LTC3708EUH#TR [Linear]

LTC3708 - Fast 2-Phase, No RSENSE Buck Controller with Output Tracking; Package: QFN; Pins: 32; Temperature Range: -40°C to 85°C;
LTC3708EUH#TR
型号: LTC3708EUH#TR
厂家: Linear    Linear
描述:

LTC3708 - Fast 2-Phase, No RSENSE Buck Controller with Output Tracking; Package: QFN; Pins: 32; Temperature Range: -40°C to 85°C

开关
文件: 总32页 (文件大小:405K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3708  
Fast 2-Phase, No R  
SENSE  
Buck Controller with  
Output Tracking  
FEATURES  
DESCRIPTION  
The LTC®3708 is a dOal, 2-phase synchronoOs step-down  
switching regOlator with oOtpOt voltage Op/down tracking  
capability. The IC allows either coincident or ratiometric  
tracking. MOltiple LTC3708s can be daisy-chained in ap-  
plications reqOiring more than two voltages to be tracked.  
Power sOpply seqOencing is accomplished Osing an  
external soft-start timing capacitor.  
n
Very Low Duty Factor Operation (t  
< 85ns)  
ON(MIN)  
n
No R  
Option for Maximum Efficiency  
SENSE  
n
n
n
n
n
n
n
n
n
n
n
n
n
Very Fast Transient Response  
Programmable Output Voltage Up/Down Tracking  
2-Phase Operation Reduces Input Capacitance  
0.6V ±±1 ꢀOtpOt Voltage Reference  
External FreqOency Synchronization  
Monotonic Soft-Start  
TheLTC3708Osesaconstanton-time,valleycOrrentmode  
controlarchitectOretodeliververylowdOtyfactorswithoOt  
reqOiring a sense resistor. perating freqOency is selected  
byanexternalresistorandiscompensatedforvariationsin  
inpOtsOpplyvoltage. Aninternalphase-lockedloopallows  
the IC to be synchronized to an external clock.  
ꢀnboard High COrrent MꢀSFET Drivers  
Wide V Range: Up to 36V  
IN  
AdjOstable Cycle-by-Cycle COrrent Limit  
Instant ꢀOtpOt ꢀvervoltage Protection  
ꢀptional Short-CircOit ShOtdown Timer  
Power Good ꢀOtpOt with ±00μs Masking  
Available in 5mm × 5mm QFN Package  
FaOlt protection is provided by an oOtpOt overvoltage  
comparator and an optional short-circOit shOtdown timer.  
The regOlator cOrrent limit level is Oser programmable. A  
wide sOpply range allows voltages as high as 36V to be  
stepped down to 0.6V oOtpOt.  
APPLICATIONS  
n
Digital Signal Processors  
Network Servers  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
No R  
is a trademark of Linear Technology Corporation.  
SENSE  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
High Efficiency Dual Output Step-Down Converter  
V
V
(0.5V/DIV)  
(0.5V/DIV)  
ꢀUT±  
V
IN  
3.3V Tꢀ 28V  
ꢀUT2  
5V  
±0μF  
50V  
s4  
±μF  
4.7μF  
±0Ω  
±00k  
+
V
TG±  
DRV  
CC  
PGꢀꢀD  
TG2  
CC  
M±  
M3  
M2  
M4  
L±  
L2  
±.2μH  
3708 TA0±b  
2ms/DIV  
BꢀꢀST±  
BꢀꢀST2  
±.4μH  
V
V
±.8V  
±5A  
0.22μF  
0.22μF  
ꢀUT±  
2.5V  
±5A  
ꢀUT2  
SW±  
SENSE±  
SW2  
+
+
+
+
PꢀSCAP  
330μF  
4V  
PꢀSCAP  
470μF  
2.5V  
SENSE2  
±00  
95  
90  
85  
80  
75  
70  
9.0  
7.5  
6.0  
4.5  
3.0  
±.5  
0
B340A  
B340A  
LTC3708  
BG±  
BG2  
s2  
s2  
SENSE2  
SENSE±  
PGND±  
±2.±k  
±2.±k  
±9.±k  
PGND2  
V
V
FB2  
FCB  
I
ꢀN2  
I
TH2  
EXTLPF  
TRACK±  
V
RNG2  
FB±  
TRACK2  
f
±M  
IN  
V
IN  
V
I
IN  
ꢀN±  
20V Tꢀ 2.5V  
IN ꢀUT  
±.5M  
I
TH±  
5V Tꢀ 2.5V  
IN  
ꢀUT  
INTLPF  
RUN/SS  
SGND  
20V Tꢀ ±.8V  
IN  
ꢀUT  
5V Tꢀ ±.8V  
IN  
ꢀUT  
6.04k  
6.04k  
0.0±μF  
33k  
6.04k  
±0k  
0.0±μF  
±k  
33k  
V
RNG±  
±00k  
0.±μF  
0.0±μF  
25k  
±80pF  
±80pF  
0.±μF  
0.0±  
0.±  
±
±0  
5V  
LꢀAD CURRENT (A)  
3708 TA0±  
L±: PANASꢀNIC ETQP3HIR4BF  
L2: PANASꢀNIC ETQP2HIR2BF  
M±, M2: RENESAS HAT2±68  
M3, M4: RENESAS HAT2±65  
3708 TA0±c  
3708fb  
1
LTC3708  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TꢀP VIEW  
InpOt SOpply Voltage (V , DRV )............. 7V to –0.3V  
CC  
CC  
Boosted Topside Driver SOpply Voltage  
BꢀꢀST±, 2............................................ 42V to –0.3V  
Switch Voltage (SW±, 2).............................. 36V to –5V  
32 3± 30 29 28 27 26 25  
RUN/SS  
±
2
3
4
5
6
7
8
24 SENSE±  
23 PGND±  
+
+
SENSE± , SENSE2 Voltages....................... 36V to –5V  
I
TH±  
SENSE± , SENSE2 Voltages.................... ±0V to –0.3V  
, I Voltages.................................... 2±V to –0.3V  
V
FB±  
BG±  
DRV  
22  
2±  
I
ꢀN± ꢀN2  
TRACK±  
SGND  
CC  
33  
(BꢀꢀST – SW) Voltages .............................. 7V to –0.3V  
RUN/SS, PGꢀꢀD Voltages .......................... 7V to –0.3V  
PGꢀꢀD DC COrrent................................................. 5mA  
20 BG2  
PGND2  
TRACK2  
±9  
±8 SENSE2  
±7  
V
FB2  
I
V
CC  
TH2  
TRACK±, TRACK2 Voltages..............V + 0.3V to –0.3V  
CC  
9
±0 ±± ±2 ±3 ±4 ±5 ±6  
V
, V  
Voltages.................... V + 0.3V to –0.3V  
RNG± RNG2 CC  
I
, I  
Voltages.................................... 2.7V to –0.3V  
TH± TH2  
V
, V Voltages.................................. 2.7V to –0.3V  
FB± FB2  
UH PACKAGE  
32-LEAD (5mm s 5mm) PLASTIC QFN  
INTLPF, EXTLPF Voltages ......................... 2.7V to –0.3V  
FCB Voltages............................................... 7V to –0.3V  
ꢀperating TemperatOre Range (Note 5).... –40°C to 85°C  
JOnction TemperatOre (Note 2) ........................... ±25°C  
Storage TemperatOre Range................... –65°C to ±25°C  
Reflow Peak Body TemperatOre ........................... 260°C  
T
= ±25°C, θ = 34°C/W  
JA  
JMAX  
EXPꢀSED PAD (PIN 33) IS SGND, MUST BE SꢀLDERED Tꢀ PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3708EUH#PBF  
LEAD BASED FINISH  
LTC3708EUH  
TAPE AND REEL  
LTC3708EUH#TRPBF  
TAPE AND REEL  
LTC3708EUH#TR  
PART MARKING  
3708  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
32-Lead (5mm × 5mm) Plastic QFN  
PACKAGE DESCRIPTION  
PART MARKING  
3708  
TEMPERATURE RANGE  
–40°C to 85°C  
32-Lead (5mm × 5mm) Plastic QFN  
ConsOlt LTC Marketing for parts specified with wider operating temperatOre ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, DRVCC = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Main Control Loop  
I
InpOt DC SOpply COrrent  
Normal  
ShOtdown  
Q
2.4  
250  
3
400  
mA  
μA  
I
Feedback Pin InpOt COrrent  
Internal Reference Voltage  
I
= ±.2V (Notes 3, 4)  
–50  
–±00  
nA  
FB±,2  
TH  
V
I
TH  
I
TH  
= ±.2V, 0°C to 85°C (Notes 3, 4)  
= ±.2V (Notes 3, 4)  
0.594  
0.59±  
0.600  
0.600  
0.606  
0.609  
V
V
REF  
l
V
Feedback Voltage  
I
= ±.2V (Note 3)  
0.594  
0.600  
0.02  
0.606  
V
FB±,2  
TH  
Feedback Voltage Line RegOlation  
V
= 4.5V to 6.5V (Note 3)  
1/V  
ΔV  
CC  
FB(LINEREG)±,2  
3708fb  
2
LTC3708  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, DRVCC = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–0.05  
±.45  
MAX  
–0.2  
±.7  
UNITS  
1
Feedback Voltage Load RegOlation  
Error Amplifier TranscondOctance  
ꢀn-Time  
I
TH  
I
TH  
= 0.5V to ±.9V (Note 3)  
ΔV  
FB(LꢀADREG)±,2  
l
g
= ±.2V (Note 3)  
±.2  
mS  
m(EA)±,2  
ꢀN±,2  
t
I
I
= 60μA, V = 0V  
= 30μA, V = 0V  
94  
±86  
±±6  
233  
±38  
280  
ns  
ns  
ꢀN  
ꢀN  
FCB  
FCB  
t
t
MinimOm ꢀn-Time  
I
I
= ±80μA  
= 30μA  
50  
85  
ns  
ns  
ꢀN(MIN)±,2  
ꢀN  
ꢀN  
MinimOm ꢀff-Time  
270  
350  
ꢀFF(MIN)±,2  
V
MaximOm COrrent Sense Threshold  
V
V
V
= ±V, V = 0.565V  
±25  
90  
±80  
±43  
±00  
200  
±60  
±±0  
220  
mV  
mV  
mV  
SENSE(MAX)±,2  
SENSE(MIN)±,2  
RNG  
RNG  
RNG  
FB  
= 0V, V = 0.565V  
FB  
= VCC, V = 0.565V  
FB  
V
MinimOm COrrent Sense Threshold  
V
RNG  
V
RNG  
V
RNG  
= ±V, V = 0.635V  
–62  
–42  
–88  
mV  
mV  
mV  
FB  
= 0V, V = 0.635V  
FB  
= V , V = 0.635V  
CC FB  
ꢀvervoltage FaOlt Threshold  
Undervoltage FaOlt Threshold  
RUN Pin Start Threshold  
8.5  
–380  
0.8  
±0  
–420  
±.3  
3
±±.5  
–460  
±.8  
3.3  
2.8  
–2  
1
mV  
V
ΔV  
ΔV  
FB(ꢀV)±,2  
FB(UV)±,2  
l
V
V
V
RUN/SS(ꢀN)  
RUN/SS(LE)  
RUN/SS(LT)  
RUN/SS(C)  
RUN/SS(D)  
RUN Pin Latchoff Enable Threshold  
RUN Pin Latchoff Threshold  
Soft-Start Charge COrrent  
RUN/SS Pin Rising  
RUN/SS Pin Falling  
2.6  
V
2.2  
2.5  
–±.2  
2
V
I
I
V
V
V
V
= 0V  
–0.5  
0.8  
μA  
μA  
V
RUN/SS  
RUN/SS  
Soft-Start Discharge COrrent  
Undervoltage LockoOt  
= V  
, V  
= 0V  
3
RUN/SS(LE) FB±,2  
V
V
Falling  
3.2  
3.5  
2
3.6  
3.8  
CC(UVLꢀ)  
CC  
CC  
Undervoltage LockoOt Release  
TG Driver POll-Up ꢀn-Resistance  
TG Driver POll-Down ꢀn-Resistance  
BG Driver POll-Up ꢀn-Resistance  
BG Driver POll-Down ꢀn-Resistance  
Rising  
V
CC(UVLꢀR)  
TG R  
TG R  
BG R  
BG R  
TG High (Note 6)  
TG Low (Note 6)  
BG High (Note 6)  
BG Low (Note 6)  
Ω
Ω
Ω
Ω
UP±,2  
2
DꢀWN±,2  
UP±,2  
3
±
DꢀWN±,2  
Tracking  
I
TRACK Pin InpOt COrrent  
I
TH  
= ±.2V, V = 0.2V (Note 3)  
TRACK  
–±00  
–±50  
nA  
TRACK±,2  
V
Feedback Voltage at Tracking  
V
= 0V, I = ±.2V (Note 3)  
–±0  
±90  
390  
0
200  
400  
–±0  
2±0  
4±0  
mV  
mV  
mV  
FB(TRACK±,2)  
TRACK  
TH  
V
= 0.2V, I = ±.2V (Note 3)  
TRACK  
TH  
V
TRACK  
= 0.4V, I = ±.2V (Note 3)  
TH  
PGOOD Output  
PGꢀꢀD Upper Threshold  
PGꢀꢀD Lower Threshold  
PGꢀꢀD Hysteresis  
Either V Rising  
8.5  
±0  
–±0  
3
±±.5  
–±±.5  
5
1
1
1
V
ΔV  
FB  
FBH±,2  
Either V Falling  
–8.5  
ΔV  
FB  
FBL±,2  
V
RetOrning  
ΔV  
FB  
FB(HYS)±,2  
V
PGꢀꢀD Low Voltage  
PGꢀꢀD Leakage COrrent  
PGꢀꢀD Delay  
I
= 5mA  
= 7V  
0.±  
0.4  
PGL  
PGꢀꢀD  
I
V
V
±±  
μA  
μs  
PGꢀꢀD  
PGꢀꢀD  
PG Delay  
Phase-Locked Loops  
Falling  
±00  
FB  
V
V
Forced ContinOoOs Threshold  
Clock InpOt Threshold  
MeasOred with a DC Voltage at FCB Pin  
MeasOred with a AC POlse at FCB Pin  
±.9  
±
2.±  
±.5  
2.3  
2
V
V
FCB(DC)  
FCB(AC)  
EXTLPF  
I
External Phase Detector ꢀOtpOt COrrent  
SoOrcing Capability  
Sinking Capability  
f
f
< f  
> f  
, V = 0V  
SW± EXTLPF  
SW± EXTLPF  
20  
–20  
μA  
μA  
FCB  
FCB  
, V  
= 2.4  
3708fb  
3
LTC3708  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, DRVCC = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
t
t
Internal Phase Detector ꢀOtpOt COrrent  
SoOrcing Capability  
INTLPF  
f
f
< f  
> f  
, V = 0V  
SW2 INTLPF  
SW2 INTLPF  
20  
μA  
μA  
SW±  
SW±  
Sinking Capability  
, V  
= 2.4  
–20  
t
t
ModOlation Range by External PLL  
ꢀN±  
ꢀN(PLL)±  
ꢀN(PLL)2  
Up ModOlation  
I
I
= 60μA, V  
= 60μA, V  
= ±.8V  
= 0.6V  
±86  
±86  
233  
58  
ns  
ns  
ꢀN±  
ꢀN±  
EXTLPF  
EXTLPF  
Down ModOlation  
80  
80  
ModOlation Range by Internal PLL  
ꢀN2  
Up ModOlation  
I
I
= 60μA, V  
= 60μA, V  
= ±.8V  
= 0.6V  
233  
58  
ns  
ns  
ꢀN±  
ꢀN±  
EXTLPF  
EXTLPF  
Down ModOlation  
Note 1: Stresses beyond those listed Onder AbsolOte MaximOm Ratings  
may caOse permanent damage to the device. ExposOre to any AbsolOte  
MaximOm Rating condition for extended periods may affect device  
reliabilty and lifetime.  
Note 4: Internal reference voltage is tested indirectly by extracting error  
amplifier offset from the feedback voltage.  
Note 5: The LTC3708E is gOaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperatOre range are assOred by design, characterization and correlation  
with statistical process controls.  
Note 2: T is calcOlated from the ambient temperatOre T and power  
J
A
dissipation P as follows:  
D
T = T + (P • 34°C/W)  
Note 6: R  
limit is gOaranteed by design and/or correlation to static  
J
A
D
DS(ꢀN)  
test.  
