LTC3677EUFF-3-PBF [Linear]

Highly Integrated Portable Product PMIC; 高集成度便携式产品PMIC
LTC3677EUFF-3-PBF
型号: LTC3677EUFF-3-PBF
厂家: Linear    Linear
描述:

Highly Integrated Portable Product PMIC
高集成度便携式产品PMIC

集成电源管理电路 便携式
文件: 总44页 (文件大小:4109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3677-3  
Highly Integrated  
Portable Product PMIC  
FeaTures  
DescripTion  
TheLTC®3677-3isahighlyintegratedpowermanagementꢀ  
ICꢀ forꢀ single-cellꢀ Li-Ion/Polymerꢀ batteryꢀ applications.ꢀ  
ItincludesaPowerPathmanagerwithautomaticloadꢀ  
prioritization,abatterycharger,anidealdiode,inputover-  
voltageprotectionandnumerousotherinternalprotectionꢀ  
features.TheLTC3677-3isdesignedtoaccuratelychargeꢀ  
fromcurrentlimitedsuppliessuchasUSBbyautomaticallyꢀ  
reducingꢀchargeꢀcurrentꢀsuchꢀthatꢀtheꢀsumꢀofꢀtheꢀloadꢀ  
currentꢀandꢀtheꢀchargeꢀcurrentꢀdoesꢀnotꢀexceedꢀtheꢀpro-  
grammedꢀinputꢀcurrentꢀlimitꢀ(100mAꢀorꢀ500mAꢀmodes).ꢀ  
TheꢀLTC3677-3ꢀreducesꢀtheꢀbatteryꢀvoltageꢀatꢀelevatedꢀ  
temperaturesꢀtoꢀimproveꢀsafetyꢀandꢀreliability.ꢀTheꢀthreeꢀ  
step-downꢀswitchingꢀregulatorsꢀandꢀtwoꢀLDOsꢀprovideꢀ  
aꢀwideꢀrangeꢀofꢀavailableꢀsupplies.ꢀTheꢀLTC3677-3ꢀalsoꢀ  
includesꢀaꢀpushbuttonꢀinputꢀtoꢀcontrolꢀpowerꢀsequencingꢀ  
andꢀsystemꢀreset.ꢀTheꢀLTC3677-3ꢀhasꢀpushbuttonꢀtim-  
ingꢀandꢀsequencingꢀdesignedꢀtoꢀsupportꢀtheꢀSiRFꢀAtlasꢀ  
IVꢀprocessor.ꢀTheꢀLTC3677-3ꢀisꢀavailableꢀinꢀaꢀlowꢀprofileꢀ  
4mmꢀ×ꢀ7mmꢀ×ꢀ0.75mmꢀ44-pinꢀQFNꢀpackage.  
n
Full Featured Li-Ion/Polymer Charger/PowerPath™  
Controller with Instant-On Operation  
n
Triple Adjustable High Efficiency Step-Down  
Switching Regulators (800mA, 500mA, 500mA I  
)
OUT  
2
n
n
I C Adjustable SW Slew Rates for EMI Reduction  
High Temperature Battery Voltage Reduction  
Improves Safety and Reliability  
n
ꢀ OvervoltageꢀProtectionꢀControllerꢀforꢀUSBꢀ(V )/Wallꢀ  
BUS  
InputsꢀProvideꢀProtectionꢀtoꢀ30V  
ꢀ 1.5AꢀMaximumꢀChargeꢀCurrentꢀwithꢀThermalꢀLimiting  
ꢀ BatteryꢀFloatꢀVoltage:ꢀ4.2V  
n
n
n
n
n
ꢀ PushbuttonꢀON/OFFꢀControlꢀwithꢀSystemꢀReset  
ꢀ Dualꢀ150mAꢀCurrentꢀLimitedꢀLDOs  
ꢀ Start-UpꢀTimingꢀCompatibleꢀwithꢀSiRFꢀAtlasꢀIVꢀ  
Processor  
n
ꢀ Smallꢀ4mmꢀ×ꢀ7mmꢀ44-PinꢀQFNꢀPackage  
applicaTions  
n
ꢀ PNDs,ꢀDMB/DVB-H,ꢀDigital/SatelliteꢀRadio,ꢀꢀ  
MediaꢀPlayers  
L,ꢀLT,LTC,ꢀLTM,ꢀLinearꢀTechnology,ꢀPowerPath,ꢀBurstꢀModeꢀandꢀtheꢀLinearꢀlogoꢀareꢀregisteredꢀ  
trademarksꢀandꢀBat-TrackꢀandꢀHotꢀSwapꢀareꢀtrademarksꢀofꢀLinearꢀTechnologyꢀCorporation.ꢀ  
Allꢀotherꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.ꢀProtectedꢀbyꢀU.S.ꢀPatents,ꢀ  
includingꢀ6522118,ꢀ6700364,ꢀ7511390,ꢀ5481178,ꢀ6580258.ꢀOtherꢀpatentsꢀpending.  
n
ꢀ PortableꢀIndustrial/MedicalꢀProducts  
ꢀ OtherꢀUSB-BasedꢀHandheldꢀProducts  
n
Typical applicaTion  
High Temperature BAT Discharge  
5V  
ADAPTER  
OPTIONAL  
200  
100mA/500mA  
V
V
< V  
TOO_HOT  
= 0V  
NTC  
BUS  
USB  
1000mA  
180  
160  
140  
120  
100  
80  
V
OUT  
0V  
OVERVOLTAGE  
PROTECTION  
CC/CV  
CHARGER  
+
SINGLE-CELL  
Li-Ion  
CHARGE  
NTC  
LTC3677-3  
2
0.8V to 3.6V/150mA  
0.8V to 3.6V/150mA  
DUAL LDO  
2
I C PORT  
REGULATORS  
60  
TRIPLE HIGH  
EFFICIENCY  
STEP-DOWN  
SWITCHING  
REGULATORS  
40  
0.8V to 3.6V/800mA  
0.8V to 3.6V/500mA  
0.8V to 3.6V/500mA  
PUSHBUTTON  
CONTROL  
20  
PB  
0
36773 TA01a  
3.8  
3.9  
4.0  
(V)  
4.2  
4.1  
V
BAT  
36773 TA01b  
36773f  
PushbuttonꢀInterfaceꢀOperation............................................................................................................................ 36  
                             
Step-DownꢀSwitchingꢀRegulatorꢀOperation  
                                    
........................................................................................................... 28  
LTC3677-3  
Table oF conTenTs  
Features............................................................................................................................ 1  
Applications ....................................................................................................................... 1  
Typical Application ............................................................................................................... 1  
Description......................................................................................................................... 1  
Absolute Maximum Ratings..................................................................................................... 3  
Order Information................................................................................................................. 3  
Pin Configuration ................................................................................................................. 3  
Electrical Characteristics........................................................................................................ 4  
Typical Performance Characteristics .........................................................................................10  
Pin Functions.....................................................................................................................15  
Block Diagram....................................................................................................................18  
Operation..........................................................................................................................19  
PowerPathꢀOPERATION........................................................................................................................................ 19  
LowꢀDropoutꢀLinearꢀRegulatorꢀOperationꢀ............................................................................................................. 27  
2
I CꢀOperation........................................................................................................................................................ 32  
LayoutꢀandꢀThermalꢀConsiderationsꢀ..................................................................................................................... 40  
Typical Application ..............................................................................................................42  
Package Description ............................................................................................................43  
Typical Application ..............................................................................................................44  
Related Parts.....................................................................................................................44  
36773f  
(Noteꢀ4)........................................... –0.3VꢀtoꢀV ꢀ+ꢀ0.3V  
            
I
I
I
,ꢀI  
,ꢀI ,ꢀContinuousꢀ(Noteꢀ16)  
                                 
.....................2A  
................................. 850mA  
,ꢀContinuousꢀ(Noteꢀ16)  
                        
