive  
0 = Slow  
10 = Forced Continuous  
1 = Fast  
1 = Enabled  
1 = Clock  
Phase 2  
1 = Enable  
Only if Output  
<300mV  
1= Keep Alive in  
Shutdown.  
0x02 BUCK2 Enable:  
Mode:  
Start-Up:  
0 = Enable at  
Any Output  
Voltage  
Phase Select: Clock Rate:  
Keep Alive  
Switch DV/DT 0000 0000  
Control:  
0 = Disabled if 00 = Pulse-Skipping  
EN_B2 Low 01 = Burst  
0 = Clock  
Phase 1  
0 = 2.2ꢀMHz Buck2:  
1 = 1.12ꢀMHz 0 = Do Not  
Keep Alive  
0 = Slow  
10 = Forced Continuous  
1 = Fast  
1 = Enabled  
1 = Clock  
Phase 2  
1 = Enable  
Only if Output  
<300mV  
1 = Keep Alive  
in Shutdown  
0x03 BUCK3 Enable:  
Mode:  
Start-Up:  
0 = Enable at  
Any Output  
Voltage  
Phase Select: Clock Rate:  
Keep Alive  
Switch DV/DT 0000 0000  
Control:  
0 = Disabled if 00 = Pulse-Skipping  
EN_B3 Low 01 = Burst  
0 = Clock  
Phase 1  
0 = 2.2ꢀMHz Buck3:  
1 = 1.12ꢀMHz 0 = Do Not  
Keep Alive  
0 = Slow  
10 = Forced Continuous  
1 = Fast  
1 = Enabled  
1 = Clock  
Phase 2  
1 = Enable  
Only if Output  
<300mV  
1 = Keep Alive  
in Shutdown  
0x04 BUCK4 Enable:  
Mode:  
Start-Up:  
0 = Enable at  
Any Output  
Voltage  
Phase Select: Clock Rate:  
Keep Alive  
Switch DV/DT 0000 0000  
Control:  
0 = Disabled if 00 = Pulse-Skipping  
EN_B4 Low 01 = Burst  
0 = Clock  
Phase 1  
0 = 2.2ꢀMHz Buck4:  
1 = 1.12ꢀMHz 0 = Do Not  
Keep Alive  
0 = Slow  
10 = Forced Continuous  
1 = Fast  
1 = Enabled  
1 = Clock  
Phase 2  
1 = Enable  
Only if Output  
<300mV  
1 = Keep Alive  
in Shutdown  
0x0ꢀ LDOA  
0x06 LDOB  
0x07 SQD1  
Reserved  
Reserved  
Reserved  
Reserved  
Enable LDO3: Start-Up LDO3: Keep Alive  
Enable LDO2: Start-Up LDO2: Keep Alive  
XX00 0000  
XX00 0000  
0000 0000  
0 = Disabled if 0 = Enable at  
LDO3:  
0 = Disabled if 0 = Enable at  
LDO2:  
EN_L3 Low  
Any Output  
Voltage  
0 = Do Not  
Keep Alive  
EN_L2 Low  
Any Output  
Voltage  
0 = Do Not  
Keep Alive  
1 = Enabled  
1 = Enabled  
1 = Enable  
Only if Output in Shutdown.  