Note 3: The LTC3708 is tested in a feedback loop that adjOsts V to  
achieve a specified error amplifier oOtpOt voltage (I ).  
FB  
TH  
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Transient on Channel 1  
Load Transient on Channel 2  
I
I
ꢀUT2  
ꢀUT±  
±0A/DIV  
±0A/DIV  
V
V
ꢀUT±  
ꢀUT±  
±00mV/DIV  
±00mV/DIV  
V
ꢀUT2  
V
ꢀUT2  
±00mV/DIV  
±00mV/DIV  
3708 G0±  
3708 G02  
20μs/DIV  
20μs/DIV  
Coincident Tracking  
Ratiometric Tracking  
V
V
ꢀUT±  
ꢀUT±  
0.5V/DIV  
0.5V/DIV  
V
ꢀUT2  
0.5V/DIV  
V
ꢀUT2  
0.5V/DIV  
3708 G04  
3708 G03  
2ms/DIV  
2ms/DIV  
3708fb  
4
LTC3708  
TYPICAL PERFORMANCE CHARACTERISTICS  
Soft-Start  
Power Loss vs Input Voltage  
6
V
ꢀUT±  
I
= ±5A  
ꢀUT  
2V/DIV  
V
ꢀUT2  
5
2V/DIV  
V
= 2.5V  
ꢀUT  
RUN/SS  
5V/DIV  
4
3
V
ꢀUT  
= ±.8V  
I
L±  
5A/DIV  
2
±
0
3708 G05  
50ms/DIV  
5
±0  
±5  
INPUT VꢀLTAGE (V)  
20  
25  
3708 G06  
Power Loss vs Load Current  
Frequency vs Input Voltage  
Frequency vs Load Current  
3.5  
3.0  
2.5  
260  
240  
220  
200  
±80  
±60  
250  
200  
±50  
±00  
50  
V
= 5V  
IN  
V
= 2.5V  
I
= ±5A  
ꢀUT  
ꢀUT  
V
= ±.8V  
ꢀUT  
2.0  
±.5  
±.0  
0.5  
0
EXTERNAL SYNCHRꢀNIZATIꢀN (ANY I  
)
ꢀUT  
I
= 0A  
ꢀUT  
FꢀRCED CꢀNTINUꢀUS MꢀDE  
EXTERNAL  
SYNCHRꢀNIZATIꢀN  
DISCꢀNTINUꢀUS MꢀDE  
0
±00  
±000  
±00000  
±0  
±0000  
5
±0  
±5  
INPUT VꢀLTAGE (V)  
20  
0
5
±0  
±5  
25  
LꢀAD (mA)  
LꢀAD CURRENT (A)  
3707 G07  
3708 G08  
3708 G09  
Current Sense Threshold  
vs ITH Voltage  
On-Time vs ION Current  
On-Time vs Temperature  
300  
250  
200  
±50  
±00  
50  
±0000  
±000  
±00  
300  
250  
200  
±50  
±00  
50  
V
=
2V  
RNG  
I
ꢀN  
= 30μA  
±.4V  
±V  
0.7V  
0.5V  
I
ꢀN  
= 60μA  
0
–50  
–±00  
–±50  
–200  
0
±0  
75 ±00  
0
0.5  
±
±.5  
2
2.5  
–50 –25  
0
25 50  
±25 ±50  
±
±0  
±00  
CURRENT (μA)  
±000  
TEMPERATURE (°C)  
I
ꢀN  
I
TH  
VꢀLTAGE (V)  
3708 G±0  
3708 G±2  
3708 G±±  
3708fb  
5
LTC3708  
TYPICAL PERFORMANCE CHARACTERISTICS  
Maximum Current Sense  
Threshold vs VRNG Voltage  
Maximum Current Sense  
Threshold vs Temperature  
Load Regulation  
(Figure 13 Circuit)  
350  
300  
250  
200  
±50  
±00  
50  
0
±60  
±50  
±40  
V
RNG  
= ±V  
–0.±  
FꢀRCED  
CꢀNTINUꢀUS  
MꢀDE  
–0.2  
–0.3  
–0.4  
–0.5  
–0.6  
–0.7  
±30  
±20  
±±0  
DISCꢀNTINUꢀUS  
MꢀDE  
0
±.5  
VꢀLTAGE (V)  
2
0.5 0.75  
±
±.25  
±.75  
3
6
9
±5  
0
±2  
50  
TEMPERATURE (°C)  
–50 –25  
0
25  
75 ±00 ±25 ±50  
V
RNG  
LꢀAD CURRENT (A)  
3708 G±3  
3708 G±5  
3708 G±4  
Error Amplifier gm  
vs Temperature  
SENSE Pin Input Current  
vs Temperature  
RUN/SS Pin Current  
vs Temperature  
±50  
±40  
±30  
±20  
±±0  
±00  
90  
3
2
±.6  
±.5  
±.4  
±.3  
±.2  
±.±  
±.0  
PULL-DꢀWN CURRENT  
I
I
SENSE  
±
+
SENSE  
0
80  
PULL-UP CURRENT  
70  
–±  
60  
50  
–2  
75 ±00  
±25  
±50  
50  
±25  
–50 –25  
0
25 50  
±25 ±50  
–50  
50  
±00  
–50 –25  
0
25  
75 ±00  
–25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3708 G±6  
3708 G±7  
3708 G±8  
Feedback Voltage vs RUN/SS  
(Soft-Start)  
RUN/SS Latch-Off Thresholds  
vs Temperature  
Undervoltage Lockout Threshold  
vs Temperature  
700  
600  
500  
400  
300  
200  
±00  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
4.0  
3.5  
3.0  
2.5  
LATCHꢀFF ENABLE  
LATCHꢀFF THRESHꢀLD  
2.0  
2
2.5  
±
±.25  
±.5  
±.75  
2.25  
–50 –25  
0
25 50 75 ±00 ±25 ±50  
TEMPERATURE (°C)  
50  
–50 –25  
0
25  
75 ±00 ±25 ±50  
RUN/SS VꢀLTAGE (V)  
TEMPERATURE (°C)  
3708 G±9  
3708 G20  
3708 G2±  
3708fb  
6
LTC3708  
TYPICAL PERFORMANCE CHARACTERISTICS  
On-Time vs EXTLPF Voltage  
On-Time vs INTLPF Voltage  
2-Phase Operation  
500  
450  
400  
350  
300  
250  
200  
±50  
±00  
50  
500  
450  
400  
350  
300  
250  
200  
±50  
±00  
50  
I
IN  
2A/DIV  
V
IN  
I
= 30μA  
I
= 30μA  
ꢀN2  
ꢀN±  
200mV/DIV  
V
SW±  
±0V/DIV  
V
SW2  
±0V/DIV  
I
= 60μA  
I
= 60μA  
ꢀN2  
ꢀN±  
3708 G024  
V
V
V
I
= ±5V  
±μs/DIV  
IN  
= 5V  
ꢀUT±  
ꢀUT2  
= 3.3V  
= I  
0
0
= 2A  
0.6  
±
±.2 ±.4  
±.6 ±.8 2.0  
0.8  
ꢀUT5 ꢀUT3  
±
±.±  
±.2  
±.3  
±.4  
INTLPF VꢀLTAGE (V)  
EXTLPF VꢀLTAGE (V)  
3708 G23  
3708 G22  
Load Transient Response Without  
External Synchronization  
Load Transient Response with  
External Synchronization  
I
I
ꢀUT±  
ꢀUT±  
±0A/DIV  
±0A/DIV  
f
S
= 200kHz  
f = 240kHz  
S
f
= 220kHz  
f = 220kHz  
S
S
SW±  
±0V/DIV  
SW±  
±0V/DIV  
V
V
ꢀUT±  
ꢀUT±  
50mV/DIV  
50mV/DIV  
3708 G25  
3708 G26  
±0μs/DIV  
±0μs/DIV  
Discontinuous Mode Operation  
Power Good Mask  
V
ꢀUT  
V
FB  
20mV/DIV  
0.2V/DIV  
PGꢀꢀD  
2V/DIV  
I
L
0.5A/DIV  
3708 G027  
3708 G28  
V
V
V
= ±5V  
2μs/DIV  
±00μs/DIV  
IN  
= 5V  
ꢀUT  
FCB  
ꢀUT  
= 5V  
= 20mA  
I
3708fb  
7
LTC3708  
PIN FUNCTIONS  
RUN/SS (Pin 1): ROn Control and Soft-Start InpOt. A  
capacitor to groOnd at this pin sets the ramp rate of the  
oOtpOt voltage (approximately 0.5s/μF) and the time delay  
for overcOrrent latchoff (see Applications Information).  
Forcing this pin below 0.8V shOts down the LTC3708.  
PGND1,PGND2(Pins23,19):PowerGroOnd.Connectthis  
pincloselytothesoOrceofthebottomN-channelMꢀSFET,  
the (–) terminal of C  
and the (–) terminal of C .  
DRVCC  
IN  
SENSE1–, SENSE2– (Pins 24, 18): COrrent Sense Com-  
parator InpOt. The (–) inpOt to the cOrrent comparator is  
Osed to accOrately Kelvin sense the bottom side of the  
sense resistor or MꢀSFET.  
I , I (Pins 2, 8): Error Amplifier Compensation Point  
TH1 TH2  
and COrrent Control Threshold. The cOrrent comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V with 0.8V corresponding to zero  
sense voltage (zero cOrrent).  
+
+
SENSE1 , SENSE2 (Pins 25, 16): COrrent Sense Com-  
parator InpOt. The (+) inpOt to the cOrrent comparator is  
normally connected to the SW node Onless Osing a sense  
resistor (See Applications Information).  
V
, V  
(Pins 3, 7): Error Amplifier Feedback InpOt.  
FB1  
FB2  
This pin connects the error amplifier inpOt to an external  
SW1,SW2(Pins26,15):SwitchNode.The()terminalofthe  
resistive divider from V . Additional compensation can  
be implemented, if desired, Osing this pin.  
ꢀUT  
bootstrap capacitor C connects here. This pin swings from  
B
a Schottky diode voltage drop below groOnd Op to V .  
IN  
TRACK1, TRACK2 (Pins 4, 6): Tie TRACK2 pin to a re-  
sistive divider connected to the oOtpOt of channel ± for  
either coincident or ratiometric oOtpOt tracking. TRACK±  
is Osed in the same manner between mOltiple LTC3708s  
(see Applications Information). To disable this featOre, tie  
TG1, TG2 (Pins 27, 14): Top Gate Drive. Drives the top  
N-channel MꢀSFET with a voltage swing eqOal to DRV  
sOperimposed on the switch node voltage SW.  
CC  
BOOST1, BOOST2 (Pins 28, 13): Boosted Floating Driver  
SOpply. The (+) terminal of the bootstrap capacitor C  
the pins to V . Do Not Float These Pins.  
B
CC  
connects here. This pin swings from a diode voltage drop  
SGND (Pins 5, 33): Signal GroOnd. All small-signal com-  
ponentsandcompensationcomponentsshoOldconnectto  
this groOnd and eventOally connect to PGND at one point.  
The Exposed Pad of the LTC3708EUH mOst be soldered  
to the PCB.  
below DRV Op to V + DRV .  
CC  
IN  
CC  
I
, I  
(Pins 29, 12): ꢀn-Time COrrent InpOt. Tie a  
ON1 ON2  
resistor from V to this pin to set the one-shot timer  
IN  
cOrrent and thereby set the switching freqOency.  
PGOOD (Pin 30): Power Good ꢀOtpOt. ꢀpen-drain logic  
oOtpOt that is pOlled to groOnd when either or both oOtpOt  
voltages are not within ±±01 of the regOlation point. The  
oOtpOt voltage mOst be oOt of regOlation for at least ±00μs  
before the power good oOtpOt is pOlled to groOnd.  
EXTLPF(Pin9):FilterConnectionfortheExternalPLL.This  
PLLisOsedtosynchronizetheLTC3708toanexternalclock.  
If external clock is not Osed, leave this pin floating.  
INTLPF (Pin 10): Filter Connection for the Internal PLL.  
This PLL is Osed to phase shift the second channel to the  
first channel by ±80°.  
FCB(Pin31):ForcedContinOoOsandExternalClockInpOt.  
Tie this pin to groOnd to force continOoOs synchronoOs  
V
(Pin 17): Main InpOt SOpply. DecoOple this pin to  
CC  
operation or to V to enable discontinOoOs mode opera-  
CC  
SGND with an RC filter (±0Ω, ±μF for example).  
tion at light load. Feeding an external clock signal into this  
pin will synchronize the LTC3708 to the external clock and  
enable forced continOoOs mode.  
DRV (Pin 21): Driver SOpply. Provides sOpply to the  
CC  
drivers for the bottom gates. Also Osed for charging the  
bootstrap capacitors.  
V
, V  
(Pins 32, 11): Sense Voltage Range InpOt.  
RNG1 RNG2  
BG1, BG2 (Pins 22, 20): Bottom Gate Drive. Drives the  
The voltage at this pin is ten times the nominal sense volt-  
age at maximOm oOtpOt cOrrent and can be programmed  
from 0.5V to 2V. The sense voltage defaOlts to 70mV when  
gate of the bottom N-channel MꢀSFET between groOnd  
and DRV .  
CC  
this pin is tied to groOnd, ±40mV when tied to V .  
CC  
3708fb  
8
LTC3708  
FUNCTIONAL DIAGRAM  
R
IPLL  
C
IPLL  
INTLPF  
FCB  
I
ꢀN  
R
ꢀN  
CLꢀCK DETECTꢀR  
V
IN  
+
V
CC  
FRꢀM CHANNEL 2  
TG  
C
IN  
0.6V  
REF  
ENABLE  
PHASE DETECTꢀR  
(PD2)  
EXTLPF  
PHASE DETECTꢀR  
C
VCC  
(PD±)  
R
EPLL  
BꢀꢀST  
TG  
C
EPLL  
Tꢀ CHANNEL 2 ꢀST  
C
B
ꢀST  
0.7  
IꢀN  
FCNT  
ꢀN  
M±  
R
t
ꢀN  
=
(±0pF)  
I
Q
SW  
L±  
S
V
ꢀUT  
+
+
SWITCH  
LꢀGIC  
D
B
SENSE  
20k  
C
ꢀUT  
+
+
DRV  
CC  
I
I
CMP  
REV  
SHDN  
ꢀV  
C
DRVCC  
BG  
M2  
±.4V  
0.7V  
PGND  
SENSE  
V
RNG  
s
+
0.66V  
R2  
ꢀV  
UV  
V
FB  
3.3μA  
R±  
±
240k  
SGND  
EA  
Q4  
+
+
I
TH  
C
C
0.54V  
R
C
PGꢀꢀD  
ENABLE  
>±00μs  
TRACK  
±.3V  
+
V
REF  
0.6V  
BLANKING  
Q± Q2  
Q3  
RUN  
SHDN  
FRꢀM CHANNEL 2  
ꢀV AND UV CꢀMPARATꢀRS  
±.2μA  
SS  
6V  
DUPLICATE FꢀR SECꢀND  
CHANNEL CꢀNTRꢀLLER  
+
RUN/SS  
±.3V  
C
NꢀTE: THE RUN/SS PIN ꢀNLY CLAMPS  
FꢀR PHASE ± NꢀT PHASE 2.  
3708 FD  
V
REF  
3708fb  
9
LTC3708  
OPERATION (Refer to Functional Diagram)  
Main Control Loop  
When the LTC3708 is synchronized to an external clock,  
the operating freqOency will then be solely determined by  
the external clock.  
The LTC3708 Oses a constant on-time, cOrrent mode step-  
down architectOre with two control channels operating at  
±80 degrees oOt of phase. In normal operation, each top  
MꢀSFET is tOrned on for a fixed interval determined by its  
own one-shot timer ꢀST. When the top MꢀSFET is tOrned  
off, the bottom MꢀSFET is tOrned on Ontil the cOrrent  
Output Overvoltage Protection  
An overvoltage comparator ꢀV gOards against transient  
overshoots (>±01) as well as other more serioOs condi-  
tions that may overvoltage the oOtpOt. In this condition,  
M± is tOrned off and M2 is tOrned on and held on Ontil  
the condition is cleared.  
comparator I  
trips, restarting the one-shot timer and  
CMP  
repeatingthecycle.ThetriplevelofthecOrrentcomparator  
is set by the I voltage which is the oOtpOt of each error  
amplifier, EA. IndOctor cOrrent is determined by sensing  
TH  
+
Short-Circuit Detection and Protection  
the voltage between the SENSE and SENSE pins Osing  
either the bottom MꢀSFET on-resistance or a separate  