,ꢀI ,ꢀContinuousꢀ(Noteꢀ16)........................ 600mA  
                            
I
I
I
,ꢀI  
,ꢀI  
,ꢀI  
,ꢀI  
                               
...................75mA  
ꢀ tꢀ<ꢀ1msꢀandꢀDutyꢀCycleꢀ<ꢀ1%  
                           
................... –0.3Vꢀtoꢀ7V  
LTC3677-3  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2, 3)  
V
,ꢀV ,ꢀV ,ꢀV ,ꢀV  
,ꢀV  
,ꢀWALL  
BUS OUTꢀ IN12 IN3 INLDO1 INLDO2  
TOP VIEW  
ꢀ SteadyꢀStateꢀ............................................ –0.3Vꢀtoꢀ6V  
CHRG,ꢀBAT,ꢀPWR_ON,ꢀEXTPWR,ꢀPBSTAT,ꢀPGOOD,ꢀ  
FB1,ꢀFB2,ꢀFB3,ꢀLDO1,ꢀLDO1_FB,ꢀLDO2,ꢀ  
I
I
1
2
37 IDGATE  
36 PROG  
35 NTC  
34 NTCBIAS  
33 SW1  
LIM0  
LDO2_FB,ꢀDV ,ꢀSCL,ꢀSDA,ꢀEN3ꢀ................. –0.3Vꢀtoꢀ6V  
CC  
LIM1  
NC 3  
WALL 4  
SW3 5  
NTC,ꢀPROG,ꢀCLPROG,ꢀON,ꢀI  
,ꢀI  
LIM0 LIM1  
CC  
V
6
32 V  
IN3  
IN12  
45  
GND  
VBUS VOUTꢀ BAT  
FB3 7  
OVSENS 8  
NC 9  
DV 10  
SDA 11  
SCL 12  
OVGATE 13  
PWR_ON 14  
ON 15  
31 SW2  
30 V  
INLD02  
SW3  
29 LDO2  
28 LDO1  
27 V  
INLDO1  
26 FB1  
25 FB2  
24 LDO2_FB  
23 LDO1_FB  
SW2 SW1  
CC  
I
,ꢀI  
,ꢀContinuousꢀ(Noteꢀ16)ꢀ..................... 200mA  
LDO1 LDO2  
CHRG ACPR EXTPWR PBSTAT PGOOD  
ꢀ..................................................................10mA  
OVSENS  
CLPROG PROG  
OperatingꢀJunctionꢀTemperatureꢀRangeꢀ  
,ꢀI  
ꢀ.........................................................2mA  
(Noteꢀ2)ꢀ...............................................–40°Cꢀtoꢀ85°C  
MaximumꢀJunctionꢀTemperatureꢀ...........................110°C  
StorageꢀTemperatureꢀRangeꢀ.................. –65°Cꢀtoꢀ125°C  
UFF PACKAGE  
44-LEAD (7mm s 4mm) PLASTIC QFN  
T
ꢀ=ꢀ110°C,ꢀθ ꢀ=ꢀ45°C/W  
JA  
JMAX  
EXPOSEDꢀPADꢀ(PINꢀ45)ꢀISꢀGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3677EUFF-3#PBF  
LTC3677EUFF-3#TRPBF  
36773  
–40°Cꢀtoꢀ85°C  
44-Leadꢀ(4mmꢀ×ꢀ7mm)ꢀPlasticꢀQFN  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.ꢀꢀ  
ConsultꢀLTCꢀMarketingꢀforꢀinformationꢀonꢀnon-standardꢀleadꢀbasedꢀfinishꢀparts.  
Forꢀmoreꢀinformationꢀonꢀleadꢀfreeꢀpartꢀmarking,ꢀgoꢀto:ꢀhttp://www.linear.com/leadfree/ꢀꢀ  
Forꢀmoreꢀinformationꢀonꢀtapeꢀandꢀreelꢀspecifications,ꢀgoꢀto:ꢀhttp://www.linear.com/tapeandreel/  
36773f  
LTC3677-3  
Power Manager. The l denotes the specifications which apply over the  
elecTrical characTerisTics  
full operating junction temperature range, otherwise specifications are at TJ = 25°C. VBUS = 5V, VBAT = 3.8V, ILIM0 = ILIM1 = 5V,  
WALL = 0V, VINLDO2 = VINLOD1 = VIN12 = VIN3 = VOUT, RPROG = 2k, RCLPROG = 2.1k, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Power Supply  
V
InputꢀSupplyꢀVoltage  
4.35  
5.5  
V
BUS  
l
l
l
I
TotalꢀInputꢀCurrentꢀ(Noteꢀ5)  
I
I
I
ꢀ=ꢀ5V,ꢀI  
ꢀ=ꢀ0V,ꢀI  
ꢀ=ꢀ0V,ꢀI  
ꢀ=ꢀ5Vꢀ(1xꢀMode)ꢀ  
ꢀ=ꢀ0Vꢀ(5xꢀMode)ꢀ  
ꢀ=ꢀ5Vꢀ(10xꢀMode)  
80ꢀ  
450ꢀ  
900  
90ꢀꢀ  
475ꢀ  
950  
100ꢀ  
500ꢀ  
1000  
mAꢀ  
mAꢀ  
mA  
BUS_LIM  
LIM0  
LIM0  
LIM0  
LIM1  
LIM1  
LIM1  
I
InputꢀQuiescentꢀCurrent,ꢀPOFFꢀState  
1x,ꢀ5x,ꢀ10xꢀModesꢀ  
ꢀ=ꢀ5V,ꢀI ꢀ=ꢀ0Vꢀ(SuspendꢀMode)  
0.42ꢀ  
0.05  
mAꢀ  
mA  
BUSQ  
I
0.1  
LIM0  
LIM1  
h
RatioꢀofꢀMeasuredꢀV ꢀCurrentꢀtoꢀ  
1000  
mA/mA  
CLPROG  
BUS  
CLPROGꢀProgramꢀCurrent  
V
CLPROGꢀServoꢀVoltageꢀinꢀCurrentꢀ  
Limit  
1xꢀModeꢀ  
5xꢀModeꢀ  
10xꢀMode  
0.2ꢀ  
1.0ꢀ  
2.0  
Vꢀ  
Vꢀ  
V
CLPROG  
V
V
V
V
ꢀUndervoltageꢀLockout  
RisingꢀThresholdꢀ  
FallingꢀThreshold  
3.8ꢀ  
3.7  
3.9  
Vꢀ  
V
UVLO  
BUS  
3.5  
ꢀtoꢀV ꢀDifferentialꢀUndervoltageꢀ RisingꢀThresholdꢀ  
BUS  
ꢀ50ꢀ  
–50  
100  
mVꢀ  
mV  
DUVLO  
OUT  
Lockout  
FallingꢀThreshold  
R
InputꢀCurrentꢀLimitꢀPowerꢀFETꢀꢀ  
200  
mΩ  
ON_ILIM  
On-Resistanceꢀ(BetweenꢀV ꢀandꢀV  
)
BUS  
OUT  
Battery Charger  
V
V
ꢀRegulatedꢀOutputꢀVoltage  
BAT  
LTC3677-3ꢀ  
LTC3677-3,ꢀ0ꢀ≤ꢀTJ≤ꢀ85°C  
4.179ꢀ  
4.165  
4.200ꢀ  
4.200  
4.221ꢀ  
4.235  
Vꢀ  
V
FLOAT  
l
l
l
ICHG  
Constant-CurrentꢀModeꢀChargeꢀCurrentꢀ R  
ꢀ=ꢀ1k,ꢀInputꢀCurrentꢀLimitꢀ=ꢀ2Aꢀ  
ꢀ=ꢀ2k,ꢀInputꢀCurrentꢀLimitꢀ=ꢀ1Aꢀ  
ꢀ=ꢀ5k,ꢀInputꢀCurrentꢀLimitꢀ=ꢀ0.4A  
950ꢀ  
465ꢀ  
180  
1000ꢀ  
500ꢀ  
200  
1050ꢀ  
535ꢀ  
220  
mAꢀ  
mAꢀ  
mA  
PROG  
PROG  
PROG  
ICꢀNotꢀinꢀThermalꢀLimit  
R
R
IBATQ_OFF  
IBATQ_ON  
Battery-DrainꢀCurrent,ꢀPOFFꢀState,ꢀ  
Buck3ꢀDisabled,ꢀNoꢀLoadꢀ(Noteꢀ14)  
V
V
ꢀ=ꢀ4.3V,ꢀChargerꢀTimeꢀOutꢀ  
BUS  
6ꢀ  
27ꢀ  
µAꢀ  
µA  
BAT  
ꢀ=ꢀ0V  
55  
100  
Battery-DrainꢀCurrent,ꢀPONꢀState,ꢀꢀ  
Buck3ꢀEnabledꢀ(Notesꢀ10,ꢀ14)  
V
ꢀ=ꢀ0V,ꢀI ꢀ=ꢀ0µA,ꢀNoꢀLoadꢀOnꢀ  
130  
200  
µA  
BUS  
OUT  
Supplies,ꢀBurstꢀMode®ꢀOperation  
V
V
PROGꢀPinꢀServoꢀVoltage  
V
V
ꢀ>ꢀV  
ꢀ<ꢀV  
1.000  
0.100  
V
V
PROG,CHG  
PROG,TRKL  
BAT  
BAT  
TRKL  
TRKL  
PROGꢀPinꢀServoꢀVoltageꢀinꢀTrickleꢀ  
Charge  
h
RatioꢀofꢀI ꢀtoꢀPROGꢀPinꢀCurrent  
BAT  
1000  
50  
mA/mA  
mA  
PROG  
I
TrickleꢀChargeꢀCurrent  
V
ꢀ<ꢀV  
40  
60  
TRKL  
BAT  
TRKL  
V
TrickleꢀChargeꢀRisingꢀThresholdꢀꢀ  
TrickleꢀChargeꢀFallingꢀThreshold  
V
V
ꢀRisingꢀ  
ꢀFalling  
2.9ꢀ  
2.75  
3.0  
Vꢀ  
V
TRKL  
BAT  
BAT  
2.5  
∆V  
RechargeꢀBatteryꢀThresholdꢀVoltage  
SafetyꢀTimerꢀTerminationꢀPeriod  
BadꢀBatteryꢀTerminationꢀTime  
ThresholdꢀVoltageꢀRelativeꢀtoꢀV  
–75  
3.2  
–100  
4
–125  
4.8  
mV  
Hour  
RECHRG  
FLOAT  
t
t
TimerꢀStartsꢀwhenꢀV ꢀ=ꢀV  
ꢀ–ꢀ50mV  
TERM  
BADBAT  
BAT  
FLOAT  
V
ꢀ<ꢀV  
0.4  
0.5  
0.1  
200  
0.6  
Hour  
BAT  
TRKL  
h
End-of-ChargeꢀIndicationꢀCurrentꢀRatio (Noteꢀ6)  
0.085  
0.11  
mA/mA  
mΩ  
C/10  
R
BatteryꢀChargerꢀPowerꢀFETꢀꢀ  
ON_CHG  
On-Resistanceꢀ(BetweenꢀV ꢀandꢀBAT)  
OUT  
T
JunctionꢀTemperatureꢀinꢀConstant-  
TemperatureꢀMode  
110  
°C  
LIM  
36773f  
LTC3677-3  
elecTrical characTerisTics Power Manager. The l denotes the specifications which apply over the  
full operating junction temperature range, otherwise specifications are at TJ = 25°C. VBUS = 5V, VBAT = 3.8V, ILIM0 = ILIM1 = 5V,  
WALL = 0V, VINLDO2 = VINLOD1 = VIN12 = VIN3 = VOUT, RPROG = 2k, RCLPROG = 2.1k, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NTC, Battery Discharge Protection  
V
V
ColdꢀTemperatureꢀFaultꢀThresholdꢀ  
Voltage  
RisingꢀNTCꢀVoltageꢀ  
Hysteresis  
75  
34  
76ꢀ  
1.3  
77  
36  
%V  
%V  
COLD  
HOT  
NTCBIAS  
NTCBIAS  
HotꢀTemperatureꢀFaultꢀThresholdꢀ  
Voltage  
FallingꢀNTCꢀVoltageꢀ  
Hysteresis  
35ꢀ  
1.3  
%V  
%V  
NTCBIAS  
NTCBIAS  
V
_
NTCꢀDischargeꢀThresholdꢀVoltage  
FallingꢀNTCꢀVoltageꢀ  
Hysteresis  
24.5  
–50  
25.5ꢀ  
50  
26.5  
50  
%V  
TOO HOT  
NTCBIAS  
mV  
I
I
NTCꢀLeakageꢀCurrent  
BATꢀDischargeꢀCurrent  
BATꢀDischargeꢀThreshold  
V
V
ꢀ=ꢀV ꢀ=ꢀ5V  
nA  
mA  
V
NTC  
NTC  
BUS  
ꢀ=ꢀ4.1V,ꢀNTCꢀ<ꢀV  
TOO_HOT  
170  
3.9  
BAT2HOT  
BAT  
V
I
ꢀ<ꢀ0.1mA,ꢀNTCꢀ<ꢀV  
BAT TOO_HOT  
BAT2HOT  
Ideal Diode  
V
ForwardꢀVoltageꢀDetection  
DiodeꢀOn-Resistance,ꢀDropout  
DiodeꢀCurrentꢀLimit  
I
I
ꢀ=ꢀ10mA  
5
15  
200  
3.6  
25  
mV  
mΩ  
A
FWD  
OUT  
R
ꢀ=ꢀ200mA  
OUT  
DROPOUT  
MAX  
I
(Noteꢀ7)  
Overvoltage Protection  
V
V
OvervoltageꢀProtectionꢀThreshold  
OVGATEꢀOutputꢀVoltageꢀ  
RisingꢀThreshold,ꢀR  
ꢀ=ꢀ6.2k  
OVSENS  
6.10  
6.35  
6.70  
12ꢀ  
V
OVCUTOFF  
OVGATE  
InputꢀBelowꢀV  
InputꢀAboveꢀV  
1.88ꢀ•ꢀV  
0
Vꢀ  
V
OVCUTOFFꢀ  
OVCUTOFF  
OVSENSꢀ  
I
t
OVSENSꢀQuiescentꢀCurrent  
V
C
ꢀ=ꢀ5V  
40  
µA  
ms  
OVSENSQ  
RISE  
OVSENS  
OVGATE  
OVGATEꢀTimeꢀtoꢀReachꢀRegulation  
ꢀ=ꢀ1nF  
2.5  
Wall Adapter and High Voltage Buck Output Control  
V
ACPRꢀPinꢀOutputꢀHighꢀVoltageꢀ  
ACPRꢀPinꢀOutputꢀLowꢀVoltage  
I
I
ꢀ=ꢀ0.1mAꢀ  
ACPR  
ꢀ=ꢀ1mA  
ACPR  
V –ꢀ0.3ꢀ  
OUTꢀ  
V
Vꢀ  
V
ACPR  
OUT  
0
0.3  
V
W
AbsoluteꢀWallꢀInputꢀThresholdꢀVoltage  
V
WALL  
ꢀRisingꢀ  
ꢀFalling  
4.3ꢀ  
3.2  
4.45  
Vꢀ  
V
WALL  
V
3.1  
DifferentialꢀWallꢀInputꢀThresholdꢀ  
Voltage  
V
WALL  
ꢀ–ꢀV ꢀFallingꢀ  
0
25ꢀ  
75  
mVꢀ  
mV  
V  
W
WALL  
BAT  
V
ꢀ–ꢀV ꢀRising  
100  
BAT  
I
WallꢀOperatingꢀQuiescentꢀCurrent  
I
ꢀ+ꢀI ,ꢀI ꢀ=ꢀ0mA,ꢀꢀ  
VOUTꢀ BAT  
440  
µA  
QWALL  
WALL  
WALLꢀ=ꢀV ꢀ=ꢀ5V  
OUT  
Logic (I  
, I  
and CHRG)  
LIM0 LIM1  
V
V
InputꢀLowꢀVoltage  
I
I
I
I
,ꢀI  
0.4  
V
V
IL  
IH  
LIM0 LIM1  
InputꢀHighꢀVoltage  
,ꢀI  
1.2  
LIM0 LIM1  
I
StaticꢀPull-DownꢀCurrent  
CHRGꢀPinꢀOutputꢀLowꢀVoltage  
CHRGꢀPinꢀInputꢀCurrent  
,ꢀI ;ꢀV ꢀ=ꢀ1V  
LIM0 LIM1 PIN  
2
0.15  
0
µA  
V
PD  
V
ꢀ=ꢀ10mA  
CHRG  
0.4  
1
CHRG  
CHRG  
I
V
ꢀ=ꢀ4.5V,ꢀV  
ꢀ=ꢀ5V  
CHRG  
µA  
BAT  
36773f  
LTC3677-3  
2
I C Interface. The l denotes the specifications which apply over the full  
elecTrical characTerisTics  
operating junction temperature range, otherwise specifications are at TJ = 25°C. DVCC = 3.3V, VOUT = 3.8V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DV  
CC  
InputꢀSupplyꢀVoltage  
1.6  
5.5  
V
I
DV ꢀSupplyꢀCurrent  
CC  
SCLꢀ=ꢀ400kHzꢀ  
SCLꢀ=ꢀSDAꢀ=ꢀ0kHz  
10ꢀ  
1
µAꢀ  
µA  
DVCC  
V
V
V
DV ꢀUVLO  
1.0  
50  
50  
V
DVCC,UVLO  
CC  
InputꢀHighꢀVoltage  
70  
%DV  
%DV  
IH  
IL  
CC  
CC  
InputꢀLowꢀVoltage  
30  
–1  
–1  
I
I
InputꢀHighꢀLeakageꢀCurrent  
InputꢀLowꢀLeakageꢀCurrent  
SDAꢀOutputꢀLowꢀVoltage  
SDAꢀ=ꢀSCLꢀ=ꢀDV ꢀ=ꢀ5.5V  
1
1
µA  
µA  
V
IH  
IL  
CC  
SDAꢀ=ꢀSCLꢀ=ꢀ0V,ꢀDV ꢀ=ꢀ5.5V  
CC  
V
I ꢀ=ꢀ3mA  
SDA  
0.4  
OL  
Timing Characteristics (Note 8) (All Values Are Referenced to V and V )  
IH  
IL  
f
t
t
t
t
t
t
t
t
t
t
SCLꢀClockꢀFrequency  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
SCL  
LowꢀPeriodꢀofꢀtheꢀSCLꢀClock  
HighꢀPeriodꢀofꢀtheꢀSCLꢀClock  
BusꢀFreeꢀTimeꢀBetweenꢀStopꢀandꢀStartꢀCondition  
HoldꢀTimeꢀAfterꢀ(Repeated)ꢀStartꢀCondition  
Set-UpꢀTimeꢀforꢀaꢀRepeatedꢀStartꢀCondition  
StopꢀConditionꢀSet-UpꢀTime  
1.3  
0.6  
1.3  
0.6  
0.6  
0.6  
0
LOW  
HIGH  
BUF  
HD,STA  
SU,STA  
SU,STO  
HD,DATO  
HD,DATI  
SU,DAT  
SP  
OutputꢀDataꢀHoldꢀTimeꢀ  
900  
50  
InputꢀDataꢀHoldꢀTime  
0
DataꢀSet-UpꢀTime  
100  
InputꢀSpikeꢀSuppressionꢀPulseꢀWidth  
36773f  
LTC3677-3  
elecTrical characTerisTics Step-Down Switching Regulators. The l denotes the specifications  
which apply over the full operating junction temperature range, otherwise specifications are at TJ = 25°C. VOUT = VIN12 = VIN3 = 3.8V,  
all regulators enabled unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Step-Down Switching Regulators (Buck1, Buck2 and Buck3)  
l
V
V
,ꢀV  
InputꢀSupplyꢀVoltage  
(Noteꢀ9)  
ꢀandꢀV ꢀConnectedꢀtoꢀV ꢀThroughꢀ  
2.7  
2.5  
5.5  
V
IN12 IN3  
ꢀUVLO  
V
V
ꢀFallingꢀ  
OUT  
ꢀRising  
OUT  
V
2.7ꢀ  
2.8  
Vꢀ  
V
OUT  
IN12  
IN3  
OUT  
LowꢀImpedance.ꢀSwitchingꢀRegulatorsꢀAreꢀ  
2.9  
DisabledꢀBelowꢀV ꢀUVLO  
OUT  
f
OscillatorꢀFrequency  
1.91  
2.25  
2.59  
MHz  
OSC  
800mA Step-Down Switching Regulator 3 (Buck3-Enabled via EN3, Disabled in PDN and POFF States)  
I
Pulse-SkippingꢀModeꢀInputꢀCurrentꢀ  
BurstꢀModeꢀOperationꢀInputꢀCurrent  
ShutdownꢀInputꢀCurrent  
(Noteꢀ10)  
(Noteꢀ10)  
EN3ꢀ=ꢀ0  
100  
20  
µA  
µA  
VIN3Q  
35  
1
0.01  
1400  
µA  
I
PeakꢀP-ChannelꢀMOSFETꢀCurrentꢀLimit  
FeedbackꢀVoltage  
(Noteꢀ7)  
1000  
1700  
mA  
LIM3  
l
l
V
Pulse-SkippingꢀModeꢀ  
BurstꢀModeꢀOperation  
0.78ꢀ  
0.78  
0.8ꢀ  
0.8  
0.82ꢀ  
0.824  
Vꢀ  
FB3  
V
µA  
%
I
FB3ꢀInputꢀCurrent  
MaxꢀDutyꢀCycle  
(Noteꢀ10)  
FB3ꢀ=ꢀ0V  
–0.05  
100  
0.05  
FB3  
D3  
R
R
R
R
R
ꢀofꢀP-ChannelꢀMOSFET  
ꢀofꢀN-ChannelꢀMOSFET  
0.3  
0.4  
10  
P3  
DS(ON)  
N3  
DS(ON)  
SW3ꢀPull-DownꢀinꢀShutdown  
EN3ꢀInputꢀLowꢀVoltage  
EN3ꢀInputꢀHighꢀVoltage  
EN3ꢀ=ꢀ0  
kΩ  
V
SW3_PD  
IL,EN3  
IH,EN3  
V
V
0.4  
1.2  
V
500mA Step-Down Switching Regulator 2 (Buck2-Pushbutton Enabled, Third in Sequence)  
I
Pulse-SkippingꢀModeꢀInputꢀCurrentꢀ  
BurstꢀModeꢀOperationꢀInputꢀCurrent  
ShutdownꢀInputꢀCurrent  
(Noteꢀ10)  
(Noteꢀ10)  
POFFꢀState  
(Noteꢀ7)  
100  
20  
µA  
µA  
VIN12Q  
0.01  
900  
1
µA  
I
PeakꢀP-ChannelꢀMOSFETꢀCurrentꢀLimit  
FeedbackꢀVoltage  
650  
1200  
mA  
LIM2  
l
l
V
Pulse-SkippingꢀModeꢀ  
BurstꢀModeꢀOperation  
0.78ꢀ  
0.78  
0.8ꢀ  
0.8  
0.82ꢀ  
0.824  
Vꢀ  
FB2  
V
µA  
%
I
FB2ꢀInputꢀCurrent  
MaxꢀDutyꢀCycle  
(Noteꢀ10)  
FB2ꢀ=ꢀ0V  
–0.05  
100  
0.05  
FB2  
D2  
R
R
R
R
R
ꢀofꢀP-ChannelꢀMOSFET  
ꢀofꢀN-ChannelꢀMOSFET  
I
I
ꢀ=ꢀ100mAꢀ  
ꢀ=ꢀ–100mA  
0.6  
0.6  
10  
P2  
DS(ON)  
SW2  
SW2  
N2  
DS(ON)  
SW2ꢀPull-DownꢀinꢀShutdown  
POFFꢀState  
kΩ  
SW2_PD  
500mA Step-Down Switching Regulator 1 (Buck1-Pushbutton Enabled, Second in Sequence)  
I
Pulse-SkippingꢀModeꢀInputꢀCurrentꢀ  
BurstꢀModeꢀOperationꢀInputꢀCurrent  
ShutdownꢀInputꢀCurrent  
(Noteꢀ10)  
(Noteꢀ10)  
100  
20  
µA  
µA  
VIN12Q  
0.01  
900  
1
µA  
I
PeakꢀP-ChannelꢀMOSFETꢀCurrentꢀLimit  
FeedbackꢀVoltage  
(Noteꢀ7)  
650  
1200  
mA  
LIM1  
l
l
V
Pulse-SkippingꢀModeꢀ  
BurstꢀModeꢀOperation  
0.78ꢀ  
0.78  
0.8ꢀ  
0.8  
0.82ꢀ  
0.824  
Vꢀ  
V
FB1  
I
FB1ꢀInputꢀCurrent  
MaxꢀDutyꢀCycle  
(Noteꢀ10)  
FB1ꢀ=ꢀ0V  
–0.05  
100  
0.05  
µA  
FB1  
D1  
%
R
R
R
R
R
ꢀofꢀP-ChannelꢀMOSFET  
ꢀofꢀN-ChannelꢀMOSFET  
I
I
ꢀ=ꢀ100mAꢀ  
ꢀ=ꢀ–100mA  
0.6  
0.6  
10  
P1  
DS(ON)  
SW1  
SW1  
N1  
DS(ON)  
SW1ꢀPull-DownꢀinꢀShutdown  
POFFꢀState  
kΩ  
36773f  
SW1_PD  
LTC3677-3  
elecTrical characTerisTics LDO Regulators. The l denotes the specifications which apply over the  
full operating junction temperature range, otherwise specifications are at TJ = 25°C. VINLDO1 = VINLDO2 = VOUT = 3.8V, LDO1 and LDO2  
enabled unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LDO Regulator 1 (LDO1-Always On)  
l
l
V
V
InputꢀVoltageꢀRange  
V
ꢀ≤ꢀV ꢀ+ꢀ0.3V  
1.65  
2.5  
5.5  
V
INLDO1  
INLDO1  
OUT  
V
V
ꢀFallingꢀ  
OUT  
ꢀRising  
OUT  
LDO1ꢀIsꢀDisabledꢀBelowꢀV UVLO  
OUTꢀ  
2.7ꢀ  
2.8  
Vꢀ  
V
OUT_UVLO  
2.9  
V
LDO1_FBꢀRegulatedꢀFeedbackꢀVoltage  
LDO1_FBꢀLineꢀRegulationꢀ(Noteꢀ11)  
LDO1_FBꢀLoadꢀRegulationꢀ(Noteꢀ11)  
AvailableꢀOutputꢀCurrent  
I
I
I
ꢀ=ꢀ1mA  
0.78  
0.8  
0.4  
5
0.82  
V
LDO1_FB  
LDO1  
LDO1  
LDO1  
ꢀ=ꢀ1mA,ꢀV ꢀ=ꢀ1.65Vꢀtoꢀ5.5V  
mV/V  
µV/mA  
mA  
IN  
ꢀ=ꢀ1mAꢀtoꢀ150mA  
l
I
I
150  
LDO1_OC  
LDO1_SC  
Short-CircuitꢀOutputꢀCurrentꢀ(Noteꢀ7)  
DropoutꢀVoltageꢀ(Noteꢀ12)  
270  
mA  
V
I
I
I
ꢀ=ꢀ150mA,ꢀV  
ꢀ=ꢀ150mA,ꢀV  
ꢀ=ꢀ3.6Vꢀ  
ꢀ=ꢀ2.5Vꢀ  
160ꢀ  
200ꢀ  
170  
260ꢀ  
320ꢀ  
280  
mVꢀ  
mVꢀ  
mV  
DROP1  
LDO1  
LDO1  
LDO1  
INLDO1  
INLDO1  
ꢀ=ꢀ75mA,ꢀV  
ꢀ=ꢀ1.8V  
INLDO1  
R
OutputꢀPull-DownꢀResistanceꢀinꢀShutdown LDO1ꢀDisabled  
LDO_FB1ꢀInputꢀCurrent  
10  
kΩ  
nA  
LDO1_PD  
I
–50  
50  
LDO_FB1  
LDO Regulator 2 (LDO2-Pushbutton Enabled, First in Sequence)  
l
l
V
V
InputꢀVoltageꢀRange  
V
ꢀ≤ꢀV ꢀ+ꢀ0.3V  
1.65  
2.5  
5.5  
V
INLDO2  
INLDO2  
OUT  
V
V
ꢀFallingꢀ  
OUT  
ꢀRising  
OUT  
LDO2ꢀisꢀDisabledꢀBelowꢀV UVLO  
OUTꢀ  
2.7ꢀ  
2.8  
Vꢀ  
V
OUT_UVLO  
2.9  
V
LDO2_FBꢀRegulatedꢀOutputꢀVoltage  
LDO2_FBꢀLineꢀRegulationꢀ(Noteꢀ11)  
LDO2_FBꢀLoadꢀRegulationꢀ(Noteꢀ11)  
AvailableꢀOutputꢀCurrent  
I
I
I
ꢀ=ꢀ1mA  
0.78  
0.8  
0.4  
5
0.82  
V
mV/V  
µV/mA  
mA  
LDO2_FB  
LDO2  
LDO2  
LDO2  
ꢀ=ꢀ1mA,ꢀV ꢀ=ꢀ1.65Vꢀtoꢀ5.5V  
IN  
ꢀ=ꢀ1mAꢀtoꢀ150mA  
l
I
I
150  
LDO2_OC  
LDO2_SC  
Short-CircuitꢀOutputꢀCurrentꢀ(Noteꢀ7)  
DropoutꢀVoltageꢀ(Noteꢀ12)  
270  
mA  
V
I
I
I
ꢀ=ꢀ150mA,ꢀV  
ꢀ=ꢀ150mA,ꢀV  
ꢀ=ꢀ3.6Vꢀ  
ꢀ=ꢀ2.5Vꢀ  
160ꢀ  
200ꢀ  
170  
260ꢀ  
320ꢀ  
280  
mVꢀ  
mVꢀ  
mV  
DROP2  
LDO2  
LDO2  
LDO1  
INLDO2  
INLDO2  
ꢀ=ꢀ75mA,ꢀV  
ꢀ=ꢀ1.8V  
INLDO1  
R
OutputꢀPull-DownꢀResistanceꢀinꢀShutdown LDO2ꢀDisabled  
LDO_FB2ꢀInputꢀCurrent  
14  
kΩ  
nA  
LDO2_PD  
I
–50  
50  
LDO_FB2  
36773f  
LTC3677-3  
elecTrical characTerisTics Pushbutton Controller. The l denotes the specifications which apply  
over the full operating junction temperature range, otherwise specifications are at TJ = 25°C. VOUT = 3.8V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Pushbutton Pin (ON)  
l
V
V
PushbuttonꢀOperatingꢀSupplyꢀRange  
(Noteꢀ9)  
2.7  
2.5  
5.5  
V
OUT  
OUT  
ꢀUVLO  
V
V
ꢀFallingꢀ  
OUT  
ꢀRising  
OUT  
PushbuttonꢀisꢀDisabledꢀBelowꢀV ꢀUVLO  
2.7ꢀ  
2.8  
Vꢀ  
V
OUT  
2.9  
V
ONꢀThresholdꢀRisingꢀ  
ONꢀThresholdꢀFalling  
0.8ꢀ  
0.7  
1.2  
Vꢀ  
V
ON_TH  
0.4  
I
ONꢀInputꢀCurrent  
V
V
ꢀ=ꢀV  
–1ꢀ  
–4  
–9  
ꢀ1ꢀ  
–14  
μAꢀ  
μA  
ON  
ON  
ON  
OUT  
ꢀ=ꢀ0V  
Power-On Input Pin (PWR_ON)  
V
PWR_ONꢀThresholdꢀRisingꢀ  
PWR_ONꢀThresholdꢀFalling  
0.8ꢀ  
0.7  
1.2  
1
Vꢀ  
V
PWR_ON  
0.4  
I
PWR_ONꢀInputꢀCurrent  
V
V
ꢀ=ꢀ3V  
–1  
μA  
PWR_ON  
PWR_ON  
Status Output Pins (PBSTAT, EXTPWR, PGOOD)  
I
PBSTATꢀOutputꢀHighꢀLeakageꢀCurrent  
PBSTATꢀOutputꢀLowꢀVoltage  
EXTPWRꢀPinꢀInputꢀCurrent  
ꢀ=ꢀ3V  
PBSTAT  
–1  
1
0.4  
1
μA  
V
PBSTAT  
V
I
ꢀ=ꢀ3mA  
PBSTAT  
0.1  
0
PBSTAT  
I
V
ꢀ=ꢀ3V  
EXTPWR  
μA  
V
EXTPWR  
V
EXTPWRꢀPinꢀOutputꢀLowꢀVoltage  
PGOODꢀOutputꢀHighꢀLeakageꢀCurrent  
PGOODꢀOutputꢀLowꢀVoltage  
I
ꢀ=ꢀ2mA  
ꢀ=ꢀ3V  
PGOOD  
0.15  
0.4  
1
EXTPWR  
EXTPWR  
I
V
–1  
μA  
V
PGOOD  
V
I
ꢀ=ꢀ3mA  
PGOOD  
0.1  
–8  
0.4  
PGOOD  
V
PGOODꢀThresholdꢀVoltage  
(Noteꢀ13)  
%
THPGOOD  
Pushbutton Timing Parameters  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
ONꢀLowꢀTimeꢀtoꢀPBSTATꢀLowꢀ  
ONꢀHighꢀtoꢀPBSTATꢀHigh  
50  
900  
50  
50  
14  
1.8  
1
ms  
μs  
ON_PBSTAT1  
ON_PBSTAT2  
PBSTAT_PW  
ON_PUP  
PBSTATꢀLowꢀ>ꢀt  
PBSTAT_PW  
PBSTATꢀMinimumꢀPulseꢀWidth  
ONꢀLowꢀTimeꢀforꢀPower-Up  
40  
12  
ms  
ms  
ONꢀLowꢀtoꢀPGOODꢀResetꢀLow  
PGOODꢀResetꢀLowꢀPulseꢀWidth  
MinimumꢀTimeꢀfromꢀPowerꢀUpꢀtoꢀDown  
MinimumꢀTimeꢀfromꢀPowerꢀDownꢀtoꢀUp  
PWR_ONꢀHighꢀtoꢀPower-Up  
16.5  
Seconds  
ms  
ON_RST  
ON_RST_PW  
PUP_PDN  
Seconds  
Seconds  
ms  
1
PDN_PUP  
50  
50  
1
PWR_ONH  
PWR_ONL  
PWR_ONBK1  
PWR_ONBK2  
PGOODH  
PWR_ONꢀLowꢀtoꢀPower-Down  
PWR_ONꢀPower-UpꢀBlanking  
PWR_ONꢀPower-DownꢀBlanking  
FromꢀRegulationꢀtoꢀPGOODꢀHigh  
BucksꢀDisabledꢀtoꢀPGOODꢀLow  
LDO2ꢀEnableꢀtoꢀBuckꢀꢀEnable  
ms  
PWR_ONꢀLowꢀRecognizedꢀfromꢀPower-Up  
PWR_ONꢀHighꢀRecognizedꢀfromꢀPower-Down  
Buck1,ꢀ2ꢀandꢀLDO1ꢀWithinꢀPGOODꢀThreshold  
BucksꢀDisabled  
Seconds  
Seconds  
ms  
1
230  
44  
14.5  
µs  
PGOODL  
12.5  
17.5  
ms  
LDO2_BK1  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingꢀconditionꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀ  
reliabilityꢀandꢀlifetime.  
Note 2:ꢀTheꢀLTC3677-3ꢀisꢀguaranteedꢀtoꢀmeetꢀperformanceꢀspecificationsꢀ  
fromꢀ0°Cꢀtoꢀ85°C.ꢀSpecificationsꢀoverꢀtheꢀ–40°Cꢀtoꢀ85°Cꢀoperatingꢀ  
junctionꢀtemperatureꢀrangeꢀareꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀandꢀ  
correlationꢀwithꢀstatisticalꢀprocessꢀcontrols.ꢀNoteꢀthatꢀtheꢀmaximumꢀ  
ambientꢀtemperatureꢀisꢀdeterminedꢀbyꢀspecificꢀoperatingꢀconditionsꢀinꢀ  
conjunctionꢀwithꢀboardꢀlayout,ꢀtheꢀratedꢀpackageꢀthermalꢀresistanceꢀandꢀ  
otherꢀenvironmentalꢀfactors.  
Note 3:ꢀThisꢀICꢀincludesꢀoverꢀtemperatureꢀprotectionꢀthatꢀisꢀintendedꢀ  
toꢀprotectꢀtheꢀdeviceꢀduringꢀmomentaryꢀoverloadꢀconditions.ꢀJunctionꢀ  
temperaturesꢀwillꢀexceedꢀ110°Cꢀwhenꢀoverꢀtemperatureꢀprotectionꢀisꢀ  
active.ꢀContinuousꢀoperationꢀaboveꢀtheꢀspecifiedꢀmaximumꢀoperatingꢀ  
junctionꢀtemperatureꢀmayꢀresultꢀinꢀdeviceꢀdegradationꢀorꢀfailure.  
36773f  
LTC3677-3  
elecTrical characTerisTics  
Note 4:ꢀV ꢀisꢀtheꢀgreaterꢀofꢀV ,ꢀV ꢀorꢀBAT.  
Note 11:ꢀMeasuredꢀwithꢀtheꢀLDOꢀrunningꢀunityꢀgainꢀwithꢀoutputꢀtiedꢀtoꢀ  
CC  
BUS OUT  
feedbackꢀpin.  
Note 5:ꢀTotalꢀinputꢀcurrentꢀisꢀtheꢀsumꢀofꢀquiescentꢀcurrent,ꢀI  
,ꢀandꢀ  
BUSQ  
measuredꢀcurrentꢀgivenꢀbyꢀV  
/R  
ꢀ•ꢀ(h  
ꢀ+ꢀ1).  
Note 12:ꢀDropoutꢀvoltageꢀisꢀtheꢀminimumꢀinputꢀtoꢀoutputꢀvoltageꢀ  
differentialꢀneededꢀforꢀanꢀLDOꢀtoꢀmaintainꢀregulationꢀatꢀaꢀspecifiedꢀoutputꢀ  
current.ꢀWhenꢀanꢀLDOꢀisꢀinꢀdropout,ꢀitsꢀoutputꢀvoltageꢀwillꢀbeꢀequalꢀtoꢀꢀ  
CLPROG CLPROG  
CLPROG  
Note 6:ꢀh ꢀisꢀexpressedꢀasꢀaꢀfractionꢀofꢀmeasuredꢀfullꢀchargeꢀcurrentꢀ  
C/10  
withꢀindicatedꢀPROGꢀresistor.  
V ꢀ–ꢀV  
.
IN  
DROPꢀ  
Note 7:ꢀTheꢀcurrentꢀlimitꢀfeaturesꢀofꢀthisꢀpartꢀareꢀintendedꢀtoꢀprotectꢀtheꢀ  
ICꢀfromꢀshortꢀtermꢀorꢀintermittentꢀfaultꢀconditions.ꢀContinuousꢀoperationꢀ  
aboveꢀtheꢀmaximumꢀspecifiedꢀpinꢀcurrentꢀratingꢀmayꢀresultꢀinꢀdeviceꢀ  
degradationꢀorꢀfailure.  
Note 13:ꢀPGOODꢀthresholdꢀisꢀexpressedꢀasꢀaꢀpercentageꢀdifferenceꢀ  
fromꢀtheꢀBuck1,ꢀBuck2ꢀandꢀLDO1ꢀregulationꢀvoltages.ꢀTheꢀthresholdꢀisꢀ  
measuredꢀfromꢀBuck1,ꢀBuck2ꢀandꢀLDO1ꢀoutputꢀrising.  
Note 8:ꢀTheꢀserialꢀportꢀisꢀtestedꢀatꢀratedꢀoperatingꢀfrequency.ꢀTimingꢀ  
parametersꢀareꢀtestedꢀand/orꢀguaranteedꢀbyꢀdesign.  
Note 14:ꢀTheꢀI  