<300mV  
1 = Keep Alive  
1 = Enable  
Only if Output in Shutdown  
<300mV  
1 = Keep Alive  
Reserved  
LTC3676-1 LDO4 Output  
Voltage:  
Enable LDO4: Start-Up LDO4: Keep Alive  
0 = Disabled if 0 = Enable at  
LDO4:  
00 = 1.2V  
EN_L4 Low  
Any Output  
Voltage  
0 = Do Not  
Keep Alive  
01 = 2.ꢀV  
1 = Enabled  
10 = 2.8V  
1 = Enable  
1 = Keep Alive  
11 = 3.0V  
Only if Output in Shutdown  
<300mV  
Sequence Down Buck4:  
00 = With WAKE  
Sequence Down Buck3:  
00 = With WAKE  
Sequence Down Buck2:  
00 = With WAKE  
Sequence Down Buck1:  
00 = With WAKE  
01 = WAKE + 100ms  
10 = WAKE + 200ms  
11 = WAKE + 300ms  
01 = WAKE + 100ms  
10 = WAKE + 200ms  
11 = WAKE + 300ms  
01 = WAKE + 100ms  
10 = WAKE + 200ms  
11 = WAKE + 300ms  
01 = WAKE + 100ms  
10 = WAKE + 200ms  
11 = WAKE + 300ms  
3676fd  
29  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
REG NAME B[7]  
B[6]  
B[5]  
B[4]  
B[3]  
B[2]  
B[1]  
B[0]  
DEFAULT  
0x08 SQD2  
Reserved  
Reserved  
Sequence Down LD04:  
00 = With WAKE  
Sequence Down LD03:  
00 = With WAKE  
Sequence Down LD02:  
00 = With WAKE  
XX00 0000  
01 = WAKE + 100ms  
10 = WAKE + 200ms  
11 = WAKE + 300ms  
01 = WAKE + 100ms  
10 = WAKE + 200ms  
11 = WAKE + 300ms  
01 = WAKE + 100ms  
10 = WAKE + 200ms  
11 = WAKE + 300ms  
0x09 CNTRL PWR_ON:  
0 = Not  
Pushbutton Software  
UV Warning Threshold:  
Over temperature Warning  
Levels:  
0000 0000  
Hard Reset  
Timer:  
Control Mode: 000 = 2.7V  
PWR_ON  
0 = Pin or  
Register  
Control  
001 = 2.8V  
010 = 2.9V  
011 = 3.0V  
100 = 3.1V  
101 = 3.2V  
110 = 3.3V  
111 = 3.4V  
00 = 10°C Below  
Overtemperature  
0 = 10 sec  
1 = ꢀ sec  
1 = PWR_ON  
01 = 20°C Below  
Overtemperature  
"ORed" with  
PWR_ON PIN  
1 = Inhibit Pin  
Control  
10 = 30°C Below  
Overtemperature  
11 = 40°C Below  
Overtemperature  
0x0A DVB1A Reserved  
0x0B DVB1B Reserved  
Reserved  
Reserved  
Buck1  
Reference  
Select:  
0 =  
Buck1 Feedback Reference Input (VA):  
00000 = 412.ꢀmV  
XX01 1001  
XX01 1001  
11001 = 72ꢀmV  
11111 = 800mV  
DVB1A[4-0] 12.ꢀmV Step Size  
1 =  
DVB1B[4-0]  
PGOOD Mask: Buck1 Feedback Reference Input (VB):  
0 = PGOOD  
Low When  
Slewing  
00000 = 412.ꢀmV  
11001 = 72ꢀmV  
11111 = 800mV  
12.ꢀmV Step Size  
1 = PGOOD  
Not Forced  
Low When  
Slewing  
0x0C DVB2A Reserved  
0x0D DVB2B Reserved  
Reserved  
Reserved  
Buck2  
Reference  
Select:  
0 =  
Buck2 Feedback Reference Input (VA):  
00000 = 412.ꢀmV  
XX01 1001  
XX01 1001  
11001 = 72ꢀmV  
11111 = 800mV  
DVB2A[4-0] 12.ꢀmV Step Size  
1 =  
DVB2B[4-0]  
PGOOD Mask: Buck2 Feedback Reference Input (VB):  
0 = PGOOD  
Low When  
Slewing  
00000 = 412.ꢀmV  
11001 = 72ꢀmV  
11111 = 800mV  
12.ꢀmV Step Size  
1 = PGOOD  
Not Forced  
Low When  
Slewing  
0x0E DVB3A Reserved  
Reserved  
Buck3  
Reference  
Select:  
0 =  
Buck3 Feedback Reference Input (VA):  
00000 = 412.ꢀmV  
XX01 1001  
11001 = 72ꢀmV  
11111 = 800mV  
DVB3A[4-0] 12.ꢀmV Step Size  
1 =  
DVB3B[4-0]  
3676fd  
30  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
operaTion  
REG NAME B[7]  
B[6]  
B[5]  
B[4]  
B[3]  
B[2]  
B[1]  
B[0]  
DEFAULT  
0x0F DVB3B Reserved  
Reserved  
PGOOD Mask: Buck3 Feedback Reference Input (VB):  
XX01 1001  
0 = PGOOD  
Low When  
Slewing  
00000 = 412.ꢀmV  
11001 = 72ꢀmV  
11111 = 800mV  
12.ꢀmV Step Size  
1 = PGOOD  
Not Forced  
Low When  
Slewing  
0x10 DVB4A Reserved  
Reserved  
Reserved  
Buck4  
Reference.  