sense resistor. At low load cOrrents, the indOctor cOrrent  
can drop to zero and become negative. This is detected by  
After the controller has been started and given adeqOate  
timetochargetheoOtpOtcapacitors,theRUN/SScapacitor  
is Osed as the short-circOit time-oOt capacitor. If either one  
of the oOtpOt voltages falls to less than 701 of its nominal  
oOtpOt voltage, the RUN/SS capacitor begins discharging  
on the assOmption that the oOtpOt is in an overcOrrent  
and/or short-circOit condition. If the condition lasts for  
a long enoOgh period, as determined by the size of the  
RUN/SS capacitor, both controllers will be shOt down Ontil  
the RUN/SS pin voltage is recycled. This bOilt-in latchoff  
can be overridden by providing >5μA pOll-Op at a compli-  
ance of 5V to the RUN/SS pin. This cOrrent shortens the  
soft-start period bOt also prevents net discharge of the  
RUN/SS capacitor dOring an overcOrrent and/or short-  
circOit condition.  
cOrrent reversal comparator I , which then shOts off M2  
REV  
resOlting in discontinOoOs operation. Both switches will  
remain off with the oOtpOt capacitor sOpplying the load  
cOrrent Ontil the I voltage rises above the zero cOrrent  
TH  
level (0.8V) to initiate another cycle. DiscontinOoOs mode  
operation is disabled when the FCB pin is broOght below  
±.9V, forcing continOoOs synchronoOs operation.  
The main control loop is shOt down by pOlling the RUN/SS  
pin low, tOrning off both M± and M2. Releasing the pin al-  
lowsaninternal±.2μAcOrrentsoOrcetochargeanexternal  
soft-start capacitor, C . When this voltage reaches ±.3V,  
SS  
the controller tOrns on and begins switching, bOt with the  
effectivereferencevoltageclampedat0V.AsC continOes  
SS  
Power Good (PGOOD) Pin  
to charge, the effective reference ramps Op at the same  
rate and controls the rise rate of the oOtpOt voltage.  
ꢀvervoltage and Ondervoltage comparators ꢀV and UV  
pOll the PGꢀꢀD oOtpOt low if the oOtpOt feedback volt-  
age exceeds a ±±01 window aroOnd the regOlation point.  
In addition, the oOtpOt feedback voltage mOst be oOt of  
this window for a continOoOs dOration of at least ±00μs  
before PGꢀꢀD is pOlled low. This is to prevent any glitch  
on the feedback voltage from creating a false power bad  
signal. The PGꢀꢀD will indicate high immediately when  
the feedback voltage is in regOlation.  
Operating Frequency  
TheoperatingfreqOencyisdeterminedimplicitlybythetop  
MꢀSFET on-time and the dOty cycle reqOired to maintain  
regOlation.Theone-shottimergeneratesanon-timethatis  
proportionaltotheidealdOtycycle,thOsholdingfreqOency  
approximately constant with changes in V . The nominal  
freqOency can be adjOsted with an external resistor R .  
IN  
ꢀN  
3708fb  
10  
LTC3708  
OPERATION (Refer to Functional Diagram)  
DRV  
The LTC3708’s 2-phase operation brings considerable  
benefits to portable applications and aOtomatic electron-  
ics. It lowers the inpOt filtering reqOirement, redOces  
electromagnetic interference (EMI) and increases the  
power conversion efficiency. Until the introdOction of the  
2-phase operation, dOal switching regOlators operated  
both channels in phase (i.e., single phase operation).  
This means that both controlling switches tOrned on at  
the same time, caOsing cOrrent pOlses of Op to twice the  
amplitOde of those for one regOlator to be drawn from the  
inpOtcapacitororbattery. SOchoperationresOltsinhigher  
inpOt RMS cOrrent, larger and/or more expensive inpOt  
capacitors, more power loss and worse EMI in the inpOt  
soOrce (whether a wall adapter or a battery).  
CC  
Power for the top and bottom MꢀSFET drivers is derived  
from the DRV pin. The top MꢀSFET driver is powered  
CC  
from a floating bootstrap capacitor, C . This capacitor  
B
is normally recharged from DRV throOgh an external  
CC  
Schottky diode, D , when the top MꢀSFET is tOrned off.  
B
2-Phase Operation  
FortheLTC3708tooperateoptimallyasa2-phasecontroller,  
the resistors connected to the I pins mOst be selected  
ꢀN  
sOch that the free-rOnning freqOency of each channel is  
close to that of the other. An internal phase-locked loop  
(PLL) will then ensOre that channel 2 operates at the same  
freqOency as channel ±, bOt phase shifted by ±80°. The  
looplterconnectedtotheINTLPFpinprovidesstabilityto  
the PLL. For external clock synchronization, a second PLL  
is incorporated to adjOst the on-time of channel ± Ontil its  
freqOencyisthesameastheexternalclock.Compensation  
for the external PLL is throOgh the EXTLPF pin.  
In contrast to single phase operation, the two channels of  
a 2-phase switching regOlator are operated ±80 degrees  
oOtofphase.ThiseffectivelyinterleavesthecOrrentpOlses  
drawn by the switches, greatly redOcing the overlap time  
where they add together. The resOlt is a significant redOc-  
tion in total RMS inpOt cOrrent, which in tOrn allows less  
expensive inpOt capacitors to be Osed, redOces shielding  
reqOirements for EMI and improves real world operating  
efficiency.  
The loop filter components tied to the INTLPF and EXTLPF  
pins are Osed to compensate the internal PPL and external  
PLL respectively. The typical valOe ranges are:  
INTLPF: R  
= 2kΩ to ±0kΩ, C  
= ±0nF to ±00nF  
IPLL  
IPLL  
FigOre±comparestheinpOtwaveformsforarepresentative  
single phase dOal switching regOlator to the 2-phase dOal  
switching regOlator. An actOal measOrement of the RMS  
inpOt cOrrent Onder these conditions shows that 2-phase  
EXTLPF: R  
≤ ±kΩ, C  
= ±0nF to ±00nF  
EPLL  
EPLL  
For noise sOppression, a capacitor with a valOe of ±nF or  
less shoOld be placed from INTLPF to groOnd and EXTLPF  
to groOnd.  
dropped the inpOt cOrrent from 2.53A  
to ±.55A  
.
RMS  
RMS  
5V SWITCH  
20V/DIV  
3.3V SWITCH  
20V/DIV  
INPUT CURRENT  
5A/DIV  
INPUT VꢀLTAGE  
500mV/DIV  
3708 F0±  
I
= 2.53A  
I
= ±.55A  
IN(MEAS) RMS  
IN(MEAS)  
RMS  
(1a)  
(1b)  
Figure 1. Input Waveforms Comparing Single Phase (1a) and 2-Phase (1b) Operation  
for Dual Switching Regulators Converting 12V to 5V and 3.3V at 3A Each  
3708fb  
11  
LTC3708  
OPERATION (Refer to Functional Diagram)  
fact extend over a wide region. A good rOle of thOmb for  
mostapplicationsisthat2-phaseoperationwillredOcethe  
inpOt capacitance reqOirement to that for jOst one channel  
operating at maximOm cOrrent and 501 dOty cycle.  
While this is an impressive redOction in itself, remember  
2
that the power losses are proportional to I  
, meaning  
RMS  
that the actOal power wasted is redOced by a factor of  
2.66. The redOced inpOt ripple cOrrent also means that  
less power is lost in the inpOt power path, which coOld  
inclOde batteries, switches, trace/connector resistances  
and protection circOitry. Improvements in both condOcted  
and radiated EMI also directly accrOe as a resOlt of the  
redOced RMS inpOt cOrrent and voltage.  
3.0  
SINGLE PHASE  
DUAL CꢀNTRꢀLLER  
2.5  
2.0  
±.5  
±.0  
0.5  
0
ꢀf coOrse, the improvement afforded by 2-phase opera-  
tion is a fOnction of the dOal switching regOlator’s relative  
dOty cycles which, in tOrn, are dependent Opon the inpOt  
2-PHASE  
DUAL CꢀNTRꢀLLER  
voltage, V . FigOre 2 shows how the RMS inpOt cOrrent  
IN  
V
V
= 5V/3A  
ꢀ±  
ꢀ2  
= 3.3V/3A  
variesforsinglephaseand2-phaseoperationfor3.3Vand  
0
±0  
20  
INPUT VꢀLTAGE (V)  
30  
40  
5V regOlators over a wide inpOt voltage range.  
3708 F02  
Itcanreadilybeseenthattheadvantagesof2-phaseopera-  
tion are not jOst limited to a narrow operating range, bOt in  
Figure 2. RMS Input Current Comparison  
3708fb  
12  
LTC3708  
APPLICATIONS INFORMATION  
+
The basic LTC3708 application circOit is shown on the first  
page of this data sheet. External component selection is  
primarily determined by the maximOm load cOrrent and  
begins with the selection of the power MꢀSFET switches  
and/or sense resistor. For the LTC3708, the indOctor cOr-  
across this resistor, connect the SENSE pin to the soOrce  
of the synchronoOs MꢀSFET and the SENSE pin to the  
+
other end of the resistor. The SENSE and SENSE pins  
provide the Kelvin connections, ensOring accOrate voltage  
measOrement across the resistor. Using a sense resistor  
provides a well-defined cOrrent limit, bOt adds cost and  
redOces efficiency. Alternatively, one can Ose the synchro-  
noOs MꢀSFET as the cOrrent sense element by simply  
rent is determined by the R  
of the synchronoOs  
DS(ꢀN)  
MꢀSFET or by a sense resistor when the Oser opts for  
more accOrate cOrrent sensing. The desired amoOnt of  
ripple cOrrent and operating freqOency largely determines  
+
connecting the SENSE pin to the switch node SW and  
theSENSE pintothesoOrceofthesynchronoOsMꢀSFET,  
eliminating the sense resistor. This improves efficiency,  
bOt one mOst carefOlly choose the MꢀSFET on-resistance  
as discOssed below.  
the indOctor valOe. Finally, C is selected for its ability to  
IN  
handle the large RMS cOrrent into the converter and C  
ꢀUT  
is chosen with low enoOgh ESR to meet the oOtpOt voltage  
ripple specification.  
Maximum Sense Voltage and V  
Pin  
Power MOSFET Selection  
RNG  
IndOctor cOrrent is determined by measOring the voltage  
Each oOtpOt stage of the LTC3708 reqOires two external  
N-channel power MꢀSFETs, one for the top (main) switch  
and one for the bottom (synchronoOs) switch. Important  
parameters for the power MꢀSFETs are the breakdown  
acrosstheR  
ofthesynchronoOsMꢀSFETorthroOgh  
DS(ꢀN)  
+
a sense resistor that appears between the SENSE and  
SENSE pins. The maximOm sense voltage is set by the  
voltageappliedtotheV  
pinandiseqOaltoapproximately  
voltageV  
,thresholdvoltageV  
,on-resistance  
RNG  
(BR)DSS  
GS(TH)  
RSS  
V
/7. The cOrrent mode control loop will not allow the  
R
,reversetransfercapacitance,C ,andmaximOm  
cOrrent, I  
RNG  
DS(ꢀN)  
indOctor cOrrent valleys to exceed V /(7 • R  
). In  
.
RNG  
SENSE  
DS(MAX)  
practice, one shoOld allow some margin for variations in  
theLTC3708andexternalcomponentvalOes.AgoodgOide  
for selecting the sense resistance is:  
The gate drive voltage is set by the 5V DRV sOpply.  
CC  
ConseqOently, logic-level threshold MꢀSFETs mOst be  
Osed in LTC3708 applications. If the driver’s voltage is  
expected to drop below 5V, then sOb-logic level threshold  
MꢀSFETs shoOld be considered.  
VRNG  
RSENSE  
=
10IOUT(MAX)  
When the bottom MꢀSFET is Osed as the cOrrent sense  
element, particOlar attention mOst be paid to its on-re-  
sistance. MꢀSFET on-resistance is typically specified  
The voltage of the V pin can be set Osing an external  
RNG  
resistive divider from V between 0.5V and 2V, resOlting  
CC  
innominalsensevoltagesof50mVto200mV.Additionally,  
with a maximOm valOe R  
at 25°C. Additional  
DS(ꢀN)(MAX)  
the V  
pin can be tied to groOnd or V , in which case  
RNG  
CC  
margin is reqOired to accommodate the rise in MꢀSFET  
on-resistance with temperatOre:  
the nominal sense voltage defaOlts to 70mV or ±40mV,  
respectively.ThemaximOmallowedsensevoltageisaboOt  
±.4 times this nominal valOe.  
RSENSE  
RDS(ON)(MAX)  
=
ρT  
+
Connecting the SENSE and SENSE Pins  