ꢀspecificationsꢀrepresentꢀtheꢀtotalꢀbatteryꢀloadꢀassumingꢀ  
BATQ  
V
,ꢀV  
,ꢀV  
ꢀandꢀV ꢀareꢀtiedꢀdirectlyꢀtoꢀV  
.
INLDO1 INLDO2 IN12  
IN3  
OUTꢀ  
Note 9:ꢀV ꢀnotꢀinꢀUVLO.  
Note 15:ꢀLong-termꢀcurrentꢀdensityꢀratingꢀforꢀtheꢀpart.  
OUT  
Note 10:ꢀBuckꢀFBꢀhigh,ꢀnotꢀswitching.  
Typical perForMance characTerisTics TJ = 25°C unless otherwise specified  
Input Supply Current  
vs Temperature  
Input Supply Current  
Battery-Drain Current  
vs Temperature  
vs Temperature (Suspend Mode)  
0.10  
0.08  
0.06  
0.04  
0.02  
0
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.8  
ALL SUPPLIES ENABLED  
PULSE-SKIPPING MODE  
V
= 5V  
V
= 5V  
BUS  
BUS  
1x MODE  
0.7  
0.6  
NO LOAD ON  
ALL SUPPLIES  
V
BAT  
V
BUS  
= 3.8V  
= 0V  
0.5  
0.4  
0.3  
0.2  
0.1  
ALL SUPPLIES ENABLED  
Burst Mode OPERATION  
ALL SUPPLIES DISABLED EXCEPT LDO1  
25 75 100 125  
50  
TEMPERATURE (°C)  
0
0
–25  
0
50  
TEMPERATURE (°C)  
75 100 125  
–50 –25  
0
25  
TEMPERATURE (°C)  
50  
75  
125  
–50  
0
–50  
25  
100  
–25  
36773 G03  
36773 G02  
36773 G01  
36773f  
ꢀ0  
LTC3677-3  
Typical perForMance characTerisTics TJ = 25°C unless otherwise specified  
Input Current Limit  
vs Temperature  
Charge Current vs Temperature  
(Thermal Regulation)  
Input RON vs Temperature  
1200  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
300  
280  
260  
240  
220  
180  
160  
140  
120  
100  
0
V
R
= 5V  
CLPROG  
I
= 400mA  
BUS  
OUT  
= 2.1k  
10x MODE  
5x MODE  
V
= 4.5V  
BUS  
V
BUS  
= 5V  
V
BUS  
= 5.5V  
200  
100  
0
V
= 5V  
BUS  
1x MODE  
10x MODE  
= 2k  
R
PROG  
50  
75 100 125  
–50 –25  
25  
50  
TEMPERATURE (°C)  
75  
100 125  
–50  
0
25  
0
–25  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
36773 G04  
357734 G06  
36773 G05  
Battery Current and Voltage  
vs Time  
Battery Regulation (Float)  
Voltage vs Temperature  
Battery Float Voltage  
Load Regulation  
600  
500  
400  
300  
200  
100  
0
6
4.24  
4.22  
4.24  
4.22  
4.20  
4.18  
4.16  
4.14  
4.12  
4.10  
4.08  
4.06  
4.04  
V
= 5V  
I
= 2mA  
BUS  
BAT  
10x MODE  
CHRG  
5
4
3
2
1
0
V
BAT  
4.20  
4.18  
4.16  
4.14  
4.12  
4.10  
SAFETY  
TIMER  
TERMINATION  
1450mAhr  
CELL  
C/10  
V
= 5V  
BUS  
PROG  
R
R
= 2k  
= 2k  
I
BAT  
CLPROG  
0
2
3
4
5
6
0
200  
400  
I
600  
(mA)  
800  
1000  
1
–50 –25  
0
25  
50  
75 100 125  
TIME (HOUR)  
TEMPERATURE (°C)  
BAT  
36773 G07  
357734 G08  
36773 G09  
Forward Voltage vs Ideal Diode  
Current (No External FET)  
Forward Voltage vs Ideal Diode  
Current (with Si2333DS External FET)  
IBAT vs VBAT  
600  
500  
400  
300  
200  
100  
0
0.25  
0.20  
0.15  
0.10  
40  
35  
30  
25  
V
T
= 0V  
V
V
A
= 3.8V  
= 0V  
BUS  
A
BAT  
BUS  
= 25°C  
= 25°C  
V
= 3.2V  
BAT  
T
V
= 3.6V  
BAT  
V
BAT  
= 4.2V  
RISING  
BAT  
V
20  
15  
FALLING  
V
BAT  
10  
5
V
= 5V  
BUS  
10x MODE  
0.05  
0
R
R
= 2k  
= 2k  
PROG  
CLPROG  
0
2.0  
2.8  
3.2  
(V)  
3.6  
4.0  
4.4  
2.4  
0
0.4  
0.6  
(A)  
0.8  
1.0  
1.2  
0
0.2  
0.4  
I
0.8  
1.0  
0.2  
0.6  
(A)  
V
I
BAT  
BAT  
BAT  
36773 G10  
36773 G11  
36773 G12  
36773f  
ꢀꢀ  
LTC3677-3  
Typical perForMance characTerisTics TJ = 25°C unless otherwise specified  
Input Disconnect Waveform  
Input Connect Waveform  
Switching from 1x to 5x Mode  
V
V
BUS  
BUS  
5V/DIV  
5V/DIV  
I
/I  
LIM0 LIM1  
V
5V/DIV  
OUT  
V
OUT  
5V/DIV  
5V/DIV  
I
I
I
BUS  
BUS  
BUS  
0.5A/DIV  
0.5A/DIV  
0.5A/DIV  
I
I
I
BAT  
BAT  
BAT  
0.5A/DIV  
0.5A/DIV  
0.5A/DIV  
36773 G14  
36773 G15  
36773 G13  
V
I
= 3.75V  
= 100mA  
= 2k  
1ms/DIV  
V
I
= 3.75V  
= 50mA  
= 2k  
1ms/DIV  
V
I
= 3.75V  
= 100mA  
= 2k  
1ms/DIV  
BAT  
OUT  
R
CLPROG  
R
= 2k  
R
= 2k  
R
= 2k  
PROG  
PROG  
PROG  
Switching from Suspend Mode  
to 5x Mode  
WALL Connect Waveform  
WALL Disconnect Waveform  
WALL  
5V/DIV  
I
WALL  
5V/DIV  
LIM0  
5V/DIV  
V
V
V
OUT  
OUT  
OUT  
5V/DIV  
5V/DIV  
5V/DIV  
I
I
WALL  
I
WALL  
BUS  
0.5A/DIV  
0.5A/DIV  
0.5A/DIV  
I
I
I
BAT  
BAT  
BAT  
0.5A/DIV  
0.5A/DIV  
0.5A/DIV  
36773 G17  
36773 G16  
36773 G18  
V
I
= 3.75V  
= 100mA  
= 2k  
1ms/DIV  
V
I
= 3.75V  
= 100mA  
= 2k  
100µs/DIV  
V
I
= 3.75V  
= 100mA  
= 2k  
1ms/DIV  
BAT  
BAT  
OUT  
BAT  
OUT  
OUT  
R
PROG  
R
R
PROG  
CLPROG  
R
= 2k  
PROG  
I
= 5V  
LIM1  
Oscillator Frequency  
vs Temperature  
Step-Down Switching Regulator 1  
3.3V Output Efficiency vs IOUT1  
100  
90  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
Burst Mode  
OPERATION  
80  
70  
PULSE-SKIPPING  
60  
50  
V
= 5V  
OUT  
40  
30  
20  
10  
0
V
= 3.8V  
OUT  
V
= 3.3V  
OUT1  
V
V
= 3.8V  
= 5V  
IN12  
IN12  
–50  
0
25  
50  
75 100 125  
–25  
0.01  
0.1  
1
10  
(mA)  
100  
1000  
TEMPERATURE (°C)  
I
OUT  
36773 G19  
36773 G20  
36773f  
ꢀꢁ  
LTC3677-3  
Typical perForMance characTerisTics TJ = 25°C unless otherwise specified  
Step-Down Switching Regulator 3  
1.2V Output Efficiency vs IOUT3  
Step-Down Switching Regulator 2  
1.8V Output Efficiency vs IOUT2  
Step-Down Switching Regulator 3  
2.5V Output Efficiency  
100  
90  
100  
90  
100  
90  
Burst Mode  
OPERATION  
Burst Mode  
OPERATION  
Burst Mode  
OPERATION  
80  
80  
80  
70  
70  
70  
PULSE-SKIPPING  
PULSE-SKIPPING  
60  
50  
60  
50  
60  
50  
PULSE-SKIPPING  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
= 1.2V  
= 3.8V  
= 5V  
V
= 2.5V  
= 3.8V  
= 5V  
OUT3  
OUT3  
V
= 1.8V  
OUT2  
V
V
V
V
IN3  
IN3  
IN3  
IN3  
V
V
= 3.8V  
= 5V  
IN12  
IN12  
0.01  
0.1  
1
I
10  
(mA)  
100  
1000  
0.01  
0.1  
1
I
10  
(mA)  
100  
1000  
0.01  
0.1  
1
I
10  
(mA)  
100  
1000  
OUT  
OUT  
OUT  
36773 G22  
36773 G23  
36773 G21  
Step-Down Switching Regulator  
Output Transient (Burst Mode  
Operation)  
Step-Down Switching Regulator  
Output Transient (Pulse-Skipping)  
Step-Down Switching Regulator  
Short-Circuit Current vs Temperature  
1500  
1400  
1300  
1200  
1100  
1000  
900  
V
OUT1  
V
OUT1  
50mV/DIV  
(AC)  
50mV/DIV  
(AC)  
V
OUT2  
800mA BUCK  
V
OUT2  
50mV/DIV  
(AC)  
50mV/DIV  
(AC)  
V
OUT3  
V
OUT3  
100mV/DIV  
(AC)  
100mV/DIV  
(AC)  
500mA BUCK  
800  
500mA  
500mA  
I
I
OUT3  
OUT3  
700  
5mA  
5mA  
36773 G26  
36773 G25  
V
I
= 3.3V  
= 30mA  
= 1.8V  
= 20mA  
= 1.2V  
50µs/DIV  
V
I
= 3.3V  
= 10mA  
= 1.8V  
= 20mA  
= 1.2V  
50µs/DIV  
OUT1  
OUT1  
V
V
= 3.8V  
= 5V  
OUT1  
OUT1  
INx  
INx  
600  
V
V
OUT2  
OUT2  
500  
OUT2  
OUT2  
I
–25  
0
50  
75 100 125  
I
–50  
25  
V
V
V
V
OUT3  
OUT  
OUT3  
OUT  
TEMPERATURE (°C)  
36773 G24  
= V  
= 3.8V  
= V  
= 3.8V  
BAT  
BAT  
500mA Step-Down Switching  
Regulator Feedback Voltage  
vs Output Current  
800mA Step-Down Switching  
Regulator Feedback Voltage  
vs Output Current  
Step-Down Switching Regulator  
Switch Impedance vs Temperature  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.85  
0.84  
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
0.77  
0.76  
0.75  
0.85  
0.84  
0.83  
0.82  
0.81  
0.80  
0.79  
0.78  
0.77  
0.76  
0.75  
V
= 3.2V  
INX  
500mA  
PMOS  
500mA  
NMOS  
Burst Mode  
OPERATION  
Burst Mode  
OPERATION  
PULSE-SKIPPING  
PULSE-SKIPPING  
800mA PMOS  
800mA NMOS  
V
V
= 3.8V  
= 5V  
V
= 3.8V  
= 5V  
IN12  
IN3  
IN3  
IN12  
V
0
0.1  
1
10  
(mA)  
100  
1000  
–50 –25  
0
25  
125  
50  
75 100  
0.1  
1
10  
(mA)  
100  
1000  
I
TEMPERATURE (°C)  
I
OUT  
OUT  
36773 G27  
357732 G29  
36773 G29  
36773f  
ꢀꢂ  
LTC3677-3  
Typical perForMance characTerisTics TJ = 25°C unless otherwise specified  
Step-Down Switching Regulator 3  
Soft-Start and Shutdown  
OVP Connection Waveform  
V
OUT1  
100mV/DIV  
(AC)  
V
BUS  
2V  
5V/DIV  
1V  
0V  
V
OUT3  
OVGATE  
5V/DIV  
400mA  
200mA  
0mA  
I
L3  
OVP INPUT  
VOLTAGE  
0V TO 5V  
STEP 5V/DIV  
36773 G31  
36773 G30  
500µs/DIV  
V
= 1.8V  
= 100mA  
= 3Ω  
50µs/DIV  
OUT1  
OUT1  
OUT3  
I
R
OVP Protection Waveform  
OVP Reconnection Waveform  
V
BUS  
5V/DIV  
V
BUS  
5V/DIV  
OVGATE  
5V/DIV  
OVGATE  
5V/DIV  
OVP INPUT  
VOLTAGE  
10V TO 5V  
STEP 5V/DIV  
OVP INPUT  
VOLTAGE  
5V TO 10V  
STEP 5V/DIV  
36773 G33  
36773 G32  
500µs/DIV  
500µs/DIV  
Rising Overvoltage Threshold  
vs Temperature  
OVSENS Quiescent Current  
vs Temperature  
37  
35  
33  
31  
29  
27  
6.280  
6.275  
6.270  
6.265  
6.260  
6.255  
V
= 5V  
OVSENS  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
36773 G34  
36773 G35  
36773f  
ꢀꢃ  
LTC3677-3  
Typical perForMance characTerisTics TJ = 25°C unless otherwise specified  
OVGATE vs OVSENS  
LDO Load Step  
Too Hot BAT Discharge  
12  
10  
200  
180  
160  
140  
120  
100  
80  
OVSENS CONNECTED  
TO INPUT THROUGH  
6.2k RESISTOR  
V
V
< V  
TOO_HOT  
= 0V  
NTC  
BUS  
LDO1  
50mV/DIV  
(AC)  
8
6
LDO2  
20mV/DIV  
(AC)  
4
2
0
60  
100mA  
I
OUT1  
40  
5mA  
36773 G37  
LDO1 = 1.2V  
LDO2 = 2.5V  
20µs/DIV  
20  
I
= 40mA  
LDO2  
OUT  
0
V
= V  
= 3.8V  
0
2
4
6
8
3.8  
3.9  
4.0  
(V)  
4.1  
4.2  
BAT  
INPUT VOLTAGE (V)  
V
BAT  
36773 G38  
36773 G36  
Input and Battery Current  
vs Output Current  
Battery Discharge vs Temperature  
600  
500  
400  
300  
200  
100  
0
200  
R
R
= 2k  
PROG  
CLPROG  
I
= 2k  
IN  
175  
150  
V
V
= 5V  
= 0V  
BUS  
BUS  
I
LOAD  
125  
100  
75  
I
BAT  
(CHARGING)  
50  
V
V
= 4.1V  
BAT  
NTC  
< V  
TOO_HOT  
5x MODE  
25  
I
BAT  
I
= 0mA  
VOUT  
(DISCHARGING)  
400  
500  
WALL = 0V  
100  
0
–100  
60  
70  
90 100 110 120  
0
200  
300  
(mA)  
600  
50  
80  
TEMPERATURE (°C)  
I
OUT  
36773 G40  
36773 G39  
pin FuncTions  
I
, I  
(Pins 1, 2):ꢀInputꢀCurrentꢀControlꢀPins.ꢀI  
SW3 (Pin 5):ꢀPowerꢀTransmissionꢀ(Switch)ꢀPinꢀforꢀStep-  
LIM0 LIM1  
LIM0  
andꢀI  
ꢀcontrolꢀtheꢀinputꢀcurrentꢀlimit.ꢀSeeꢀTableꢀ1ꢀinꢀtheꢀ DownꢀSwitchingꢀRegulatorꢀ3ꢀ(Buck3).  
LIM1  
USBꢀPowerPathꢀControllerꢀsection.ꢀBothꢀpinsꢀareꢀpulledꢀ  
lowꢀbyꢀaꢀweakꢀcurrentꢀsink.  
VIN3 (Pin6):PowerInputforStep-DownSwitchingRegu-  
latorꢀ3.ꢀThisꢀpinꢀshouldꢀbeꢀconnectedꢀtoꢀVOUT  
.
NC (Pins 3, 9, 18, 19, 20, 22):ꢀNoꢀConnect.ꢀThisꢀpinꢀhasꢀ  
noꢀfunctionꢀandꢀmayꢀbeꢀfloatedꢀorꢀconnectedꢀtoꢀground.  
FB3 (Pin 7):FeedbackInputforStep-DownSwitchingꢀ  
Regulatorꢀ3ꢀ(Buck3).ꢀThisꢀpinꢀservosꢀtoꢀaꢀfixedꢀvoltageꢀofꢀ  
WALL (Pin 4):WallAdapterPresentInput.Pullingthisꢀ 0.8Vꢀwhenꢀtheꢀcontrolꢀloopꢀisꢀcomplete.  
pinꢀaboveꢀ4.3VꢀwillꢀdisconnectꢀtheꢀpowerꢀpathꢀfromꢀV  
BUS  
OVSENSE (Pin 8):ꢀOvervoltageꢀProtectionꢀSenseꢀInput.ꢀ  
OVSENSEꢀshouldꢀbeꢀconnectedꢀthroughꢀaꢀ6.2kꢀresistorꢀ  
toꢀtheꢀinputꢀpowerꢀconnectorꢀandꢀtheꢀdrainꢀofꢀanꢀexternalꢀ  
36773f  
toꢀV .ꢀTheꢀACPRꢀpinꢀwillꢀalsoꢀbeꢀpulledꢀlowꢀtoꢀindicateꢀ  
OUT  
thatꢀaꢀwallꢀadapterꢀhasꢀbeenꢀdetected.  
ꢀꢄ  
LTC3677-3  
pin FuncTions  
N-channelꢀMOSFETꢀpassꢀtransistor.ꢀWhenꢀtheꢀvoltageꢀonꢀ value.ꢀThereꢀisꢀaꢀ230msꢀdelayꢀfromꢀallꢀregulatorsꢀreachingꢀ  
thisꢀpinꢀexceedsꢀaꢀpresetꢀlevel,ꢀtheꢀOVGATEꢀpinꢀwillꢀbeꢀ regulationꢀandꢀPGOODꢀgoingꢀhigh.  
pulledꢀtoꢀGNDꢀtoꢀdisableꢀtheꢀpassꢀtransistorꢀandꢀprotectꢀ  
LDO1_FB (Pin 23):ꢀFeedbackꢀVoltageꢀInputꢀforꢀLowꢀDrop-  
downstreamꢀcircuitry.  
outꢀLinearꢀRegulatorꢀ1ꢀ(LDO1).ꢀLDO1ꢀoutputꢀvoltageꢀisꢀ  
2
setꢀusingꢀanꢀexternalꢀresistorꢀdividerꢀbetweenꢀLDO1ꢀandꢀ  
LDO1_FB.  
DV (Pin 10):ꢀSupplyꢀVoltageꢀforꢀI CꢀLines.ꢀThisꢀpinꢀsetsꢀ  
CC  
theꢀlogicꢀreferenceꢀlevelꢀofꢀtheꢀLTC3677-3.ꢀAꢀUVLOꢀcircuitꢀ  
ontheDV pinforcesallregisterstoall0swheneverDV ꢀ  
CC  
CC  
LDO2_FB (Pin 24):ꢀFeedbackꢀVoltageꢀInputꢀforꢀLowꢀDrop-  
outꢀLinearꢀRegulatorꢀ2ꢀ(LDO2).ꢀLDO2ꢀoutputꢀvoltageꢀisꢀ  
setꢀusingꢀanꢀexternalꢀresistorꢀdividerꢀbetweenꢀLDO2ꢀandꢀ  
LDO2_FB.  
isꢀ<1V.ꢀBypassꢀtoꢀGNDꢀwithꢀaꢀ0.1µFꢀcapacitor.  
2
SDA (Pin 11):ꢀI CꢀDataꢀInput.ꢀSerialꢀdataꢀisꢀshiftedꢀoneꢀ  
bitꢀperꢀclockꢀtoꢀcontrolꢀtheꢀLTC3677-3.ꢀTheꢀlogicꢀlevelꢀforꢀ  
SDAꢀisꢀreferencedꢀtoꢀDV .  
CC  
FB2 (Pin 25):ꢀFeedbackꢀInputꢀforꢀStep-DownꢀSwitchingꢀ  
Regulatorꢀ2ꢀ(Buck2).ꢀThisꢀpinꢀservosꢀtoꢀaꢀfixedꢀvoltageꢀofꢀ  
0.8Vꢀwhenꢀtheꢀcontrolꢀloopꢀisꢀcomplete.  
2
SCL (Pin 12):ꢀI CꢀClockꢀInput.ꢀTheꢀlogicꢀlevelꢀforꢀSCLꢀisꢀ  
referencedꢀtoꢀDV .  
CC  
FB1 (Pin 26):ꢀFeedbackꢀInputꢀforꢀStep-DownꢀSwitchingꢀ  
Regulatorꢀ1ꢀ(Buck1).ꢀThisꢀpinꢀservosꢀtoꢀaꢀfixedꢀvoltageꢀofꢀ  
0.8Vꢀwhenꢀtheꢀcontrolꢀloopꢀisꢀcomplete.  
OVGATE (Pin 13):OvervoltageProtectionGateOutput.ꢀ  
ConnectꢀOVGATEꢀtoꢀtheꢀgateꢀpinꢀofꢀanꢀexternalꢀN-channelꢀ  
MOSFETpasstransistor.Thesourceofthetransistorshouldꢀ  
beꢀconnectedꢀtoꢀV ꢀandꢀtheꢀdrainꢀshouldꢀbeꢀconnectedꢀ  
BUS  
V
(Pin 27):InputSupplyofLowDropoutLinearꢀ  
INLDO1  
toꢀtheꢀproduct’sꢀDCꢀinputꢀconnector.ꢀInꢀtheꢀabsenceꢀofꢀanꢀ  
overvoltageꢀcondition,ꢀthisꢀpinꢀisꢀconnectedꢀtoꢀanꢀinternalꢀ  
chargeꢀpumpꢀcapableꢀofꢀcreatingꢀsufficientꢀoverdriveꢀtoꢀ  
fullyꢀenhanceꢀthisꢀtransistor.ꢀIfꢀanꢀovervoltageꢀconditionꢀ  
isꢀdetected,ꢀOVGATEꢀisꢀbroughtꢀrapidlyꢀtoꢀGNDꢀtoꢀpreventꢀ  
damage.ꢀOVGATEꢀworksꢀinꢀconjunctionꢀwithꢀOVSENSEꢀtoꢀ  
provideꢀthisꢀprotection.  
Regulator1(LDO1).Thispinshouldbebypassedtogroundꢀ  
withꢀaꢀ1µFꢀorꢀgreaterꢀceramicꢀcapacitor.  
LDO1(Pin28):OutputofLowDropoutLinearRegulatorꢀ1.ꢀ  
LDO1ꢀisꢀanꢀalways-onꢀLDOꢀandꢀwillꢀbeꢀenabledꢀwheneverꢀ  
theꢀpartꢀisꢀnotꢀinꢀV ꢀUVLO.ꢀThisꢀpinꢀmustꢀbeꢀbypassedꢀ  
OUT  
toꢀgroundꢀwithꢀaꢀ1µFꢀorꢀgreaterꢀceramicꢀcapacitor.  
LDO2(Pin29):OutputofLowDropoutLinearRegulatorꢀ2.ꢀ  
Thisꢀpinꢀmustꢀbeꢀbypassedꢀtoꢀgroundꢀwithꢀaꢀ1µFꢀorꢀgreaterꢀ  
ceramicꢀcapacitor.  
PWR_ON(Pin14):LogicInputUsedtoKeepBuck1,Buck2ꢀ  
andꢀLDO2ꢀEnabledꢀAfterꢀPower-Up.ꢀMayꢀalsoꢀbeꢀusedꢀtoꢀ  
enableꢀregulatorsꢀdirectlyꢀ(sequenceꢀ=ꢀLDO2ꢀꢀBuck1ꢀꢀ  
Buck2).ꢀSeeꢀtheꢀPushbuttonꢀInterfaceꢀOperationꢀsectionꢀ  
forꢀmoreꢀinformation.  
V
(Pin 30):InputSupplyofLowDropoutLinearꢀ  
INLDO2  
Regulator2(LDO2).Thispinshouldbebypassedtogroundꢀ  
withꢀaꢀ1µFꢀorꢀgreaterꢀceramicꢀcapacitor.  
ON (Pin 15):ꢀPushbuttonꢀInput.ꢀAꢀweakꢀinternalꢀpull-upꢀ  
forcesꢀONꢀhighꢀwhenꢀleftꢀfloating.ꢀAꢀnormallyꢀopenꢀpush-  
buttonisconnectedfromONtogroundtoforcealowꢀ  
stateꢀonꢀthisꢀpin.  
SW2 (Pin 31):ꢀPowerꢀTransmissionꢀ(Switch)ꢀPinꢀforꢀStep-  
DownꢀSwitchingꢀRegulatorꢀ2ꢀ(Buck2).  
V
(Pin 32):ꢀ Powerꢀ Inputꢀ forꢀ Step-Downꢀ Switchingꢀ  
IN12  
PBSTAT (Pin 16):ꢀ Open-drainꢀ outputꢀ isꢀ aꢀ debouncedꢀ  
andbufferedversionofONtobeusedforprocessorꢀ  
interrupts.  
Regulatorsꢀ1ꢀandꢀ2.ꢀThisꢀpinꢀwillꢀgenerallyꢀbeꢀconnectedꢀ  
toꢀV  
.
OUT  
SW1 (Pin 33):ꢀPowerꢀTransmissionꢀ(Switch)ꢀPinꢀforꢀStep-  
DownꢀSwitchingꢀRegulatorꢀ1ꢀ(Buck1).  
EN3 (Pin 17):ꢀ Enableꢀ Pinꢀ forꢀ Step-Downꢀ Switchingꢀ  
Regulatorꢀ3ꢀ(Buck3)  
.
NTCBIAS (Pin 34):ꢀ Outputꢀ Biasꢀ Voltageꢀ forꢀ NTC.ꢀ Aꢀ  
resistorꢀfromꢀthisꢀpinꢀtoꢀtheꢀNTCꢀpinꢀwillꢀbiasꢀtheꢀNTCꢀ  
Buck1,ꢀBuck2ꢀandꢀLDO1ꢀareꢀwithinꢀ8%ꢀofꢀfinalꢀregulationꢀ thermistor.  
PGOOD(Pin21):Open-DrainOutput.PGOODindicatesthatꢀ  
36773f  
ꢀꢅ  
LTC3677-3  
pin FuncTions  
wallꢀadapter.ꢀV ꢀshouldꢀbeꢀbypassedꢀwithꢀaꢀlowꢀimped-  
NTC (Pin 35):ꢀTheꢀNTCꢀpinꢀconnectsꢀtoꢀaꢀbattery’sꢀtherm-  
istortodetermineifthebatteryistoohotortoocoldꢀ  
tocharge.Ifthebattery’stemperatureisoutofrange,ꢀ  
chargingꢀisꢀpausedꢀuntilꢀitꢀdropsꢀbackꢀintoꢀrange.ꢀAꢀlowꢀ  
driftꢀbiasꢀresistorꢀisꢀrequiredꢀfromꢀNTCBIASꢀtoꢀNTCꢀandꢀ  
aꢀthermistorꢀisꢀrequiredꢀfromꢀNTCꢀtoꢀground.ꢀ  
BUS  
anceꢀmultilayerꢀceramicꢀcapacitor.  
ACPR(Pin41):WallꢀAdapterꢀPresentꢀOutputꢀ(ActiveꢀLow).ꢀ  
Alowonthispinindicatesthatthewalladapterinputcom-  
paratorꢀhasꢀhadꢀitsꢀinputꢀpulledꢀaboveꢀitsꢀinputꢀthresholdꢀ  
(typicallyꢀ4.3V).ꢀThisꢀpinꢀcanꢀbeꢀusedꢀtoꢀdriveꢀtheꢀgateꢀofꢀ  
anꢀexternalꢀP-channelꢀMOSFETꢀtoꢀprovideꢀpowerꢀtoꢀV  
fromꢀaꢀpowerꢀsourceꢀotherꢀthanꢀaꢀUSBꢀport.  
PROG (Pin 36):ꢀ Chargeꢀ Currentꢀ Programꢀ andꢀ Chargeꢀ  
CurrentꢀMonitorꢀPin.ꢀConnectingꢀaꢀresistorꢀfromꢀPROGꢀ  
toꢀgroundꢀprogramsꢀtheꢀchargeꢀcurrent:  
OUT  
EXTPWR (Pin 42):ꢀExternalꢀPowerꢀPresentꢀOutputꢀ(Activeꢀ  
Low,ꢀOpen-DrainꢀOutput).ꢀAꢀlowꢀonꢀthisꢀpinꢀindicatesꢀthatꢀ  
1000V  
RPROG  
ICHG  
=
A
( )  
externalpowerispresentateithertheV ꢀorWALLinput.ꢀ  
BUS  
ForꢀEXTPWRꢀtoꢀsignalꢀV ꢀpresent,ꢀV ꢀmustꢀexceedꢀ  
BUS  
BUS  
Ifꢀsufficientꢀinputꢀpowerꢀisꢀavailableꢀinꢀconstant-currentꢀ  
mode,ꢀthisꢀpinꢀservosꢀtoꢀ1V.ꢀTheꢀvoltageꢀonꢀthisꢀpinꢀalwaysꢀ  
representsꢀtheꢀactualꢀchargeꢀcurrent.  
theꢀV ꢀundervoltageꢀlockoutꢀthreshold.ꢀForꢀEXTPWRꢀtoꢀ  
BUS  
signalWALLpresent,WALLmustexceedtheabsoluteandꢀ  
differentialꢀWALLꢀinputꢀthresholds.ꢀTheꢀEXTPWRꢀsignalꢀisꢀ  
independentoftheI  
andI  
LIM1  
pins.Thus,itispossibleꢀ  
LIM0  
IDGATE (Pin 37):ꢀ Idealꢀ Diodeꢀ Gateꢀ Connection.ꢀ Thisꢀ  
pincontrolsthegateofanoptionalexternalP-channelꢀ  
MOSFETꢀtransistorꢀusedꢀtoꢀsupplementꢀtheꢀinternalꢀidealꢀ  
diode.ꢀTheꢀsourceꢀofꢀtheꢀP-channelꢀMOSFETꢀshouldꢀbeꢀ  
toꢀhaveꢀtheꢀinputꢀcurrentꢀlimitꢀcircuitryꢀinꢀsuspendꢀwithꢀ  
EXTPWRꢀshowingꢀaꢀvalidꢀchargingꢀlevelꢀonꢀV  
.
BUS  
CLPROG (Pin 43):ꢀ Inputꢀ Currentꢀ Programꢀ andꢀ Inputꢀ  
CurrentꢀMonitorꢀPin.ꢀAꢀresistorꢀfromꢀCLPROGꢀtoꢀgroundꢀ  
determinesꢀtheꢀupperꢀlimitꢀofꢀtheꢀcurrentꢀdrawnꢀfromꢀtheꢀ  
connectedꢀtoꢀV ꢀandꢀtheꢀdrainꢀshouldꢀbeꢀconnectedꢀtoꢀ  
OUT  
BAT.ꢀItꢀisꢀimportantꢀtoꢀmaintainꢀhighꢀimpedanceꢀonꢀthisꢀ  
pinꢀandꢀminimizeꢀallꢀleakageꢀpaths.  
V
ꢀpinꢀ(i.e.,ꢀtheꢀinputꢀcurrentꢀlimit).ꢀAꢀpreciseꢀfractionꢀ  
BUS  
ofꢀtheꢀinputꢀcurrent,ꢀh  
,ꢀisꢀsentꢀtoꢀtheꢀCLPROGꢀpin.ꢀ  
CLPROG  
BAT (Pin 38):ꢀSingle-CellꢀLi-IonꢀBatteryꢀPin.ꢀDependingꢀ  
TheꢀinputꢀPowerPathꢀdeliversꢀcurrentꢀuntilꢀtheꢀCLPROGꢀ  
pinꢀreachesꢀ2Vꢀ(10xꢀmode),ꢀ1Vꢀ(5xꢀmode)ꢀorꢀ0.2Vꢀ(1xꢀ  
onꢀavailableꢀpowerꢀandꢀload,ꢀaꢀLi-IonꢀbatteryꢀonꢀBATꢀwillꢀ  
eitherdeliversystempowertoV ꢀthroughtheidealꢀ  
OUT  
mode).ꢀTherefore,ꢀtheꢀcurrentꢀdrawnꢀfromꢀV ꢀwillꢀbeꢀ  
BUS  
diodeꢀorꢀbeꢀchargedꢀfromꢀtheꢀbatteryꢀcharger.  
limitedꢀtoꢀanꢀamountꢀgivenꢀbyꢀh  
USBꢀapplicationsꢀtheꢀresistorꢀR  
noꢀlessꢀthanꢀ2.1k.  
ꢀandꢀR  
.ꢀInꢀ  
CLPROG  
CLPROG  
CLPROG  
V
(Pin39):OutputVoltageofthePowerPathControllerꢀ  
OUT  
ꢀshouldꢀbeꢀsetꢀtoꢀ  
andꢀInputꢀVoltageꢀofꢀtheꢀBatteryꢀCharger.ꢀTheꢀmajorityꢀofꢀ  
theꢀportableꢀproductꢀshouldꢀbeꢀpoweredꢀfromꢀV .ꢀTheꢀ  
OUT  
CHRG (Pin 44):ꢀOpen-DrainꢀChargeꢀStatusꢀOutput.ꢀTheꢀ  
CHRGꢀpinꢀindicatesꢀtheꢀstatusꢀofꢀtheꢀbatteryꢀcharger.ꢀIfꢀ  
CHRGꢀisꢀhighꢀthenꢀtheꢀchargerꢀisꢀnearꢀtheꢀfloatꢀvoltageꢀ  
(chargeꢀcurrentꢀlessꢀthanꢀ1/10thꢀprogrammedꢀchargeꢀcur-  
rent)orchargingiscompleteandchargerisdisabled.Alowꢀ  
onꢀCHRGꢀindicatesꢀthatꢀtheꢀchargerꢀisꢀenabled.ꢀForꢀmoreꢀ  
informationꢀseeꢀtheꢀChargeꢀStatusꢀIndicationꢀsection.  
LTC3677-3ꢀwillꢀpartitionꢀtheꢀavailableꢀpowerꢀbetweenꢀtheꢀ  
externalloadonV ꢀandtheinternalbatterycharger.ꢀ  
OUT  
Priorityꢀisꢀgivenꢀtoꢀtheꢀexternalꢀloadꢀandꢀanyꢀextraꢀpowerꢀ  
isusedtochargethebattery.AnidealdiodefromBATꢀ  
toV ꢀensuresthatV ꢀispoweredeveniftheloadꢀ  
OUT  
OUT  
exceedsꢀtheꢀallottedꢀinputꢀcurrentꢀfromꢀV ꢀorꢀifꢀtheꢀV  
BUS  
BUS  
powerꢀsourceꢀisꢀremoved.ꢀV ꢀshouldꢀbeꢀbypassedꢀwithꢀ  
OUT  
aꢀlowꢀimpedanceꢀmultilayerꢀceramicꢀcapacitor.  
GND (Exposed Pad Pin 45):ꢀTheꢀexposedꢀpackageꢀpadꢀisꢀ  
groundꢀandꢀmustꢀbeꢀsolderedꢀtoꢀPCBꢀgroundꢀforꢀelectricalꢀ  
contactꢀandꢀratedꢀthermalꢀperformance.ꢀ  
V
(Pin 40):ꢀUSBꢀInputꢀVoltage.ꢀV ꢀwillꢀusuallyꢀbeꢀ  
BUS  
BUS  
connectedꢀtoꢀtheꢀUSBꢀportꢀofꢀaꢀcomputerꢀorꢀaꢀDCꢀoutputꢀ  
36773f  
ꢀꢆ  
LTC3677-3  
block DiagraM  
8
13  
42  
EXTPWR  
4
41  
ACPR  
OVSENS  
OVGATE  
WALL  
OVERVOLTAGE  
PROTECTON  
EXTERNAL  
POWER DETECT  
WALL  
DETECT  
V
V
OUT  
BUS  
40  
43  
39  
37  
+
IDGATE  
INPUT  
CURRENT  
LIMIT  
CC/CV  
IDEAL  
DIODE  
CLPROG  
CHARGER  
+
NTCBIAS  
NTC  
15mV  
34  
35  
BATTERY  
TEMP  
BAT  
OVERTEMP BATTERY  
SAFETY DISCHARGER  
38  
36  
MONITOR  
PROG  
UVLO  
I
I
LIM0  
1
2
I
LIM  
V
INLD02  
LIM1  
LOGIC  
EN  
30  
+
0.8V  
CHRG  
14ms  
RISING  
DELAY  
LDO2  
150mA  
LDO2  
44  
29  
24  
CHARGE  
STATUS  
LDO2_FB  
V
IN12  
EN  
32  
33  
500mA, 2.25MHz  
BUCK REGULATOR 1  
PWR_ON  
ON  
SW1  
FB1  
14  
PUSH-  
BUTTON  
INPUT  
0.8V  
+
15  
16  
PBSTAT  
PG  
EN  
26  
31  
EN3  
17  
DV  