Select:  
0 =  
Buck4 Feedback Reference Input (VA):  
00000 = 412.ꢀmV  
XX01 1001  
XX01 1001  
11001 = 72ꢀmV  
11111 = 800mV  
DVB4A[4-0] 12.ꢀmV Step Size  
1 =  
DVB4B[4-0]  
0x11 DVB4B Reserved  
PGOOD Mask: Buck4 Feedback Reference Input (VB):  
0 = PGOOD  
Low When  
Slewing  
00000 = 412.ꢀmV  
11001 = 72ꢀmV  
11111 = 800mV  
12.ꢀmV Step Size  
1 = PGOOD  
Not Forced  
Low When  
Slewing  
0x12 MSKIRQ Reserved  
Mask Over- Mask Over-  
Mask  
Mask  
Mask PGOOD Reserved  
Mask Push  
Button Status  
X000 00X0  
temperature temperature Undervoltage Undervoltage Timeout  
Shutdown  
Warning  
Shutdown  
Warning  
0x13 MSKPG Allow LDO 4 Allow LDO 3 Allow LDO 2 Reserved  
PGOOD Fault PGOOD Fault PGOOD Fault  
Allow Buck 4 Allow Buck 3 Allow Buck 2  
PGOOD Fault PGOOD Fault PGOOD Fault  
Allow Buck 1 1111 1111  
PGOOD Fault  
0x14 USER  
0x1E HRST  
0x1F CLIRQ  
User Bit 7  
User Bit 6  
User Bit ꢀ  
User Bit 4  
User Bit 3  
User Bit 2  
User Bit 1  
User Bit 0  
0000 0000  
Hard Reset Command. No Data.  
Clear IRQ Command. No Data  
Table 22. LTC3676 Status Registers  
REG  
NAME B[7]  
B[6]  
B[5]  
B[4]  
Undervoltage Undervoltage PGOOD  
Shutdown Warning Timeout  
B[3]  
B[2]  
B[1]  
Hard Reset  
B[0]  
0x1ꢀ IRQSTAT Reserved  
Over-  
temperature  
Shutdown  
Over-  
temperature  
Warning  
Pushbutton  
Status (Real  
Time)  
0x16 PGSTATL LDO4 PGOOD LDO3 PGOOD LDO2 PGOOD LDO1 PGOOD Buck4 PGOOD Buck3 PGOOD Buck2 PGOOD Buck1 PGOOD  
Hold 1ms Hold 1ms Hold 1ms Hold 1ms Hold 1ms Hold 1ms Hold 1ms Hold 1ms  
0x17 PGSTATRT LDO4 PGOOD LDO3 PGOOD LDO2 PGOOD LDO1 PGOOD Buck4 PGOOD Buck3 PGOOD Buck2 PGOOD Buck1 PGOOD  
3676fd  
31  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
applicaTions inForMaTion  
THERMAL CONSIDERATIONS AND BOARD LAYOUT  
of the application load and the LDO load. This example  
is with the LDO regulators at one third rated current and  
the switching regulators at three quarters rated current.  
Printed Circuit Board Power Dissipation  
In order to ensure optimal performance and the ability  
to deliver maximum output power to any regulator, it is  
critical that the exposed ground pad on the backside of the  
LTC3676 package be soldered to a ground plane on the  
board.TheexposedpadistheonlyGNDconnectionforthe  
Table 23. LTC3676 Power Loss Example  
APPLICATION  
LOAD (A)  
TOTAL  
EFF  
V
IN  
V
OUT  
LOAD (A) (%) P (mW)  
D
LDO1  
LDO2  
LDO3  
LDO4  
Buck1  
Buck2  
Buck3  
Buck4  
3.8  
1.8  
3.3  
3.3  
3.8  
3.8  
3.8  
3.8  
1.2  
1.2  
1.8  
2.ꢀ  
1.2  
1.8  
1.2ꢀ  
3.3  
0.01  
0.1  
0.010  
0.100  
0.100  
0.100  
1.87ꢀ  
1.87ꢀ  
1.12ꢀ  
1.12ꢀ  
26.00  
60.00  
2
LTC3676. Correctly soldered to a 2ꢀ00mm ground plane  
0.1  
1ꢀ0.00  
80.00  
on a double-sided 1oz copper board, the LTC3676 has a  
0.1  
thermalresistance()ofapproximately34°C/W.Failure  
JA  
1.87ꢀ  
1.77ꢀ  
1.12ꢀ  
0.92ꢀ  
80  
8ꢀ  
80  
90  
4ꢀ0.00  
ꢀ06.2ꢀ  
281.2ꢀ  
371.2ꢀ  
192ꢀ  
to make good thermal contact between the exposed pad  
on the backside of the package and an adequately sized  
ground plane will result in thermal resistances far greater  
than 34°C/W. To ensure the junction temperature of the  
LTC3676 die does not exceed the maximum rated limit  
and to prevent overtemperature faults, the power output  
of the LTC3676 must be managed by the application. The  
totalpowerdissipationintheLTC3676isapproximatedby  
summing the power dissipation in each of the switching  
regulators and the LDO regulators. The power dissipation  
in a switching regulator is estimated by:  
Total Power =  
Internal Junction Temperature at ꢀꢀ°C Ambient 120°C  
Printed Circuit Board Layout  
When laying out the printed circuit board, the following  
checklist should be followed to ensure proper operation  
of the LTC3676:  
1. Connect the exposed pad of the package (Pin 41) di-  
rectly to a large ground plane to minimize thermal and  
electrical impedance.  