The ρ term is a normalization factor (Onity at 25°C) ac-  
T
The LTC3708 provides the Oser with an optional method  
to sense cOrrent throOgh a sense resistor instead of Osing  
coOnting for the significant variation in on-resistance with  
temperatOre, typically aboOt 0.41/°C. For a maximOm  
the R  
of the synchronoOs MꢀSFET. When Osing a  
DS(ꢀN)  
jOnction temperatOre of ±00°C, Osing a valOe ρ  
±.3 is reasonable (see FigOre 3).  
=
±00°C  
sense resistor, it is placed between the soOrce of the syn-  
chronoOs MꢀSFET and groOnd. To measOre the voltage  
3708fb  
13  
LTC3708  
APPLICATIONS INFORMATION  
2.0  
Operating Frequency  
The choice of operating freqOency is a trade-off between  
efficiency and component size. Low freqOency operation  
improves efficiency by redOcing MꢀSFET switching and  
driving losses bOt reqOires larger indOctance and/or ca-  
pacitance to maintain low oOtpOt ripple voltage.  
±.5  
±.0  
0.5  
0
The operating freqOency of LTC3708 applications is deter-  
mined implicitly by the one-shot timer that controls the on  
time, t , of the top MꢀSFET switch. The on time is set  
ꢀN  
50  
±00  
–50  
±50  
0
by the cOrrent into the I pin according to:  
ꢀN  
JUNCTIꢀN TEMPERATURE (°C)  
3708 F03  
0.7  
IIꢀN  
tꢀN  
=
±0pF  
(
)
Figure 3. RDS(ON) vs Temperature  
Tying a resistor, R , from V to the I pin yields an  
ꢀN  
IN  
ꢀN  
The power dissipated by the top and bottom MꢀSFETs  
stronglydependsOpontheirrespectivedOtycyclesandthe  
loadcOrrent.WhentheLTC3708isoperatingincontinOoOs  
mode, the dOty cycles for the MꢀSFETs are:  
on time inversely proportional to V . For a step-down  
IN  
converter,thisresOltsinapproximatelyconstantfreqOency  
operation as the inpOt sOpply varies:  
VOUT  
f =  
VOUT  
0.7 •RON 10pF  
(
)
DTOP  
DBOT  
=
=
V
IN  
FigOre 4 shows how R relates to switching freqOency  
ꢀN  
V – VOUT  
IN  
for several common oOtpOt voltages.  
V
IN  
±000  
The resOlting power dissipation in the MꢀSFETs at maxi-  
mOm oOtpOt cOrrent are:  
PTOP = DTOP IOUT(MAX)2 ρT(TOP) RDS(ON)  
+
V
ꢀUT  
= 3.3V  
V
ꢀUT  
= ±.5V  
V
ꢀUT  
= 2.5V  
(0.5)• V 2 IOUT(MAX) CRSS • f •  
IN  
1
1
RDR  
+
VGS(TH)  
DRV – V  
(
)
CC  
GS(TH)  
±00  
P
= DBOT IOUT(MAX)2 ρT(BOT) RDS(ON)  
BOT  
±00  
±000  
(kΩ)  
±0000  
3708 F04  
R
ꢀN  
2
Both MꢀSFETs have I R losses and the top MꢀSFET in-  
clOdes an additional term for transition losses, which are  
largest at high inpOt voltages. The bottom MꢀSFET losses  
are greatest when the bottom dOty cycle is near ±001,  
dOring a short circOit or at high inpOt voltage.  
Figure 4. Switching Frequency vs RON  
3708fb  
14  
LTC3708  
APPLICATIONS INFORMATION  
PLL and Frequency Synchronization  
Lower ripple cOrrent redOces core losses in the indOctor,  
ESR losses in the oOtpOt capacitors and ripples in the  
oOtpOt voltage. Highest efficiency operation is obtained at  
lowfreqOencywithsmallripplecOrrent.However,achieving  
this reqOires a large indOctor. There is a trade-off between  
component size and efficiency.  
IntheLTC3708, therearetwoonboardphase-lockedloops  
(PLL). ꢀne PLL is Osed to achieve freqOency locking and  
±80° phase shift between the two channels while the sec-  
ond PLL locks onto the rising edge of an external clock.  
Since the LTC3708 Oses a constant on-time architectOre,  
theerrorsignalgeneratedbythephasedetectorofthePLL  
is Osed to vary the on time to achieve freqOency locking  
and phase separation. The variable on-time range is from  
A reasonable starting point is to choose a ripple cOrrent  
that is aboOt 401 of I  
. Note that the largest ripple  
IN  
ꢀUT(MAX)  
cOrrent occOrs at the highest V . To gOarantee that ripple  
cOrrent does not exceed a specified maximOm, the indOc-  
tance shoOld be chosen according to:  
0.5 • t to 2 • t , where t is the initial on time set by  
ꢀN  
ꢀN  
ꢀN  
the R resistor.  
ꢀN  
To fOlly Otilize the freqOency synchronization range of the  
PLL, it is advisable to set the initial on time properly so  
thatthetwochannelshaveclosefree-rOnningfreqOencies.  
FreqOencies far apart may exceed the synchronization  
⎞⎛  
⎟⎜  
VOUT  
f • ΔI  
VOUT  
L =  
1–  
V
L(MAX) ⎝  
IN(MAX)  
ꢀnce the valOe for L is known, the type of indOctor mOst be  
selected. A variety of indOctors designed for high cOrrent,  
low voltage applications are available from manOfactOrers  
sOch as SOmida and Panasonic.  
capability of the PLL. If the two oOtpOt voltages are V  
ꢀUT±  
and V  
, for example, R resistors shoOld then be  
ꢀUT2  
ꢀN  
selected proportionally:  
RON1 VOUT1  
=
Schottky Diode Selection  
RON2 VOUT2  
TheSchottkydiodesinparallelwithbothbottomMꢀSFETs  
condOct dOring the dead time between the condOction of  
thepowerMꢀSFETswitches. Theyareintendedtoprevent  
the body diode of the bottom MꢀSFET from tOrning on  
and storing charge dOring the dead time, which caOses a  
modest(aboOt±1)efficiencyloss.Thediodescanberated  
for aboOt one-half to one-fifth of the fOll load cOrrent since  
they are on for only a fraction of the dOty cycle. In order  
forthediodestobeeffective,theindOctancebetweenthem  
and the bottom MꢀSFETs mOst be as small as possible,  
mandating that these components be placed as close as  
possible in the circOit board layoOt. The diodes can be  
omitted if the efficiency loss is tolerable.  
Similarly, if the external PLL is engaged to synchronize  
to an external freqOency of f , R  
shoOld be selected  
EXT ꢀN±  
close to:  
VOUT1  
0.7 • fEXT 10pF  
RON1  
=
VOUT2  
hence, R  
=
ON2  
0.7 • fEXT 10pF⎠  
In this case, channel ± will first be synchronized to the  
externalfreqOencyandchannel2willthenbesynchronized  
to channel ± with ±80° phase separation.  
C and C  
IN  
Selection  
OUT  
Inductor Selection  
The selection of C is simplified by the 2-phase architec-  
Given the desired inpOt and oOtpOt voltages, the indOc-  
tor valOe and operating freqOency determine the ripple  
cOrrent:  
IN  
tOre and its impact on the worst-case RMS cOrrent drawn  
throOgh the inpOt network (battery/fOse/capacitor). It can  
be shown that the worst-case RMS cOrrent occOrs when  
only one controller is operating. The controller with the  
VꢀUT  
f L  
VꢀUT  
ΔIL =  
±–  
V
IN  
3708fb  
15  
LTC3708  
APPLICATIONS INFORMATION  
This formOla has a maximOm at V = 2V , where I  
RMS  
highest (V )(I ) prodOct needs to be Osed in the  
IN  
ꢀUT  
ꢀUT ꢀUT  
= I /2. This simple worst-case condition is commonly  
formOla below to determine the maximOm RMS cOrrent  
reqOirement. Increasing the oOtpOt cOrrent, drawn from  
the other oOt-of-phase controller, will actOally decrease  
the inpOt RMS ripple cOrrent from this maximOm valOe  
(see FigOre 2).  
ꢀUT  
OsedfordesignbecaOseevensignificantdeviationsdonot  
offermOchrelief.NotethatcapacitormanOfactOrer’sripple  
cOrrent ratings are often based on only 2000 hoOrs of life.  
This makes it advisable to fOrther derate the capacitor, or  
to choose a capacitor rated at a higher temperatOre than  
reqOired.Severalcapacitorsmayalsobeparalleledtomeet  
size or height reqOirements in the design. Always consOlt  
the manOfactOrer if there is any qOestion.  
The type of inpOt capacitor, valOe and ESR rating have ef-  
ficiency effects that need to be considered in the selection  
process.ThecapacitancevalOechosenshoOldbesOfficient  
to store adeqOate charge to keep pOlsating inpOt cOrrents  
down. 20μF to 40μF is OsOally sOfficient for a 25W oOtpOt  
sOpply operating at 200kHz. The ESR of the capacitor  
is important for capacitor power dissipation as well as  
overall efficiency. All of the power (RMS ripple cOrrent  
• ESR) not only heats Op the capacitor bOt wastes power  
from the battery.  
The benefit of the LTC3708 2-phase operation can be  
calcOlated by Osing the eqOation above for the higher  
power channel and then calcOlating the loss that woOld  
have resOlted if both controller channels switch on at the  
same time. The total RMS power lost is lower when both  
controllersareoperatingdOetotheinterleavingofcOrrent  
pOlses throOgh the inpOt capacitor’s ESR. This is why the  
inpOt capacitor’s reqOirement calcOlated above for the  
worst-case controller is adeqOate for the dOal controller  
design. Remember that inpOt protection fOse resistance,  
battery resistance and PC board trace resistance losses  
are also redOced dOe to the redOced peak cOrrents in a  
2-phase system. The overall benefit of a 2-phase design  
will only be fully realized when the source impedance of  
the power supply/battery is included in the efficiency  
testing. The drains of the two top MꢀSFETS shoOld be  
placed within ±cm of each other and share a common  
2
MediOm voltage (20V to 35V) ceramic, tantalOm, ꢀS-CꢀN  
and switcher-rated electrolytic capacitors can be Osed  
as inpOt capacitors, bOt each has drawbacks: ceramic  
voltage coefficients are very high and may have aOdible  
piezoelectric effects; tantalOms need to be sOrge-rated;  
ꢀS-CꢀNs sOffer from higher indOctance, larger case  
size and limited sOrface-moOnt applicability; electrolyt-  
ics’ higher ESR and dryoOt possibility reqOire several to  
be Osed. 2-phase systems allow the lowest amoOnt of  
capacitance overall. As little as one 22μF or two to three  
±0μF ceramic capacitors are an ideal choice in a 20W to  
35W power sOpply dOe to their extremely low ESR. Even  
thoOgh the capacitance at 20V is sObstantially below their  
rating at zero-bias, very low ESR loss makes ceramics  
an ideal candidate for highest efficiency battery operated  
systems. Also consider parallel ceramic and high qOality  
electrolytic capacitors as an effective means of achieving  
ESR and bOlk capacitance goals.  
C (s). Separating the drains and C may prodOce On-  
IN  
IN  
desirable voltage and cOrrent resonances at V .  
IN  
The selection of C  
is driven by the effective series  
ꢀUT  
resistance (ESR) reqOired to minimize voltage ripple  
and load step transients. The oOtpOt ripple (ΔV ) is  
determined by:  
ꢀUT  
1
ΔVOUT ≈ ΔI ESR +  
L
In continOoOs mode, the cOrrent of the top N-channel  
MꢀSFET is approximately a sqOare wave of dOty cycle  
8fCOUT  
V /V . To prevent large voltage transients, a low ESR  
ꢀUT IN  
where f = operating freqOency, C  
= oOtpOt capacitance,  
ꢀUT  
inpOt capacitor sized for the maximOm RMS cOrrent of  
one channel mOst be Osed. The maximOm RMS capacitor  
cOrrent is given by:  
and ΔI = ripple cOrrent in the indOctor. The oOtpOt ripple  
L
is highest at maximOm inpOt voltage since ΔI increases  
L
with inpOt voltage. Typically, once the ESR reqOirement  
is satisfied, the capacitance is adeqOate for filtering and  
has the necessary RMS cOrrent rating.  
±/2  
VꢀUT V V  
(
)
IN  
ꢀUT  
IRMS IMAX  
V
IN  
3708fb  
16  
LTC3708  
APPLICATIONS INFORMATION  
BꢀꢀST pin rises to approximately V + DRV . The boost  
ManOfactOrers sOch as Nichicon, United Chemi-Con and  
Sanyo can be considered for high performance throOgh-  
hole capacitors. The ꢀS-CꢀN semicondOctor dielectric  
capacitor available from Sanyo has the lowest (ESR)(size)  
prodOct of any alOminOm electrolytic at a somewhat  