CC  
500mA, 2.25MHz  
BUCK REGULATOR 2  
10  
11  
12  
2
SDA  
I C  
SW2  
FB2  
LOGIC  
0.8V  
+
SCL  
PGOOD  
21  
PG  
EN  
25  
6
230ms FALLING  
DELAY  
V
IN3  
800mA, 2.25MHz  
BUCK REGULATOR 3  
SW3  
5
0.8V  
+
NC  
3, 9, 18, 19, 20, 22  
FB3  
7
V
INLD01  
ENB  
PG  
27  
+
0.8V  
LDO1  
28  
23  
150mA  
LDO1  
LDO1_FB  
GND  
45  
36773 BD  
36773f  
ꢀꢇ  
LTC3677-3  
operaTion  
PowerPath OPERATION  
guaranteesꢀthatꢀampleꢀpowerꢀisꢀalwaysꢀavailableꢀtoꢀV  
OUT  
evenꢀifꢀthereꢀisꢀinsufficientꢀorꢀabsentꢀpowerꢀatꢀV .ꢀTheꢀ  
BUS  
Introduction  
LTC3677-3ꢀalsoꢀhasꢀtheꢀabilityꢀtoꢀreceiveꢀpowerꢀfromꢀaꢀ  
wallꢀadapterꢀorꢀotherꢀnon-current-limitedꢀpowerꢀsource.ꢀ  
TheꢀLTC3677-3ꢀisꢀhighlyꢀintegratedꢀpowerꢀmanagementꢀ  
ICꢀthatꢀincludesꢀtheꢀfollowingꢀfeatures:  
SuchꢀaꢀpowerꢀsupplyꢀcanꢀbeꢀconnectedꢀtoꢀtheꢀV ꢀpinꢀofꢀ  
OUT  
theLTC3677-3throughanexternaldevicesuchasapowerꢀ  
SchottkyꢀorꢀFET,ꢀasꢀshownꢀinꢀFigureꢀ1.ꢀTheꢀLTC3677-3ꢀhasꢀ  
theuniqueabilitytousetheoutput,whichispoweredbyanꢀ  
externalsupply,tochargethebatterywhileprovidingpowerꢀ  
toꢀtheꢀload.ꢀAꢀcomparatorꢀonꢀtheꢀWALLꢀpinꢀisꢀconfiguredꢀ  
toꢀdetectꢀtheꢀpresenceꢀofꢀtheꢀwallꢀadapterꢀandꢀshutꢀoffꢀtheꢀ  
connectionꢀtoꢀtheꢀUSB.ꢀThisꢀpreventsꢀreverseꢀconductionꢀ  
ꢀ –ꢀPowerPathꢀcontroller  
ꢀ –ꢀBatteryꢀcharger  
ꢀ –ꢀIdealꢀdiode  
ꢀ –ꢀInputꢀovervoltageꢀprotection  
ꢀ –ꢀPushbuttonꢀcontroller  
ꢀ –ꢀThreeꢀstep-downꢀswitchingꢀregulators  
ꢀ –ꢀTwoꢀlowꢀdropoutꢀlinearꢀregulators  
fromꢀV ꢀtoꢀV ꢀwhenꢀaꢀwallꢀadapterꢀisꢀpresent.ꢀ  
OUT  
BUS  
TheLTC3677-3alsoincludesapushbuttoninputtocontrolꢀ  
theꢀ powerꢀ sequencingꢀ ofꢀ twoꢀ synchronousꢀ step-downꢀ  
switchingꢀregulatorsꢀ(Buck1ꢀandꢀBuck2),ꢀaꢀlowꢀdropoutꢀ  
regulatorꢀ(LDO2)ꢀandꢀsystemꢀreset.ꢀTheꢀthreeꢀ2.25MHzꢀ  
constant-frequencycurrentmodestep-downswitchingꢀ  
regulatorsꢀprovideꢀ500mA,ꢀ500mAꢀandꢀ800mAꢀeachꢀandꢀ  
DesignedspecificallyforUSBapplications,thePowerPathꢀ  
controllerꢀ incorporatesꢀ aꢀ precisionꢀ inputꢀ currentꢀ limitꢀ  
whichꢀcommunicatesꢀwithꢀtheꢀbatteryꢀchargerꢀtoꢀensureꢀ  
thatꢀinputꢀcurrentꢀdoesꢀnotꢀviolateꢀtheꢀUSBꢀaverageꢀinputꢀ  
currentꢀspecification.ꢀTheꢀidealꢀdiodeꢀfromꢀBATꢀtoꢀV  
OUT  
FROM AC ADAPTER  
4.3V  
+
(RISING)  
3.2V  
(FALLING)  
WALL  
4
ACPR  
41  
+
75mV (RISING)  
+
25mV (FALLING)  
FROM  
ENABLE  
V
V
V
OUT  
USB  
BUS  
OUT  
40  
39  
37  
SYSTEM  
LOAD  
USB CURRENT LIMIT  
IDEAL  
DIODE  
OPTIONAL  
EXTERNAL  
IDEAL DIODE  
PMOS  
+
IDGATE  
CONSTANT-CURRENT  
CONSTANT-VOLTAGE  
BATTERY CHARGER  
+
15mV  
BAT  
BAT  
38  
+
Li-Ion  
36773 F01  
Figure 1. Simplified PowerPath Block Diagram  
36773f  
ꢀꢈ  
LTC3677-3  
operaTion  
supportꢀ100%ꢀdutyꢀcycleꢀoperationꢀasꢀwellꢀasꢀoperatingꢀ TheꢀinputꢀcurrentꢀlimitꢀisꢀprogrammedꢀbyꢀtheꢀI  
inꢀBurstꢀModeꢀoperationꢀforꢀhighꢀefficiencyꢀatꢀlightꢀload.ꢀ  
ꢀandꢀ  
LIM0  
I
ꢀpins.ꢀTheꢀLTC3677-3ꢀcanꢀbeꢀconfiguredꢀtoꢀlimitꢀinputꢀ  
LIM1  
Noꢀexternalꢀcompensationꢀcomponentsꢀareꢀrequiredꢀforꢀ currentꢀtoꢀoneꢀofꢀseveralꢀpossibleꢀsettingsꢀasꢀwellꢀasꢀbeꢀ  
theꢀswitchingꢀregulators.ꢀTheꢀtwoꢀlowꢀdropoutꢀregulatorsꢀ deactivatedꢀ(USBꢀsuspend).ꢀTheꢀinputꢀcurrentꢀlimitꢀwillꢀbeꢀ  
canꢀoutputꢀupꢀtoꢀ150mA.  
setꢀbyꢀtheꢀappropriateꢀservoꢀvoltageꢀandꢀtheꢀresistorꢀonꢀ  
CLPROGꢀaccordingꢀtoꢀtheꢀfollowingꢀexpression:  
Allꢀregulatorsꢀcanꢀbeꢀprogrammedꢀforꢀaꢀminimumꢀoutputꢀ  
voltageꢀofꢀ0.8Vꢀandꢀcanꢀbeꢀusedꢀtoꢀpowerꢀaꢀmicrocon-  
trollerꢀcore,ꢀmicrocontrollerꢀI/O,ꢀmemoryꢀorꢀotherꢀlogicꢀ  
circuitry.ꢀ  
0.2V  
RCLPROG  
IVBUS = IBUSQ  
IVBUS = IBUSQ  
IVBUS = IBUSQ  
+
+
+
hCLPROG 1x Mode  
(
)
1V  
RCLPROG  
hCLPROG 5x Mode  
(
)
USB PowerPath Controller  
Theꢀinputꢀcurrentꢀlimitꢀandꢀchargeꢀcontrolꢀcircuitsꢀofꢀtheꢀ  
LTC3677-3ꢀisꢀdesignedꢀtoꢀlimitꢀinputꢀcurrentꢀasꢀwellꢀasꢀ  
controlꢀ batteryꢀ chargeꢀ currentꢀ asꢀ aꢀ functionꢀ ofꢀ I  
2V  
RCLPROG  
hCLPROG 10x Mode  
(
)
.ꢀ  
VOUTꢀ  
V
ꢀ drivesꢀ theꢀ combinationꢀ ofꢀ theꢀ externalꢀ load,ꢀ theꢀ  
OUT  
Underꢀworst-caseꢀconditions,ꢀtheꢀUSBꢀspecificationꢀforꢀ  
averageꢀinputꢀcurrentꢀwillꢀnotꢀbeꢀviolatedꢀwithꢀanꢀR  
threeꢀstep-downꢀswitchingꢀregulators,ꢀtwoꢀLDOsꢀandꢀtheꢀ  
batteryꢀcharger.  
CLPROG  
resistorof2.1korgreater.Table1showstheavailableꢀ  
settingsꢀforꢀtheꢀI ꢀandꢀI ꢀpins:  
Ifꢀtheꢀcombinedꢀloadꢀdoesꢀnotꢀexceedꢀtheꢀprogrammedꢀ  
LIM0  
LIM1  
inputcurrentlimit,V ꢀwillbeconnectedtoV ꢀthroughꢀ  
OUT  
BUS  
Table 1. Controlled Input Current Limit  
anꢀinternalꢀ200mΩꢀP-channelꢀMOSFET.ꢀIfꢀtheꢀcombinedꢀ  
I
I
I
BUS(LIM)  
LIM1  
LIM0  
loadꢀatꢀV ꢀexceedsꢀtheꢀprogrammedꢀinputꢀcurrentꢀlimit,ꢀ  
OUT  
1
1
100mAꢀ(1x)  
1Aꢀ(10x)  
theꢀbatteryꢀchargerꢀwillꢀreduceꢀitsꢀchargeꢀcurrentꢀbyꢀtheꢀ  
amountnecessarytoenabletheexternalloadtobesatisfiedꢀ  
whileꢀmaintainingꢀtheꢀprogrammedꢀinputꢀcurrent.ꢀEvenꢀifꢀ  
theꢀbatteryꢀchargeꢀcurrentꢀisꢀsetꢀtoꢀexceedꢀtheꢀallowableꢀ  
USBꢀcurrent,ꢀtheꢀaverageꢀinputꢀcurrentꢀUSBꢀspecificationꢀ  
1
0
0
0
1
0
Suspend  
500mAꢀ(5x)  
NoticeꢀthatꢀwhenꢀI  
ꢀisꢀlowꢀandꢀI  
ꢀisꢀhigh,ꢀtheꢀinputꢀ  
LIM0  
LIM1  
willnotbeviolated.Furthermore,loadcurrentatV  
OUT  
currentꢀlimitꢀisꢀsetꢀtoꢀaꢀhigherꢀcurrentꢀlimitꢀforꢀincreasedꢀ  
willꢀalwaysꢀbeꢀprioritizedꢀandꢀonlyꢀexcessꢀavailableꢀcur-  
rentꢀwillꢀbeꢀusedꢀtoꢀchargeꢀtheꢀbattery.ꢀTheꢀcurrentꢀoutꢀ  
ofꢀtheꢀCLPROGꢀpinꢀisꢀaꢀfractionꢀ(1/h )ꢀofꢀtheꢀV  
chargingandcurrentavailabilityatV .Thismodeisꢀ  
OUTꢀ  
typicallyusedwhenthereisahigherpower,non-USBꢀ  
BUS  
CLPROG  
sourceꢀavailableꢀatꢀtheꢀV ꢀpin.  
BUS  
current.ꢀWhenꢀaꢀprogrammingꢀresistorꢀisꢀconnectedꢀfromꢀ  
CLPROGꢀtoꢀGND,ꢀtheꢀvoltageꢀonꢀCLPROGꢀrepresentsꢀtheꢀ  
inputꢀcurrent:  
VCLPROG  
RCLPROG  
IVBUS = IBUSQ  
+
hCLPROG  
whereꢀ I  
ꢀ andꢀ h  
ꢀ areꢀ givenꢀ inꢀ theꢀ Electricalꢀ  
CLPROG  
BUSQ  
Characteristicsꢀtable.  
36773f  
ꢁ0  
LTC3677-3  
operaTion  
Ideal Diode from BAT to V  
Using the WALL Pin to Detect the Presence of an  
OUT  
External Power Source  
TheꢀLTC3677-3ꢀhasꢀanꢀinternalꢀidealꢀdiodeꢀasꢀwellꢀasꢀaꢀ  
controllerꢀforꢀanꢀoptionalꢀexternalꢀidealꢀdiode.ꢀBothꢀtheꢀ  
internalꢀ andꢀ theꢀ externalꢀ idealꢀ diodesꢀ respondꢀ quicklyꢀ  
TheꢀWALLꢀinputꢀpinꢀcanꢀbeꢀusedꢀtoꢀidentifyꢀtheꢀpresenceꢀ  
ofꢀanꢀexternalꢀpowerꢀsourceꢀ(particularlyꢀoneꢀthatꢀisꢀnotꢀ  
wheneverV ꢀdropsbelowBAT.Iftheloadincreasesꢀ  
subjectꢀtoꢀaꢀfixedꢀcurrentꢀlimitꢀlikeꢀtheꢀUSBꢀV ꢀinput).ꢀ  
OUT  
BUS  
beyondꢀtheꢀinputꢀcurrentꢀlimit,ꢀadditionalꢀcurrentꢀwillꢀbeꢀ  
pulledfromthebatteryviatheidealdiodes.Furthermore,ifꢀ  
powerꢀtoꢀV ꢀ(USB)ꢀorꢀV ꢀ(externalꢀwallꢀpowerꢀorꢀhighꢀ  
Typically,ꢀsuchꢀaꢀpowerꢀsupplyꢀwouldꢀbeꢀaꢀ5Vꢀwallꢀadapterꢀ  
outputꢀorꢀtheꢀlowꢀvoltageꢀoutputꢀofꢀaꢀhighꢀvoltageꢀbuckꢀ  
regulator.ꢀWhenꢀtheꢀwallꢀadapterꢀoutputꢀ(orꢀbuckꢀregulatorꢀ  
output)isconnecteddirectlytotheWALLpin,andthevolt-  
ageꢀexceedsꢀtheꢀWALLꢀpinꢀthreshold,ꢀtheꢀUSBꢀpowerꢀpathꢀ  
(fromꢀV ꢀtoꢀV )ꢀwillꢀbeꢀdisconnected.ꢀFurthermore,ꢀ  
theꢀACPRꢀpinꢀwillꢀbeꢀpulledꢀlow.ꢀInꢀorderꢀforꢀtheꢀpresenceꢀ  
ofꢀanꢀexternalꢀpowerꢀsupplyꢀtoꢀbeꢀacknowledged,ꢀbothꢀofꢀ  
theꢀfollowingꢀconditionsꢀmustꢀbeꢀsatisfied:  
BUS  
OUT  
voltageꢀregulator)ꢀisꢀremoved,ꢀthenꢀallꢀofꢀtheꢀapplicationꢀ  
powerꢀwillꢀbeꢀprovidedꢀbyꢀtheꢀbatteryꢀviaꢀtheꢀidealꢀdiodes.ꢀ  
TheꢀidealꢀdiodesꢀareꢀfastꢀenoughꢀtoꢀkeepꢀV ꢀfromꢀdrop-  
OUT  
BUS  
OUT  
pingꢀsignificantlyꢀbelowꢀV ꢀwithꢀjustꢀtheꢀrecommendedꢀ  
BAT  
outputꢀcapacitorꢀ(seeꢀFigureꢀ2).ꢀTheꢀidealꢀdiodeꢀconsistsꢀ  
ofꢀaꢀprecisionꢀamplifierꢀthatꢀenablesꢀanꢀon-chipꢀP-channelꢀ  
MOSFETꢀwheneverꢀtheꢀvoltageꢀatꢀV ꢀisꢀapproximatelyꢀ  
OUT  
1.ꢀTheꢀ WALLꢀ pinꢀ voltageꢀ mustꢀ exceedꢀ approximatelyꢀ  
4.3V.  
15mVꢀ(V )ꢀbelowꢀtheꢀvoltageꢀatꢀBAT.ꢀTheꢀresistanceꢀofꢀ  
FWD  
theꢀinternalꢀidealꢀdiodeꢀisꢀapproximatelyꢀ200mΩ.ꢀIfꢀthisꢀisꢀ  
sufficientfortheapplication,thennoexternalcomponentsꢀ  
areꢀnecessary.ꢀHowever,ꢀifꢀlowerꢀresistanceꢀisꢀneeded,ꢀanꢀ  
externalꢀP-channelꢀMOSFETꢀcanꢀbeꢀaddedꢀfromꢀBATꢀtoꢀ  
2.ꢀTheWALLpinvoltagemustbegreaterthan75mVaboveꢀ  
theꢀBATꢀpinꢀvoltage.ꢀ  
Theinputpowerpath(betweenV ꢀandV )isre-ꢀ  
BUS  
OUT  
V
.ꢀTheꢀIDGATEꢀpinꢀofꢀtheꢀLTC3677-3ꢀdrivesꢀtheꢀgateꢀofꢀ  
OUTꢀ  
enabledꢀandꢀtheꢀACPRꢀpinꢀisꢀpulledꢀhighꢀwhenꢀeitherꢀofꢀ  
theꢀexternalꢀP-channelꢀMOSFETꢀforꢀautomaticꢀidealꢀdiodeꢀ  
control.ThesourceoftheMOSFETshouldbeconnectedtoꢀ  
theꢀfollowingꢀconditionsꢀisꢀmet:  
1.ꢀTheꢀWALLꢀpinꢀvoltageꢀfallsꢀtoꢀwithinꢀ25mVꢀofꢀtheꢀBATꢀ  
pinꢀvoltage.  
V
andthedrainshouldbeconnectedtoBAT.Capableofꢀ  
OUT  
drivingꢀaꢀ1nFꢀload,ꢀtheꢀIDGATEꢀpinꢀcanꢀcontrolꢀanꢀexternalꢀ  
P-channelꢀMOSFETꢀhavingꢀextremelyꢀlowꢀon-resistance.  
2.ꢀTheꢀWALLꢀpinꢀvoltageꢀfallsꢀbelowꢀ3.2V.ꢀ  
Eachofthesethresholdsissuitablylteredintimetoꢀ  
preventꢀtransientꢀglitchesꢀonꢀtheꢀWALLꢀpinꢀfromꢀfalselyꢀ  
triggeringꢀanꢀevent.ꢀ  
4.0V  
V
3.8V  
3.6V  
OUT  
Suspend Mode  
Whenꢀ I  
ꢀ isꢀ pulledꢀ highꢀ andꢀ I  
ꢀ isꢀ pulledꢀ lowꢀ theꢀ  
500mA  
LIM0  
LIM1  
CHARGE  
LTC3677-3ꢀ entersꢀ suspendꢀ modeꢀ toꢀ complyꢀ withꢀ theꢀ  
I
0
BAT  
DISCHARGE  
USBꢀspecification.ꢀInꢀthisꢀmode,ꢀtheꢀpowerꢀpathꢀbetweenꢀ  
–500mA  
1A  
V
ꢀandꢀV ꢀisꢀputꢀinꢀaꢀhighꢀimpedanceꢀstateꢀtoꢀreduceꢀ  
OUT  
BUS  
BUS  
I
VOUT  
theꢀV ꢀinputꢀcurrentꢀtoꢀ50μA.ꢀIfꢀnoꢀotherꢀpowerꢀsourceꢀ  
LOAD  
0A  
36773 F02  
isavailabletodriveWALLandV ,thesystemloadꢀ  
OUTꢀ  
V
V
= 3.8V  
= 5V  
10µs/DIV  
BAT  
BUS  
5x MODE  
connectedꢀtoꢀV ꢀisꢀsuppliedꢀthroughꢀtheꢀidealꢀdiodesꢀ  
OUT  
C
= 10µF  
OUT  
connectedꢀtoꢀBAT.ꢀ  
Figure 2. Ideal Diode Transient Response  
36773f  
ꢁꢀ  
LTC3677-3  
operaTion  
BUS  
Current Limit (UVCL)  
V
Undervoltage Lockout (UVLO) and Undervoltage  
Charge Termination  
Thebatterychargerhasabuilt-insafetytimer.Whenꢀ  
theꢀ batteryꢀ voltageꢀ approachesꢀ theꢀ floatꢀ voltage,ꢀ theꢀ  
chargeꢀ currentꢀ beginsꢀ toꢀ decreaseꢀ asꢀ theꢀ LTC3677-3ꢀ  
AninternalundervoltagelockoutcircuitmonitorsV  
andꢀkeepsꢀtheꢀinputꢀcurrentꢀlimitꢀcircuitryꢀoffꢀuntilꢀV  
BUS  
BUS  
risesꢀaboveꢀtheꢀrisingꢀUVLOꢀthresholdꢀ(3.8V)ꢀandꢀatꢀleastꢀ entersꢀconstant-voltageꢀmode.ꢀOnceꢀtheꢀbatteryꢀchargerꢀ  
50mVꢀaboveꢀV .ꢀHysteresisꢀonꢀtheꢀUVLOꢀturnsꢀoffꢀtheꢀ detectsꢀthatꢀitꢀhasꢀenteredꢀconstant-voltageꢀmode,ꢀtheꢀ  
OUTꢀ  
inputcurrentlimitifV ꢀdropsbelow3.7Vor50mVbelowꢀ fourꢀhourꢀsafetyꢀtimerꢀisꢀstarted.ꢀAfterꢀtheꢀsafetyꢀtimerꢀ  
BUS  
V
.ꢀWhenꢀthisꢀhappens,ꢀsystemꢀpowerꢀatꢀV ꢀwillꢀbeꢀ expires,chargingofthebatterywillterminateandnoꢀ  
OUTꢀ  
OUT  
drawnfromthebatteryviatheidealdiode.Toꢀminimizeꢀtheꢀ moreꢀcurrentꢀwillꢀbeꢀdelivered.  
possibilityꢀofꢀoscillationꢀinꢀandꢀoutꢀofꢀUVLOꢀwhenꢀusingꢀ  
Automatic Recharge  
resistiveꢀinputꢀsupplies,ꢀtheꢀinputꢀcurrentꢀlimitꢀisꢀreducedꢀ  
asꢀV ꢀfallsꢀbelowꢀ4.45Vꢀ(typ).  
BUS  
Afterꢀ theꢀ batteryꢀ chargerꢀ terminates,ꢀ itꢀ willꢀ remainꢀ offꢀ  
drawingꢀonlyꢀmicroamperesꢀofꢀcurrentꢀfromꢀtheꢀbattery.ꢀ  
Ifꢀtheꢀportableꢀproductꢀremainsꢀinꢀthisꢀstateꢀlongꢀenough,ꢀ  
Battery Charger  
Theꢀ LTC3677-3ꢀ includesꢀ aꢀ constant-current/constant-ꢀ theꢀbatteryꢀwillꢀeventuallyꢀselfꢀdischarge.ꢀToꢀensureꢀthatꢀ  
voltagebatterychargerwithautomaticrecharge,automaticꢀ theꢀbatteryꢀisꢀalwaysꢀtoppedꢀoff,ꢀaꢀchargeꢀcycleꢀwillꢀau-  
terminationꢀbyꢀsafetyꢀtimer,ꢀlowꢀvoltageꢀtrickleꢀcharging,ꢀ tomaticallyꢀ beginꢀ whenꢀ theꢀ batteryꢀ voltageꢀ fallsꢀ belowꢀ  
badꢀcellꢀdetectionꢀandꢀthermistorꢀsensorꢀinputꢀforꢀoutꢀofꢀ  
temperatureꢀchargeꢀpausing.ꢀWhenꢀaꢀbatteryꢀchargeꢀcycleꢀ thatꢀtheꢀsafetyꢀtimerꢀisꢀrunningꢀwhenꢀtheꢀbatteryꢀvoltageꢀ  
begins,ꢀtheꢀbatteryꢀchargerꢀfirstꢀdeterminesꢀifꢀtheꢀbatteryꢀ fallsꢀbelowꢀV ,ꢀtheꢀtimerꢀwillꢀresetꢀbackꢀtoꢀzero.ꢀToꢀ  
V
ꢀ (typicallyꢀ 4.1Vꢀ forꢀ LTC3677-3).ꢀ Inꢀ theꢀ eventꢀ  
RECHRG  
RECHRG  
isꢀdeeplyꢀdischarged.ꢀIfꢀtheꢀbatteryꢀvoltageꢀisꢀbelowꢀV  
,ꢀ preventbriefexcursionsbelowV  
fromresettingꢀ  
TRKL  
RECHRG  
typically2.85V,anautomatictricklechargefeaturesetstheꢀ thesafetytimer,thebatteryvoltagemustbebelowV  
RECHRG  
batterychargecurrentto10%oftheprogrammedvalue.Ifꢀ forꢀmoreꢀthanꢀ1.3ms.ꢀTheꢀchargeꢀcycleꢀandꢀsafetyꢀtimerꢀ  
thelowvoltagepersistsformorethan1/2hour,thebatteryꢀ willꢀalsoꢀrestartꢀifꢀtheꢀV ꢀUVLOꢀcyclesꢀlowꢀandꢀthenꢀhighꢀ  
BUS  
chargerautomaticallyterminates.Oncethebatteryvoltageꢀ (e.g.,ꢀV ,ꢀisꢀremovedꢀandꢀthenꢀreplaced).  
BUS  
isꢀaboveꢀ2.85V,ꢀtheꢀbatteryꢀchargerꢀbeginsꢀchargingꢀinꢀfullꢀ  
Charge Current  
powerꢀconstant-currentꢀmode.ꢀTheꢀcurrentꢀdeliveredꢀtoꢀ  
theꢀbatteryꢀwillꢀtryꢀtoꢀreachꢀ1000V/R  
.ꢀDependingꢀonꢀ  
PROG  
Theꢀchargeꢀcurrentꢀisꢀprogrammedꢀusingꢀaꢀsingleꢀresistorꢀ  
fromꢀPROGꢀtoꢀground.ꢀ1/1000thꢀofꢀtheꢀbatteryꢀchargeꢀcur-  
rentꢀisꢀdeliveredꢀtoꢀPROGꢀwhichꢀwillꢀattemptꢀtoꢀservoꢀtoꢀ  
1.000V.ꢀThus,ꢀtheꢀbatteryꢀchargeꢀcurrentꢀwillꢀtryꢀtoꢀreachꢀ  
1000timesthecurrentinthePROGpin.Theprogramꢀ  
resistorꢀandꢀtheꢀchargeꢀcurrentꢀareꢀcalculatedꢀusingꢀtheꢀ  
followingꢀequations:  
availableinputpowerandexternalloadconditions,theꢀ  
batteryꢀchargerꢀmayꢀorꢀmayꢀnotꢀbeꢀableꢀtoꢀchargeꢀatꢀtheꢀ  
fullprogrammedrate.Theexternalloadwillalwaysbeꢀ  
prioritizedꢀoverꢀtheꢀbatteryꢀchargeꢀcurrent.ꢀTheꢀUSBꢀcur-  
rentꢀlimitꢀprogrammingꢀwillꢀalwaysꢀbeꢀobservedꢀandꢀonlyꢀ  
additionalꢀcurrentꢀwillꢀbeꢀavailableꢀtoꢀchargeꢀtheꢀbattery.ꢀ  
Whenꢀsystemꢀloadsꢀareꢀlight,ꢀbatteryꢀchargeꢀcurrentꢀwillꢀ  
beꢀmaximized.  
1000V  
ICHG  
1000V  
RPROG  
RPROG  
=
, ICHG =  
36773f  
ꢁꢁ  
LTC3677-3  
operaTion  
Ineithertheconstant-currentorconstant-voltagechargingꢀ charger.ꢀEvenꢀthoughꢀchargingꢀisꢀstoppedꢀduringꢀanꢀNTCꢀ  
modes,ꢀtheꢀPROGꢀpinꢀvoltageꢀwillꢀbeꢀproportionalꢀtoꢀtheꢀ faultꢀtheꢀCHRGꢀpinꢀwillꢀstayꢀlowꢀindicatingꢀthatꢀchargingꢀ  
actualꢀchargeꢀcurrentꢀdeliveredꢀtoꢀtheꢀbattery.ꢀTherefore,ꢀ isꢀnotꢀcomplete.ꢀ  
theꢀactualꢀchargeꢀcurrentꢀcanꢀbeꢀdeterminedꢀatꢀanyꢀtimeꢀ  
byꢀmonitoringꢀtheꢀPROGꢀpinꢀvoltageꢀandꢀusingꢀtheꢀfol-  
lowingꢀequation:  
Battery Charger Stability Considerations  
TheLTC3677-3’sbatterychargercontainsbothaconstant-  
voltageandaconstant-currentcontrolloop.Theconstant-  
voltageꢀloopꢀisꢀstableꢀwithoutꢀanyꢀcompensationꢀwhenꢀaꢀ  
batteryꢀisꢀconnectedꢀwithꢀlowꢀimpedanceꢀleads.ꢀExcessiveꢀ  
leadꢀlength,ꢀhowever,ꢀmayꢀaddꢀenoughꢀseriesꢀinductanceꢀ  
toꢀrequireꢀaꢀbypassꢀcapacitorꢀofꢀatꢀleastꢀ1µFꢀfromꢀBATꢀtoꢀ  
GND.ꢀFurthermore,ꢀaꢀ4.7µFꢀcapacitorꢀinꢀseriesꢀwithꢀaꢀ0.2Ωꢀ  
toꢀ1ΩꢀresistorꢀfromꢀBATꢀtoꢀGNDꢀisꢀrequiredꢀtoꢀkeepꢀrippleꢀ  
voltageꢀlowꢀwhenꢀtheꢀbatteryꢀisꢀdisconnected.  
VPROG  
RPROG  
IBAT  
=
1000  
Inꢀmanyꢀcases,ꢀtheꢀactualꢀbatteryꢀchargeꢀcurrent,ꢀI ,ꢀwillꢀ  
BATꢀ  
belowerthanI ꢀduetolimitedinputcurrentavailableandꢀ  
CHG  
prioritizationꢀwithꢀtheꢀsystemꢀloadꢀdrawnꢀfromꢀV  
.
OUTꢀ  
Thermal Regulation  
Highꢀvalue,ꢀlowꢀESRꢀmultilayerꢀceramicꢀchipꢀcapacitorsꢀ  
reduceꢀtheꢀconstant-voltageꢀloopꢀphaseꢀmargin,ꢀpossiblyꢀ  
resultingꢀinꢀinstability.ꢀCeramicꢀcapacitorsꢀupꢀtoꢀ22µFꢀmayꢀ  
beusedinparallelwithabattery,butlargerceramicsshouldꢀ  
beꢀdecoupledꢀwithꢀ0.2Ωꢀtoꢀ1Ωꢀofꢀseriesꢀresistance.  
ToꢀpreventthermaldamagetotheICorsurroundingcompo-  
nents,aninternalthermalfeedbackloopwillautomaticallyꢀ  
decreaseꢀtheꢀprogrammedꢀchargeꢀcurrentꢀifꢀtheꢀdieꢀtem-  
peraturerisestoapproximately110°C.Thermalregulationꢀ  
protectstheLTC3677-3fromexcessivetemperatureduetoꢀ  
highꢀpowerꢀoperationꢀorꢀhighꢀambientꢀthermalꢀconditionsꢀ  
andallowstheusertopushthelimitsofthepowerhandlingꢀ  
capabilityꢀwithꢀaꢀgivenꢀcircuitꢀboardꢀdesignꢀwithoutꢀriskꢀ  
ofꢀdamagingꢀtheꢀLTC3677-3ꢀorꢀexternalꢀcomponents.ꢀTheꢀ  
benefitꢀofꢀtheꢀLTC3677-3ꢀthermalꢀregulationꢀloopꢀisꢀthatꢀ  
chargeꢀcurrentꢀcanꢀbeꢀsetꢀaccordingꢀtoꢀactualꢀconditionsꢀ  
ratherꢀthanꢀworst-caseꢀconditionsꢀwithꢀtheꢀassuranceꢀthatꢀ  
theꢀbatteryꢀchargerꢀwillꢀautomaticallyꢀreduceꢀtheꢀcurrentꢀ  
inꢀworst-caseꢀconditions.  
Inꢀconstant-currentꢀmode,ꢀtheꢀPROGꢀpinꢀisꢀinꢀtheꢀfeed-  
backꢀloopꢀratherꢀthanꢀtheꢀbatteryꢀvoltage.ꢀBecauseꢀofꢀtheꢀ  
additionalꢀ poleꢀ createdꢀ byꢀ anyꢀ PROGꢀ pinꢀ capacitance,ꢀ  
capacitanceꢀonꢀthisꢀpinꢀmustꢀbeꢀkeptꢀtoꢀaꢀminimum.ꢀWithꢀ  
noꢀadditionalꢀcapacitanceꢀonꢀtheꢀPROGꢀpin,ꢀtheꢀbatteryꢀ  
chargerisstablewithprogramresistorvaluesashighꢀ  
asꢀ 25k.ꢀ However,ꢀ additionalꢀ capacitanceꢀ onꢀ thisꢀ nodeꢀ  
reducesꢀtheꢀmaximumꢀallowedꢀprogramꢀresistor.ꢀTheꢀpoleꢀ  
frequencyꢀatꢀtheꢀPROGꢀpinꢀshouldꢀbeꢀkeptꢀaboveꢀ100kHz.ꢀ  
Therefore,ifthePROGpinhasaparasiticcapacitance,ꢀ  
Charge Status Indication  
C
,ꢀtheꢀfollowingꢀequationꢀshouldꢀbeꢀusedꢀtoꢀcalculateꢀ  
PROG  
theꢀmaximumꢀresistanceꢀvalueꢀforꢀR  
:
PROG  
TheꢀCHRGꢀpinꢀindicatesꢀtheꢀstatusꢀofꢀtheꢀbatteryꢀcharger.ꢀ  
Anꢀopen-drainꢀoutput,ꢀtheꢀCHRGꢀpinꢀcanꢀdriveꢀanꢀindica-  
torLEDthroughacurrentlimitingresistorforhumanꢀ  
interfacingꢀorꢀsimplyꢀaꢀpull-upꢀresistorꢀforꢀmicroproces-  
sorꢀinterfacing.ꢀWhenꢀchargingꢀbegins,ꢀCHRGꢀisꢀpulledꢀ  
lowꢀandꢀremainsꢀlowꢀforꢀtheꢀdurationꢀofꢀaꢀnormalꢀchargeꢀ  
cycle.ꢀWhenꢀchargingꢀisꢀcomplete,ꢀi.e.,ꢀtheꢀchargerꢀen-  
tersꢀconstant-voltageꢀmodeꢀandꢀtheꢀchargeꢀcurrentꢀhasꢀ  
droppedtoone-tenthoftheprogrammedvalue,theCHRGꢀ  
pinꢀisꢀreleasedꢀ(highꢀimpedance).ꢀTheꢀCHRGꢀpinꢀdoesꢀnotꢀ  
respondꢀtoꢀtheꢀC/10ꢀthresholdꢀifꢀtheꢀLTC3677-3ꢀisꢀinꢀinputꢀ  
currentꢀlimit.ꢀThisꢀpreventsꢀfalseꢀend-of-chargeꢀindica-  
tionsduetoinsufficientpoweravailabletothebatteryꢀ  
1
RPROG  
2π 100kHz CPROG  
NTC Thermistor and Battery Voltage Reduction  
Theꢀbatteryꢀtemperatureꢀisꢀmeasuredꢀbyꢀplacingꢀaꢀnega-  
tiveꢀ temperatureꢀ coefficientꢀ (NTC)ꢀ thermistorꢀ closeꢀ toꢀ  
thebatterypack.TousethisfeatureconnecttheNTCꢀ  
thermistor,ꢀR ,ꢀbetweenꢀtheꢀNTCꢀpinꢀandꢀgroundꢀandꢀaꢀ  
NTC  
biasꢀresistor,ꢀR  
,ꢀfromꢀNTCBIASꢀtoꢀNTC.ꢀR  
ꢀshouldꢀ  
NOM  
NOM  
beꢀaꢀ1%ꢀresistorꢀwithꢀaꢀvalueꢀequalꢀtoꢀtheꢀvalueꢀofꢀtheꢀ  
chosenNTCthermistorat25°C(R25).TheLTC3677-3willꢀ  
36773f  
ꢁꢂ  
LTC3677-3  
operaTion  
pausechargingwhentheresistanceoftheNTCthermistorꢀ Whenꢀtheꢀchargerꢀisꢀdisabledꢀanꢀinternalꢀwatchdogꢀtimerꢀ  
dropsto0.54timesthevalueofR25orapproximatelyꢀ samplestheNTCthermistorforabout150µsevery150msꢀ  
54kꢀ(forꢀaꢀVishayꢀcurveꢀ1ꢀthermistor,ꢀthisꢀcorrespondsꢀtoꢀ andꢀwillꢀenableꢀtheꢀbatteryꢀmonitoringꢀcircuitryꢀifꢀtheꢀbat-  
approximatelyꢀ40°C).ꢀIfꢀtheꢀbatteryꢀchargerꢀisꢀinꢀconstant-  
teryꢀtemperatureꢀexceedsꢀtheꢀNTCꢀTOO_HOTꢀthreshold.ꢀ  
voltageꢀ(float)ꢀmode,ꢀtheꢀsafetyꢀtimerꢀalsoꢀpausesꢀuntilꢀtheꢀ IfꢀaddingꢀaꢀcapacitorꢀtoꢀtheꢀNTCꢀpinꢀforꢀfilteringꢀtheꢀtimeꢀ  
thermistorindicatesareturntoavalidtemperature.Astheꢀ constantꢀmustꢀbeꢀmuchꢀlessꢀthanꢀ150µsꢀsoꢀthatꢀtheꢀNTCꢀ  
temperatureꢀdrops,ꢀtheꢀresistanceꢀofꢀtheꢀNTCꢀthermistorꢀ pinꢀcanꢀsettleꢀtoꢀitsꢀfinalꢀvalueꢀduringꢀtheꢀsamplingꢀperiod.ꢀ  
rises.ꢀTheꢀLTC3677-3ꢀisꢀalsoꢀdesignedꢀtoꢀpauseꢀchargingꢀ Aꢀtimeꢀconstantꢀlessꢀthanꢀ10µsꢀisꢀrecommended.ꢀOnceꢀ  
whenꢀtheꢀvalueꢀofꢀtheꢀNTCꢀthermistorꢀincreasesꢀtoꢀ3.25ꢀ theꢀbatteryꢀmonitoringꢀcircuitryꢀisꢀenabledꢀitꢀwillꢀremainꢀ  
timesꢀtheꢀvalueꢀofꢀR25.ꢀForꢀaꢀVishayꢀcurveꢀ1ꢀthermistorꢀ enabledandmonitoringthebatteryvoltageuntilthebatteryꢀ  
thisꢀresistance,ꢀ325k,ꢀcorrespondsꢀtoꢀapproximatelyꢀ0°C.ꢀ temperatureꢀfallsꢀbackꢀbelowꢀtheꢀdischargeꢀtemperatureꢀ  
Theꢀhotꢀandꢀcoldꢀcomparatorsꢀeachꢀhaveꢀapproximatelyꢀ threshold.ꢀTheꢀbatteryꢀdischargeꢀcircuitryꢀisꢀonlyꢀenabledꢀ  
3°Cofhysteresistopreventoscillationaboutthetrippoint.ꢀ ifꢀtheꢀbatteryꢀvoltageꢀisꢀgreaterꢀthanꢀtheꢀbatteryꢀdischargeꢀ  
TheꢀtypicalꢀNTCꢀcircuitꢀisꢀshownꢀinꢀFigureꢀ3.  
threshold.ꢀ  
Toꢀimproveꢀsafetyꢀandꢀreliabilityꢀtheꢀbatteryꢀvoltageꢀisꢀre-  
ducedwhenthebatterytemperaturebecomesexcessivelyꢀ  
high.ꢀWhenꢀtheꢀresistanceꢀofꢀtheꢀNTCꢀthermistorꢀdropsꢀ  
toabout0.35timesthevalueofR25orapproximatelyꢀ  
35kꢀ(forꢀaꢀVishayꢀcurveꢀ1ꢀthermistor,ꢀthisꢀcorrespondsꢀtoꢀ  
approximatelyꢀ50°C)ꢀtheꢀNTCꢀenablesꢀcircuitryꢀtoꢀmoni-  
torꢀtheꢀbatteryꢀvoltage.ꢀIfꢀtheꢀbatteryꢀvoltageꢀisꢀaboveꢀtheꢀ  
batteryꢀdischargeꢀthresholdꢀ(aboutꢀ3.9V)ꢀthenꢀtheꢀbatteryꢀ  
dischargecircuitryisenabledanddrawsabout140mAfromꢀ  
Alternate NTC Thermistors and Biasing  
TheꢀLTC3677-3ꢀprovidesꢀtemperatureꢀqualifiedꢀchargingꢀifꢀ  
aꢀgroundedꢀthermistorꢀandꢀaꢀbiasꢀresistorꢀareꢀconnectedꢀ  
toꢀNTC.ꢀByꢀusingꢀaꢀbiasꢀresistorꢀwhoseꢀvalueꢀisꢀequalꢀtoꢀ  
theꢀroomꢀtemperatureꢀresistanceꢀofꢀtheꢀthermistorꢀ(R25)ꢀ  