100-Eff%  
PD(SWx = VOUTx IOUTx  
W
( )  
)
100  
Where V  
is the programmed output voltage I  
is  
OUTx  
2. The switching regulator input supply traces to their  
decoupling capacitors should be as short as possible.  
Connect the GND side of the capacitors directly to the  
ground plane of the board. The decoupling capacitors  
provide the AC current to the internal power MOSFETs  
and theirdrivers. It is importantto minimize inductance  
from the capacitors to the LTC3676 pins.  
OUTx  
the load current and Eff is the % efficiency that can be  
measured or looked up from the efficiency curves for the  
programmed output voltage.  
The power dissipated by an LDO regulator is estimated by:  
P
= V  
− V  
I  
(W)  
D(LDOx)  
IN(LDOx)  
LDOx LDOx  
where V  
is the programmed output voltage, V  
IN(LDOx)  
LDOx  
3. Minimize the switching power traces connecting SW1,  
SW2, SW3, and SW4 to the inductors to reduce radi-  
ated EMI and parasitic coupling. Keep sensitive nodes  
such as the feedback pins away from or shielded from  
the large voltage swings on the switching nodes.  
is the LDO supply voltage, and I  
is the output load  
LDOx  
current. If one of the switching regulator outputs is used  
as an LDO supply voltage, remember to include the LDO  
supply current in the switching regulator load current for  
calculating power loss.  
4. Minimize the length of the connection between the  
step-downswitchingregulatorinductorsandtheoutput  
capacitors. Connect the GND side of the output capaci-  
tors directly to the thermal ground plane of the board.  
An example using the equations above with the param-  
eters in Table 23 shows an application that is at a junction  
temperature of 120°C at an ambient temperature of ꢀꢀ°C.  
LDO2, LDO3, and LDO4 are powered by step-down Buck2  
and Buck4. The total load on Buck2 and Buck4 is the sum  
3676fd  
32  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
Typical applicaTions  
LTC3676 PMIC Configured to Support Freescale i.MX6 Processor  
FREESCALE  
i.MX6  
22µF  
22µF  
22µF  
35  
22µF  
V
IN  
VSNVS_IN  
3.3V TO 5V  
36  
16  
15  
ARM  
0.9V TO 1.5V  
AT 2.5A  
PV  
PV  
PV  
PV  
IN4  
IN1  
IN2  
IN3  
1µH  
(1.37V)  
47µF  
27  
20  
22  
V
IN  
SW3  
VDDARM_IN  
1µF  
178k  
200k  
10pF  
FB_B3  
V
RTC  
3V  
28  
26  
SOC  
0.9V TO 1.5V  
AT 1.5A  
LDO1  
25mA  
1µF  
634k  
200k  
1.5µH  
10pF  
(1.37V)  
47µF  
40  
24  
VDDSOC_IN  
VDDHIGH_IN  
SW1  
FB_L1  
178k  
200k  
LTC3676  
68k  
FB_B1  
33  
37  
WAKE  
ARM  
WAKE  
EN_B1  
EN_B2  
EN_B3  
EN_B4  
EN_L2  
EN_L3  
EN_L4  
1.5µH  
10pF  
I/O  
3.3V  
1.5A  
(3.3V)  
31  
25  
34  
18  
17  
30  
10  
9
SW2  
715k  
200k  
47µF  
47µF  
FB_B2  
V
DDHIGH  
I/O  
DDR  
1.5V AT 2.5A  
1µH  
11  
I/O  
SW4  
VDD_DDR_IO  
GND  