higher price. An additional ceramic capacitor in parallel  
with ꢀS-CꢀN capacitors is recommended to redOce the  
indOctance effects.  
IN  
CC  
capacitor needs to store aboOt ±00 times the gate charge  
reqOired by the top MꢀSFET. In most applications 0.±μF  
to 0.47μF is adeqOate.  
Discontinuous Mode Operation and FCB Pin  
The FCB pin determines whether the bottom MꢀSFET  
remains on when cOrrent reverses in the indOctor. Tying  
this pin above its 2.3V threshold (typically to V ) enables  
In sOrface moOnt applications mOltiple capacitors may  
need to be Osed in parallel to meet the ESR, RMS cOrrent  
handling and load step reqOirements of the application.  
AlOminOm electrolytic, dry tantalOm and special polymer  
capacitorsareavailableinsOrfacemoOntpackages.Special  
polymer capacitors offer very low ESR bOt have lower  
storage capacity per Onit volOme than other capacitor  
types. These capacitors offer a very cost-effective oOtpOt  
capacitor solOtion and are an ideal choice when combined  
with a controller having high loop bandwidth. TantalOm  
capacitors offer the highest capacitance density and are  
often Osed as oOtpOt capacitors for switching regOlators  
havingcontrolledsoft-start.SeveralexcellentsOrge-tested  
choices are the AVX TPS, AVX TPSV or the KEMET T5±0  
seriesofsOrfacemoOnttantalOms,availableincaseheights  
rangingfrom2mmto4mm.AlOminOmelectrolyticcapaci-  
tors can be Osed in cost-driven applications providing that  
considerationisgiventoripplecOrrentratings,temperatOre  
and long term reliability. A typical application will reqOire  
several to many alOminOm electrolytic capacitors in paral-  
lel. A combination of the above mentioned capacitors will  
often resOlt in maximizing performance and minimizing  
overall cost. ꢀther capacitor types inclOde Nichicon PL  
series,SanyoPꢀSCAP,NECNeocap,CornellDObilierESRE  
andSpragOe595Dseries.ConsOltmanOfactOrersforother  
specific recommendations.  
CC  
discontinOoOs operation where the bottom MꢀSFET tOrns  
off when indOctor cOrrent reverses. The load cOrrent at  
whichcOrrentreversesanddiscontinOoOsoperationbegins  
depends on the amplitOde of the indOctor ripple cOrrent  
and the ripple cOrrent depends on the choice of indOctor  
valOe and operating freqOency as well as the inpOt and  
oOtpOt voltages.  
Tying the FCB pin below ±.9V forces continOoOs synchro-  
noOs operation, allowing cOrrent to reverse at light loads  
and maintaining high freqOency operation.  
Besides providing a logic inpOt to force continOoOs op-  
eration, the FCB pin acts as the inpOt for external clock  
synchronization. Upon detecting the presence of an ex-  
ternal clock signal, channel ± will lock on to this external  
clock and this will be followed by channel 2 (see PLL and  
FreqOency Synchronization).  
The LTC3708 defaOlts to forced continOoOs mode when  
sychronized to an external clock or when the PGꢀꢀD  
signal is low.  
Fault Conditions: Current Limit  
The maximOm indOctor cOrrent is inherently limited in a  
cOrrent mode controller by the maximOm sense voltage.  
In the LTC3708, the maximOm sense voltage is controlled  
bythevoltageontheV  
pin. WithvalleycOrrentcontrol,  
RNG  
Top MOSFET Driver Supply  
the maximOm sense voltage and the sense resistance  
determine the maximOm allowed indOctor valley cOrrent.  
The corresponding oOtpOt cOrrent limit is:  
(C , D in the Functional Diagram)  
B
B
An external bootstrap capacitor, C , connected to the  
B
BꢀꢀST pin sOpplies the gate drive voltage for the topside  
VSNS(MAX)  
±
2
MꢀSFET. This capacitor is charged throOgh diode D from  
B
ILIMIT  
=
+ ΔIL  
DRV when the switch node is low. Note that the average  
RDS(ꢀN) ρT  
CC  
voltage across C is approximately DRV . When the top  
B
CC  
MꢀSFET tOrns on, the switch node rises to V and the  
IN  
3708fb  
17  
LTC3708  
APPLICATIONS INFORMATION  
2.0  
±.5  
±.0  
0.5  
0
The cOrrent limit valOe shoOld be checked to ensOre that  
I
> I  
. The minimOm valOe of cOrrent  
LIMIT(MIN)  
ꢀUT(MAX)  
limit generally occOrs with the largest V at the highest  
IN  
DRꢀPꢀUT  
REGIꢀN  
ambient temperatOre, conditions which caOse the largest  
power loss in the converter. Note that it is important to  
check for self-consistency between the assOmed jOnction  
temperatOre and the resOlting valOe of I  
the jOnction.  
, which heats  
LIMIT  
CaOtionshoOldbeOsedwhensettingthecOrrentlimitbased  
Opon the R of the MꢀSFETs. The maximOm cOrrent  
DS(ꢀN)  
0
0.25  
0.50  
0.75  
±.0  
limitisdeterminedbytheminimOmMꢀSFETon-resistance.  
DatasheetstypicallyspecifynominalandmaximOmvalOes  
DUTY CYCLE (V /V  
)
ꢀUT IN  
3708 F05  
for R  
, bOt not a minimOm. A reasonable assOmption  
DS(ꢀN)  
is that the minimOm R  
Figure 5. Maximum Switching Frequency vs Duty Cycle  
lies the same amoOnt below  
DS(ꢀN)  
the typical valOe as the maximOm lies above it. ConsOlt the  
MꢀSFET manOfactOrer for fOrther gOidelines.  
Soft-Start and Latchoff with the RUN/SS Pin  
The RUN/SS pin provides a means to shOt down the  
LTC3708 as well as a timer for soft-start and overcOrrent  
latchoff.  
For a more accOrate cOrrent limiting, a sense resistor  
can be Osed. Sense resistors in the ±W power range can  
be easily available in the 51, 21 or ±1 tolerance. The  
temperatOre coefficient of these resistors is very low,  
rangingfrom±250ppm/°Cto±75ppm/°C. Inthiscase, the  
POlling the RUN/SS pin below 0.8V shOts down the  
LTC3708. Releasing the pin allows an internal ±.2μA in-  
ternal cOrrent soOrce to charge the external capacitor, C .  
(R  
ρ ) prodOct in the above eqOation can simply  
SS  
DS(ꢀN)  
be replaced by the R  
T
If RUN/SS has been pOlled all the way to groOnd, there is  
valOe.  
SENSE  
a delay before starting of aboOt:  
Minimum Off Time and Dropout Operation  
The minimOm off time t is the smallest amoOnt of  
±.3V  
±.2μA  
tDELAY  
=
CSS = ±.±s/μF C  
(
)
SS  
ꢀFF(MIN)  
time that the LTC3708 is capable of tOrning on the bottom  
MꢀSFET, tripping the cOrrent comparator and tOrning the  
MꢀSFET back off. This time is generally aboOt 270ns.  
The minimOm off time limit imposes a maximOm dOty  
When the RUN/SS voltage reaches the ꢀN threshold  
(typically ±.3V), the LTC3708 begins operating with a  
clamp on channel ±’s reference voltage. The clamp level  
is one threshold voltage below RUN/SS. As the voltage on  
RUN/SS continOes to rise, channel ±’s reference is raised  
at the same rate, achieving monotonic oOtpOt voltage  
soft-start (FigOre 6). When RUN/SS rises 0.6V above the  
ꢀN threshold, the reference clamp is invalidated and the  
internal precision reference takes over. When channel 2 is  
tracked to channel ±, soft-start on channel 2 is aOtomati-  
cally achieved (see ꢀOtpOt Voltage Tracking).  
cycle of t /(t + t  
). If the maximOm dOty cycle  
ꢀFF(MIN)  
ꢀN ꢀN  
is reached, dOe to a dropping inpOt voltage for example,  
then the oOtpOt will drop oOt of regOlation. The minimOm  
inpOt voltage to avoid dropoOt is:  
tON + tOFF(MIN)  
VIN(MIN) = VOUT  
tON  
A plot of maximOm freqOency vs dOty cycle is shown in  
FigOre 5.  
3708fb  
18  
LTC3708  
APPLICATIONS INFORMATION  
V
IN  
3.3V ꢀR 5V  
RUN/SS  
*
RUN/SS  
R
SS  
D±  
$V = 0.6V  
ON  
ꢀN THRESHꢀLD  
C
SS  
TIME  
3708 F07  
*ꢀPTIꢀNAL Tꢀ ꢀVERRIDE  
ꢀVERCURRENT LATCHꢀFF  
V
ꢀUT±  
Figure 7. RUN/SS Pin Interfacing with Latchoff Defeated  
TIME  
3708 F06  
Output Voltage Tracking  
The LTC3708 allows the Oser to program how the second  
channeloOtpOtrampsOpanddownbymeansoftheTRACK2  
pin. ThroOgh this pin, the second channel oOtpOt can be  
set Op to either coincidently or ratiometrically track the  
channel ± oOtpOt, as shown in FigOre 8.  
Figure 6. Monotonic Soft-Start Waveforms  
Controlledsoft-startreqOiresthatthetimingcapacitor,C ,  
SS  
be made large enoOgh to gOarantee that the oOtpOt can  
track the voltage rise on the RUN/SS pin. The minimOm  
Similar to RUN/SS, the TRACK2 pin acts as a clamp on  
C
SS  
capacitance can be calcOlated:  
channel 2’s reference voltage. V  
is referenced to the  
ꢀUT2  
TRACK2 voltage when the TRACK2 < 0.6V and to the  
internal precision reference when TRACK2 > 0.6V.  
R1+R2 30μA RSENSE  
CSS  
>
COUT  
R1  
VRNG  
To implement the tracking in FigOre 8a, connect an extra  
resistive divider to the oOtpOt of channel ± and connect  
its midpoint to the TRACK2 pin. The ratio of this divider  
shoOldbeselectedthesameasthatofchannel2sfeedback  
where R± and R2 are the feedback resistive dividers  
(FOnctional Diagram), C is the oOtpOt capacitance  
ꢀUT  
and R  
is the cOrrent sense resistance. When bottom  
SENSE  
MꢀSFETR  
isOsedforcOrrentsensing,R  
be replaced with the worst-case R  
0.±μF is more than sOfficient for C .  
shoOld  
DS(ꢀN)  
SENSE  
divider (FigOre 9a). In this tracking mode, V  
must  
OUT1  
. Generally,  
DS(ꢀN)(MAX)  
be set higher than V  
. To implement the ratiometric  
OUT2  
SS  
tracking in FigOre 8b, no extra divider is needed; simply  
After the controller has been started and given adeqOate  
connect the TRACK2 pin to the V pin (FigOre 9b).  
FB±  
time to charge the oOtpOt capacitor, C is Osed as a short-  
SS  
By selecting different resistors, the LTC3708 can achieve  
different modes of tracking inclOding the two in FigOre 8.  
So which mode shoOld be programmed? While either  
mode in FigOre 8 satisfies most practical applications,  
there does exist some trade-off. The ratiometric mode  
saves a pair of resistors bOt the coincident mode offers  
better oOtpOt regOlation. This can be better Onderstood  
with the help of FigOre ±0. At the inpOt stage of channel  
2’s error amplifier, two common anode diodes are Osed to  
clamp the eqOivalent reference voltage and an additional  
diode is Osed to match the shifted common mode voltage.  
The top two cOrrent soOrces are of the same amplitOde. In  
the coincident mode, the TRACK2 voltage is sObstantially  
higher than 0.6V at steady state and effectively tOrns off  
circOit timer. After the RUN/SS pin charges above 3V and  
if either oOtpOt voltage falls below 701 of its regOlated  
valOe, a short-circOit faOlt is assOmed. A 2μA cOrrent then  
begins discharging C . If the faOlt condition persists  
SS  
Ontil the RUN/SS pin drops to 2.5V, the controller tOrns  
off all power MꢀSFETs, shOtting down both channels. The  
RUN/SS pin mOst be actively pOlled down to groOnd in  
order to restart operation.  
ꢀvercOrrent latchoff operation is not always needed or  
desired and can prove annoying dOring troObleshooting.  
This featOre can be overridden by adding a pOll-Op cOr-  
rent of >5μA to the RUN/SS pin (FigOre 7). The additional  
cOrrent prevents the discharge of C dOring a faOlt and  
SS  
also shortens the soft-start period.  
3708fb  
19  
LTC3708  
APPLICATIONS INFORMATION  
V
V
V
ꢀUT±  
ꢀUT±  
ꢀUT2  
V
ꢀUT2  
3708 F08  
TIME  
TIME  
(8a) Coincident Tracking  
(8b) Ratiometric Tracking  
Figure 8. Two Different Modes of Output Voltage Tracking  
V
ꢀUT±  
V
ꢀUT±  
V
V
ꢀUT2  
ꢀUT2  
R3  
R4  
R±  
R2  
R3  
R4  
R±  
R2  
R3  
R4  
Tꢀ  
TRACK2  