theꢀupperꢀandꢀlowerꢀtemperaturesꢀareꢀpre-programmedꢀ  
toꢀapproximatelyꢀ40°Cꢀandꢀ0°C,ꢀrespectivelyꢀ(assumingꢀ  
aꢀVishayꢀcurveꢀ1ꢀthermistor).  
theꢀbatteryꢀwhenꢀV ꢀ=ꢀ0Vꢀandꢀaboutꢀ180mAꢀwhenꢀV  
BUS  
BUS  
Theꢀupperꢀandꢀlowerꢀtemperatureꢀthresholdsꢀcanꢀbeꢀad-  
justedꢀbyꢀeitherꢀaꢀmodificationꢀofꢀtheꢀbiasꢀresistorꢀvalueꢀ  
=ꢀ5V.ꢀTheꢀbatteryꢀdischargeꢀcurrentꢀisꢀdisabledꢀbelowꢀtheꢀ  
batteryꢀdischargeꢀthreshold.ꢀ  
NTCBIAS  
34  
LTC3677-3  
TOO_COLD  
NTC BLOCK  
0.76 • NTCBIAS  
R
NOM  
+
100k  
NTC  
35  
R
NTC  
100k  
+
TOO_HOT  
0.35 • NTCBIAS  
0.26 • NTCBIAS  
+
BATTERY  
OVERTEMP  
Figure 3. Typical NTC Thermistor Circuit  
36773f  
ꢁꢃ  
LTC3677-3  
operaTion  
orꢀbyꢀaddingꢀaꢀsecondꢀadjustmentꢀresistorꢀtoꢀtheꢀcircuit.ꢀ SolvingtheseequationsforR  
Ifꢀonlyꢀtheꢀbiasꢀresistorꢀisꢀadjusted,ꢀthenꢀeitherꢀtheꢀupperꢀ inꢀtheꢀfollowing:  
orꢀtheꢀlowerꢀthresholdꢀcanꢀbeꢀmodifiedꢀbutꢀnotꢀboth.ꢀTheꢀ  
otherꢀtripꢀpointꢀwillꢀbeꢀdeterminedꢀbyꢀtheꢀcharacteristicsꢀ  
ofꢀtheꢀthermistor.ꢀUsingꢀtheꢀbiasꢀresistorꢀinꢀadditionꢀtoꢀanꢀ  
adjustmentresistor,boththeupperandthelowertempera-  
tureꢀtripꢀpointsꢀcanꢀbeꢀindependentlyꢀprogrammedꢀwithꢀ  
theꢀconstraintꢀthatꢀtheꢀdifferenceꢀbetweenꢀtheꢀupperꢀandꢀ  
lowertemperaturethresholdscannotdecrease.Examplesꢀ  
ofꢀeachꢀtechniqueꢀareꢀgivenꢀbelow.  
andR  
resultsꢀ  
NTC|COLD  
NTC|HOT  
ꢀ R  
and  
ꢀ=ꢀ0.538ꢀ•ꢀR  
NTC|HOT  
NOM  
ꢀ R  
ꢀ=ꢀ3.17ꢀ•ꢀR  
NTC|COLD  
NOM  
ByꢀsettingꢀR  
ꢀequalꢀtoꢀR25,ꢀtheꢀaboveꢀequationsꢀresultꢀ  
NOM  
inꢀr ꢀ=ꢀ0.538ꢀandꢀr  
ꢀ=ꢀ3.17.ꢀReferencingꢀtheseꢀratiosꢀ  
HOT  
COLD  
totheVishayresistance-temperaturecurve1chartgivesaꢀ  
hotꢀtripꢀpointꢀofꢀaboutꢀ40°Cꢀandꢀaꢀcoldꢀtripꢀpointꢀofꢀaboutꢀ  
0°C.ꢀTheꢀdifferenceꢀbetweenꢀtheꢀhotꢀandꢀcoldꢀtripꢀpointsꢀ  
isꢀapproximatelyꢀ40°C.  
NTCꢀthermistorsꢀhaveꢀtemperatureꢀcharacteristicsꢀwhichꢀ  
areindicatedonresistance-temperatureconversiontables.ꢀ  
TheVishay-DalethermistorNTHS0603N011-N1003F,usedꢀ  
inꢀtheꢀfollowingꢀexamples,ꢀhasꢀaꢀnominalꢀvalueꢀofꢀ100kꢀ  
andfollowstheVishaycurve1resistance-temperatureꢀ  
characteristic.  
Byusingabiasresistor,R  
,differentinvaluefromꢀ  
NOM  
R25,ꢀtheꢀhotꢀandꢀcoldꢀtripꢀpointsꢀcanꢀbeꢀmovedꢀinꢀeitherꢀ  
direction.Thetemperaturespanwillchangesomewhatdueꢀ  
toꢀtheꢀnonlinearꢀbehaviorꢀofꢀtheꢀthermistor.ꢀTheꢀfollowingꢀ  
equationsꢀcanꢀbeꢀusedꢀtoꢀeasilyꢀcalculateꢀaꢀnewꢀvalueꢀforꢀ  
theꢀbiasꢀresistor:  
Inꢀtheꢀexplanationꢀbelow,ꢀtheꢀfollowingꢀnotationꢀisꢀused.  
R25ꢀ=ꢀValueꢀofꢀtheꢀthermistorꢀatꢀ25°C  
rHOT  
0.538  
R
R
r
ꢀ=ꢀValueꢀofꢀthermistorꢀatꢀtheꢀcoldꢀtripꢀpoint  
NTC|COLD  
RNOM  
=
R25  
ꢀ=ꢀValueꢀofꢀtheꢀthermistorꢀatꢀtheꢀhotꢀtripꢀpoint  
NTC|HOT  
r
ꢀ=ꢀRatioꢀofꢀR ꢀtoꢀR25  
NTC|COLD  
RNOM  
=
COLD R25  
3.17  
whereꢀ r ꢀ andꢀ r  
COLD  
r
=ꢀRatioꢀofꢀR ꢀtoꢀR25  
NTC|HOT  
HOTꢀ  
ꢀ areꢀ theꢀ resistanceꢀ ratiosꢀ atꢀ theꢀ  
HOT  
COLD  
desiredꢀhotꢀandꢀcoldꢀtripꢀpoints.ꢀNoteꢀthatꢀtheseꢀequationsꢀ  
R ꢀ=ꢀPrimaryꢀthermistorꢀbiasꢀresistorꢀ(seeꢀFigureꢀ3)  
NOM  
R1ꢀ=ꢀOptionalꢀtemperatureꢀrangeꢀadjustmentꢀresistorꢀ  
(seeꢀFigureꢀ4)  
NTCBIAS  
LTC3677-3  
NTC BLOCK  
34  
TheꢀtripꢀpointsꢀforꢀtheꢀLTC3677-3’sꢀtemperatureꢀqualifica-  
0.76 • NTCBIAS  
R
NOM  
+
tionꢀareꢀinternallyꢀprogrammedꢀatꢀ0.35ꢀ•ꢀV ꢀforꢀtheꢀhotꢀ  
105k  
NTC  
TOO_COLD  
TOO_HOT  
NTC  
thresholdꢀandꢀ0.76ꢀ•ꢀV ꢀforꢀtheꢀcoldꢀthreshold.  
NTC  
35  
Therefore,ꢀtheꢀhotꢀtripꢀpointꢀisꢀsetꢀwhen:  
RNTC|HOT  
R1  
12.7k  
+
NTCBIAS = 0.35 NTCBIAS  
R
100k  
NTC  
RNOM + RNTC|HOT  
0.35 • NTCBIAS  
0.26 • NTCBIAS  
andꢀtheꢀcoldꢀtripꢀpointꢀisꢀsetꢀwhen:  
RNTC|COLD  
+
BATTERY  
OVERTEMP  
NTCBIAS = 0.76 NTCBIAS  
RNOM + RNTC|COLD  
Figure 4. NTC Thermistor Circuit with Additional Bias Resistor  
36773f  
ꢁꢄ  
LTC3677-3  
operaTion  
areꢀlinked.ꢀTherefore,ꢀonlyꢀoneꢀofꢀtheꢀtwoꢀtripꢀpointsꢀcanꢀ  
beꢀchosen,ꢀtheꢀotherꢀisꢀdeterminedꢀbyꢀtheꢀdefaultꢀratiosꢀ  
designedꢀinꢀtheꢀIC.ꢀ  
Overvoltage Protection (OVP)  
Theꢀ LTC3677-3ꢀ canꢀ protectꢀ itselfꢀ fromꢀ theꢀ inadvertentꢀ  
applicationofexcessivevoltagetoV ꢀorWALLwithꢀ  
BUS  
justꢀtwoꢀexternalꢀcomponents:ꢀanꢀN-channelꢀMOSFETꢀandꢀ  
a6.2kresistor.Themaximumsafeovervoltagemagnitudeꢀ  
willꢀbeꢀdeterminedꢀbyꢀtheꢀchoiceꢀofꢀtheꢀexternalꢀN-channelꢀ  
MOSFETꢀandꢀitsꢀassociatedꢀdrainꢀbreakdownꢀvoltage.ꢀ  
Consideranexamplewherea60°Chottrippointisdesired.ꢀ  
FromtheVishaycurve1R-Tcharacteristics,r ꢀis0.2488ꢀ  
HOT  
atꢀ60°C.ꢀUsingꢀtheꢀaboveꢀequation,ꢀR  
ꢀshouldꢀbeꢀsetꢀ  
,ꢀtheꢀcoldꢀtripꢀpointꢀisꢀ  
NOM  
toꢀ46.4k.ꢀWithꢀthisꢀvalueꢀofꢀR  
NOM  
aboutꢀ16°C.ꢀNoticeꢀthatꢀtheꢀspanꢀisꢀnowꢀ44°Cꢀratherꢀthanꢀ  
theprevious40°C.Thisisduetothedecreaseintem-  
peratureꢀgainꢀofꢀtheꢀthermistorꢀasꢀabsoluteꢀtemperatureꢀ  
increases.  
Theꢀovervoltageꢀprotectionꢀmoduleꢀconsistsꢀofꢀtwoꢀpins.ꢀ  
Therst,OVSENS,isusedtomeasuretheexternallyappliedꢀ  
voltagethroughanexternalresistor.Thesecond,OVGATE,ꢀ  
isꢀanꢀoutputꢀusedꢀtoꢀdriveꢀtheꢀgateꢀpinꢀofꢀanꢀexternalꢀFET.ꢀ  
TheꢀvoltageꢀatꢀOVSENSꢀwillꢀbeꢀlowerꢀthanꢀtheꢀOVPꢀinputꢀ  
Theꢀupperꢀandꢀlowerꢀtemperatureꢀtripꢀpointsꢀcanꢀbeꢀinde-  
pendentlyprogrammedbyusinganadditionalbiasresistorꢀ  
asꢀshownꢀinꢀFigureꢀ4.ꢀTheꢀfollowingꢀformulasꢀcanꢀbeꢀusedꢀ  
voltageꢀ byꢀ (I ꢀ •ꢀ 6.2kΩ)ꢀ dueꢀ toꢀ theꢀ OVPꢀ circuit’sꢀ  
OVSENS  
quiescentcurrent.TheOVPinputwillbe200mVto400mVꢀ  
higherꢀthanꢀOVSENSꢀunderꢀnormalꢀoperatingꢀconditions.ꢀ  
WhenꢀOVSENSꢀisꢀbelowꢀ6V,ꢀanꢀinternalꢀchargeꢀpumpꢀwillꢀ  
driveꢀ OVGATEꢀ toꢀ approximatelyꢀ 1.88ꢀ •ꢀ OVSENS.ꢀ Thisꢀ  
willꢀenhanceꢀtheꢀN-channelꢀMOSFETꢀandꢀprovideꢀaꢀlowꢀ  
toꢀcomputeꢀtheꢀvaluesꢀofꢀR ꢀandꢀR1:  
NOM  
rCOLD rHOT  
2.714  
R1= 0.536 RNOM rHOT R25  
RNOM  
=
R25  
impedanceconnectiontoV ꢀorWALLwhichwill,inꢀ  
BUS  
turn,ꢀpowerꢀtheꢀLTC3677-3.ꢀIfꢀOVSENSꢀshouldꢀriseꢀaboveꢀ  
6Vꢀ(6.35VꢀOVPꢀinput)ꢀdueꢀtoꢀaꢀfaultꢀorꢀuseꢀofꢀanꢀincorrectꢀ  
wallꢀadapter,ꢀOVGATEꢀwillꢀbeꢀpulledꢀtoꢀGND,ꢀdisablingꢀtheꢀ  
externalꢀFETꢀtoꢀprotectꢀdownstreamꢀcircuitry.ꢀWhenꢀtheꢀ  
voltagedropsbelow6Vagain,theexternalFETwillbeꢀ  
re-enabled.  
Forꢀexample,ꢀtoꢀsetꢀtheꢀtripꢀpointsꢀtoꢀ0°Cꢀandꢀ45°Cꢀwithꢀ  
aꢀVishayꢀcurveꢀ1ꢀthermistorꢀchoose:  
3.266 – 0.4368  
RNOM  
=
100k = 104.2k  
2.714  
theꢀnearestꢀ1%ꢀvalueꢀisꢀ105k.  
Inꢀ anꢀ overvoltageꢀ condition,ꢀ theꢀ OVSENSꢀ pinꢀ willꢀ beꢀ  
clampedꢀ atꢀ 6V.ꢀ Theꢀ externalꢀ 6.2kꢀ resistorꢀ mustꢀ beꢀ  
sizedꢀ appropriatelyꢀ toꢀ dissipateꢀ theꢀ resultantꢀ power.ꢀ  
Forexample,a1/10W6.2kresistorcanhaveatmostꢀ  
ꢀ R1ꢀ=ꢀ0.536ꢀ•ꢀ105kꢀ–ꢀ0.4368ꢀ•ꢀ100kꢀ=ꢀ12.6k  
theꢀnearestꢀ1%ꢀvalueꢀisꢀ12.7k.ꢀTheꢀfinalꢀsolutionꢀisꢀshownꢀ  
inꢀFigureꢀ4ꢀandꢀresultsꢀinꢀanꢀupperꢀtripꢀpointꢀofꢀ45°Cꢀandꢀ  
aꢀlowerꢀtripꢀpointꢀofꢀ0°C.  
√P  
ꢀ•ꢀ6.2kꢀ=ꢀ24Vꢀappliedꢀacrossꢀitsꢀterminals.ꢀWithꢀtheꢀ  
MAX  
6VatOVSENS,themaximumovervoltagemagnitudethatꢀ  
thisꢀresistorꢀcanꢀwithstandꢀisꢀ30V.ꢀAꢀ1/4Wꢀ6.2kꢀresistorꢀ  
raisesꢀthisꢀvalueꢀtoꢀ45V.ꢀ  
TheꢀchargeꢀpumpꢀoutputꢀonꢀOVGATEꢀhasꢀlimitedꢀoutputꢀ  
driveꢀcapability.ꢀCareꢀmustꢀbeꢀtakenꢀtoꢀavoidꢀleakageꢀonꢀ  
thisꢀpin,ꢀasꢀitꢀmayꢀadverselyꢀaffectꢀoperation.ꢀ  
36773f  
ꢁꢅ  
LTC3677-3  
operaTion  
Dual Input Overvoltage Protection  
Reverse Input Voltage Protection  
TheꢀLTC3677-3ꢀcanꢀalsoꢀbeꢀeasilyꢀprotectedꢀagainstꢀtheꢀ  
ItꢀisꢀpossibleꢀtoꢀprotectꢀbothꢀV ꢀandꢀWALLꢀfromꢀover-  
BUS  
voltageꢀdamageꢀwithꢀseveralꢀadditionalꢀcomponents,ꢀasꢀ applicationꢀofꢀreverseꢀvoltageꢀasꢀshownꢀinꢀFigureꢀ6.ꢀD1ꢀ  
shownꢀinꢀFigureꢀ5.ꢀSchottkyꢀdiodesꢀD1ꢀandꢀD2ꢀpassꢀtheꢀ andꢀR1ꢀareꢀnecessaryꢀtoꢀlimitꢀtheꢀmaximumꢀVGSꢀseenꢀbyꢀ  
largerꢀofꢀV1ꢀandꢀV2ꢀtoꢀR1ꢀandꢀOVSENS.ꢀIfꢀeitherꢀV1ꢀorꢀV2ꢀ MP1ꢀduringꢀpositiveꢀovervoltageꢀevents.ꢀD1’sꢀbreakdownꢀ  
exceedsꢀ6VꢀplusꢀV  
,ꢀOVGATEꢀwillꢀbeꢀpulledꢀtoꢀ voltagemustbesafelybelowMP1’sBVGS.Thecircuitꢀ  
F(SCHOTTKY)  
GNDꢀandꢀbothꢀtheꢀWALLꢀandꢀUSBꢀinputsꢀwillꢀbeꢀprotected.ꢀ showninꢀFigureꢀ6ꢀoffersꢀforwardꢀvoltageꢀprotectionꢀupꢀ  
Eachinputisprotecteduptothedrain-sourceꢀbreakdown,ꢀ toMN1’sBVDSSandreversevoltageprotectionuptoꢀ  
BVDSS,ꢀofꢀMN1ꢀandꢀMN2.ꢀR1ꢀmustꢀalsoꢀbeꢀratedꢀforꢀtheꢀ  
powerꢀdissipatedꢀduringꢀmaximumꢀovervoltage.ꢀSeeꢀtheꢀ  
OvervoltageꢀProtectionꢀsectionꢀforꢀanꢀexplanationꢀofꢀthisꢀ  
calculation.ꢀTableꢀ2ꢀshowsꢀsomeꢀN-channelꢀMOSFETsꢀthatꢀ  
maybeꢀsuitableꢀforꢀovervoltageꢀprotection.  
MP1’sꢀBVDSS.  
MP1  
MN1  
USB/WALL  
ADAPTER  
V
BUS  
C1  
D1  
LTC3677-3  
R1  
500k  
Table 2. Recommended Overvoltage FETs  
R2  
6.2k  
OVGATE  
OVSENS  
N-CHANNEL  
MOSFET  
BVDSS  
R
ON  
PACKAGE  
36773 F06  
Si1472DH  
Si2302ADS  
Si2306BDS  
Si2316BDS  
IRLML2502  
30V  
20V  
30V  
30V  
20V  
82mΩꢀ  
60mΩ  
65mΩ  
80mΩ  
35mΩ  
SC70-6  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
D1: 5.6V ZENER  
MP1: Si2323 DS, BVDSS = 20V  
V
BUS  
V
BUS  
POSITIVE PROTECTION UP TO BVDSS OF MN1  
NEGATIVE PROTECTION UP TO BVDSS OF MP1  
Figure 6. Dual Polarity Voltage Protection  
LOW DROPOUT LINEAR REGULATOR OPERATION  
LDO Operation and Voltage Programming  
MN1  
MN2  
WALL  
LTC3677-3  
V1  
V2  
OVGATE  
TheLTC3677-3containstwo150mAadjustableoutputꢀ  
LDOꢀregulators.ꢀTheꢀfirstꢀLDOꢀ(LDO1)ꢀisꢀalwaysꢀonꢀandꢀ  
V
BUS  
D2  
D1  
R1  
C1  
willꢀ beꢀ enabledꢀ wheneverꢀ V ꢀ isꢀ greaterꢀ thanꢀ V  
OUT  
OUT  
UVLO.ꢀ Theꢀ secondꢀ LDOꢀ (LDO2)ꢀ isꢀ controlledꢀ byꢀ theꢀ  
pushbuttonꢀandꢀisꢀtheꢀfirstꢀsupplyꢀtoꢀsequenceꢀupꢀinꢀre-  
sponsetopushbuttonapplication.BothLDOsaredisabledꢀ  
OVSENS  
36773 F05  
whenꢀV ꢀisꢀlessꢀthanꢀV ꢀUVLOꢀandꢀLDO2ꢀisꢀfurtherꢀ  
OUT  
OUT  
Figure 5. Dual Input Overvoltage Protection  
disabledwhenthepushbuttoncircuityisinthepowerꢀ  
downꢀorꢀpowerꢀoffꢀstates.ꢀBothꢀLDOsꢀcontainꢀaꢀsoft-startꢀ  
functiontolimitinrushcurrentwhenenabled.Thesoft-startꢀ  
functionꢀworksꢀbyꢀrampingꢀupꢀtheꢀLDOꢀreferenceꢀoverꢀaꢀ  
200µsꢀperiodꢀ(typical)ꢀwhenꢀtheꢀLDOꢀisꢀenabled.  
WhendisabledallLDOcircuitryispoweredoffleavingꢀ  
onlyꢀaꢀfewꢀnanoampsꢀofꢀleakageꢀcurrentꢀonꢀtheꢀLDOꢀsup-  
ply.ꢀBothꢀLDOꢀoutputsꢀareꢀindividuallyꢀpulledꢀtoꢀgroundꢀ  
throughꢀinternalꢀresistorsꢀwhenꢀdisabled.  
36773f  
ꢁꢆ  
LTC3677-3  
operaTion  
TheꢀpowerꢀgoodꢀstatusꢀbitsꢀofꢀLDO1ꢀandꢀLDO2ꢀareꢀavail-  
step-downꢀswitchingꢀregulatorsꢀalsoꢀincludeꢀsoft-startꢀtoꢀ  
limitꢀinrushꢀcurrentꢀwhenꢀpoweringꢀon,ꢀshort-circuitꢀcur-  
rentꢀprotection,ꢀandꢀswitchꢀnodeꢀslewꢀlimitingꢀcircuitryꢀtoꢀ  
reduceꢀEMIꢀradiation.ꢀNoꢀexternalꢀcompensationꢀcompo-  
nentsꢀareꢀrequiredꢀforꢀtheꢀswitchingꢀregulators.ꢀSwitchingꢀ  
regulatorsꢀ1ꢀandꢀ2ꢀ(Buck1ꢀandꢀBuck2)ꢀareꢀsequencedꢀupꢀ  
andꢀdownꢀtogetherꢀthroughꢀtheꢀpushbuttonꢀinterfaceꢀ(seeꢀ  
theꢀPushbuttonꢀInterfaceꢀsectionꢀforꢀmoreꢀinformation),ꢀ  
whileꢀBuck3ꢀhasꢀanꢀindividualꢀenableꢀpinꢀ(EN3)ꢀthatꢀisꢀac-  
tiveꢀwhenꢀtheꢀpushbuttonꢀisꢀinꢀtheꢀpower-upꢀorꢀpower-onꢀ  
states.ꢀBuck3ꢀisꢀdisabledꢀinꢀtheꢀpowerꢀdownꢀandꢀpowerꢀoffꢀ  
states.ꢀItꢀisꢀrecommendedꢀthatꢀtheꢀstep-downꢀswitchingꢀ  
2
ableꢀinꢀI Cꢀthroughꢀtheꢀread-backꢀregistersꢀPGLDO[1]ꢀandꢀ  
PGLDO[2]ꢀforꢀLDO1ꢀandꢀLDO2ꢀrespectively.ꢀTheꢀpowerꢀ  
goodꢀcomparatorsꢀforꢀbothꢀLDOsꢀareꢀsampledꢀwhenꢀtheꢀ  
2
2
I CꢀportꢀreceivesꢀtheꢀcorrectꢀI Cꢀreadꢀaddress.  
Figureꢀ7ꢀshowsꢀtheꢀLDOꢀapplicationꢀcircuit.ꢀTheꢀfull-scaleꢀ  
outputvoltageforeachLDOisprogrammedusingaresistorꢀ  
dividerꢀfromꢀtheꢀLDOꢀoutputꢀ(LDO1ꢀorꢀLDO2)ꢀconnectedꢀ  
toꢀtheꢀfeedbackꢀpinsꢀ(LDO1_FBꢀorꢀLDO2_FB)ꢀsuchꢀthat:  
R1  
R2  
VLDOx = 0.8V •  
+ 1  
regulatorinputsupplies(V andV )beconnectedtotheꢀ  
IN12  
IN3  
Forstability,eachLDOoutputmustbebypassedtogroundꢀ  
withꢀaꢀminimumꢀ1μFꢀceramicꢀcapacitorꢀ(C ).  
systemꢀsupplyꢀpinꢀ(V ).ꢀThisꢀisꢀrecommendedꢀbecauseꢀ  
OUT  
OUT  
theundervoltagelockoutcircuitontheV ꢀpin(V  
OUT  
OUT  
UVLO)ꢀdisablesꢀtheꢀstep-downꢀswitchingꢀregulatorsꢀwhenꢀ  
V
INLDOx  
MP  
theꢀV ꢀvoltageꢀdropsꢀbelowꢀtheꢀV ꢀUVLOꢀthreshold.ꢀIfꢀ  
OUT  
OUT  
drivingꢀtheꢀstep-downꢀswitchingꢀregulatorꢀinputꢀsuppliesꢀ  
0
1
LDOxEN  
fromꢀ aꢀ voltageꢀ otherꢀ thanꢀ V ꢀ theꢀ regulatorsꢀ shouldꢀ  
OUT  
LDOx  
LDOx  
OUTPUT  
notꢀbeꢀoperatedꢀoutsideꢀtheꢀspecifiedꢀoperatingꢀrangeꢀasꢀ  
operationꢀisꢀnotꢀguaranteedꢀbeyondꢀthisꢀrange.  
R1  
C
OUT  
LDOx_FB  
0.8V  
Output Voltage Programming  
R2  
GND  
Figureꢀ8showsthestep-downswitchingregulatorap-  
plicationcircuit.Thefull-scaleoutputvoltageforeachꢀ  
step-downswitchingregulatorisprogrammedusingaꢀ  
resistorꢀdividerꢀfromꢀtheꢀstep-downꢀswitchingꢀregulatorꢀ  
outputꢀ connectedꢀ toꢀ theꢀ feedbackꢀ pinsꢀ (FB1,ꢀ FB2ꢀ andꢀ  
FB3)ꢀsuchꢀthat:  
36773 F07  
Figure 7. LDO Application Circuit  
STEP-DOWN SWITCHING REGULATOR OPERATION  
Introduction  
R1  
R2  
VOUTx = 0.8V •  
+ 1  
TheLTC3677-3includesthree2.25MHzconstant-frequencyꢀ  
currentꢀmodeꢀstep-downꢀswitchingꢀregulatorsꢀprovidingꢀ  
500mA,ꢀ500mAꢀandꢀ800mAꢀeach.ꢀAllꢀstep-downꢀswitch-  
ingꢀregulatorsꢀcanꢀbeꢀprogrammedꢀforꢀaꢀminimumꢀoutputꢀ  
voltageof0.8Vandcanbeusedtopoweramicrocontrollerꢀ  
core,ꢀmicrocontrollerꢀI/O,ꢀmemoryꢀorꢀotherꢀlogicꢀcircuitry.ꢀ  
Allstep-downswitchingregulatorssupport100%dutyꢀ  
cycleꢀoperationꢀ(lowꢀdropoutꢀmode)ꢀwhenꢀtheꢀinputꢀvolt-  
ageꢀdropsꢀveryꢀcloseꢀtoꢀtheꢀoutputꢀvoltageꢀandꢀareꢀalsoꢀ  
capableꢀofꢀBurstꢀModeꢀoperationꢀforꢀhighestꢀefficienciesꢀ  
atꢀlightꢀloads.ꢀBurstꢀModeꢀoperationꢀisꢀindividuallyꢀselect-  
ableꢀforꢀeachꢀstep-downꢀswitchingꢀregulatorꢀthroughꢀtheꢀ  
V
IN  
EN  
MP  
L
SWx  
MODE  
SLEW  
PWM  
CONTROL  
V
OUTx  
MN  
C
OUT  
C
R1  
FB  
FBx  
0.8V  
R2  
GND  
36773 F08  
Figure 8. Step-Down Switching Regulator Application Circuit  
2
I CꢀregisterꢀbitsꢀBK1BRST,ꢀBK2BRSTꢀandꢀBK3BRST.ꢀTheꢀ  
36773f  
ꢁꢇ  
LTC3677-3  
operaTion  
TypicalꢀvaluesꢀforꢀR1ꢀareꢀinꢀtheꢀrangeꢀofꢀ40kꢀtoꢀ1M.ꢀTheꢀ PWMꢀoperationꢀandꢀhystereticꢀcontrolꢀasꢀaꢀfunctionꢀofꢀ  
capacitorꢀC ꢀcancelsꢀtheꢀpoleꢀcreatedꢀbyꢀfeedbackꢀresis- theꢀloadꢀcurrent.ꢀAtꢀlightꢀloadsꢀtheꢀstep-downꢀswitch-  
FB  
torsꢀandꢀtheꢀinputꢀcapacitanceꢀofꢀtheꢀFBꢀpinꢀandꢀalsoꢀhelpsꢀ ingꢀregulatorsꢀcontrolꢀtheꢀinductorꢀcurrentꢀdirectlyꢀandꢀ  
toꢀimproveꢀtransientꢀresponseꢀforꢀoutputꢀvoltagesꢀmuchꢀ useaꢀhystereticꢀcontrolꢀloopꢀtoꢀminimizeꢀbothꢀnoiseꢀ  
greaterꢀthanꢀ0.8V.ꢀAꢀvarietyꢀofꢀcapacitorꢀsizesꢀcanꢀbeꢀusedꢀ andꢀswitchingꢀlosses.ꢀWhileꢀoperatingꢀinꢀBurstꢀModeꢀ  
forꢀC ꢀbutꢀaꢀvalueꢀofꢀ10pFꢀisꢀrecommendedꢀforꢀmostꢀap-  
operation,ꢀtheꢀoutputꢀcapacitorꢀisꢀchargedꢀtoꢀaꢀvoltageꢀ  
FB  
plications.ꢀExperimentationꢀwithꢀcapacitorꢀsizesꢀbetweenꢀ slightlyhigherthantheregulationpoint.Thestep-downꢀ  
2pFꢀandꢀ22pFꢀmayꢀyieldꢀimprovedꢀtransientꢀresponse.  
switchingꢀregulatorꢀthenꢀgoesꢀintoꢀsleepꢀmode,ꢀduringꢀ  
whichtheoutputcapacitorprovidestheloadcurrent.Inꢀ  
sleepꢀmode,ꢀmostꢀofꢀtheꢀswitchingꢀregulator’sꢀcircuitryꢀ  
isꢀ poweredꢀ down,ꢀ helpingꢀ conserveꢀ batteryꢀ power.ꢀ  
Whentheoutputvoltagedropsbelowapre-determinedꢀ  
value,thestep-downswitchingregulatorcircuitryisꢀ  
poweredꢀonꢀandꢀanotherꢀburstꢀcycleꢀbegins.ꢀTheꢀsleepꢀ  
timeꢀdecreasesꢀasꢀtheꢀloadꢀcurrentꢀincreases.ꢀBeyondꢀ  
aꢀ certainꢀ loadꢀ currentꢀ pointꢀ (aboutꢀ 1/4ꢀ ratedꢀ outputꢀ  
loadꢀcurrent)ꢀtheꢀstep-downꢀswitchingꢀregulatorsꢀwillꢀ  
switchꢀtoꢀaꢀlowꢀnoiseꢀconstant-frequencyꢀPWMꢀmodeꢀ  
ofꢀoperation,ꢀmuchꢀtheꢀsameꢀasꢀpulse-skippingꢀopera-  
tionꢀatꢀhighꢀloads.ꢀ  
Operating Modes  
Theꢀstep-downꢀswitchingꢀregulatorsꢀincludeꢀtwoꢀpossibleꢀ  
operatingmodestomeetthenoise/powerneedsofavarietyꢀ  
ofꢀapplications.ꢀInꢀpulse-skippingꢀmode,ꢀanꢀinternalꢀlatchꢀ  
isꢀsetꢀatꢀtheꢀstartꢀofꢀeveryꢀcycle,ꢀwhichꢀturnsꢀonꢀtheꢀmainꢀ  
P-channelꢀMOSFETꢀswitch.ꢀDuringꢀeachꢀcycle,ꢀaꢀcurrentꢀ  
comparatorcomparesthepeakinductorcurrenttotheꢀ  
outputofanerroramplifier.Theoutputofthecurrentꢀ  
comparatorresetstheinternallatch,whichcausesthemainꢀ  
P-channelꢀMOSFETꢀswitchꢀtoꢀturnꢀoffꢀandꢀtheꢀN-channelꢀ  
MOSFETꢀsynchronousꢀrectifierꢀtoꢀturnꢀon.ꢀTheꢀN-channelꢀ  
MOSFETꢀsynchronousꢀrectifierꢀturnsꢀoffꢀatꢀtheꢀendꢀofꢀtheꢀ  
2.25MHzcycleorifthecurrentthroughtheN-channelꢀ  
MOSFETꢀsynchronousꢀrectifierꢀdropsꢀtoꢀzero.ꢀUsingꢀthisꢀ  
methodꢀofꢀoperation,ꢀtheꢀerrorꢀamplifierꢀadjustsꢀtheꢀpeakꢀ  
inductorꢀcurrentꢀtoꢀdeliverꢀtheꢀrequiredꢀoutputꢀpower.ꢀAllꢀ  
necessaryꢀ compensationꢀ isꢀ internalꢀ toꢀ theꢀ step-downꢀ  
switchingregulatorrequiringonlyasingleceramicoutputꢀ  
capacitorforstability.Atlightloadsinpulse-skippingmode,ꢀ  
theꢀinductorꢀcurrentꢀmayꢀreachꢀzeroꢀonꢀeachꢀpulseꢀwhichꢀ  
willꢀturnꢀoffꢀtheꢀN-channelꢀMOSFETꢀsynchronousꢀrectifier.ꢀ  
Inꢀthisꢀcase,ꢀtheꢀswitchꢀnodeꢀ(SW1,ꢀSW2ꢀorꢀSW3)ꢀgoesꢀ  
highimpedanceandtheswitchnodevoltagewillring.Thisꢀ  
Forꢀ applicationsꢀ thatꢀ canꢀ tolerateꢀ someꢀ outputꢀ rippleꢀ  
atlowoutputcurrents,BurstModeoperationprovidesꢀ  
betterꢀefficiencyꢀthanꢀpulse-skippingꢀatꢀlightꢀloads.ꢀTheꢀ  
step-downꢀ switchingꢀ regulatorsꢀ allowꢀ modeꢀ transitionꢀ  
on-the-fly,ꢀprovidingꢀseamlessꢀtransitionꢀbetweenꢀmodesꢀ  
evenꢀunderꢀload.ꢀThisꢀallowsꢀtheꢀuserꢀtoꢀswitchꢀbackꢀandꢀ  
forthꢀbetweenꢀmodesꢀtoꢀreduceꢀoutputꢀrippleꢀorꢀincreaseꢀ  
lowꢀcurrentꢀefficiencyꢀasꢀneeded.ꢀBurstꢀModeꢀoperationꢀ  
isindividuallyselectableforeachstep-downswitchingꢀ  
2
regulatorthroughtheI CregisterbitsBK1BRST,BK2BRSTꢀ  
andꢀBK3BRST.  
isꢀdiscontinuousꢀoperation,ꢀandꢀisꢀnormalꢀbehaviorꢀforꢀaꢀ Shutdown  
switchingꢀregulator.ꢀAtꢀveryꢀlightꢀloadsꢀinꢀpulse-skippingꢀ  
Theꢀstep-downꢀswitchingꢀregulatorsꢀ(Buck1,ꢀBuck2ꢀandꢀ  
mode,ꢀtheꢀstep-downꢀswitchingꢀregulatorsꢀwillꢀautomati-  
callyꢀskipꢀpulsesꢀasꢀneededꢀtoꢀmaintainꢀoutputꢀregulation.ꢀ  
Buck3)ꢀareꢀshutꢀdownꢀwhenꢀtheꢀpushbuttonꢀcircuitryꢀisꢀinꢀ  
theꢀpower-downꢀorꢀpower-offꢀstate.ꢀStep-downꢀswitchingꢀ  
regulatorꢀ3ꢀ(Buck3)ꢀcanꢀalsoꢀbeꢀshutꢀdownꢀbyꢀbringingꢀtheꢀ  
EN3ꢀinputꢀlow.ꢀInꢀshutdownꢀallꢀcircuitryꢀinꢀtheꢀstep-downꢀ  
switchingꢀregulatorꢀisꢀdisconnectedꢀfromꢀtheꢀswitchingꢀ  
regulatorinputsupplyleavingonlyafewnanoampsofꢀ  
leakageꢀcurrent.ꢀTheꢀstep-downꢀswitchingꢀregulatorꢀout-  
putsareindividuallypulledtogroundthroughinternal10kꢀ  
Atꢀhighꢀdutyꢀcycleꢀ(V  
ꢀapproachingꢀV )ꢀitꢀisꢀpossibleꢀ  
OUTX  
INX  
forꢀtheꢀinductorꢀcurrentꢀtoꢀreverseꢀatꢀlightꢀloadsꢀcausingꢀ  
theꢀsteppedꢀdownꢀswitchingꢀregulatorꢀtoꢀoperateꢀcontinu-  
ously.ꢀWhenꢀoperatingꢀcontinuously,ꢀregulationꢀandꢀlowꢀ  
noiseꢀoutputꢀvoltageꢀareꢀmaintained,ꢀbutꢀinputꢀoperatingꢀ  
currentꢀwillꢀincreaseꢀtoꢀaꢀfewꢀmilliamps.ꢀ  
Inꢀ Burstꢀ Modeꢀ operation,ꢀ theꢀ step-downꢀ switchingꢀ resistorsꢀonꢀtheꢀswitchꢀpinꢀ(SW1,ꢀSW2ꢀorꢀSW3)ꢀwhenꢀinꢀ  
regulatorsautomaticallyswitchbetweenfixedfrequencyꢀ shutdown.  
36773f  
ꢁꢈ  
LTC3677-3  
operaTion  
Dropout Operation  
Slew Rate Control  
Itꢀisꢀpossibleꢀforꢀaꢀstep-downꢀswitchingꢀregulator’sꢀinputꢀ  
voltageꢀtoꢀapproachꢀitsꢀprogrammedꢀoutputꢀvoltageꢀ(e.g.,ꢀ  
aꢀbatteryꢀvoltageꢀofꢀ3.4Vꢀwithꢀaꢀprogrammedꢀoutputꢀvolt-  
ageꢀofꢀ3.3V).ꢀWhenꢀthisꢀhappens,ꢀtheꢀP-ChannelꢀMOSFETꢀ  
switchꢀdutyꢀcycleꢀincreasesꢀuntilꢀitꢀisꢀturnedꢀonꢀcontinu-  
ouslyꢀatꢀ100%.ꢀInꢀthisꢀdropoutꢀcondition,ꢀtheꢀrespectiveꢀ  
outputꢀvoltageꢀequalsꢀtheꢀregulator’sꢀinputꢀvoltageꢀminusꢀ  
theꢀvoltageꢀdropsꢀacrossꢀtheꢀinternalꢀP-channelꢀMOSFETꢀ  
andꢀtheꢀinductor.  
Theꢀ step-downꢀ switchingꢀ regulatorsꢀ containꢀ patentedꢀ  
circuitryꢀtoꢀlimitꢀtheꢀslewꢀrateꢀofꢀtheꢀswitchꢀnodeꢀ(SW1,ꢀ  
SW2ꢀandꢀSW3).ꢀThisꢀnewꢀcircuitryꢀisꢀdesignedꢀtoꢀtransi-  
tionꢀtheꢀswitchꢀnodeꢀoverꢀaꢀperiodꢀofꢀaꢀfewꢀnanoseconds,ꢀ  
significantlyꢀreducingꢀradiatedꢀEMIꢀandꢀconductedꢀsupplyꢀ  
noiseꢀwhileꢀmaintainingꢀhighꢀefficiency.ꢀSinceꢀslowingꢀtheꢀ  
slewꢀrateꢀofꢀtheꢀswitchꢀnodesꢀcausesꢀefficiencyꢀloss,ꢀtheꢀ  
slewꢀrateꢀofꢀtheꢀstep-downꢀswitchingꢀregulatorsꢀisꢀadjust-  
2
ableviatheI CregistersSLEWCTL1andSLEWCTL2.Thisꢀ  
allowsꢀtheꢀuserꢀtoꢀoptimizeꢀefficiencyꢀorꢀEMIꢀasꢀnecessaryꢀ  
withfourdifferentslewratesettings.Thepowerupdefaultꢀ  
isthefastestslewrate(highestefficiency)setting.Figuresꢀ  
9ꢀandꢀ10ꢀshowꢀtheꢀefficiencyꢀandꢀpowerꢀlossꢀgraphꢀforꢀ  
Buck3ꢀprogrammedꢀforꢀ1.2Vꢀandꢀ2.5Vꢀoutputs.ꢀNoteꢀthatꢀ  
theꢀ powerꢀ lossꢀ curvesꢀ remainꢀ fairlyꢀ constantꢀ forꢀ bothꢀ  
graphsꢀyetꢀchangingꢀtheꢀslewꢀrateꢀhasꢀaꢀlargerꢀeffectꢀonꢀ  
theꢀ1.2Vꢀoutputꢀefficiency.ꢀThisꢀisꢀmainlyꢀbecauseꢀforꢀaꢀ  
givenꢀoutputꢀcurrentꢀtheꢀ2.5Vꢀoutputꢀisꢀdeliveringꢀmoreꢀ  
than2xthepowerthanthe1.2Voutput.Efficiencywillꢀ  
alwaysꢀdecreaseꢀandꢀshowꢀmoreꢀvariationꢀtoꢀslewꢀrateꢀasꢀ  