68k 68k 68k  
215k  
200k  
10pF  
38  
32  
39  
12  
23  
2
RSTO  
IRQ  
RSTO  
IRQ  
FB_B4  
V
IN_L2  
V
DDHIGH  
2.97V  
PGOOD  
PGOOD  
1µF  
DDR  
≤ 4 CHIPS  
NO TERM  
DV  
DD  
300mA  
3
LDO2  
4.7k 4.7k  
619k  
200k  
1µF  
14  
13  
19  
21  
29  
SCL  
SCA  
SCL  
1
5
FB_L2  
SEQUENCE:  
WAKE  
SDA  
V
IN_L3  
ARM  
SOC  
I/O  
VDDHIGH  
LDO3  
DDR  
VSTB  
VSTB  
PWR_ON  
ON  
1µF  
1µF  
PWR_ON  
LDO3  
1.8V  
300mA  
4
7
LDO3  
1µF  
1µF  
V
IN_L4  
LDO4  
3V  
300mA  
6
8
LDO4  
634k  
FB_L4  
GND  
41  
200k  
3676 TA02  
3676fd  
33  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
Typical applicaTions  
LTC3676-1 PMIC Configured to Support Freescale i.MX6 Processor with DDR VTT and VTTR  
FREESCALE  
i.MX6  
VSNVS_IN  
VDDHIGH_IN  
22µF  
22µF  
22µF  
35  
22µF  
V
IN  
V
DDHIGH  
ARM  
3V TO 5.5V  
36  
16  
15  
0.9V TO 1.5V  
AT 2.5A  
PV  
PV  
PV  
PV  
IN4  
IN1  
IN2  
IN3  
1µH  
(1.37V)  
47µF  
27  
20  
22  
V
IN  
SW3  
VDDARM_IN  
VDDSOC_IN  
VDD_DDR_IO  
1µF  
178k  
200k  
10pF  
FB_B3  
LDO1  
3V  
25mA  
28  
26  
SOC  
0.9V TO 1.5V  
AT 1.5A  
LDO1  
1µF  
634k  
200k  
1.5µH  
10pF  
(1.37V)  
47µF  
31  
25  
SW2  
FB_L1  
178k  
200k  
LTC3676-1  
68k  
FB_B2  
33  
37  
34  
18  
17  
30  
10  
WAKE  
WAKE  
EN_B1  
EN_B2  
EN_B3  
EN_B4  
EN_L2  
EN_L3  
DDR  
1.5V AT 2.5A  
1µH  
11  
23  
SW4  
215k  
200k  
47µF  
10pF  
FB_B4  
V
DDHIGH  
ARM  
VTT  
0.75V AT 1.5A  
1µH  
40  
24  
I/O  
SW1  
68k 68k 68k  
215k  
47µF  
10pF  
38  
32  
39  
12  
GND  
RSTO  
IRQ  
RSTO  
IRQ  
FB_B1  
PGOOD  
PGOOD  
DDR  
8
9
2
DV  
DD  
VDDQIN  
VTTR  
8 CHIPS  
WITH TERM  
4.7k 4.7k  
14  
13  
19  
21  
29  
V
IN_L2  
0.047µF  
SCL  
SCA  
SCL  
1µF  
SDA  
V
DDHIGH  
3
VSTB  
VSTB  
PWR_ON  
ON  
LDO2  
2.97V  
300mA  
PWR_ON  
619k  
200k  
1µF  
1
5
SEQUENCE:  
WAKE  
FB_L2  
ARM  
SOC  
VDDHIGH  
LDO3  
DDR  
VTT  
V
IN_L3  
1µF  
1µF  
LDO3  
1.8V  
300mA  
4
7
LDO3  
V
IN_L4  
1µF  
LDO4  
3V  
300mA  
6
LDO4  
GND  
41  
1µF  
3676 TA03  
3676fd  
34  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UJ Package  
40-Lead Plastic QFN (6mm × 6mm)  
(Reference LTC DWG # 05-08-ꢀ728 Rev Ø)  
0.70 0.05  
6.50 0.05  
5.ꢀ0 0.05  
4.42 0.05  
4.50 0.05  
(4 SIDES)  
4.42 0.05  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 0.05  
R = 0.ꢀꢀ5  
TYP  
6.00 0.ꢀ0  
(4 SIDES)  
R = 0.ꢀ0  
TYP  
39 40  
0.40 0.ꢀ0  
PIN ꢀ TOP MARK  
(SEE NOTE 6)  
2
PIN ꢀ NOTCH  
R = 0.45 OR  
0.35 × 45°  
CHAMFER  
4.42 0.ꢀ0  
4.50 REF  
(4-SIDES)  
4.42 0.ꢀ0  
(UJ40) QFN REV Ø 0406  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
ꢀ. DRAWING IS A JEDEC PACKAGE OUTLINE VARIATION OF (WJJD-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
3676fd  
35  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
LXE Package  