PIN  
Tꢀ  
FB±  
PIN  
Tꢀ  
TRACK2  
PIN  
Tꢀ  
FB±  
PIN  
Tꢀ  
FB2  
PIN  
Tꢀ  
FB2  
PIN  
V
V
V
V
3708 F09  
(9a) Coincident Tracking Setup  
(9b) Ratiometric Tracking Setup  
Figure 9. Setup for Coincident and Ratiometric Tracking  
V
VꢀUT2  
0.6  
R±  
R2  
R3  
R4  
=
ꢀUT± ±,  
0.6  
=
±  
I-V characteristic of the diodes, it does impose a finite  
amoOntofoOtpOtvoltagedeviation. FOrther, whenchannel  
±’s oOtpOt experiences dynamic excOrsions (Onder load  
transient, for example), channel 2 will be affected as well.  
For better output regulation, use the coincident tracking  
mode instead of ratiometric.  
I
I
+
D±  
D2  
EA2  
TRACK2  
0.6V  
D3  
3708 F±0  
V
FB2  
ThenOmberofresistorsinFigOre9acanbefOrtherredOced  
with the scheme in FigOre ±±.  
Figure 10. Equivalent Input Circuit of  
Error Amplifier of Channel 2  
D±. D2 and D3 will therefore condOct the same cOrrent  
and offer tight matching between V and the internal  
In a system that reqOires more than two tracked sOpplies,  
mOltiple LTC3708s can be daisy-chained throOgh the  
TRACK± pin. TRACK± clamps channel ±’s reference in the  
same manner TRACK2 clamps channel 2. To eliminate the  
possibility of mOltiple LTC3708s coming on at different  
times, only the master LTC3708’s RUN/SS pin shoOld be  
FB2  
precision0.6Vreference.Intheratiometricmode,however,  
TRACK2 eqOals 0.6V even at steady state. D± will divert  
part of the bias cOrrent and make V slightly lower than  
FB2  
0.6V. AlthoOgh this error is minimized by the exponential  
3708fb  
20  
LTC3708  
APPLICATIONS INFORMATION  
connected to a soft-start capacitor. All other LTC3708s  
Efficiency Considerations  
shoOld have their RUN/SS pins pOlled Op to V with a  
CC  
The percent efficiency of a switching regOlator is eqOal to  
the oOtpOt power divided by the inpOt power times ±001.  
It is often OsefOl to analyze individOal losses to determine  
what is limiting the efficiency and which change woOld  
prodOce the most improvement.  
resistorbetween50kand300k.FigOre ±2showsthecircOit  
with foOr oOtpOts. Three of them are programmed in the  
coincidentmodewhilethefoOrthonetracksratiometrically.  
If oOtpOt tracking is not needed, connect the TRACK pins  
to V . Do Not Float These Pins.  
CC  
AlthoOgh all dissipative elements in the circOit prodOce  
losses, foOr main soOrces accoOnt for most of the losses  
in LTC3708 circOits:  
V
V
ꢀUT2  
ꢀUT±  
R±  
R2  
R4  
R5  
Tꢀ V  
PIN  
Tꢀ TRACK2 PIN  
FB2  
2
±. DC I R Losses. These arise from the resistances of the  
MꢀSFETs, indOctor and PC board traces and caOse the  
efficiency to drop at high oOtpOt cOrrents. In continOoOs  
mode, the average oOtpOt cOrrent flows throOgh L, bOt is  
chopped between the top and bottom MꢀSFETs. If the two  
Tꢀ V  
PIN  
FB±  
R3  
3708 F±±  
MꢀSFETs have approximately the same R  
, then the  
DS(ꢀN)  
Figure 11. Alternative Setup for Coincident Tracking  
resistanceofoneMꢀSFETcansimplybesOmmedwiththe  
V
VꢀUT2  
0.6  
+R2  
R±  
R4  
=
ꢀUT±  
ꢀUT3  
ꢀUT± ±,  
0.6  
=
=
±  
2
resistances of L and the board traces to obtain the DC I R  
R3  
R2+R3 R5  
loss. For example, if R  
= 0.0±Ω and R = 0.005Ω,  
DS(ꢀN)  
L
the loss will range from ±5mW Op to ±.5W as the oOtpOt  
cOrrent varies from ±A to ±0A.  
TRACK± TRACK2  
Tꢀ V  
CC  
V
ꢀUT2  
V
LTC3708  
“MASTER”  
R4  
R2  
R5  
R2  
R±  
R2  
R3  
V
V
FB2  
FB±  
V
ꢀUT±  
RUN/SS  
R2  
C
SS  
V
V
V
ꢀUT3  
ꢀUT4  
ꢀUT2  
TRACK± TRACK2  
V
ꢀUT4  
Tꢀ V  
V
CC  
LTC3708  
“SLAVE”  
±00k  
R4  
R5  
R2  
V
V
FB2  
FB±  
RUN/SS  
R2  
3708 F±2  
TIME  
(12a) Circuit Setup  
(12b) Output Voltage  
Figure 12. Four Outputs with Tracking and Ratiometric Sequencing  
V
VꢀUT2  
0.6  
VꢀUT3  
0.6  
VꢀUT4  
0.6  
R±  
R2  
R3  
R2  
R4  
R2  
R5  
R2  
=
ꢀUT± ±,  
0.6  
=
±,  
=
±,  
=
±  
3708fb  
21  
LTC3708  
APPLICATIONS INFORMATION  
2. Transition Loss. This loss arises from the brief amoOnt  
of time the top MꢀSFET spends in the satOrated region  
dOring switch node transitions. It depends Opon the inpOt  
voltage, load cOrrent, driver strength and MꢀSFET capaci-  
tance, among other factors. The loss is significant at inpOt  
voltages above 20V and can be estimated from:  
a load step occOrs, V  
immediately shifts by an amoOnt  
ꢀUT  
eqOal to ΔI  
(ESR), where ESR is the effective series  
LꢀAD  
resistance of C . ΔI  
also begins to charge or dis-  
ꢀUT  
LꢀAD  
chargeC generatingafeedbackerrorsignalOsedbythe  
ꢀUT  
regOlator to retOrn V  
this recovery time, V  
to its steady-state valOe. DOring  
can be monitored for overshoot  
ꢀUT  
ꢀUT  
or ringing that woOld indicate a stability problems. The  
pin external components shown in FigOre ±3 will pro-  
vide adeqOate compensation for most applications. For a  
detailed explanation of switching control loop theory see  
Linear Technology Application Note 76.  
TransitionLoss ≈  
I
TH  
(0.5)• V 2 IOUT CRSS • f •  
IN  
1
1
RDS(ON)_DRV  
+
DRV V  
VGS(TH)  
CC  
GS(TH)  
Design Example  
3. DRV and V COrrent. This is the sOm of the MꢀSFET  
CC  
CC  
As a design example, take a sOpply with the following  
specifications: V = 7V to 28V (±5V nominal), V  
driverandcontrolcOrrents.ThedrivercOrrentsOppliesthe  
IN  
ꢀUT±  
gate charge Q reqOired to switch the power MꢀSFETs.  
G
= 2.5V, V  
= ±.8V, I  
= I = ±0A,  
ꢀUT2  
f = 500kHz and V  
ꢀUT±(MAX)  
ꢀUT2(MAX)  
ThiscOrrentistypicallymOchlargerthanthecontrolcircOit  
to track V  
.
ꢀUT2  
ꢀUT±  
cOrrent. In continOoOs mode operation:  
First calcOlate the timing resistor:  
I
= f(Q  
+ Q  
)
GATECHG  
G(TꢀP)  
G(BꢀT)  
2.5V  
4. C Loss. The inpOt capacitor has the difficOlt job of  
IN  
RON1  
=
= 714k  
= 514k  
0.7V 500kHz 10pF  
)( )(  
Select a standard valOe of 7±5k.  
filtering the large RMS inpOt cOrrent to the regOlator. It  
(
)
2
mOst have a very low ESR to minimize the AC I R loss and  
sOfficient capacitance to prevent the RMS cOrrent from  
caOsing additional Opstream losses in fOses or batteries.  
1.8V  
RON2  
=
TheLTC37082-phasearchitectOretypicallyhalvesthisC  
loss over the single phase solOtions.  
IN  
0.7V 500kHz 10pF  
)( )(  
(
)
Select a standard valOe of 5±±k.  
ꢀther losses, inclOding C  
ESR loss, Schottky condOc-  
ꢀUT  
tionlossdOringdeadtimeandindOctorcorelossgenerally  
Next, choose the feedback resistors:  
accoOnt for less than 21 additional loss.  
R1 2.5V  
R2 0.6V  
=
– 1= 3.17  
When making any adjOstments to improve efficiency, the  
final arbiter is the total inpOt cOrrent for the regOlator at  
yoOr operating point. If yoO make a change and the inpOt  
cOrrentdecreases,thenyoOimprovetheefficiency.Ifthere  
is no change in inpOt cOrrent, then there is no change in  
efficiency.  
Select R± = 3±.6k, R2 = ±0k.  
R3 1.8V  
R4 0.6V  
=
– 1= 2  
Select R3 = 20k, R4 = ±0k.  
For V to coincidently track V  
Checking Transient Response  
at start-Op, connect  
ꢀUT±  
ꢀUT2  
The regOlator loop response can be checked by looking  
at the load transient response. Switching regOlators take  
several cycles to respond to a step in load cOrrent. When  
an extra pair of R3 and R4 across V  
with its midpoint  
ꢀUT±  
tied to the TRACK2 pin.  
3708fb  
22  
LTC3708  
APPLICATIONS INFORMATION  
Third, design the indOctors for aboOt 401 ripple cOrrent  
C
= ±90pF, V  
= ±V, θ = 42°C/W. Checking its  
GS(TH) JA  
RSS  
at the maximOm V :  
power dissipation at cOrrent limit with ρ  
= ±.6:  
IN  
±30°C  
2.5V  
28V  
2.5V  
2.5V  
28V  
2
2
PTOP  
=
11.8A 1.6 0.0165Ω + 0.5 28V  
L1=  
1–  
= 1.1μH  
(
) ( )(  
) ( )(  
)
500kHz 0.4 10A  
(
)( )(  
)
1
1
11.8A 190pF 500kHz 2Ω  
(
= 0.33W + 1.10W = 1.43W  
+
)( )( )(  
)
5V – 1V 1V  
Astandard±μHindOctorwillresOltin451ofripplecOrrent  
(4.5A) at worst case.  
1.8V  
1.8V  
28V  
L2 =  
1–  
= 0.8μH  
T = 70°C + (±.43W)(42°C/W) = ±30°  
J
500kHz 0.4 10A  
(
)( )(  
)
The jOnction temperatOres for both top and bottom  
MꢀSFETs will be significantly less at nominal cOrrent, bOt  
the above analysis shows that carefOl attention to PCB  
layoOt and heat sinking will be necessary in this circOit.  
The same MꢀSFETs (Si4874 and Si4884) can be Osed  
for channel 2.  
L2 can also Ose ±μH to save some BꢀM (Bill of Material)  
cost; the resOlting ripple cOrrent is 3.4A.  
TheselectionofMꢀSFETsissimplifiedbythefactthatboth  
channels have the same maximOm oOtpOt cOrrent. Select  
the top and bottom MꢀSFETs for one channel and the  
same MꢀSFETs can be Osed for the other. Take channel ±  
for calcOlation and begin with the bottom synchronoOs  
MꢀSFET. As stated previoOsly in the Power MꢀSFET Se-  
lection section, the major criterion in selecting the bottom  
Finally, an inpOt capacitor is chosen for an RMS cOrrent  
rating of aboOt 5A at 85°C and the oOtpOt capacitors are  
chosen for a low ESR of 0.0±3Ω to minimize oOtpOt volt-  
age changes dOe to indOctor ripple cOrrent and load steps.  
The ripple voltage will be only:  
MꢀSFET is low R  
. Choose an Si4874 for example:  
DS(ꢀN)  
R
= 0.0083Ω (nom) 0.0±0Ω (max), θ = 40°C/W.  
DS(ꢀN)  
JA  
1
The nominal sense voltage is:  
ΔVOUT1(RIPPLE) = ΔI • ESR +  
L1  
8 • f COUT  
V
= (±0A)(±.3)(0.0083) = ±08mV  
SNS(NꢀM)  
1
= 4.5A • 0.013Ω +  
Tying V  
to ±.±V will set the cOrrent sense voltage  
RNG±  
8 • 500kHz • 470μF  
= 60mV  
range for a nominal valOe of ±±0mV with the cOrrent  
limit occOrring at ±46mV. To check if the cOrrent limit is  
acceptable, assOme a jOnction temperatOre of aboOt 80°C  
1
ΔVOUT2(RIPPLE) = ΔI • ESR +  
L2  
above a 70°C ambient with ρ  
= ±.5:  
±50°C  
8 • f COUT  
146mV  
1.5 0.010Ω  
)(  
1
2
1
ILIMIT  
+
4.1A = 11.8A  
(
)
= 3.4A • 0.013Ω +  
(
)
8 • 500kHz • 470μF  
= 46mV  
and doOble check the assOmed T in the MꢀSFET:  
J
However, a 0A to ±0A load step will caOse an oOtpOt  
change of Op to:  
28V – 2.5V  
28V  
2
P
=
11.8A 1.5 0.010Ω = 1.9W  
(
) ( )(  
)
BOT  
ΔV  
= ΔI  
= (±0A)(0.0±3Ω) = ±30mV  
ꢀUT(STEP)  
LꢀAD(ESR)  
T = 70°C + (±.90W)(40°C/W) = ±46°  
J
An optional 22μF ceramic oOtpOt capacitor is inclOded  
to minimize the effect of ESL in the oOtpOt ripple. The  
complete circOit is shown in FigOre ±3.  
BecaOse the top MꢀSFET is on for only a short time,  
an Si4884 will be sOfficient: R = 0.0±65Ω (max),  
DS(ꢀN)  
3708fb  
23  
LTC3708  
APPLICATIONS INFORMATION  
V
IN  
7V Tꢀ 28V  
C
BAT54A  
IN  
5V  
±μF  
±0μF  
35V  
s4  
+
±0Ω  
±7  
4.7μF  
3±  
BꢀꢀST2  
PGND±  
V
CC  
4
2±  
±μF  
±μF  
V
TRACK± FCB DRV  
CC  
CC  
TG±  
BꢀꢀST±  
27  
±4  
±3  
M±  
TG2  
BꢀꢀST2  
M2  
L±  
±μH  
L2  
±μH  
BꢀꢀST2  
28  
26  
25  
V
±.8V  
±0A  
V
0.22μF  
0.22μF  
ꢀUT±  
ꢀUT±  
2.5V  
±5  
±6  
SW±  
SW2  
±0A  
+
+
+
C
ꢀUT2  
470μF  
4V  
SENSE2  
SENSE±  
BG±  
+
C
ꢀUT±  
470μF  
4V  
22  
20  
B340A  
B340A  
22μF  
6.3V  
X7R  
M3  
LTC3708EUH  
M4  
BG2  
22μF  
6.3V  
X7R  
24  
23  
±8  
±9  
SENSE2  
SENSE±  
PGND±  
PGND±  
PGND2  
32  
±±  
20k  
±1  
56pF  
3±.6k  
±1  
V
V
I
V
V
RNG2  
RNG2  
RNG±  
5V  
20k  
±1  
7±5k  
5±±k  
39k  
±±k  
56pF  
29  
3
±2  
7
30  
±0  
8
V
V
V
I
V
IN  
IN CC  
ꢀN±  
ꢀN2  
±00k  
PGꢀꢀD  
FB2  
FB±  
6
9
2
TRACK2  
EXTLPF  
PWRGD  
INTLPF  
0.0±μF  
R2  
±0k  