theꢀprogrammedꢀoutputꢀvoltageꢀisꢀdecreased.  
Soft-Start Operation  
Soft-startisaccomplishedbygraduallyincreasingthepeakꢀ  
inductorꢀcurrentꢀforꢀeachꢀstep-downꢀswitchingꢀregulatorꢀ  
overa500μsperiod.Thisallowseachoutputtoriseslowly,ꢀ  
helpingꢀminimizeꢀinrushꢀcurrentꢀrequiredꢀtoꢀchargeꢀupꢀtheꢀ  
switchingregulatoroutputcapacitor.Asoft-startcycleꢀ  
occursꢀwheneverꢀaꢀgivenꢀswitchingꢀregulatorꢀisꢀenabled.ꢀ  
Aꢀsoft-startꢀcycleꢀisꢀnotꢀtriggeredꢀbyꢀchangingꢀoperatingꢀ  
modes.ꢀ Thisꢀ allowsꢀ seamlessꢀ outputꢀ transitionꢀ whenꢀ  
activelyꢀchangingꢀbetweenꢀoperatingꢀmodes.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
Burst Mode  
OPERATION  
IN  
Burst Mode  
OPERATION  
IN  
1
1
V
= 3.8V  
V
= 3.8V  
SW[1:0] =  
SW[1:0] =  
00  
01  
10  
11  
00  
01  
10  
11  
0.1  
0.1  
0.01  
0.001  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
I
(µA)  
I
(µA)  
OUT3  
OUT3  
36773 F09  
36773 F10  
Figure 9. VOUT3 (1.2V) Efficiency and Power Loss vs IOUT3  
Figure 10. VOUT3 (2.5V) Efficiency and Power Loss vs IOUT3  
36773f  
ꢂ0  
LTC3677-3  
operaTion  
Low Supply Operation  
upꢀtoꢀ500mAꢀofꢀoutputꢀcurrentꢀwhileꢀaꢀ3.3μHꢀinductorꢀisꢀ  
suggestedꢀforꢀstep-downꢀswitchingꢀregulatorsꢀprovidingꢀ  
upto800mA.Largervalueinductorsreduceripplecurrent,ꢀ  
whichꢀimprovesꢀoutputꢀrippleꢀvoltage.ꢀLowerꢀvalueꢀinduc-  
torsꢀresultꢀinꢀhigherꢀrippleꢀcurrentꢀandꢀimprovedꢀtransientꢀ  
responsetime,butwillreducetheavailableoutputcurrent.ꢀ  
Toꢀmaximizeꢀefficiency,ꢀchooseꢀanꢀinductorꢀwithꢀaꢀlowꢀDCꢀ  
resistance.ꢀForꢀaꢀ1.2Vꢀoutput,ꢀefficiencyꢀisꢀreducedꢀaboutꢀ  
2%ꢀforꢀ100mΩꢀseriesꢀresistanceꢀatꢀ400mAꢀloadꢀcurrent,ꢀ  
andabout2%for300mΩseriesresistanceat100mAloadꢀ  
current.ꢀChooseꢀanꢀinductorꢀwithꢀaꢀDCꢀcurrentꢀratingꢀatꢀ  
leastꢀ1.5ꢀtimesꢀlargerꢀthanꢀtheꢀmaximumꢀloadꢀcurrentꢀtoꢀ  
ensureꢀthatꢀtheꢀinductorꢀdoesꢀnotꢀsaturateꢀduringꢀnormalꢀ  
operation.ꢀIfꢀoutputꢀshortꢀcircuitꢀisꢀaꢀpossibleꢀcondition,ꢀ  
theꢀinductorꢀshouldꢀbeꢀratedꢀtoꢀhandleꢀtheꢀmaximumꢀpeakꢀ  
currentꢀspecifiedꢀforꢀtheꢀstep-downꢀconverters.ꢀDifferentꢀ  
corematerialsandshapeswillchangethesize/currentꢀ  
andprice/currentrelationshipofaninductor.Toroidorꢀ  
shieldedpotcoresinferriteorPermalloymaterialsareꢀ  
smallꢀandꢀdoꢀnotꢀradiateꢀmuchꢀenergy,ꢀbutꢀgenerallyꢀcostꢀ  
moreꢀ thanꢀ powderedꢀ ironꢀ coreꢀ inductorsꢀ withꢀ similarꢀ  
electricalꢀcharacteristics.ꢀInductorsꢀthatꢀareꢀveryꢀthinꢀorꢀ  
haveꢀaꢀveryꢀsmallꢀvolumeꢀtypicallyꢀhaveꢀmuchꢀhigherꢀcoreꢀ  
andꢀDCRꢀlosses,ꢀandꢀwillꢀnotꢀgiveꢀtheꢀbestꢀefficiency.ꢀTheꢀ  
AnundervoltagelockoutcircuitonV ꢀ(V UVLO)ꢀ  
OUT  
OUT  
shutsdownthestep-downswitchingregulatorswhenV  
OUT  
dropsꢀbelowꢀaboutꢀ2.7V.ꢀItꢀisꢀrecommendedꢀthatꢀtheꢀstep-  
downꢀswitchingꢀregulatorꢀinputꢀsuppliesꢀ(V  
,ꢀV )ꢀbeꢀ  
IN12 IN3  
connectedꢀtoꢀtheꢀpowerꢀpathꢀoutputꢀ(V )ꢀdirectly.ꢀThisꢀ  
OUT  
UVLOꢀpreventsꢀtheꢀstep-downꢀswitchingꢀregulatorsꢀfromꢀ  
operatingatlowsupplyvoltageswherelossofregula-  
tionꢀorꢀotherꢀundesirableꢀoperationꢀmayꢀoccur.ꢀIfꢀdrivingꢀ  
thestep-downswitchingregulatorinputsuppliesfromꢀ  
aꢀvoltageꢀotherꢀthanꢀtheꢀV ꢀpin,ꢀtheꢀregulatorsꢀshouldꢀ  
OUT  
notꢀbeꢀoperatedꢀoutsideꢀtheꢀspecifiedꢀoperatingꢀrangeꢀasꢀ  
operationꢀisꢀnotꢀguaranteedꢀbeyondꢀthisꢀrange.  
Inductor Selection  
Manyꢀdifferentꢀsizesꢀandꢀshapesꢀofꢀinductorsꢀareꢀavailableꢀ  
fromnumerousmanufacturers.Choosingtherightinductorꢀ  
fromsuchalargeselectionofdevicescanbeoverwhelming,ꢀ  
butfollowingafewbasicguidelineswillmaketheselectionꢀ  
processꢀmuchꢀsimpler.ꢀTheꢀstep-downꢀswitchingꢀregula-  
torsꢀareꢀdesignedꢀtoꢀworkꢀwithꢀinductorsꢀinꢀtheꢀrangeꢀofꢀ  
2.2μHꢀtoꢀ10μH.ꢀForꢀmostꢀapplicationsꢀaꢀ4.7μHꢀinductorꢀisꢀ  
suggestedꢀforꢀstep-downꢀswitchingꢀregulatorsꢀprovidingꢀ  
Table 3. Recommended Inductors for Step-Down Switching Regulators  
INDUCTOR TYPE  
L (μH)  
MAX I (A)  
MAX DCR (Ω)  
SIZE in mm (L × W × H) MANUFACTURER  
DC  
DB318Cꢀ  
4.7ꢀ  
3.3ꢀ  
4.7ꢀ  
3.3ꢀ  
4.7ꢀ  
3.3  
1.07ꢀ  
1.20ꢀ  
0.79ꢀ  
0.90ꢀ  
1.15ꢀ  
1.37  
0.1ꢀ  
0.07ꢀ  
Tokoꢀ  
www.toko.com  
3.8ꢀ×ꢀ3.8ꢀ×ꢀ1.8ꢀ  
3.8ꢀ×ꢀ3.8ꢀ×ꢀ1.8ꢀ  
3.6ꢀ×ꢀ3.6ꢀ×ꢀ1.2ꢀ  
3.6ꢀ×ꢀ3.6ꢀ×ꢀ1.2ꢀ  
3.0ꢀ×ꢀ2.8ꢀ×ꢀ1.2ꢀ  
3.0ꢀ×ꢀ2.8ꢀ×ꢀ1.2  
D312Cꢀ  
DE2812C  
0.24ꢀ  
0.20ꢀ  
0.13*ꢀ  
0.105*  
CDRH3D16ꢀ  
4.7ꢀ  
3.3ꢀ  
4.7ꢀ  
3.3ꢀ  
4.7  
0.9ꢀ  
1.1ꢀ  
0.5ꢀ  
0.6ꢀ  
0.75  
0.11ꢀ  
0.085ꢀ  
0.17ꢀ  
0.123ꢀ  
0.19  
Sumidaꢀ  
www.sumida.com  
4ꢀ×ꢀ4ꢀ×ꢀ1.8ꢀ  
4ꢀ×ꢀ4ꢀ×ꢀ1.8ꢀ  
3.2ꢀ×ꢀ3.2ꢀ×ꢀ1.2ꢀ  
3.2ꢀ×ꢀ3.2ꢀ×ꢀ1.2ꢀ  
4.9ꢀ×ꢀ4.9ꢀ×ꢀ1  
CDRH2D11ꢀ  
CLS4D09  
SD3118ꢀ  
4.7ꢀ  
3.3ꢀ  
4.7ꢀ  
3.3ꢀ  
4.7ꢀ  
3.3ꢀ  
4.7ꢀ  
3.3  
1.3ꢀ  
1.59ꢀ  
0.8ꢀ  
0.97ꢀ  
1.29ꢀ  
1.42ꢀ  
1.08ꢀ  
1.31  
0.162ꢀ  
0.113ꢀ  
Cooperꢀ  
www.cooperet.com  
3.1ꢀ×ꢀ3.1ꢀ×ꢀ1.8ꢀ  
3.1ꢀ×ꢀ3.1ꢀ×ꢀ1.8ꢀ  
3.1ꢀ×ꢀ3.1ꢀ×ꢀ1.2ꢀ  
3.1ꢀ×ꢀ3.1ꢀ×ꢀ1.2ꢀ  
5.2ꢀ×ꢀ5.2ꢀ×ꢀ1.2ꢀ  
5.2ꢀ×ꢀ5.2ꢀ×ꢀ1.2ꢀ  
5.2ꢀ×ꢀ5.2ꢀ×ꢀ1.0ꢀ  
5.2ꢀ×ꢀ5.2ꢀ×ꢀ1.0  
SD3112ꢀ  
0.246ꢀ  
0.165ꢀ  
SD12ꢀ  
0.117*ꢀ  
0.104*ꢀ  
0.153*ꢀ  
0.108*  
SD10  
LPS3015  
4.7ꢀ  
3.3  
1.1ꢀ  
1.3  
0.2ꢀ  
0.13  
CoilꢀCraftꢀ  
www.coilcraft.com  
3.0ꢀ×ꢀ3.0ꢀ×ꢀ1.5ꢀ  
3.0ꢀ×ꢀ3.0ꢀ×ꢀ1.5  
*TypicalꢀDCR  
36773f  
ꢂꢀ  
LTC3677-3  
operaTion  
2
choiceꢀofꢀwhichꢀstyleꢀinductorꢀtoꢀuseꢀoftenꢀdependsꢀmoreꢀ I C OPERATION  
onꢀtheꢀpriceꢀversusꢀsize,ꢀperformance,ꢀandꢀanyꢀradiatedꢀ  
2
I C Interface  
EMIꢀrequirementsꢀthanꢀonꢀwhatꢀtheꢀstep-downꢀswitchingꢀ  
regulatorsrequirestooperate.Theinductorvaluealsohasꢀ  
anꢀeffectꢀonꢀBurstꢀModeꢀoperation.ꢀLowerꢀinductorꢀvaluesꢀ  
willꢀcauseꢀBurstꢀModeꢀswitchingꢀfrequencyꢀtoꢀincrease.ꢀ  
Tableꢀ3ꢀshowsꢀseveralꢀinductorsꢀthatꢀworkꢀwellꢀwithꢀtheꢀ  
step-downꢀswitchingꢀregulators.ꢀTheseꢀinductorsꢀofferꢀaꢀ  
goodcompromiseincurrentrating,DCRandphysicalꢀ  
size.ꢀConsultꢀeachꢀmanufacturerꢀforꢀdetailedꢀinformationꢀ  
onꢀtheirꢀentireꢀselectionꢀofꢀinductors.  
TheꢀLTC3677-3ꢀmayꢀcommunicateꢀwithꢀaꢀbusꢀmasterꢀus-  
ingꢀtheꢀstandardꢀI Cꢀ2-wireꢀinterface.ꢀTheꢀtimingꢀdiagramꢀ  
2
inꢀFigureꢀ11ꢀshowsꢀtheꢀrelationshipꢀofꢀtheꢀsignalsꢀonꢀtheꢀ  
bus.Thetwobuslines,SDAandSCL,mustbeHIGHꢀ  
whenꢀtheꢀbusꢀisꢀnotꢀinꢀuse.ꢀExternalꢀpull-upꢀresistorsꢀorꢀ  
currentꢀsources,ꢀsuchꢀasꢀtheꢀLTC1694ꢀSMBusꢀaccelerator,ꢀ  
areꢀrequiredꢀonꢀtheseꢀlines.ꢀTheꢀLTC3677-3ꢀisꢀbothꢀaꢀslaveꢀ  
2
receiverandslavetransmitter.TheI Ccontrolsignals,ꢀ  
SDAandSCLarescaledinternallytotheDV supply.ꢀ  
CC  
Input/Output Capacitor Selection  
DV ꢀshouldꢀbeꢀconnectedꢀtoꢀtheꢀsameꢀpowerꢀsupplyꢀasꢀ  
CC  
LowESR(equivalentseriesresistance)ceramiccapacitorsꢀ theꢀbusꢀpull-upꢀresistors.  
shouldbeusedatbothstep-downswitchingregulatorꢀ  
outputsꢀasꢀwellꢀasꢀatꢀeachꢀstep-downꢀswitchingꢀregulatorꢀ  
inputꢀsupply.ꢀOnlyꢀX5RꢀorꢀX7Rꢀceramicꢀcapacitorsꢀshouldꢀ  
beꢀusedꢀbecauseꢀtheyꢀretainꢀtheirꢀcapacitanceꢀoverꢀwiderꢀ  
voltageꢀandꢀtemperatureꢀrangesꢀthanꢀotherꢀceramicꢀtypes.ꢀ  
Aꢀ10μFꢀoutputꢀcapacitorꢀisꢀsufficientꢀforꢀtheꢀstep-downꢀ  
switchingꢀregulatorꢀoutputs.ꢀForꢀgoodꢀtransientꢀresponseꢀ  
andꢀstabilityꢀtheꢀoutputꢀcapacitorꢀforꢀstep-downꢀswitchingꢀ  
regulatorsꢀshouldꢀretainꢀatꢀleastꢀ4μFꢀofꢀcapacitanceꢀoverꢀ  
operatingꢀtemperatureꢀandꢀbiasꢀvoltage.ꢀEachꢀswitchingꢀ  
regulatorꢀinputꢀsupplyꢀshouldꢀbeꢀbypassedꢀwithꢀaꢀ2.2μFꢀ  
capacitor.ꢀConsultꢀwithꢀcapacitorꢀmanufacturersꢀforꢀde-  
tailedinformationontheirselectionandspecificationsꢀ  
ofꢀ ceramicꢀ capacitors.ꢀ Manyꢀ manufacturersꢀ nowꢀ offerꢀ  
2
TheꢀI CꢀportꢀhasꢀanꢀundervoltageꢀlockoutꢀonꢀtheꢀDV ꢀpin.ꢀ  
CC  
2
WhenꢀDV ꢀisꢀbelowꢀapproximatelyꢀ1V,ꢀtheꢀI Cꢀserialꢀportꢀ  
isꢀclearedꢀandꢀregistersꢀareꢀsetꢀtoꢀtheꢀdefaultꢀconfigura-  
tionꢀofꢀallꢀzeros.  
CC  
2
I C Bus Speed  
2
TheꢀI Cꢀportꢀisꢀdesignedꢀtoꢀbeꢀoperatedꢀatꢀspeedsꢀofꢀupꢀ  
toꢀ400kHz.ꢀItꢀhasꢀbuilt-inꢀtimingꢀdelaysꢀtoꢀensureꢀcorrectꢀ  
2
operationꢀwhenꢀaddressedꢀfromꢀanꢀI Cꢀcompliantꢀmasterꢀ  
device.ꢀItꢀalsoꢀcontainsꢀinputꢀfiltersꢀdesignedꢀtoꢀsuppressꢀ  
glitchesꢀshouldꢀtheꢀbusꢀbecomeꢀcorrupted.  
2
I C START and STOP Conditions  
veryꢀthinꢀ(<1mmꢀtall)ꢀceramicꢀcapacitorsꢀidealꢀforꢀuseꢀinꢀ Abusmastersignalsthebeginningofcommunicationsbyꢀ  
height-restrictedꢀdesigns.ꢀTableꢀ4ꢀshowsꢀaꢀlistꢀofꢀseveralꢀ transmittingaSTARTcondition.ASTARTconditionisgen-  
ceramicꢀcapacitorꢀmanufacturers.  
eratedbytransitioningSDAfromHIGHtoLOWwhileSCLisꢀ  
HIGH.Themastermaytransmiteithertheslavewriteortheꢀ  
slaveꢀreadꢀaddress.ꢀOnceꢀdataꢀisꢀwrittenꢀtoꢀtheꢀLTC3677-3,ꢀ  
theꢀmasterꢀmayꢀtransmitꢀaꢀSTOPꢀconditionꢀwhichꢀcom-  
mandstheLTC3677-3toactuponitsnewcommandset.Aꢀ  
STOPconditionissentbythemasterbytransitioningSDAꢀ  
fromꢀLOWꢀtoꢀHIGHꢀwhileꢀSCLꢀisꢀHIGH.ꢀTheꢀbusꢀisꢀthenꢀfreeꢀ  
Table 4. Ceramic Capacitor Manufacturers  
AVX  
www.avxcorp.com  
Murata  
www.murata.com  
www.t-yuden.com  
www.vishay.com  
www.tdk.com  
TaiyoꢀYuden  
VishayꢀSiliconix  
TDK  
2
forꢀcommunicationꢀwithꢀanotherꢀI Cꢀdevice.  
2
I C Byte Format  
EachꢀbyteꢀsentꢀtoꢀorꢀreceivedꢀfromꢀtheꢀLTC3677-3ꢀmustꢀ  
be8bitslongfollowedbyanextraclockcyclefortheꢀ  
acknowledgebit.ThedatashouldbesenttotheLTC3677-3ꢀ  
mostꢀsignificantꢀbitꢀ(MSB)ꢀfirst.  
36773f  
ꢂꢁ  
LTC3677-3  
operaTion  
DATA BYTE A  
DATA BYTE B  
ADDRESS  
WR  
0
0
0
0
1
0
0
1
1
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
START  
STOP  
SDA  
SCL  
0
0
0
1
0
0
0
8
ACK  
9
ACK  
9
ACK  
9
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
SDA  
t
t
t
BUF  
SU, DAT  
SU, STA  
t
t
t
t
LOW  
HD, STA  
SU, STO  
HD, DAT  
SCL  
t
t
t
HD, STA  
HIGH  
SP  
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
t
t
f
r
36773 F11  
Figure 11. I2C Timing Diagram  
2
2
I C Acknowledge  
I C Slave Address  
Theꢀacknowledgeꢀsignalꢀisꢀusedꢀforꢀhandshakingꢀbetweenꢀ TheLTC3677-3respondstoa7-bitaddresswhichhasꢀ  
theꢀmasterꢀandꢀtheꢀslave.ꢀWhenꢀtheꢀLTC3677-3ꢀisꢀwrittenꢀ beenꢀfactoryꢀprogrammedꢀtoꢀb’0001001[R/W]’.ꢀTheꢀLSBꢀ  
toꢀ(writeꢀaddress),ꢀitꢀacknowledgesꢀitsꢀwriteꢀaddressꢀasꢀ oftheaddressbyte,knownastheread/writebit,shouldbeꢀ  
wellꢀasꢀtheꢀsubsequentꢀtwoꢀdataꢀbytes.ꢀWhenꢀreadꢀfromꢀ 0ꢀwhenꢀwritingꢀdataꢀtoꢀtheꢀLTC3677-3ꢀandꢀ1ꢀwhenꢀreadingꢀ  
(readꢀaddress),ꢀtheꢀLTC3677-3ꢀacknowledgesꢀitsꢀreadꢀad-  
dataꢀfromꢀit.ꢀConsideringꢀtheꢀaddressꢀanꢀ8-bitꢀword,ꢀthenꢀ  
dressꢀonly.ꢀTheꢀbusꢀmasterꢀshouldꢀacknowledgeꢀreceiptꢀ theꢀwriteꢀaddressꢀisꢀ0x12ꢀandꢀtheꢀreadꢀaddressꢀisꢀ0x13.ꢀ  
ofꢀinformationꢀfromꢀtheꢀLTC3677-3.  
TheꢀLTC3677-3ꢀwillꢀacknowledgeꢀbothꢀitsꢀreadꢀandꢀwriteꢀ  
address.  
Anacknowledge(activeLOW)generatedbytheLTC3677-3ꢀ  
letsthemasterknowthatthelatestbyteofinformationwasꢀ  
received.Theacknowledgerelatedclockpulseisgeneratedꢀ  
byꢀtheꢀmaster.ꢀTheꢀmasterꢀreleasesꢀtheꢀSDAꢀlineꢀ(HIGH)ꢀ  
duringꢀtheꢀacknowledgeꢀclockꢀcycle.ꢀTheꢀLTC3677-3ꢀpullsꢀ  
downꢀtheꢀSDAꢀlineꢀduringꢀtheꢀwriteꢀacknowledgeꢀclockꢀ  
pulseꢀsoꢀthatꢀitꢀisꢀaꢀstableꢀLOWꢀduringꢀtheꢀHIGHꢀperiodꢀ  
ofꢀthisꢀclockꢀpulse.  
2
I C Sub-Addressed Writing  
TheLTC3677-3hasonecommandregisterforcontrolꢀ  
2
input.ꢀItꢀisꢀaccessedꢀbyꢀtheꢀI Cꢀportꢀviaꢀaꢀsub-addressedꢀ  
writingꢀsystem.  
Eachꢀ writeꢀ cycleꢀ ofꢀ theꢀ LTC3677-3ꢀ consistsꢀ ofꢀ exactlyꢀ  
threeꢀbytes.ꢀTheꢀfirstꢀbyteꢀisꢀalwaysꢀtheꢀLTC3677-3’sꢀwriteꢀ  
address.ꢀ Theꢀ secondꢀ byteꢀ representsꢀ theꢀ LTC3677-3’sꢀ  
sub-address.ꢀTheꢀsub-addressꢀisꢀaꢀpointerꢀwhichꢀdirectsꢀ  
theꢀsubsequentꢀdataꢀbyteꢀwithinꢀtheꢀLTC3677-3.ꢀTheꢀthirdꢀ  
byteconsistsofthedatatobewrittentothelocationꢀ  
pointedꢀtoꢀbyꢀtheꢀsub-address.ꢀTheꢀLTC3677-3ꢀcontainsꢀ  
controlꢀregistersꢀatꢀonlyꢀsub-addressꢀlocationꢀ0x00.ꢀSub-  
addressesꢀoutsideꢀ0x00ꢀshouldꢀnotꢀbeꢀwrittenꢀtoꢀasꢀtheyꢀ  
WhenꢀtheꢀLTC3677-3ꢀisꢀreadꢀfrom,ꢀitꢀreleasesꢀtheꢀSDAꢀlineꢀ  
soꢀthatꢀtheꢀmasterꢀmayꢀacknowledgeꢀreceiptꢀofꢀtheꢀdata.ꢀ  
SinceꢀtheꢀLTC3677-3ꢀonlyꢀtransmitsꢀoneꢀbyteꢀofꢀdata,ꢀaꢀ  
masternotacknowledgingthedatasentbytheLTC3677-3ꢀ  
2
hasꢀnoꢀI Cꢀspecificꢀconsequenceꢀonꢀtheꢀoperationꢀofꢀtheꢀ  
2
I Cꢀport.ꢀ  
accessꢀfunctionalityꢀnotꢀavailableꢀinꢀtheꢀLTC3677-3.ꢀ  
36773f  
ꢂꢂ  
LTC3677-3  
operaTion  
2
I C Bus Write Operation  
allꢀbitsꢀdefaultꢀtoꢀ0.ꢀAdditionally,ꢀallꢀbitsꢀareꢀclearedꢀtoꢀ0ꢀ  
whenꢀDV ꢀdropsꢀbelowꢀitsꢀundervoltageꢀlockꢀoutꢀorꢀifꢀtheꢀ  
pushbuttonꢀentersꢀtheꢀpowerꢀdownꢀ(PDN)ꢀstate.  
CC  
TheꢀmasterꢀinitiatesꢀcommunicationꢀwithꢀtheꢀLTC3677-3ꢀ  
withaSTARTconditionandtheLTC3677-3’swriteaddress.ꢀ  
IftheaddressmatchesthatoftheLTC3677-3,theLTC3677-3ꢀ  
returnsꢀanꢀacknowledge.ꢀTheꢀmasterꢀshouldꢀthenꢀdeliverꢀ  
theꢀsub-address.ꢀAgainꢀtheꢀLTC3677-3ꢀacknowledgesꢀandꢀ  
theꢀcycleꢀisꢀrepeatedꢀforꢀtheꢀdataꢀbyte.ꢀTheꢀdataꢀbyteꢀisꢀ  
transferredꢀtoꢀanꢀinternalꢀholdingꢀlatchꢀuponꢀtheꢀreturnꢀofꢀ  
itsacknowledgebytheLTC3677-3.Thisproceduremustbeꢀ  
repeatedforeachsub-addressthatrequiresnewdata.Afterꢀ  
oneormorecyclesof[ADDRESS][SUB-ADDRESS][DATA],ꢀ  
themastermayterminatethecommunicationwithaSTOPꢀ  
condition.ꢀAlternatively,ꢀaꢀREPEAT-STARTconditionꢀcanꢀ  
Tableꢀ5ꢀshowsꢀtheꢀbyteꢀofꢀdataꢀthatꢀcanꢀbeꢀwrittenꢀtoꢀatꢀ  
sub-addressꢀ0x00.ꢀThisꢀbyteꢀofꢀdataꢀisꢀreferredꢀtoꢀasꢀtheꢀ  
buckꢀcontrolꢀregister.ꢀ  
Table 5. Buck Control Register  
BUCK CONTROL  
REGISTER  
ADDRESS:ꢀ00010010ꢀ  
SUB-ADDRESS:ꢀ00000000  
BIT NAME  
B0 N/A  
FUNCTION  
NotꢀUsed—NoꢀEffectꢀOnꢀOperation  
NotꢀUsed—NoꢀEffectꢀOnꢀOperation  
Buck1ꢀBurstꢀModeꢀEnable  
Buck2ꢀBurstꢀModeꢀEnable  
Buck2ꢀBurstꢀModeꢀEnable  
B1 N/A  
B2 BK1BRST  
B3 BK2BRST  
B4 BK3BRST  
B5 SLEWCTL1  
B6 SLEWCTL2  
B7 N/A  
2
beꢀinitiatedꢀbyꢀtheꢀmasterꢀandꢀanotherꢀchipꢀonꢀtheꢀI Cꢀbusꢀ  
canbeaddressed.Thiscyclecancontinueindefinitelyꢀ  
andꢀtheꢀLTC3677-3ꢀwillꢀrememberꢀtheꢀlastꢀinputꢀofꢀvalidꢀ  
dataꢀthatꢀitꢀreceived.ꢀOnceꢀallꢀchipsꢀonꢀtheꢀbusꢀhaveꢀbeenꢀ  
addressedꢀandꢀsentꢀvalidꢀdata,ꢀaꢀglobalꢀSTOPꢀcanꢀbeꢀsentꢀ  
andꢀtheꢀLTC3677-3ꢀwillꢀupdateꢀitsꢀcommandꢀlatchesꢀwithꢀ  
theꢀdataꢀthatꢀitꢀreceived.  
BuckꢀSWꢀSlewꢀRate:ꢀ00ꢀ=ꢀ1ns,ꢀꢀ  
01ꢀ=ꢀ2ns,ꢀ10ꢀ=ꢀ4ns,ꢀ11ꢀ=ꢀ8ns  
NotꢀUsed—NoꢀEffectꢀOnꢀOperation  
BitsꢀB2,ꢀB3,ꢀandꢀB4ꢀsetꢀtheꢀoperatingꢀmodesꢀofꢀtheꢀstep-  
downꢀswitchingꢀregulatorsꢀ(bucks).ꢀWritingꢀaꢀ1ꢀtoꢀanyꢀofꢀ  
thesethreeregisterswillputthatrespectivebuckconverterꢀ  
inꢀtheꢀhighꢀefficiencyꢀBurstꢀModeꢀoperation,ꢀwhileꢀaꢀ0ꢀwillꢀ  
enableꢀtheꢀlowꢀnoiseꢀpulse-skippingꢀmodeꢀofꢀoperation.ꢀ  
2
I C Bus Read Operation  
TheꢀbusꢀmasterꢀreadsꢀtheꢀstatusꢀofꢀtheꢀLTC3677-3ꢀwithꢀ  
aꢀSTARTꢀconditionꢀfollowedꢀbyꢀtheꢀLTC3677-3ꢀreadꢀad-  
dress.ꢀIfꢀtheꢀreadꢀaddressꢀmatchesꢀthatꢀofꢀtheꢀLTC3677-3,ꢀ  
theꢀ LTC3677-3ꢀ returnsꢀ anꢀ acknowledge.ꢀ Followingꢀ theꢀ  
acknowledgementꢀofꢀtheirꢀreadꢀaddress,ꢀtheꢀLTC3677-3ꢀ  
returnsꢀoneꢀbitꢀofꢀstatusꢀinformationꢀforꢀeachꢀofꢀtheꢀnextꢀ  
8ꢀclockꢀcycles.ꢀAꢀSTOPꢀcommandꢀisꢀnotꢀrequiredꢀforꢀtheꢀ  
busꢀreadꢀoperation.  
TheꢀB5ꢀandꢀB6ꢀbitsꢀadjustꢀtheꢀslewꢀrateꢀofꢀallꢀSWꢀpinsꢀ  
togetherꢀsoꢀtheyꢀallꢀslewꢀatꢀtheꢀsameꢀrate.ꢀItꢀisꢀrecom-  
mendedꢀthatꢀtheꢀfastestꢀslewꢀrateꢀ(B6:B5ꢀ=ꢀ00)ꢀbeꢀusedꢀ  
unlessꢀEMIꢀisꢀanꢀissueꢀinꢀtheꢀapplicationꢀasꢀslowerꢀslewꢀ  
ratesꢀcauseꢀreducedꢀefficiency.ꢀ  
2
I C Output Data  
2
I C Input Data  
Oneꢀ statusꢀ byteꢀ mayꢀ beꢀ readꢀ fromꢀ theꢀ LTC3677-3,ꢀ asꢀ  
shownꢀinꢀTableꢀ6.ꢀAꢀ1ꢀreadꢀbackꢀinꢀtheꢀanyꢀofꢀtheꢀbitꢀposi-  
Thereisonebyteofdatathatcanbewrittentoontheꢀ  
LTC3677-3.Thebyteisaccessedthroughthesub-addressꢀ  
0x00.Atrstpowerapplication(V ,WALLorBAT)ꢀ  
BUS  
36773f  
ꢂꢃ  
LTC3677-3  
operaTion  
tionsꢀindicatesꢀthatꢀtheꢀconditionꢀisꢀtrue.ꢀForꢀexample,ꢀ1ꢀ catesꢀthatꢀeitherꢀLDO2ꢀisꢀnotꢀenabled,ꢀorꢀthatꢀtheꢀLDO2ꢀisꢀ  
readꢀbackꢀfromꢀbitꢀA3ꢀindicateꢀthatꢀLDO1ꢀisꢀenabledꢀandꢀ enabled,ꢀbutꢀisꢀoutꢀofꢀregulationꢀbyꢀmoreꢀthanꢀ8%.  
regulatingcorrectly.AstatusreadfromtheLTC3677-3ꢀ  
BitA3showsthepowergoodstatusofLDO1.A1indicatesꢀ  
capturesꢀ theꢀ statusꢀ informationꢀ whenꢀ theꢀ LTC3677-3ꢀ  
thatꢀLDO1ꢀisꢀenabledꢀandꢀisꢀregulatingꢀcorrectly.ꢀAꢀ0ꢀindi-  
acknowledgeꢀitsꢀreadꢀaddress.ꢀ  
catesꢀthatꢀeitherꢀLDO1ꢀisꢀnotꢀenabled,ꢀorꢀthatꢀtheꢀLDO1ꢀisꢀ  
enabled,ꢀbutꢀisꢀoutꢀofꢀregulationꢀbyꢀmoreꢀthanꢀ8%.  
Table 6. I2C READ Register  
ADDRESS:ꢀ00010011ꢀ  
BitsA2andA1indicatethefaultstatusofthechargerꢀ  
measurementꢀcircuitꢀandꢀareꢀdecodedꢀinꢀTableꢀ6.ꢀTheꢀtooꢀ  
cold/hotꢀstateꢀindicatesꢀthatꢀtheꢀthermistorꢀtemperatureꢀisꢀ  
outꢀofꢀtheꢀvalidꢀchargingꢀrangeꢀ(eitherꢀbelowꢀ0°Cꢀorꢀaboveꢀ  
40°Cforacurve1thermistor)andthatcharginghaspausedꢀ  
untilthebatteryreturnstovalidchargingtemperature.Theꢀ  
batteryꢀovertemperatureꢀstateꢀindicatesꢀthatꢀtheꢀbattery’sꢀ  
thermistorꢀ hasꢀ reachedꢀ aꢀ criticalꢀ temperatureꢀ (aboutꢀ  
50°Cꢀforꢀaꢀcurveꢀ1ꢀthermistor)ꢀandꢀthatꢀlong-termꢀbatteryꢀ  
capacityꢀmayꢀbeꢀseriouslyꢀcompromisedꢀifꢀtheꢀconditionꢀ  
persists.ꢀTheꢀbatteryꢀfaultꢀstateꢀindicatesꢀthatꢀanꢀattemptꢀ  
wasꢀmadeꢀtoꢀchargeꢀaꢀlowꢀbatteryꢀ(typicallyꢀ<ꢀ2.85V)ꢀbutꢀ  
thatꢀtheꢀlowꢀvoltageꢀconditionꢀpersistedꢀforꢀmoreꢀthanꢀ1/2ꢀ  
hour.ꢀInꢀthisꢀcaseꢀchargingꢀhasꢀterminated.  
STATUS REGISTER  
SUB-ADDRESS:ꢀNone  
BIT NAME  
FUNCTION  
A0 CHARGE  
A1 STAT[0]  
A2 STAT[1]  
ChargeꢀStatusꢀ(1ꢀ=ꢀCharging)  
STAT[1:0];ꢀ00ꢀ=ꢀNoꢀFaultꢀ  
01ꢀ=ꢀTOOꢀCOLD/HOTꢀ  
10ꢀ=ꢀBATTERYꢀOVERTEMPꢀꢀ  
11ꢀ=ꢀBATTERYꢀFAULT  
A3 PGLDO[1]ꢀ  
A4 PGLDO[2]ꢀ  
A5 PGBCK[1]ꢀ  
A6 PGBCK[2]ꢀ  
A7 PGBCK[3]ꢀ  
LDO1ꢀPowerꢀGood  
LDO2ꢀPowerꢀGood  
Buck1ꢀPowerꢀGood  
Buck2ꢀPowerꢀGood  
Buck3ꢀPowerꢀGood  
BitA7showsthepowergoodstatusofBuck3.A1indicatesꢀ  
thatꢀBuck3ꢀisꢀenabledꢀandꢀisꢀregulatingꢀcorrectly.ꢀAꢀ0ꢀindi-  
catesꢀthatꢀeitherꢀBuck3ꢀisꢀnotꢀenabled,ꢀorꢀthatꢀtheꢀBuck3ꢀisꢀ  
enabled,ꢀbutꢀisꢀoutꢀofꢀregulationꢀbyꢀmoreꢀthanꢀ8%.  
BitA0indicatesthestatusofthebatterycharger.A1ꢀ  
indicatesꢀthatꢀtheꢀchargerꢀisꢀenabledꢀandꢀisꢀinꢀtheꢀcon-  
stant-currentꢀ chargeꢀ state.ꢀ Inꢀ thisꢀ caseꢀ theꢀ batteryꢀ isꢀ  
beingꢀchargedꢀunlessꢀtheꢀNTCꢀthermistorꢀisꢀoutsideꢀitsꢀ  
validꢀchargeꢀrangeꢀinꢀwhichꢀcaseꢀchargingꢀisꢀtemporarilyꢀ  
suspendedꢀbutꢀnotꢀcomplete.ꢀChargingꢀwillꢀcontinueꢀonceꢀ  
theꢀbatteryꢀhasꢀreturnedꢀtoꢀaꢀvalidꢀchargingꢀtemperature.ꢀ  
Aꢀ0ꢀinꢀbitꢀA0ꢀindicatesꢀthatꢀchargerꢀhasꢀreachedꢀend-of-  
BitA6showsthepowergoodstatusofBuck2.A1indicatesꢀ  
thatꢀBuck2ꢀisꢀenabledꢀandꢀisꢀregulatingꢀcorrectly.ꢀAꢀ0ꢀindi-  
catesꢀthatꢀeitherꢀBuck2ꢀisꢀnotꢀenabled,ꢀorꢀthatꢀtheꢀBuck2ꢀisꢀ  
enabled,ꢀbutꢀisꢀoutꢀofꢀregulationꢀbyꢀmoreꢀthanꢀ8%.  
BitA5showsthepowergoodstatusofBuck1.A1indicatesꢀ  
thatꢀBuck1ꢀisꢀenabledꢀandꢀisꢀregulatingꢀcorrectly.ꢀAꢀ0ꢀindi-  
catesꢀthatꢀeitherꢀBuck1ꢀisꢀnotꢀenabled,ꢀorꢀthatꢀtheꢀBuck1ꢀisꢀ  
enabled,ꢀbutꢀisꢀoutꢀofꢀregulationꢀbyꢀmoreꢀthanꢀ8%.  
charge(h )andisnearV  
orthatcharginghasbeenꢀ  
FLOAT  
C/10  
terminated.ꢀChargingꢀcanꢀbeꢀterminatedꢀbyꢀreachingꢀtheꢀ  
endꢀofꢀtheꢀchargeꢀtimerꢀorꢀbyꢀaꢀbatteryꢀfaultꢀasꢀdescribedꢀ  
previously.ꢀ  
BitA4showsthepowergoodstatusofLDO2.A1indicatesꢀ  
thatꢀLDO2ꢀisꢀenabledꢀandꢀisꢀregulatingꢀcorrectly.ꢀAꢀ0ꢀindi-  
36773f  
ꢂꢄ  
LTC3677-3  
operaTion  
PUSHBUTTON INTERFACE OPERATION  
PBSTAT Operation  
PBSTATꢀgoesꢀLOWꢀ50msꢀafterꢀtheꢀinitialꢀpushbuttonꢀap-  
plicationꢀ(ONꢀLOW)ꢀandꢀwillꢀstayꢀlowꢀforꢀ50msꢀminimum.ꢀ  
PBSTATwillgoHIGHcoincidentwithONgoingHIGHunlessꢀ  
ONꢀgoesꢀHIGHꢀbeforeꢀtheꢀ50msꢀminimumꢀLOWꢀtime.  
State Diagram/Operation  
Figureꢀ13showstheLTC3677-3pushbuttonstatediagram.ꢀ  
Uponꢀfirstꢀapplicationꢀofꢀpowerꢀ(V ,ꢀWALLꢀorꢀBAT)ꢀanꢀ  
BUS  
internalꢀpower-onꢀresetꢀ(POR)ꢀsignalꢀplacesꢀtheꢀpushbut-  
toncircuitryintothepower-offꢀ(POFF)ꢀstate.ꢀTheꢀfollowingꢀ Hard Reset and PGOOD Operation  
eventsꢀcauseꢀtheꢀstateꢀmachineꢀtoꢀtransitionꢀoutꢀofꢀPOFFꢀ  
intoꢀtheꢀpower-upꢀ(PUP)ꢀstate:  
Theꢀhardꢀresetꢀeventꢀisꢀgeneratedꢀbyꢀpressingꢀandꢀholdingꢀ  
thepushbutton(ONinputLOW)for14seconds.Foraꢀ  
validꢀhardꢀresetꢀeventꢀtoꢀoccurꢀtheꢀinitialꢀpushbuttonꢀap-  
plicationꢀmustꢀstartꢀinꢀtheꢀPUPꢀorꢀPONꢀstate.ꢀThisꢀavoidsꢀ  
causingꢀaꢀhardꢀresetꢀfromꢀoccurringꢀifꢀtheꢀuserꢀhangsꢀonꢀ  
thepushbuttonduringinitialpower-up.Ifavalidhardꢀ  
resetꢀeventꢀisꢀpresentꢀthenꢀtheꢀPGOODꢀoutputꢀwillꢀtransi-  
tionꢀLOWꢀforꢀaboutꢀ1.8msꢀtoꢀallowꢀtheꢀmicroprocessorꢀtoꢀ  
reset.ꢀTheꢀhardꢀresetꢀeventꢀdoesꢀnotꢀaffectꢀtheꢀoperatingꢀ  
stateꢀorꢀregulatorꢀoperation.ꢀ  
1)ꢀONꢀinputꢀLOWꢀforꢀ50msꢀ(PB50MS)  
2)ꢀPWR_ONꢀinputꢀgoingꢀHIGHꢀ(PWR_ON)  
UponenteringthePUPstate,thepushbuttoncircuitryꢀ  
willꢀsequenceꢀupꢀLDO2,ꢀBuck1ꢀandꢀBuck2ꢀinꢀthatꢀorder.ꢀ  
OneꢀsecondꢀafterꢀenteringꢀtheꢀPUPꢀstate,ꢀtheꢀpushbuttonꢀ  