48-Lead Plastic Exposed Pad LQFP (7mm × 7mm)  
(Reference LTC DWG #05-08-1927 Rev Ø)  
Exposed Pad Variation AA  
7.15 – 7.25  
5.50 REF  
48  
37  
36  
1
0.50 BSC  
C0.30  
5.50 REF  
7.15 – 7.25  
0.20 – 0.30  
4.15 0.05  
4.15 0.05  
12  
13  
25  
PACKAGE OUTLINE  
24  
1.30 MIN  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
9.00 BSC  
7.00 BSC  
4.15 0.10  
48  
37  
37  
48  
SEE NOTE: 3  
1
36  
36  
1
C0.30  
9.00 BSC  
7.00 BSC  
4.15 0.10  
A
A
25  
12  
12  
25  
C0.30 – 0.50  
24  
13  
13  
24  
BOTTOM OF PACKAGE—EXPOSED PAD (SHADED AREA)  
1.60  
11° – 13°  
1.35 – 1.45 MAX  
R0.08 – 0.20  
GAUGE PLANE  
0.25  
0° – 7°  
LXE48 (AA) LQFP 0612  
11° – 13°  
1.00 REF  
0.50  
BSC  
0.09 – 0.20  
0.17 – 0.27  
SIDE VIEW  
0.05 – 0.15  
0.45 – 0.75  
SECTION A – A  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
3. PIN-1 INDENTIFIER IS A MOLDED INDENTATION, 0.50mm DIAMETER  
4. DRAWING IS NOT TO SCALE  
2. DIMENSIONS OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.25mm ON ANY SIDE, IF PRESENT  
3676fd  
36  
For more information www.linear.com/LTC3676  
LTC3676/LTC3676-1  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
12/13 Modified the Typical Application Circuit  
Modified Start-Up Sequence Path  
1
1
Changed Conditions on V Burst Mode Quiescent Current  
3
IN  
Removed Transient Response comment from V  
Modified Command Registers table  
Programming  
16  
OUT  
28-30  
Modified P equation in PCB Power Dissipation section Table 23  
31  
D
Changed R and C values in Typical Applications  
Changed C values in application circuits  
32, 33, 36  
B
9/14  
1, 32, 33, 36  
Corrected pin names in Conditions in Electrical Characteristics table  
Corrected units on Current Limit graph  
3 to 5  
8
Corrected units on LDO1 Dropout and LDO1 Load Response graphs  
Corrected Operation Introduction section  
9
14  
24  
25  
28  
30  
Modified LTC3676-1 Operation section  
2
Changed table reference in I C Operation section  
Changed table number for Command Registers section  
Clarified Command Registers table  
C
D
9/14  
Added LQFP Package (LXE)  
1 to 3, 11,  
12, 36  
05/15 Modified Thermal Resistance of LXE Package  
Modified Pin Description of EN_B1  
Modified Figure 1 GND  
2
12  
15  
25  
36  
Clarified LTC3676-1 Operation Section  
Amended Package Drawing  
3676fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
37  
LTC3676/LTC3676-1  
Typical applicaTion  
Sequenced Power for High Performance Processor and DDR Memory Using LTC3375 Parallelable Buck Converters  
22µF  
22µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
10µF  
22µF  
22µF  
V
IN  
5V  
21.5k  
PV  
IN4  
PWR_ON  
PV  
PV  
PV  
V
IN  
V
V
V
V
V
V
V
V
V
IN8  
ARM  
1.35V  
4A  
IN3  
IN2  
IN1  
IN1  
IN2 IN3  
IN4 IN5  
IN6 IN7  
V
TT  
POWER GOOD  