±1  
I
I
±0k  
±1  
±0k  
±1  
TH±  
TH2  
±0k  
RUN/SS  
SGND  
5
20k  
20k  
±00pF  
±
±00pF  
0.022μF  
0.0±μF  
680pF  
±nF  
0.±μF  
680pF  
3708 F±3  
C
: UNITED CHEMI-CꢀN THCR60EIH±06ZT  
IN  
C
, C  
: SANYꢀ PꢀSCAP 4TPD470M  
ꢀUT± ꢀUT2  
L±, L2: SUMIDA CEP±25-±R0M  
M±, M2: VISHAY Si4884  
M3, M4: VISHAY Si4874  
Figure 13. Design Example: 2.5V/10A and 1.8V/10A at 500kHz with Output Tracking  
• Cover the board area Onder the LTC3708 with a SGND  
plane. For the LTC3708EUH, solder the back of the IC  
to this plane. Separate SGND from the power groOnd  
PC Board Layout Checklist  
When laying oOt the printed circOit board, the following  
checklist shoOld be Osed to ensOre proper operation of the  
LTC3708. These items are also illOstrated graphically in  
FigOre ±4. FigOre ±5 fOrther shows the cOrrent waveforms  
presentinthevarioOsbranchesofthe2-phasesynchronoOs  
BOck regOlators operating in the continOoOs mode.  
and connect all signal components (I , V , I , V ,  
TH FB ꢀN CC  
EXTLPF, INTLPF, V , TRACK and RUN/SS) to the  
RNG  
SGND plane before it joins PGND. Connect SGND to  
the goOnd plane at a single point.  
+
• ROn SENSE and SENSE across the bottom MꢀSFET  
(or R when a separate cOrrent sensing resistor  
• Place the loop of M±, M3 and C in a compact area.  
IN±  
SENSE  
This loop condOcts high pOlsating cOrrent and its area  
is Osed) with Kelvin connection (FigOre ±6). RoOte  
SENSE and SENSE together with minimOm PC trace  
separation. The filter capacitor (when Osed) between  
SENSE and SENSE shoOld be as close to the LTC3708  
as possible.  
needs to be minimized. Place M2, M4 and C in the  
IN2  
+
same way.  
+
• Place C and C within the distance of ±cm. Longer  
IN±  
IN2  
distance may caOse a large resonant loop.  
• ConnectthenegativeplatesofC  
andC toPGND±  
• Keep the high dV/dt nodes SW, TG and BꢀꢀST away  
from sensitive small-signal nodes.  
ꢀUT±  
DR±  
before it joins PGND2 at the groOnd plane. Connect  
and C in the same way so that power groOnds  
C
ꢀUT2  
DR2  
are separated before they meet at a single point.  
3708fb  
24  
LTC3708  
APPLICATIONS INFORMATION  
R
ꢀN±  
R±  
R3  
FCB  
TG±  
PGꢀꢀD  
V
FB±  
SW±  
I
TH±  
C
B±  
C
ꢀUT±  
BꢀꢀST  
I
ꢀN±  
+
SENSE± EXTLPF  
D±  
L±  
SENSE± TRACK±  
PGND±  
V
RNG±  
M3  
5V  
V
CC  
BG±  
M±  
C
C
C
C
LTC3708  
DR±  
DR2  
VCC  
IN±  
V
IN  
5V  
DRV  
BG2  
SGND  
CC  
C
IN2  
C
SS  
M2  
RUN/SS  
M4  
PGND2  
V
RNG2  
SENSE2 TRACK2  
L2  
D2  
+
SENSE2 INTLPF  
BꢀꢀST2  
SW2  
I
ꢀN2  
C
ꢀUT2  
C
B2  
I
TH2  
R4  
R2  
TG2  
V
FB2  
R
ꢀN2  
3708 F±5  
Figure 14. LTC3708 Layout Diagram  
• Connect the decoOpling capacitors C  
and C  
DR2  
• Flood all OnOsed areas on all layers with copper.  
Flooding will redOce the temperatOre rise of the power  
components. YoO can connect the copper area to any  
DR±  
close to the DRV and PGND pins. Connect C and  
CC  
B±  
C
close to the BꢀꢀST and SW pins.  
B2  
DC net (V , V , GND or to any other DC rail in yoOr  
IN ꢀUT  
• Connect the decoOpling capacitor C right across the  
VCC  
system).  
V
pinandSGNDplane. ConnecttheEAcompensation  
CC  
componentsclosetotheI pins. ConnectthePLLloop  
TH  
filter close to the EXTLPF and INTLPF pins. Connect the  
I
decoOpling capacitor close to the I pins.  
ꢀN  
ꢀN  
3708fb  
25  
LTC3708  
APPLICATIONS INFORMATION  
SW±  
L±  
V
ꢀUT±  
+
D±  
CERAMIC  
C
ꢀUT±  
R
L±  
V
IN  
R
IN  
+
C
IN  
SW2  
L2  
V
ꢀUT2  
+
D2  
C
ꢀUT2  
R
L2  
BꢀLD LINES INDICATE  
HIGH, SWITCHING  
CURRENT LINES.  
CERAMIC  
KEEP LINES Tꢀ A  
MINIMUM LENGTH.  
3708 F±5  
Figure 15. Branch Current Waveforms  
D
D
D
D
G
S
S
S
R
SENSE  
MꢀSFET  
+
+
SENSE SENSE  
SENSE SENSE  
3708 F±6  
(16a) Sensing the Bottom MOSFET  
(16b) Sensing a Resistor  
Figure 16. Kelvin Sensing  
3708fb  
26  
LTC3708  
APPLICATIONS INFORMATION  
V
IN  
7V Tꢀ 24V  
5V  
4.7μF  
C
IN  
±0μF  
25V  
s6  
±μF  
±0Ω  
±00k  
+
D
D
B2  
B±  
V
CC  
TG±  
DRV  
CC  
PGꢀꢀD  
TG2  
M±  
M3  
M2  
M4  
L±  
L2  
±.22μH  
C
C
B2  
0.±μF  
B±  
BꢀꢀST±  
BꢀꢀST2  
±.43μH  
V
V
±.8V  
±5A  
ꢀUT±  
2.5V  
±5A  
0.±μF  
ꢀUT2  
SW±  
SW2  
+
+
+
C
+
C
ꢀUT±  
SENSE2  
SENSE±  
BG±  
ꢀUT2  
B340LA  
B340LA  
330μF  
4V  
470μF  
2.5V  
s2  
LTC3708  
BG2  
s2  
SENSE2  
±2.±k  
±1  
±9.±k  
±1  
SENSE±  
PGND±  
56pF  
±2.±k  
±1  
PGND2  
V
V
FB2  
FCB  
FB±  
TRACK2  
f
IN  
FREQ = 220kHz  
V
V
I
I
ꢀN2  
I
TH2  
IN  
IN  
ꢀN±  
R
R
ꢀN±  
±.5M  
ꢀN2  
±.±M  
I
TH±  
INTLPF  
RUN/SS  
SGND  
EXTLPF  
TRACK±  
6.04k  
±1  
6.04k  
±1  
6.04k  
±1  
3.32k  
470pF  
±5k  
470pF  
475Ω  
±5k  
V
V
RNG±  
RNG2  
±30k  
0.0±μF  
±50pF  
±000pF  
0.047μF  
±50pF  
470pF  
±000pF  
C
SS  
0.±μF  
24.9k  
±000pF  
5V  
3708 F±7  
C
C
C
: SANYꢀ PꢀSCAP 4TPD330M  
DB±, DB2: CMDSH-3  
L±: PANASꢀNIC ETQP3H±R4BF  
L2: PANASꢀNIC ETQP2H±R2BF  
M±, M2: RENESAS HAT2±68H  
M3, M4: RENESAS HAT2±65H  
ꢀUT±  
ꢀUT2  
IN  
: SANYꢀ PꢀSCAP 2R5TPD470M  
: TAIYꢀ YUDEN: TMK325BJ±06KM  
Figure 17. High Efficiency, Dual Output Power Supply with External Frequency Synchronization  
3708fb  
27  
LTC3708  
TYPICAL APPLICATIONS  
3708fb  
28  
LTC3708  
TYPICAL APPLICATIONS  
Dual-Phase, 30A Power Supply with 10mV Output Ripple  
V
IN  
5V  
+
C
C
-C  
IN±  
IN2 IN7  
±00μF  
6.3V  
4.7μF  
6.3V s6  
TRACK  
BAT54A  
±μF  
±μF  
PGND±  
±0Ω  
BꢀꢀST2  
V
CC  
PGND2  
±μF  
BꢀꢀST2  
V
CC  
TG±  
TRACK± FCB DRV  
CC  
M±  
M3  
TG2  
M2  
M4  
L±  
L2  
BꢀꢀST±  
BꢀꢀST2  
0.±9μH  
0.±9μH  
V
0.22μF  
0.22μF  
ꢀUT  
±V  
SW±  
SW2  
30A  
+
+
+
C
SENSE2  
SENSE±  
BG±  
+
ꢀUT4  
C
ꢀUT3  
470μF  
470μF  
B340A  
B340A  
LTC3708  
C
ꢀUT2  
BG2  
2.5V s2  
2.5V s2  
C
±00pF  
ꢀUT±  
±00pF  
±μF  
SENSE2  
±μF  
SENSE±  
PGND±  
6.3V  
6.3V  
PGND2  
±00k  
V
V
RNG±  
V
RNG2  
V
RNG±  
R±  
CC  
V
IN  
274k  
274k  
±0k  
V
V
IN  
I
I
IN  
ꢀN±  
ꢀN2  
0.±1  
±00k  
V
V
FB±  
FB2  
PGꢀꢀD  
TRACK2  
EXTLPF  
PWRGD  
INTLPF  
R2  
±5k  
0.±1  
I
I
TH±  
RUN/SS  
TH2  
±nF  
SGND  
0.0±μF  
±0k  
±000pF  
220pF  
0.0±μF  
±00k  
V
CC  
0.0±μF  
22k  
22.±k  
220pF  
3708 TA05  
C
: SANYꢀ ꢀS-CꢀN 6SVP±00M  
IN±  
C
, C  
: SANYꢀ PꢀSCAP 2R5TPD470M  
ꢀUT3 ꢀUT4  
L±, L2: PANASꢀNIC ETQP4LR±9  
M± Tꢀ M4: RENESAS HAT2±65  
3708fb  
29  
LTC3708  
TYPICAL APPLICATIONS  
12V/12A and 5V/12A at 300kHz Application  
V
IN  
20V Tꢀ 28V  
C±  
C2  
+
5V  
3.3μF  
50V  
X5R  
3.3μF  
50V  
X5R  
±00μF  
50V  
BAT54A  
±0Ω  
BꢀꢀST±  
BꢀꢀST2  
5V  
V
CC  
C3  
C4  
C5  
C6  
3.3μF  
50V  
X5R  
3.3μF  
50V  
X5R  
3.3μF  
50V  
X5R  
3.3μF  
50V  
X5R  
C6  
2.2μF  
±μF  
V
TRACK± FCB DRV  
CC  
CC  
Q±  
HAT2±67H  
Q3  
HAT2±67H  
TG±  
TG2  
0Ω  
0.±μF  
0Ω  
BꢀꢀST±  
BꢀꢀST2  
BꢀꢀST2  
0.±μF  
L±  
3.5μH  
L2  
2.4μH  
LTC3708EUH  
V
V
ꢀUT2  
ꢀUT±  
±2V  
±2A  
SW±  
SW2  
5V  
±2A  
+
+
C
C
ꢀUT2  
SENSE±  
BG±  
SENSE2  
0Ω  
ꢀUT±  
+
+
B340LA  
0Ω  
0Ω  
±00pF  
D3  
B340LA  
±00pF  
±50μF  
±6V  
s2  
220μF  
6.3V  
s2  
Q2  
HAT2±67H  
Q4  
HAT2±67H  
BG2  
0Ω  
SENSE±  
PGND±  
SENSE2  
PGND2  
V
V
RNG±  
RNG2  
5.6M  
2.2M  
22pF  
±9±k  
75k  
5V  
I
I
V
V
IN  
ꢀN±  
ꢀN2  
88.7k  
IN  
V
88.7k  
24.9k  
75k  
±0k  
47pF  
47pF  
±nF  
V
CC  
CC  
±00k  
V
FB±  
V
FB2  
TRACK2  
EXTLPF  
PGꢀꢀD  
INTLPF  
PGꢀꢀD  
±nF  
±0k  
I
I
TH2  
TH±  
RUN/SS  
5.±±k  
24.9k  
±0k  
22pF  
SGND  
±50pF  
2.2nF  
±50pF  
±.5nF  
±5k  
470pF  
0.±μF  
22nF  
33.2k  
3708 TA04  
C
C
: SANYꢀ ±6SVP±50M  
: SANYꢀ 6TPD220M  
ꢀUT±  
ꢀUT2  
C± Tꢀ C6: TDK C4532X5R±H335M  
L±: SUMIDA CDEP±47-3R5MC-H  
L2: SUMIDA CDEP±47-2R4MC  
3708fb  
30  
LTC3708  
PACKAGE DESCRIPTION  
UH Package  
32-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-±693 Rev D)  
0.70 ±0.05  
5.50 ±0.05  
4.±0 ±0.05  
3.45 ± 0.05  
3.50 REF  
(4 SIDES)  
3.45 ± 0.05  
PACKAGE ꢀUTLINE  
0.25 ± 0.05  
0.50 BSC  
RECꢀMMENDED SꢀLDER PAD LAYꢀUT  
APPLY SꢀLDER MASK Tꢀ AREAS THAT ARE NꢀT SꢀLDERED  
BꢀTTꢀM VIEW—EXPꢀSED PAD  
PIN ± NꢀTCH R = 0.30 TYP  
ꢀR 0.35 s 45° CHAMFER  
R = 0.05  
TYP  
0.00 – 0.05  
R = 0.±±5  
TYP  
0.75 ± 0.05  
5.00 ± 0.±0  
(4 SIDES)  
3± 32  
0.40 ± 0.±0  
PIN ±  
TꢀP MARK  
(NꢀTE 6)  
±
2
3.45 ± 0.±0  
3.50 REF  
(4-SIDES)  
3.45 ± 0.±0  
(UH32) QFN 0406 REV D  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
NꢀTE:  
±. DRAWING PRꢀPꢀSED Tꢀ BE A JEDEC PACKAGE ꢀUTLINE  
M0-220 VARIATIꢀN WHHD-(X) (Tꢀ BE APPRꢀVED)  
2. DRAWING NꢀT Tꢀ SCALE  
3. ALL DIMENSIꢀNS ARE IN MILLIMETERS  
4. DIMENSIꢀNS ꢀF EXPꢀSED PAD ꢀN BꢀTTꢀM ꢀF PACKAGE Dꢀ NꢀT INCLUDE  
MꢀLD FLASH. MꢀLD FLASH, IF PRESENT, SHALL NꢀT EXCEED 0.20mm ꢀN ANY SIDE  
5. EXPꢀSED PAD SHALL BE SꢀLDER PLATED  
6. SHADED AREA IS ꢀNLY A REFERENCE FꢀR PIN ± LꢀCATIꢀN  
ꢀN THE TꢀP AND BꢀTTꢀM ꢀF PACKAGE  
3708fb  
Information fOrnished by Linear Technology Corporation is believed to be accOrate and reliable.  
However, no responsibility is assOmed for its Ose. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circOits as described herein will not infringe on existing patent rights.  
31  
LTC3708  
TYPICAL APPLICATION  
Area = 650mm2, Height = 3mm  
V
IN  
7V Tꢀ 24V  
5V  
BAT54A  
2.2μF  
6.3V  
5V  
±0Ω  
BꢀꢀST±  
BꢀꢀST2  
±μF  
V
CC  
C±±  
±0μF  
25V  
C9  
±0μF  
25V  
±μF  
±μF  
V
TRACK± FCB DRV  
CC  
CC  
Q±A  
Si48±6BDY  
Q2A  
Si48±6BDY  
TG±  
TG2  
BꢀꢀST±  
BꢀꢀST2  
BꢀꢀST2  
0.±μF  
L±  
±.8μH  
L2  
±.8μH  
0.±μF  
LTC3708EUH  
V
V
ꢀUT2  
ꢀUT±  
2.5V  
SW±  
SW2  
±.8V  
5A  
C±5  
5A  
+
+
SENSE±  
BG±  
SENSE2  
C±6  
+
C±3  
±50μF  
4V  
+
C±  
±50μF  
4V  
Q±B  
Si48±6BDY  
Q2B  
Si48±6BDY  
±00μF  
6.3V  
±00μF  
6.3V  
BG2  
SENSE±  
PGND±  
SENSE2  
PGND2  
V
V
RNG±  
RNG2  
±M  
750k  
220pF  
5V  
I
I
V
V
IN  
20k  
±0k  
220pF  
±00k  
IN  
ꢀN±  
ꢀN2  
±00k  
20k  
±0k  
3±.6k  
±0k  
V
CC  
±000pF  
±000pF  
V
CC  
±00k  
V
V
FB2  
FB±  
TRACK2  
EXTLPF  
PGꢀꢀD  
INTLPF  
PGꢀꢀD  
I
I
20k  
TH±  
TH2  
5.±±k  
20k  
RUN/SS SGND SGND  
±50pF  
560pF  
20k  
±50pF  
560pF  
±5k  
220pF  
470pF  
220pF  
0.±μF  
22nF  
3708 TA06  
SGND  
RUN/SS  
C±, C±3: SANYꢀ 4TPE±50MAZB  
V
IN  
C9, C±±: TAIYꢀ YUDEN TMK325BJ±06KM  
C±5, C±6: TDK C3225X5R0J±07M  
L±, L2: TꢀKꢀ FDV0630-±R8M  
BAT54W  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC±778  
Wide ꢀperating Range, No R  
Step-Down Controller  
Single Channel, GN±6 Package  
Single ꢀOtpOt, Remote Sensing  
SENSE  
LTC3709  
2-Phase, No R  
Step-Down Controller with Tracking/SeqOencing  
SENSE  
LTC3728  
DOal, 550kHz, 2-Phase SynchronoOs Step-Down Switching RegOlator Fixed FreqOency, DOal ꢀOtpOt  
LTC3729  
550kHz, PolyPhase®, High Efficiency, SynchronoOs Step-Down  
Switching RegOlator  
Fixed FreqOency, Single ꢀOtpOt, Up to ±2-Phase ꢀperation  
LTC373±  
LTC3778  
3-Phase, 600kHz, SynchronoOs BOck Switching RegOlator Controller  
3-Phase, Single ꢀOtpOt  
Wide ꢀperating Range, No R  
Step-Down Controller  
Single Channel, Separate V Programming  
ꢀN  
SENSE  
PolyPhase is a registered trademark of Linear Technology Corporation  
3708fb  
LT 1207 REV B • PRINTED IN USA  
LinearTechnology Corporation  
±630 McCarthy Blvd., Milpitas, CA 95035-74±7  
32  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-±900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3708EUH-PBF

Fast 2-Phase, No RSENSE Buck Controller with Output Tracking
Linear

LTC3708EUH-TR

Fast 2-Phase, No RSENSE Buck Controller with Output Tracking
Linear

LTC3708EUH-TRPBF

Fast 2-Phase, No RSENSE Buck Controller with Output Tracking
Linear

LTC3708SG

Optoelectronic
ETC

LTC3708SP

Optoelectronic
ETC

LTC3709

Fast 2-Phase, No RSENSE Synchronous DC/DC Controller with Tracking/Sequencing
Linear

LTC3709EG

LTC3709 - Fast 2-Phase, No RSENSE Synchronous DC/DC Controller with Tracking/Sequencing; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3709EG#PBF

LTC3709 - Fast 2-Phase, No RSENSE Synchronous DC/DC Controller with Tracking/Sequencing; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3709EG#TRPBF

LTC3709 - Fast 2-Phase, No RSENSE Synchronous DC/DC Controller with Tracking/Sequencing; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3709EUH

Fast 2-Phase, No RSENSE Synchronous DC/DC Controller with Tracking/Sequencing
Linear

LTC3709EUH#PBF

LTC3709 - Fast 2-Phase, No RSENSE Synchronous DC/DC Controller with Tracking/Sequencing; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3709EUH#TR

暂无描述
Linear