circuitrywilltransitionintothepower-on(PON)state.Noteꢀ  
thatthePWR_ONinputmustbebroughtHIGHbeforeꢀ  
enteringꢀtheꢀPONꢀstateꢀifꢀtheꢀpartꢀisꢀtoꢀremainꢀinꢀtheꢀPONꢀ  
state.ꢀBuck3ꢀcanꢀbeꢀenabledꢀthroughꢀtheꢀEN3ꢀinputꢀonceꢀ  
theꢀpushbuttonꢀisꢀinꢀtheꢀPUPꢀorꢀPONꢀstates.  
TheꢀPGOODꢀpinꢀisꢀanꢀopen-drainꢀoutputꢀusedꢀtoꢀindicateꢀ  
thatBuck1,Buck2andLDO1areenabledandhavereachedꢀ  
theirꢀfinalꢀregulationꢀvoltage.ꢀAꢀ230msꢀdelayꢀisꢀincludedꢀ  
fromꢀtheꢀtimeꢀBuck1,ꢀBuck2ꢀandꢀLDO1ꢀreachꢀ92%ꢀofꢀtheirꢀ  
regulationvaluetoallowasystemcontrollerampletimetoꢀ  
resetꢀitself.ꢀPGOODꢀisꢀanꢀopen-drainꢀoutputꢀandꢀrequiresꢀaꢀ  
pull-upresistortoanappropriatepowersource.Optimallyꢀ  
theꢀpull-upꢀresistorꢀisꢀconnectedꢀtoꢀtheꢀoutputꢀofꢀBuck1,ꢀ  
Buck2ꢀorꢀLDO2ꢀsoꢀthatꢀpowerꢀisꢀnotꢀdissipatedꢀwhileꢀtheꢀ  
regulatorsꢀareꢀdisabled.  
PWR_ONgoingLOW,orV ꢀdroppingtoitsundervoltageꢀ  
OUT  
lockout(V UVLO)thresholdwillcausethestatemachineꢀ  
OUT  
toꢀleaveꢀtheꢀPONꢀstateꢀandꢀenterꢀtheꢀpower-downꢀ(PDN)ꢀ  
2
state.ꢀTheꢀPDNꢀstateꢀresetsꢀtheꢀI Cꢀregistersꢀasꢀwellꢀasꢀ  
disablesꢀBuck1,ꢀBuck2ꢀandꢀLDO2ꢀtogether.ꢀBuck3ꢀisꢀalsoꢀ  
disabledinthePDNandPOFFstates.Theoneseconddelayꢀ  
beforeleavingthepower-downstateallowsthesuppliestoꢀ  
powerꢀdownꢀcompletelyꢀbeforeꢀtheyꢀcanꢀbeꢀre-enabled.ꢀ  
Pushbutton Operation and V  
UVLO  
OUT  
PUP  
AsstatedearlierV ꢀdroppingtoitsUVLOthresholdꢀ  
OUT  
PB50ms +  
1SEC  
PWR_ON  
willꢀcauseꢀtheꢀpushbuttonꢀtoꢀleaveꢀtheꢀpower-onꢀstateꢀandꢀ  
enterꢀtheꢀpower-downꢀstate,ꢀthusꢀpoweringꢀdownꢀBuck1,ꢀ  
Buck2,ꢀBuck3ꢀandꢀLDO2.ꢀAdditionally,ꢀLDO1ꢀisꢀdisabledꢀ  
whenꢀinꢀUVLO.ꢀThus,ꢀallꢀLTC3677-3ꢀsuppliesꢀareꢀdisabledꢀ  
POR  
POFF  
PON  
UVLO +  
PWR_ON  
1SEC  
andꢀremainꢀdisabledꢀasꢀlongꢀasꢀtheꢀV ꢀUVLOꢀconditionꢀ  
OUT  
PDN  
exists.ꢀItꢀisꢀnotꢀpossibleꢀtoꢀpowerꢀupꢀanyꢀofꢀtheꢀLTC3677-3ꢀ  
35773 F13  
generatedꢀsuppliesꢀwhileꢀV ꢀisꢀbelowꢀtheꢀV ꢀUVLOꢀ  
OUT  
OUT  
Figure 12. Pushbutton State Diagram  
threshold.ꢀ  
36773f  
ꢂꢅ  
LTC3677-3  
operaTion  
Power-Up via Pushbutton Timing  
Power-Up via PWR_ON Timing  
Theꢀ timingꢀ diagram,ꢀ Figureꢀ 13,ꢀ showsꢀ theꢀ LTC3677-3ꢀ Theꢀ timingꢀ diagram,ꢀ Figureꢀ 14,ꢀ showsꢀ theꢀ LTC3677-3ꢀ  
poweringꢀupꢀthroughꢀapplicationꢀofꢀtheꢀexternalꢀpushbut- poweringꢀupꢀbyꢀdrivingꢀPWR_ONꢀHIGH.ꢀForꢀthisꢀexampleꢀ  
ton.ꢀForꢀthisꢀexampleꢀtheꢀpushbuttonꢀcircuitryꢀstartsꢀinꢀ thepushbuttonꢀcircuitryꢀstartsꢀinꢀtheꢀPOFFꢀstateꢀwithꢀV  
OUT  
theꢀPOFFꢀstateꢀwithꢀV ꢀnotꢀinꢀUVLOꢀandꢀBuck1,ꢀBuck2ꢀ notꢀinꢀUVLOꢀandꢀBuck1,ꢀBuck2ꢀandꢀLDO2ꢀdisabled.ꢀ50msꢀ  
OUT  
andꢀLDO2ꢀdisabled.ꢀPushbuttonꢀapplicationꢀ(ONꢀLOW)ꢀforꢀ afterꢀPWR_ONꢀgoesꢀHIGHꢀtheꢀpushbuttonꢀcircuitryꢀtransi-  
50msꢀtransitionsꢀtheꢀpushbuttonꢀcircuitryꢀintoꢀtheꢀPUPꢀ tionsintothePUPstatewhichsequencesupLDO2,Buck1ꢀ  
stateꢀwhichꢀsequencesꢀupꢀLDO2,ꢀBuck1ꢀandꢀBuck2ꢀinꢀthatꢀ andBuck2ꢀinꢀthatꢀorder.ꢀPWR_ONꢀmustꢀbeꢀdrivenꢀhighꢀ  
order.ꢀPWR_ONꢀmustꢀbeꢀdrivenꢀHIGHꢀbeforeꢀtheꢀ1ꢀsecondꢀ beforeꢀtheꢀ1ꢀsecondꢀPUPꢀperiodꢀisꢀoverꢀtoꢀkeepꢀsuppliesꢀ  
PUPperiodisovertokeepsuppliesup.IfPWR_ONisꢀ up.ꢀIfꢀPWR_ONꢀisꢀLOWꢀorꢀgoesꢀLOWꢀafterꢀtheꢀ1ꢀsecondꢀ  
LOWꢀorꢀgoesꢀLOWꢀafterꢀtheꢀ1ꢀsecondꢀPUPꢀperiodꢀBuck1,ꢀ PUPꢀperiodꢀBuck1,ꢀBuck2ꢀandꢀLDO2ꢀwillꢀbeꢀshutꢀdownꢀ  
Buck2,ꢀandꢀLDO2ꢀwillꢀbeꢀshutꢀdownꢀtogether.ꢀPGOODꢀisꢀ together.PGOODisassertedonceBuck1,Buck2andLD01ꢀ  
assertedꢀonceꢀBuck1,ꢀBuck2ꢀandꢀLDO1ꢀareꢀwithinꢀ8%ꢀofꢀ areꢀwithinꢀ8%ꢀofꢀtheirꢀregulationꢀvoltageꢀforꢀ230ms.ꢀ  
theirꢀregulationꢀvoltageꢀforꢀ230ms.ꢀ  
Buck3ꢀcanꢀbeꢀenabledꢀandꢀdisabledꢀatꢀanyꢀtimeꢀviaꢀEN3ꢀ  
Buck3ꢀcanꢀbeꢀenabledꢀandꢀdisabledꢀatꢀanyꢀtimeꢀviaꢀEN3ꢀ onceꢀinꢀtheꢀPUPꢀorꢀPONꢀstates.ꢀ  
onceꢀinꢀtheꢀPUPꢀorꢀPONꢀstates.ꢀTheꢀPWR_ONꢀinputꢀcanꢀ  
Poweringꢀ upꢀ viaꢀ PWR_ONꢀ isꢀ usefulꢀ forꢀ applicationsꢀ  
beꢀdrivenꢀviaꢀaꢀμP/μCꢀorꢀbyꢀoneꢀofꢀtheꢀsequencedꢀoutputsꢀ  
containingꢀanꢀalwaysꢀonꢀmicrocontroller.ꢀThisꢀallowsꢀtheꢀ  
throughahighimpedance(100kΩtyp).PBSTATgoesꢀ  
microcontrollertopowertheapplicationupanddownꢀ  
LOW50msaftertheinitialpushbuttonapplicationandꢀ  
forꢀhouseꢀkeepingꢀandꢀotherꢀactivitiesꢀoutsideꢀtheꢀuser’sꢀ  
willꢀstayꢀLOWꢀforꢀ50msꢀminimum.ꢀPBSTATꢀwillꢀgoꢀHIGHꢀ  
control.ꢀ  
coincidentwithONgoingHIGHunlessONgoesHIGHꢀ  
beforeꢀtheꢀ50msꢀminimumꢀLOWꢀtime.ꢀ  
V
UVLO  
V
UVLO  
OUT  
OUT  
ON (PB)  
ON (PB)  
PBSTAT  
LDO2  
50ms  
PBSTAT  
1 SEC  
PWR_ON  
LDO2  
14ms  
50ms  
14ms  
BUCK1  
BUCK2  
PGOOD  
BUCK1  
BUCK2  
230ms  
1 SEC  
230ms  
PWR_ON  
STATE  
PGOOD  
STATE  
36773 F14  
POFF  
PUP  
PON  
36773 F13  
POFF  
PUP  
PON  
Figure 13. Power-Up via Pushbutton  
Figure 14. Power-Up via PWR_ON  
36773f  
ꢂꢆ  
LTC3677-3  
operaTion  
Power Down via Pushbutton Timing  
V
UVLO Power-Down Timing  
OUT  
Theꢀ timingꢀ diagram,ꢀ Figureꢀ 15,ꢀ showsꢀ theꢀ LTC3677-3ꢀ IfꢀV ꢀdropsꢀbelowꢀtheꢀV ꢀUVLOꢀthreshold,ꢀtheꢀpush-  
OUT  
OUT  
poweringꢀdownꢀbyꢀμC/μPꢀcontrol.ꢀForꢀthisꢀexampleꢀtheꢀ buttonꢀcircuitryꢀwillꢀtransitionꢀfromꢀtheꢀPONꢀstateꢀtoꢀtheꢀ  
pushbuttoncircuitrystartsinthePONstatewithV PDNꢀstate.ꢀBuck1,ꢀBuck2ꢀandꢀLDO2ꢀareꢀdisabledꢀtogetherꢀ  
OUT  
notinUVLOandBuck1,Buck2andLDO2enabled.Inꢀ uponꢀenteringꢀtheꢀPDNꢀstate.ꢀAfterꢀenteringꢀtheꢀPDNꢀstate,ꢀ  
thisꢀcaseꢀtheꢀpushbuttonꢀisꢀappliedꢀ(ONꢀLOW)ꢀforꢀatꢀleastꢀ aꢀ1ꢀsecondꢀwaitꢀtimeꢀisꢀinitiatedꢀbeforeꢀenteringꢀtheꢀPOFFꢀ  
50ms,ꢀwhichꢀgeneratesꢀaꢀlowꢀimpedanceꢀonꢀtheꢀPBSTATꢀ state.ꢀDuringꢀthisꢀ1ꢀsecondꢀtimeꢀONꢀandꢀPWR_ONꢀinputsꢀ  
output.ꢀAfterꢀreceivingꢀtheꢀPBSTATꢀtheꢀμC/μPꢀwillꢀdriveꢀ areꢀignoredꢀtoꢀallowꢀallꢀLTC3677-3ꢀgeneratedꢀsuppliesꢀtoꢀ  
theꢀPWR_ONꢀinputꢀLOW.ꢀ50msꢀafterꢀPWR_ONꢀgoesꢀLOWꢀ goꢀLOW.ꢀ  
theꢀpushbuttonꢀcircuitryꢀwillꢀenterꢀtheꢀPDNꢀstate.ꢀBuck1,ꢀ  
UponꢀenteringꢀtheꢀPDNꢀstateꢀtheꢀBuck3ꢀisꢀdisabledꢀandꢀ  
Buck2ꢀandꢀLDO2ꢀareꢀdisabledꢀtogetherꢀuponꢀenteringꢀtheꢀ  
PDNꢀstate.ꢀAfterꢀenteringꢀtheꢀPDNꢀstate,ꢀaꢀ1ꢀsecondꢀwaitꢀ  
timeisinitiatedbeforeenteringthePOFFstate.Duringꢀ  
thisꢀ1ꢀsecondꢀtimeꢀONꢀandꢀPWR_ONꢀinputsꢀareꢀignoredꢀ  
toꢀallowꢀallꢀLTC3677-3ꢀgeneratedꢀsuppliesꢀtoꢀgoꢀLOW.ꢀ  
2
theꢀI Cꢀregistersꢀareꢀcleared.ꢀLDO1ꢀisꢀalsoꢀdisabledꢀbyꢀ  
theꢀV ꢀUVLOꢀandꢀstaysꢀdisabledꢀasꢀlongꢀasꢀtheꢀV  
OUT  
OUT  
UVLOꢀconditionꢀremains.ꢀNoteꢀthatꢀitꢀisꢀnotꢀpossibleꢀtoꢀ  
sequenceꢀanyꢀofꢀtheꢀsuppliesꢀupꢀwhileꢀtheꢀV ꢀUVLOꢀ  
OUT  
conditionꢀ exists.ꢀ LDO1ꢀ willꢀ beꢀ re-enabledꢀ whenꢀ theꢀ  
UponꢀenteringꢀtheꢀPDNꢀstateꢀBuck3ꢀisꢀdisabledꢀandꢀtheꢀ  
V
UVLOconditionisremoved.Theothersuppliesꢀ  
OUT  
2
I Cꢀregistersꢀareꢀcleared.ꢀHoldingꢀONꢀLOWꢀthroughꢀtheꢀ willꢀremainꢀdisabledꢀuntilꢀaꢀvalidꢀpower-upꢀpushbuttonꢀ  
1ꢀsecondꢀpower-downꢀperiodꢀwillꢀnotꢀcauseꢀaꢀpower-upꢀ eventꢀtakesꢀplace.  
eventꢀatꢀendꢀofꢀtheꢀ1ꢀsecondꢀperiod.ꢀTheꢀONꢀinputꢀmustꢀbeꢀ  
broughtꢀHIGHꢀfollowingꢀtheꢀpower-downꢀeventꢀandꢀthenꢀ  
goꢀLOWꢀagainꢀtoꢀestablishꢀaꢀvalidꢀpower-upꢀevent.ꢀ  
V
UVLO  
OUT  
V
UVLO  
1 SEC  
OUT  
1 SEC  
ON (PB)  
ON (PB)  
LDO1  
PBSTAT  
PWR_ON  
BUCK1  
BUCK2  
LDO2  
50ms  
PBSTAT  
PWR_ON  
BUCK1  
BUCK2  
LDO2  
µC/µP CONTROL  
50ms  
PGOOD  
STATE  
PGOOD  
STATE  
PON  
PDN  
POFF  
36773 F15  
36773 F16  
PON  
PDN  
POFF  
Figure 15. Power-Down via Pushbutton  
Figure 16. VOUT UVLO Power-Down  
36773f  
ꢂꢇ  
LTC3677-3  
operaTion  
Hard Reset Timing  
Power-Up Sequencing  
HardꢀresetꢀprovidesꢀaꢀwayꢀtoꢀresetꢀtheꢀμC/μPꢀinꢀcaseꢀofꢀaꢀ Figureꢀ18ꢀshowsꢀtheꢀactualꢀpower-upꢀsequencingꢀofꢀtheꢀ  
softwareꢀlockup.ꢀToꢀinitiateꢀaꢀhardꢀreset,ꢀtheꢀpushbuttonꢀisꢀ LTC3677-3.Buck1,Buck2andLDO2areallinitiallydisabledꢀ  
pressedꢀ(ONꢀLOW)ꢀandꢀheldꢀforꢀgreaterꢀthanꢀ14ꢀseconds.ꢀ (0V).ꢀOnceꢀtheꢀpushbuttonꢀhasꢀbeenꢀappliedꢀ(ONꢀLOW)ꢀ  
OnceꢀtheꢀhardꢀresetꢀtimeꢀisꢀexceededꢀtheꢀPGOODꢀinputꢀ forꢀ50msꢀPBSTATꢀgoesꢀLOWꢀandꢀLDO2ꢀisꢀenabled.ꢀOnceꢀ  
willꢀgoꢀLOWꢀforꢀ1.8msꢀwhichꢀresetsꢀtheꢀμC/μP.ꢀOperationꢀ enabled,ꢀLDO2ꢀslewsꢀupꢀandꢀentersꢀregulation.ꢀTheꢀactualꢀ  
ofꢀtheꢀenabledꢀsuppliesꢀisꢀnotꢀeffectedꢀbyꢀtheꢀhardꢀresetꢀ slewꢀrateꢀisꢀcontrolledꢀbyꢀtheꢀsoft-startꢀfunctionꢀofꢀLDO2ꢀ  
event.Allenabledsuppliesshouldremaininregulationꢀ whichꢀrampsꢀtheꢀLDOꢀreferenceꢀupꢀoverꢀaꢀ200µsꢀperiodꢀ  
andꢀ operatingꢀ correctlyꢀ assumingꢀ specifiedꢀ operatingꢀ typically.ꢀAfterꢀaꢀ14msꢀdelayꢀfromꢀLDO2ꢀbeingꢀenabled,ꢀ  
conditionsꢀareꢀmetꢀ(i.e.,ꢀnoꢀshortedꢀsupplies,ꢀetc).ꢀ  
Buck1isenabledandslewsupintoregulation.WhenBuck1ꢀ  
isꢀwithinꢀaboutꢀ8%ꢀofꢀfinalꢀregulation,ꢀBuck2ꢀisꢀenabledꢀ  
andꢀslewsꢀupꢀintoꢀregulation.ꢀTheꢀbucksꢀalsoꢀhaveꢀaꢀsoft-  
startꢀfunctionꢀtoꢀlimitꢀinrushꢀcurrentꢀatꢀstart-up.ꢀ230msꢀ  
afterꢀBuck2ꢀisꢀwithinꢀ8%ꢀofꢀfinalꢀregulation,ꢀtheꢀPGOODꢀ  
outputꢀwillꢀgoꢀhighꢀimpedanceꢀ(notꢀshownꢀinꢀFigureꢀ18).ꢀ  
TheꢀregulatorsꢀinꢀFigureꢀ18ꢀareꢀslewingꢀupꢀwithꢀnominalꢀ  
outputcapacitorsandnoload.Addingaloadorincreasingꢀ  
outputꢀcapacitanceꢀonꢀanyꢀofꢀtheꢀoutputsꢀwillꢀreduceꢀtheꢀ  
slewꢀrateꢀandꢀlengthenꢀtheꢀtimeꢀitꢀtakesꢀtheꢀregulatorꢀtoꢀ  
getꢀintoꢀregulation.ꢀ  
ThereareonlytwomethodstopowerdowntheLTC3677-3ꢀ  
supplies:1)PWR_ONꢀgoesꢀLOW;ꢀꢀ2)ꢀV ꢀdropsꢀbelowꢀtheꢀ  
OUT  
V
OUT  
ꢀUVLOꢀthreshold.ꢀIfꢀtheꢀμC/μPꢀcontrolsꢀshutdownꢀbyꢀ  
bringingꢀPWR_ONꢀLOW,ꢀitꢀisꢀpossibleꢀthatꢀtheꢀapplicationꢀ  
canhangwithallsuppliesenablediftheμC/μPfailstoꢀ  
resetꢀcorrectlyꢀonꢀhardꢀreset.ꢀInꢀthisꢀcaseꢀtheꢀbatteryꢀwillꢀ  
continueꢀtoꢀbeꢀdrainedꢀuntilꢀV ꢀdropsꢀbelowꢀtheꢀV  
OUT  
OUT  
UVLOꢀthreshold,ꢀorꢀtheꢀuserꢀintervenesꢀtoꢀshutꢀdownꢀtheꢀ  
applicationꢀmanually.ꢀTheꢀapplicationꢀcanꢀbeꢀshutꢀdownꢀ  
manuallybyremovingthebatteryandanyexternalsupplies,ꢀ  
orꢀbyꢀprovidingꢀaꢀsuicideꢀbuttonꢀthatꢀwillꢀbringꢀPWR_ONꢀ  
LOWꢀwhenꢀpressed.  
V
UVLO  
OUT  
1
>14 SEC  
PBSTAT  
0
LDO2  
1V/DIV  
0V  
BUCK1  
1V/DIV  
0V  
ON (PB)  
50ms  
PBSTAT  
PWR_ON  
BUCK1  
BUCK2  
2V/DIV  
BUCK2  
LDO1  
0V  
36773 F18  
2ms/DIV  
14 SEC  
1.8ms  
36773 F17  
PGOOD  
STATE PON  
Figure 18. Power-Up Sequencing  
Figure 17. Hard Reset Timing  
36773f  
ꢂꢈ  
LTC3677-3  
operaTion  
LAYOUT AND THERMAL CONSIDERATIONS  
whereꢀLDOxꢀisꢀtheꢀprogrammedꢀoutputꢀvoltage,ꢀVI  
NLDOx  
istheLDOoutputꢀ  
istheLDOsupplyvoltageandI  
LDOx  
Printed Circuit Board Power Dissipation  
loadꢀcurrent.ꢀNoteꢀthatꢀifꢀtheꢀLDOꢀsupplyꢀisꢀconnectedꢀtoꢀ  
oneꢀofꢀtheꢀbuckꢀoutput,ꢀthenꢀitsꢀsupplyꢀcurrentꢀmustꢀbeꢀ  
addedꢀtoꢀtheꢀbuckꢀregulatorꢀloadꢀcurrentꢀforꢀcalculatingꢀ  
theꢀbuckꢀpowerꢀloss.  
Inꢀorderꢀtoꢀbeꢀableꢀtoꢀdeliverꢀmaximumꢀchargeꢀcurrentꢀ  
underꢀallꢀconditions,ꢀitꢀisꢀcriticalꢀthatꢀtheꢀexposedꢀgroundꢀ  
padꢀonꢀtheꢀbacksideꢀofꢀtheꢀLTC3677-3ꢀpackageꢀbeꢀsol-  
deredꢀtoꢀaꢀgroundꢀplaneꢀonꢀtheꢀboard.ꢀCorrectlyꢀsolderedꢀ  
Thusꢀtheꢀpowerꢀdissipatedꢀbyꢀallꢀregulatorsꢀis:  
2
toꢀ2500mm ꢀgroundꢀplaneꢀonꢀaꢀdouble-sidedꢀ1ozꢀcopperꢀ  
ꢀ P ꢀ=ꢀP  
DREGS  
+ꢀP  
DSW1ꢀ  
+ꢀP  
DSW2ꢀ  
ꢀ+ꢀP  
DSW3  
ꢀ+ꢀP  
DLDO1  
DLDO2  
boardꢀtheꢀLTC3677-3ꢀhasꢀaꢀthermalꢀresistanceꢀ(θ )ꢀofꢀap-  
JA  
proximately45°C/W.Failuretomakegoodthermalcontactꢀ  
betweenꢀtheꢀexposedꢀpadꢀonꢀtheꢀbacksideꢀofꢀtheꢀpackageꢀ  
andꢀaꢀadequatelyꢀsizedꢀgroundꢀplaneꢀwillꢀresultꢀinꢀthermalꢀ  
resistancesꢀfarꢀgreaterꢀthanꢀ45°C/W.  
Itisnotnecessarytoperformanyworst-casepowerdissi-  
pationscenariosbecausetheLTC3677-3willautomaticallyꢀ  
reduceꢀtheꢀchargeꢀcurrentꢀtoꢀmaintainꢀtheꢀdieꢀtemperatureꢀ  
atꢀapproximatelyꢀ110°C.ꢀHowever,ꢀtheꢀapproximateꢀambi-  
entꢀtemperatureꢀatꢀwhichꢀtheꢀthermalꢀfeedbackꢀbeginsꢀtoꢀ  
protectꢀtheꢀICꢀis:  
TheconditionsthatcausetheLTC3677-3toreducechargeꢀ  
currentꢀdueꢀtoꢀtheꢀthermalꢀprotectionꢀfeedbackꢀcanꢀbeꢀap-  
proximatedbyconsideringthepowerdissipatedinthepart.ꢀ  
ForhighchargecurrentswithawalladapterappliedtoV ,ꢀ  
theꢀLTC3677-3ꢀpowerꢀdissipationꢀisꢀapproximately:ꢀ  
ꢀ T ꢀ=ꢀ110°Cꢀ–ꢀP ꢀ•ꢀθ  
JA  
A
D
OUTꢀ  
Example:ꢀConsiderꢀtheꢀLTC3677-3ꢀoperatingꢀfromꢀaꢀwallꢀ  
adapterꢀwithꢀ5Vꢀ(V )ꢀprovidingꢀ1Aꢀ(I )ꢀtoꢀchargeꢀaꢀ  
OUT  
BAT  
ꢀ P ꢀ=ꢀ(V ꢀ–ꢀBAT)ꢀ•ꢀI ꢀ+ꢀP  
Li-Ionꢀbatteryꢀatꢀ3.3Vꢀ(BAT).ꢀAlsoꢀassumeꢀP  
soꢀtheꢀtotalꢀpowerꢀdissipationꢀis:  
ꢀ=ꢀ0.3W,ꢀ  
D
OUT  
BAT  
DREGS  
DREGS  
whereꢀP ꢀisꢀtheꢀtotalꢀpowerꢀdissipated,ꢀV ꢀisꢀtheꢀsupplyꢀ  
D
OUT  
BAT  
voltage,ꢀBATꢀisꢀtheꢀbatteryꢀvoltageꢀandꢀI ꢀisꢀtheꢀbatteryꢀ  
ꢀ P ꢀ=ꢀ(5Vꢀ–ꢀ3.3V)ꢀ•ꢀ1Aꢀ+ꢀ0.3Wꢀ=ꢀ2W  
D
chargecurrent.P  
isthesumofpowerdissipatedon-  
DREGS  
TheꢀambientꢀtemperatureꢀaboveꢀwhichꢀtheꢀLTC3677-3ꢀbe-  
ginsꢀtoꢀreduceꢀtheꢀ1Aꢀchargeꢀcurrent,ꢀisꢀapproximately  
chipꢀbyꢀtheꢀstep-downꢀswitching,ꢀandꢀLDOꢀregulators.ꢀ  
Theꢀpowerꢀdissipatedꢀbyꢀaꢀstep-downꢀswitchingꢀregulatorꢀ  
canꢀbeꢀestimatedꢀasꢀfollows:ꢀ  
ꢀ T ꢀ=ꢀ110°Cꢀ–ꢀ2Wꢀ•ꢀ45°C/Wꢀ=ꢀ20°C  
A
TheꢀLTC3677-3ꢀcanꢀbeꢀusedꢀaboveꢀ20°C,ꢀbutꢀtheꢀchargeꢀ  
currentꢀwillꢀbeꢀreducedꢀbelowꢀ1A.ꢀTheꢀchargeꢀcurrentꢀatꢀaꢀ  
givenꢀambientꢀtemperatureꢀcanꢀbeꢀapproximatedꢀby:  
100 Eff  
P
= OUTx I  
(
)
D(SWx)  
OUTx  
100  
whereꢀ OUTxꢀ isꢀ theꢀ programmedꢀ outputꢀ voltage,ꢀ I  
110°C – TA  
OUTx  
P =  
= V  
BAT IBAT +P  
(
)
D
OUT  
D(REGS)  
isꢀtheꢀloadꢀcurrentꢀandꢀEffꢀisꢀtheꢀ%ꢀefficiencyꢀwhichꢀcanꢀ  
beꢀmeasuredꢀorꢀlookedꢀupꢀonꢀanꢀefficiencyꢀtableꢀforꢀtheꢀ  
programmedꢀoutputꢀvoltage.  
θJA  
Thus:  
110°C – T  
(
)
A
TheꢀpowerꢀdissipatedꢀonꢀchipꢀbyꢀaꢀLDOꢀregulatorꢀcanꢀbeꢀ  
estimatedꢀasꢀfollows:ꢀ  
θJA – P  
D(REGS)  
IBAT  
=
VOUT – BAT  
ꢀ P  
ꢀ=ꢀ(V  
ꢀ–ꢀLDOx)ꢀ•ꢀI  
DLDOx  
INLDOx  
LDOx  
36773f  
ꢃ0  
LTC3677-3  
operaTion  
Considerꢀ theꢀ previousꢀ exampleꢀ withꢀ anꢀ ambientꢀ tem-  
peratureꢀofꢀ55°C.ꢀTheꢀchargeꢀcurrentꢀwillꢀbeꢀreducedꢀtoꢀ  
approximately:  
ConnectꢀV  
ꢀandꢀV ꢀtoꢀV ꢀthroughꢀaꢀshortꢀlowꢀ  
IN12 IN3 OUT  
impedanceꢀtrace.ꢀ  
3.ꢀTheꢀswitchingꢀpowerꢀtracesꢀconnectingꢀSW1,ꢀSW2,ꢀ  
andSW3totheirrespectiveinductorsshouldbemini-  
mizedꢀtoꢀreduceꢀradiatedꢀEMIꢀandꢀparasiticꢀcoupling.ꢀ  
Duetothelargevoltageswingoftheswitchingnodes,ꢀ  
sensitivenodessuchasthefeedbacknodes(FBxꢀ  
andꢀLDOx_FB)ꢀshouldꢀbeꢀkeptꢀfarꢀawayꢀorꢀshieldedꢀ  
fromtheswitchingnodesorpoorperformancecouldꢀ  
result.  
110°C – 55°C  
– 0.3W  
45°C/W  
IBAT  
IBAT  
=
=
5V – 3.3V  
1.22 – 0.3W  
= 542mA  
1.7V  
Printed Circuit Board Layout  
4.ꢀConnectionsꢀbetweenꢀtheꢀstep-downꢀswitchingꢀregu-  
latorꢀinductorsꢀandꢀtheirꢀrespectiveꢀoutputꢀcapacitorsꢀ  
shouldꢀbeꢀkeptꢀasꢀshortꢀasꢀpossible.ꢀTheꢀGNDꢀsideꢀofꢀ  
theoutputcapacitorsshouldconnectdirectlytotheꢀ  
thermalꢀgroundꢀplaneꢀofꢀtheꢀpart.  
Whenꢀlayingꢀoutꢀtheꢀprintedꢀcircuitꢀboard,ꢀtheꢀfollowingꢀ  
listꢀshouldꢀbeꢀfollowedꢀtoꢀensureꢀproperꢀoperationꢀofꢀtheꢀ  
LTC3677-3:  
1.ꢀTheꢀ exposedꢀ padꢀ ofꢀ theꢀ packageꢀ (Pinꢀ 45)ꢀ shouldꢀ  
connectꢀdirectlyꢀtoꢀaꢀlargeꢀgroundꢀplaneꢀtoꢀminimizeꢀ  
thermalꢀandꢀelectricalꢀimpedance.ꢀ  
5.ꢀKeepꢀtheꢀbuckꢀfeedbackꢀpinꢀtracesꢀ(FB1,ꢀFB2,ꢀandꢀFB3)ꢀ  
asshortaspossible.Minimizeanyparasiticcapacitanceꢀ  
betweenꢀtheꢀfeedbackꢀtracesꢀandꢀanyꢀswitchingꢀnodeꢀ  
(i.e.,ꢀSW1,ꢀSW2,ꢀSW3,ꢀandꢀlogicꢀsignals).ꢀIfꢀnecessaryꢀ  
shieldꢀtheꢀfeedbackꢀnodesꢀwithꢀaꢀGNDꢀtrace.  
2.ꢀTheꢀstep-downꢀswitchingꢀregulatorꢀinputꢀsupplyꢀpinsꢀ  
(V  
ꢀandꢀV )ꢀandꢀtheirꢀrespectiveꢀdecouplingꢀca-  
IN12  
IN3  
pacitorsꢀshouldꢀbeꢀkeptꢀasꢀshortꢀasꢀpossible.ꢀTheꢀGNDꢀ  
sideꢀofꢀtheseꢀcapacitorsꢀshouldꢀconnectꢀdirectlyꢀtoꢀtheꢀ  
groundplaneofthepart.Thesecapacitorsprovideꢀ  
theACcurrenttotheinternalpowerMOSFETsandꢀ  
theirꢀdrivers.ꢀIt’sꢀimportantꢀtoꢀminimizingꢀinductanceꢀ  
fromꢀtheseꢀcapacitorsꢀtoꢀtheꢀpinsꢀofꢀtheꢀLTC3677-3.ꢀ  
6.ꢀConnectionsꢀbetweenꢀtheꢀLTC3677-3ꢀpowerꢀpathꢀpinsꢀ  
(V ꢀandꢀV )ꢀandꢀtheirꢀrespectiveꢀdecouplingꢀca-  
BUS  
OUT  
pacitorsꢀshouldꢀbeꢀkeptꢀasꢀshortꢀasꢀpossible.ꢀTheꢀGNDꢀ  
sideꢀofꢀtheseꢀcapacitorsꢀshouldꢀconnectꢀdirectlyꢀtoꢀtheꢀ  
groundꢀplaneꢀofꢀtheꢀpart.  
36773f  
ꢃꢀ  
LTC3677-3  
Typical applicaTion  
5V WALL  
ADAPTER  
Si2333DS  
4
41  
WALL ACPR  
V
OUT  
13  
8
30  
27  
39  
SYSTEM LOAD  
20µF  
OVGATE  
V
V
INLDO2  
INLDO1  
10µF  
2.2µF  
2.2µF  
OVSENSE  
V
OUT  
40  
32  
6
USB  
V
BUS  
V
IN12  
1k  
10µF  
2k  
LTC3677-3  
V
IN3  
44  
37  
CHRG  
36  
43  
Si2333DS  
(OPT)  
PROG  
IDGATE  
38  
2.1k  
BAT  
BAT  
+
100k  
CLPROG  
34  
35  
Li-Ion  
NTCBIAS  
NTC  
10  
11  
12  
100k  
NTC  
DV  
CC  
SDA  
SCL  
DV  
CC  
SDA  
SCL  
499k 499k 499k  
µC/µP  
42  
16  
14  
3, 9, 18 ,19, 20, 22  
EXTPWR  
PBSTAT  
EXTPWR  
PBSTAT  
NC  
PWR_ON  
PWR_ON  
KILL  
4.7µH  
33  
17  
1
V
OUT1  
EN3  
EN3  
SW1  
FB1  
1.8V  
I
I
I
I
LIM0  
LIM1  
LIM0  
LIM1  
500mA  
10pF  
806k  
10µF  
2
649k  
26  
RST  
PUSHBUTTON  
15  
ON  
4.7µH  
31  
V
V
3.3V  
500mA  
LDO1  
3.3V  
150mA  
OUT2  
28  
LDO1  
SW2  
1µF  
1µF  
1.02M  
348k  
10pF  
10pF  
1.02M  
232k  
10µF  
10µF  
324k  
464k  
324k  
464k  
23  
29  
25  
LDO1_FB  
LDO2  
FB2  
3.3µH  
5
V
1.2V  
800mA  
V
OUT3  
LDO2  
SW3  
1.4V  
150mA  
7
24  
LDO2_FB  
FB3  
21  
PGOOD  
GND  
45  
100k  
36773 TA02  
36773f  
ꢃꢁ  
LTC3677-3  
package DescripTion  
UFF Package  
Variation: UFFMA  
44-Lead Plastic QFN (4mm × 7mm)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1762ꢀRevꢀØ)  
1.48 0.05  
0.70 0.05  
0.98 0.05  
1.70 0.05  
2.56 0.05  
4.50 0.05  
3.10 0.05  
2.40 REF  
2.02 0.05  
2.76 0.05  
2.64 0.05  
PACKAGE  
OUTLINE  
0.20 0.05  
5.60 REF  
0.40 BSC  
6.10 0.05  
7.50 0.05  
RECOMMENDED SOLDER PAD LAYOUT  
PIN 1 NOTCH  
R = 0.30 TYP  
OR 0.35 s 45o  
CHAMFER  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
0.75 p0.05  
2.40 REF  
4.00 p0.10  
43  
44  
0.00 – 0.05  
0.40 p0.10  
1
2
PIN 1  
TOP MARK  
(SEE NOTE 6)  
2.64  
0.10  
2.56  
0.10  
7.00 p0.10  
5.60 REF  
R = 0.10  
TYP  
1.70  
0.10  
2.76  
0.10  
0.74 0.10  
R = 0.10 TYP  
0.74 0.10  
(UFF44MA) QFN REF Ø 1107  
R = 0.10 TYP  
0.200 REF  
0.20 p0.05  
0.40 BSC  
0.98 0.10  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
36773f  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.ꢀ  
However,ꢀnoꢀresponsibilityꢀisꢀassumedꢀforꢀitsꢀuse.ꢀLinearꢀTechnologyꢀCorporationꢀmakesꢀnoꢀrepresenta-  
tionꢀthatꢀtheꢀinterconnectionꢀofꢀitsꢀcircuitsꢀasꢀdescribedꢀhereinꢀwillꢀnotꢀinfringeꢀonꢀexistingꢀpatentꢀrights.  
ꢃꢂ  
LTC3677-3  
Typical applicaTion  
Si2333DS  
Si2306BDS  
5V WALL  
ADAPTER  
D3  
5.6V  
Si2333DS  
4
41  
R1  
WALL ACPR  
500k  
V
OUT  
SYSTEM LOAD  
20µF  
13  
8
30  
39  
OVGATE  
V
INLDO1  
6.2k  
10µF  
2.2µF  
2.2µF  
OVSENSE  
OPTIONAL OVERVOLTAGE/  
REVERSE VOLTAGE PROTECTION  
V
OUT  
40  
32  
6
USB  
V
BUS  
V
IN12  
1k  
LTC3677-3  
10µF  
V
IN3  
44  
37  
2k  
CHRG  
36  
43  
Si2333DS  
(OPT)  
PROG  
IDGATE  
38  
2.1k  
BAT  
BAT  
+
100k  
CLPROG  
34  
35  
Li-Ion  
NTCBIAS  
NTC  
10  
11  
12  
100k  
NTC  
DV  
CC  
DV  
CC  
SDA  
SCL  
SDA  
SCL  
499k 499k 499k  
µC/µP  
42  
16  
14  
3, 9, 18 ,19, 20, 22  
EXTPWR  
PBSTAT  
EXTPWR  
PBSTAT  
NC  
PWR_ON  
PWR_ON  
KILL  
4.7µH  
33  
17  
1
V
OUT1  
EN3  
EN3  
SW1  
FB1  
3.3V  
I
I
I
I
LIM0  
LIM1  
LIM0  
LIM1  
500mA  
10pF  
1.02M  
10µF  
2
324k  
26  
30  
RST  
PUSHBUTTON  
15  
V
ON  
INLDO2  
4.7µH  
31  
V
V
1.8V  
500mA  
LDO1  
2.5V  
150mA  
OUT2  
28  
LDO1  
SW2  
1µF  
1µF  
1.00M  
115k  
10pF  
10pF  
806k  
402k  
10µF  
10µF  
470k  
464k  
649k  
649k  
23  
29  
25  
LDO1_FB  
LDO2  
FB2  
3.3µH  
5
V
1.3V  
800mA  
V
OUT3  
LDO2  
SW3  
1.0V  
150mA  
7
24  
LDO2_FB  
FB3  
21  
GND PGOOD  
45  
100k  
36773 TA03  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC3556  
HighꢀEfficiencyꢀUSBꢀPowerꢀManagerꢀPlusꢀDualꢀ  
BuckꢀPlusꢀBuck-BoostꢀDC/DCꢀPMIC  
Twoꢀ400mAꢀSynchronousꢀBuckꢀRegulators,ꢀOneꢀ1AꢀBuck-BoostꢀRegulator,ꢀ4mmꢀ×ꢀ  
5mmꢀQFN28ꢀPackage.  
LTC3557/  
LTC3557-1  
USBꢀPowerꢀManagerꢀwithꢀLi-Ion/Polymerꢀ  
ChargerꢀandꢀTripleꢀSynchronousꢀBuckꢀConverter  
LinearꢀPowerꢀManagerꢀandꢀThreeꢀBuckꢀRegulators,ꢀ4mmꢀ×ꢀ4mmꢀQFN28ꢀPackage,ꢀ  
LTC3557-1ꢀVersionꢀHasꢀ4.1VꢀFloatꢀVoltage.  
LTC3577/  
LTC3577-1  
HighlyꢀIntegratedꢀProtable/NavigationꢀPMIC  
LinearꢀPowerꢀManagerꢀandꢀThreeꢀBuckꢀRegulators,ꢀ10-LEDꢀBoostꢀRegulator,ꢀ2×ꢀ150mAꢀ  
LDOs,ꢀ4mmꢀ×ꢀ7mmꢀQFN44ꢀPackage,ꢀLTC3577-1ꢀVersionꢀHasꢀ4.1VꢀFloatꢀVoltage.ꢀ  
36773f  
LT 0310 • PRINTED IN USA  
Linear Technology Corporation  
1630ꢀ McCarthyꢀ Blvd.,ꢀ Milpitas,ꢀ CAꢀ 95035-7417  
ꢃꢃ  
ꢀ  
LINEAR TECHNOLOGY CORPORATION 2010  
(408)ꢀ432-1900ꢀ FAX:(408)434-0507ꢀ www.linear.com  

相关型号:

LTC3677EUFF-3-TRPBF

Highly Integrated Portable Product PMIC
Linear

LTC3700

Constant Frequency Step-Down DC/DC Controller with LDO Regulator
Linear

LTC3700EMS

Constant Frequency Step-Down DC/DC Controller with LDO Regulator
Linear

LTC3700EMS#PBF

LTC3700 - Constant Frequency Step-Down DC/DC Controller with LDO Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3700EMS#TR

LTC3700 - Constant Frequency Step-Down DC/DC Controller with LDO Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3700EMS#TRPBF

LTC3700 - Constant Frequency Step-Down DC/DC Controller with LDO Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3701

2-Phase, Low Input Voltage, Dual Step-Down DC/DC Controller
Linear

LTC3701EGN

2-Phase, Low Input Voltage, Dual Step-Down DC/DC Controller
Linear

LTC3701EGN#PBF

LTC3701 - 2-Phase, Low Input Voltage, Dual Step-Down DC/DC Controller; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3701EGN#TR

LTC3701 - 2-Phase, Low Input Voltage, Dual Step-Down DC/DC Controller; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3701EGN#TRPBF

LTC3701 - 2-Phase, Low Input Voltage, Dual Step-Down DC/DC Controller; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3702SG

Optoelectronic
ETC