IN  
0.75V  
1.5A  
SW1  
SW2  
SW3  
SW4  
FB1  
SHNT  
FROM V SUPPLY  
2.2µH  
V
RTC  
3V  
3.3V  
1.5µH  
10pF  
LDO1  
V
CC  
SW1  
25mA  
100µF  
1µF  
634k  
200k  
1Ω  
10µF  
1.02M  
576k  
215k  
47µF  
47µF  
47µF  
47µF  
174k  
200k  
FB_L1  
FBV  
CC  
FB_B1  
FB2  
1.5µH  
10pF  
IO18  
1.8V  
1.5A  
VIN_L2  
IO33  
RT  
PB  
CT  
LTC3676-1  
LTC3375  
FB3  
SW2  
1µF  
294k  
200k  
FB4  
2.2µH  
I033  
3.3V  
1A  
2.8V  
300mA  
LDO2  
FB_B2  
SW5  
0.01µF  
1µF  
576k  
200k  
22µF  
715k  
SOC  
1.35V  
2.5A  
FB_L2  
FB5  
1µH  
SYNC  
EN2  
EN3  
EN4  
EN7  
EN8  
SW3  
200k  
DRAM  
1.5V  
3A  
174k  
200k  
10pF  
SW6  
SW7  
SW8  
FB6  
IO33  
VIN_L3  
LDO3  
2.2µH  
FB_B3  
1µF  
V
DDHIGH  
3V  
2.5A  
68µF  
215k  
200k  
IO18ANALOG  
1.8V  
1µH  
300mA  
1µF  
SW4  
FB7  
634k  
200k  
10pF  
FB8  
FB_B4  
IO18  
VIN_L4  
ON  
EN1  
EN5  
EN6  
WDO  
IRQ  
RSTO  
IRQ  
1.2V  
300mA  
LDO4  
1µF  
RST  
KILL  
PGOOD  
WAKE  
DV  
DD  
EN_B1  
EN_B2  
EN_B3  
EN_B4  
EN_L3  
EN_L2  
ON  
4.7k 4.7k  
SDA  
SCL  
SDA  
SCL  
WDI  
TEMP  
VSTB  
VDDQIN  
VTTR  
VTTR  
750mV  
10mA  
GND  
MICROPROCESSOR  
CONTROL  
GND  
3676 TA04  
relaTeD parTs  
PART  
NUMBER  
DESCRIPTION  
1.8V to USB, Multioutput DC/  
COMMENTS  
Seamless Transition Between Multiple Input Power Sources, V Range: 1.8V to 5.5V, Buck-Boost  
LTC3101  
IN  
DC Converter with Low Loss USB Converter V  
Range: 1.5V to 5.25V, 3.3V  
at 800mA for V ≥ 3V, Dual 350mA Buck Regulators,  
OUT  
OUT IN  
Power Controller  
V
: 0.6V to V , 38μA Quiescent Current in Burst Mode Operation, 24-Lead 4mm 4mm 0.75mm  
OUT IN  
QFN Package  
LTC3375  
LTC3589/  
8-Channel Programmable,  
Parallelable 1A Buck DC/DCs  
8-Channel Independent Step-Down DC/DCs. Master Slave Configurable for Up to 4A per Output Channel  
with a Single Inductor, Die Temperature Monitor Output, 48-Lead 7mm 7mm QFN Package  
2
8-Output Regulator with  
Triple I C Adjustable High Efficiency Step-Down DC/DC Converters: 1.6A, 1A, 1A. High Efficiency 1.2A  
2
LTC3589-1/ Sequencing and I C  
LTC3589-2  
Buck-Boost DC/DC Converter. Triple 250mA LDO Regulators. Pushbutton ON/OFF Control with System  
2
Reset. Flexible Pin-Strap Sequencing Operation. I C and Independent Enable Control Pins, DVS and  
Slew Rate Control, 40-Lead 6mm 6mm 0.75mm QFN Package  
LTC3586/  
Switching USB Power Manager  
Complete Multifunction PMIC: Switching Power Manager, 1A Buck-Boost + 2 Bucks + Boost + LDO,  
LTC3586-1 PMIC with Li-Ion/Polymer Charger 4mm 6mm QFN-38 Package, LTC3586-1 Version Has 4.1V V  
.
FLOAT  
3676fd  
LT 0515 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
38  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC3676  
© LINEAR TECHNOLOGY CORPORATION 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY