LTC3714EG#TRPBF [Linear]

LTC3714 - Intel Compatible, Wide Operating Range, Step-Down Controller with Internal Op Amp; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C;
LTC3714EG#TRPBF
型号: LTC3714EG#TRPBF
厂家: Linear    Linear
描述:

LTC3714 - Intel Compatible, Wide Operating Range, Step-Down Controller with Internal Op Amp; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C

运算放大器 控制器
文件: 总28页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3714  
Intel Compatible,  
Wide Operating Range, Step-Down Controller  
with Internal Op Amp  
U
DESCRIPTIO  
FEATURES  
The LTC®3714 is a synchronous step-down switching  
regulator controller for CPU power. An output voltage  
between 0.6V and 1.75V is selected by a 5-bit code (Intel  
mobile VID specification). The controller uses a constant  
on-time, valley current control architecture to deliver very  
low duty cycles without requiring a sense resistor. Oper-  
ating frequency is selected by an external resistor and is  
True Current Mode with Ultrafast Transient  
Response  
Stable with Ceramic COUT  
tON(MIN) < 100ns for Operation from High Input  
Ranges  
Supports Active Voltage Positioning  
No Sense Resistor Required  
5-Bit VID Programmable Output Voltage: 0.6V to 1.75V  
compensated for variations in VIN and VOUT.  
Dual N-Channel MOSFET Synchronous Drive  
Discontinuous mode operation provides high efficiency  
operation at light loads. A forced continuous control pin  
reduces noise and RF interference and can assist second-  
ary winding regulation by disabling discontinuous mode  
when the main output is lightly loaded. Internal op amp  
allows programmable offsets to the output voltage during  
power saving modes.  
Programmable Output Offsets  
Power Good Output Voltage Monitor  
Wide VIN Range: 4V to 36V  
±1% 0.6V Reference  
Adjustable Frequency  
Programmable Soft-Start  
Output Overvoltage Protection  
Fault protection is provided by internal foldback current  
limiting, an output overvoltage comparator and optional  
short-circuitshutdowntimer.Soft-startcapabilityforsup-  
ply sequencing is accomplished using an external timing  
capacitor. The regulator current limit level is user pro-  
grammable. Wide supply range allows operation from 4V  
to 36V at the input.  
Optional Short-Circuit Shutdown Timer  
Forced Continuous Control Pin  
Logic Controlled Micropower Shutdown: IQ 30µA  
Available in 0.20U9" Wide 28-Lead SSOP Package  
APPLICATIO S  
Power Supply for Mobile Pentium® Processors and  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Pentium is a registered trademark of Intel Corporation.  
Transmeta Processors  
Notebook and Portable Computers  
U
TYPICAL APPLICATIO  
LTC3714  
R
ON  
Transient Response of 8A to 23A Output Load Step  
PGOOD  
I
ON  
INTV  
C
CC  
V
IN  
V
IN  
SS  
0.1µF  
5V TO 24V  
10µF  
35V  
×4  
M1  
RUN/SS  
TG  
1.395V  
IRF7811  
L1  
×2  
0.68µH  
V
I
TH  
SW  
OUT  
C , 0.22µF  
B
0.6V TO 1.75V  
23A  
R
C
C
C
C
BOOST  
OUT  
+
V
D
B
CMDSH-3  
270µF  
2V  
OUT  
SGND  
(1.35V)  
INTV  
CC  
×4  
50mV/DIV  
M2  
D1*  
UPS840  
BG  
VID4  
VID3  
VID2  
VID1  
VID0  
IRF7811  
×3  
1.213V  
23A  
SENSE  
5-BIT  
VID  
+
C
VCC  
4.7µF  
0.003*  
I
PGND  
LOAD  
10A/DIV  
3714 F01  
V
OSENSE  
8A  
*OPTIONAL  
20µs/DIV  
3714 TA03  
Figure 1. High Efficiency Step-Down Converter  
3714f  
1
LTC3714  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
Input Supply Voltage (VIN), ION..................36V to 0.3V  
Boosted Topside Driver Supply Voltage  
(BOOST) ................................................... 42V to 0.3V  
SW, SENSE Voltages ................................... 36V to 5V  
EXTVCC, (BOOST – SW), RUN/SS, VID0-VID4,  
PGOOD, FCB Voltages ............................... 7V to 0.3V  
VON, VRNG Voltages ................(INTVCC + 0.3V) to 0.3V  
ITH, VFB, VOSENSE Voltages....................... 2.7V to 0.3V  
TG, BG, INTVCC, EXTVCC Peak Currents.................... 2A  
TG, BG, INTVCC, EXTVCC RMS Currents .............. 50mA  
OPVIN, OP+, OP....................................................... 0V to 18V  
Operating Ambient Temperature Range  
LTC3714EG (Note 2) .......................... 40°C to 85°C  
Junction Temperature (Note 3)............................ 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
1
2
INTV  
28  
27  
26  
25  
24  
23  
BG  
PGND  
SENSE  
SW  
CC  
V
IN  
LTC3714EG  
3
EXTV  
VID4  
VID3  
V
CC  
4
5
TG  
6
BOOST  
VID0  
OSENSE  
7
22 VFB  
8
I
ON  
21  
20  
19  
18  
17  
16  
15  
VID1  
9
FCB  
VID2  
10  
11  
12  
13  
14  
SGND  
OPOUT  
RUN/SS  
V
ON  
+
OP  
PGOOD  
OP  
V
RNG  
OPV  
IN  
I
TH  
G PACKAGE  
28-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 130°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VIN = 15V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Main Control Loop  
I
Input DC Supply Current  
Normal  
Shutdown Supply Current  
Q
900  
15  
2000  
30  
µA  
µA  
V
Feedback Reference Voltage  
Feedback Voltage Line Regulation  
Feedback Voltage Load Regulation  
Error Amplifier Transconductance  
Forced Continuous Threshold  
Forced Continuous Current  
On-Time  
I
= 1.2V (Note 4)  
TH  
0.594  
0.600  
0.002  
0.05  
1.7  
0.606  
V
%/V  
%
FB  
V  
V  
V
= 4V to 30V (Note 4), I = 1.2V  
FB(LINEREG)  
IN  
TH  
TH  
TH  
I
I
= 0.5V to 1.9V (Note 4)  
= 1.2V (Note 4)  
0.3  
2
FB(LOADREG)  
g
1.4  
ms  
V
m(EA)  
V
0.57  
0.6  
0.63  
–2  
FCB  
I
t
t
t
V
= 0.6V  
FCB  
–1  
µA  
ns  
FCB  
I
I
I
= 60µA, V = 1.5V  
200  
250  
50  
300  
100  
400  
ON  
ON  
ON  
ON  
ON  
Minimum On-Time  
= 180µA, V = 0V  
ns  
ON(MIN)  
OFF(MIN)  
ON  
Minimum Off-Time  
= 60µA, V = 1.5V  
250  
ns  
ON  
V
Maximum Current Sense Threshold  
V
V
V
= 1V, V = 0.56V  
113  
79  
158  
133  
93  
186  
153  
107  
214  
mV  
mV  
mV  
SENSE(MAX)  
RNG  
RNG  
RNG  
FB  
= 0V, V = 0.56V  
FB  
= INTV , V = 0.56V  
CC FB  
V
Minimum Current Sense Threshold  
V
V
V
= 1V, V = 0.64V  
67  
33  
93  
mV  
mV  
mV  
SENSE(MIN)  
RNG  
RNG  
RNG  
FB  
= 0V, V = 0.64V  
FB  
= INTV , V = 0.64V  
CC FB  
V  
V  
Output Overvoltage Fault Threshold  
Output Undervoltage Fault Threshold  
RUN Pin Start Threshold  
7.5  
340  
0.8  
10  
400  
1.5  
12.5  
460  
2
%
FB(OV)  
mV  
FB(UV)  
V
V
RUN/SS(ON)  
3714f  
2
LTC3714  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VIN = 15V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
4
MAX  
4.5  
4.2  
–3  
3
UNITS  
V
V
V
RUN Pin Latchoff Enable Threshold  
RUN Pin Latchoff Threshold  
Soft-Start Charge Current  
Soft-Start Discharge Current  
Undervoltage Lockout Threshold  
Undervoltage Lockout Threshold  
TG Driver Pull-Up On Resistance  
TG Driver Pull-Down On Resistance  
BG Driver Pull-Up On Resistance  
BG Driver Pull-Down On Resistance  
TG Rise Time  
RUN/SS Pin Rising  
RUN/SS Pin Falling  
RUN/SS(LE)  
RUN/SS(LT)  
RUN/SS(C)  
RUN/SS(D)  
3.5  
–1.2  
1.8  
3.4  
3.5  
2
V
I
I
0.5  
0.8  
µA  
µA  
V
V
V
V
V
Falling  
Rising  
3.9  
4
IN(UVLO)  
IN  
IN  
V
IN(UVLOR)  
TG R  
TG R  
BG R  
BG R  
TG High  
TG Low  
BG High  
BG Low  
3
UP  
2
3
DOWN  
UP  
3
4
1
2
DOWN  
TG t  
TG t  
C
C
C
C
= 3300pF  
= 3300pF  
= 3300pF  
= 3300pF  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
r
f
LOAD  
LOAD  
LOAD  
LOAD  
TG Fall Time  
BG t  
BG t  
BG Rise Time  
r
BG Fall Time  
f
Internal V Regulator  
CC  
V
Internal V Voltage  
6V < V < 30V, V = 4V  
EXTVCC  
4.7  
4.5  
5
5.3  
V
%
INTVCC  
CC  
IN  
V  
Internal V Load Regulation  
I
I
I
= 0mA to 20mA, V = 4V  
EXTVCC  
0.1  
4.7  
±2  
LDO(LOADREG)  
CC  
CC  
CC  
CC  
V
EXTV Switchover Voltage  
= 20mA, V  
= 20mA, V  
Rising  
= 5V  
V
EXTVCC  
CC  
EXTVCC  
EXTVCC  
V  
V  
EXTV Switch Drop Voltage  
150  
200  
300  
mV  
mV  
EXTVCC  
CC  
EXTV Switchover Hysteresis  
EXTVCC(HYS)  
CC  
PGOOD Output  
V  
V  
V  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
7.5  
10  
–10  
1
12.5  
–12.5  
2.5  
%
%
%
V
FBH  
FB  
Falling  
7.5  
FBL  
FB  
Returning  
FB(HYS)  
FB  
V
PGOOD Low Voltage  
I
= 1mA  
0.15  
0.4  
PGL  
PGOOD  
VID DAC  
V
VID0-VID4 Logic Threshold Voltage  
VID0-VID4 Pull-Up Current  
VID0-VID4 Pull-Up Voltage  
VID0-VID4 Leakage Current  
0.4  
1.2  
2.5  
4.5  
0.01  
10  
2
V
µA  
V
VID(T)  
I
V
V
V
to V  
= 0V  
VID(PULLUP)  
VID0  
VID0  
VID0  
VID4  
VID4  
VID4  
V
to V  
to V  
Open  
VID(PULLUP)  
I
= 5V, V  
= 0V  
1
µA  
KΩ  
%
VID(LEAK)  
RUN/SS  
R
Resistance from V  
to V  
FB  
6
14  
VID  
OSENSE  
V  
DAC Output Accuracy  
V
Programmed from  
0.45  
0
0.25  
OSENSE  
OSENSE  
0.6V to 1.75V (Note 5)  
VIN = 5V unless otherwise noted.  
Internal Op Amp  
V
Input Offset Voltage  
Input Offset Current  
Input Bias Current  
400  
4
1000  
10  
µV  
nA  
nA  
OS  
I
I
OS  
45  
80  
B
CMRR  
Common Mode Rejection Ratio  
V
V
= 0V to (V – 1V)  
= 0V to 18V  
100  
80  
dB  
dB  
CM  
CM  
CC  
3714f  
3
LTC3714  
ELECTRICAL CHARACTERISTICS  
The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VIN = 5V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
OPV = 3V to 12.5V, OP  
MIN  
TYP  
100  
MAX  
UNITS  
dB  
PSRR  
Power Supply Rejection Ratio  
Large-Signal Voltage Gain  
Output Voltage Swing LOW  
Output Voltage Swing HIGH  
Short-Circuit Current  
= V = 1V  
OUT O  
IN  
A
V
V
OPV = 5V, OP  
= 500mV to 4.5V, R = 10k  
1500  
165  
V/mV  
mV  
VOL  
OL  
IN  
OUT  
L
OPV = 5V, I  
= 5mA  
SINK  
500  
IN  
OPV = 5V, I  
= 5mA  
4.5  
4.87  
V
OH  
IN  
SOURCE  
I
Short to GND  
30  
40  
mA  
mA  
SC  
Short to OPV  
IN  
I
Supply Current  
170  
300  
µA  
S
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: The LTC3714 is tested in a feedback loop that adjusts V to  
FB  
achieve a specified error amplifier output voltage (I ).  
TH  
Note 2: The LTC3714E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 5: The LTC3714 VID DAC is tested in a feedback loop that adjusts  
to achieve a specified feedback voltage (V = 0.6V) for each DAC  
VID code.  
V
OSENSE  
FB  
Note 3: T is calculated from the ambient temperature T and power  
J
A
dissipation P as follows:  
D
LTC3714EG: T = T + (P • 130°C/W)  
J
A
D
3714f  
4
LTC3714  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Transient Response  
(Discontinuous Mode)  
Transient Response  
Start-Up  
RUN/SS  
2V/DIV  
VOUT  
50mV/DIV  
VOUT  
50mV/DIV  
VOUT  
500mV/DIV  
IL  
IL  
IL  
5A/DIV  
5A/DIV  
5A/DIV  
20µs/DIV  
3714 G01  
20µs/DIV  
3714 G02  
50ms/DIV  
3714 G19  
LOAD STEP 0A TO 10A  
LOAD STEP 1A TO 10A  
VIN = 15V  
V
IN = 15V  
V
IN = 15V  
VOUT = 1.25V  
VOUT = 1.5V  
VOUT = 1.5V  
FCB = INTVCC  
FIGURE 1 CIRCUIT  
RLOAD = 0.125Ω  
FCB = 0V  
FIGURE 1 CIRCUIT  
Efficiency vs Load Current  
Efficiency vs Input Voltage  
Frequency vs Input Voltage  
100  
90  
80  
70  
60  
300  
280  
260  
240  
220  
200  
95  
90  
85  
80  
75  
70  
FCB = 0V  
FIGURE 1 CIRCUIT  
V
= 8.5V  
IN  
I
= 10A  
= 0A  
OUT  
I
= 10A  
OUT  
V
= 15V  
IN  
I
I
= 1A  
OUT  
V
= 24V  
I
IN  
OUT  
= 23A  
OUT  
V
= 1.35V  
FREQUENCY = 300kHz  
FIGURE 1 CIRCUIT  
OUT  
0
5
10  
15  
20  
25  
30  
5
10  
15  
INPUT VOLTAGE (V)  
20  
25  
0
3
6
9
12 15 18 21  
INPUT VOLTAGE (V)  
LOAD CURRENT (A)  
3714 G04  
3714 G05  
3714 G03  
Current Sense Threshold  
vs ITH Voltage  
Load Regulation  
ITH Voltage vs Load Current  
300  
200  
100  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2V  
V
RNG  
=
NO AVP  
FIGURE 1 CIRCUIT  
FIGURE 1 CIRCUIT  
1.4V  
1V  
0.7V  
0.5V  
CONTINUOUS  
MODE  
DISCONTINUOUS  
MODE  
–100  
–200  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
0
2
4
6
8
10  
0
5
10  
LOAD CURRENT (A)  
15  
I
VOLTAGE (V)  
TH  
LOAD CURRENT (A)  
3714 G08  
3714 G06  
3714 G07  
3714f  
5
LTC3714  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
On-Time vs ION Current  
On-Time vs VON Voltage  
On-Time vs Temperature  
10k  
1k  
300  
250  
200  
150  
1000  
800  
600  
400  
200  
0
V
= 0V  
VON  
I
= 30µA  
ION  
I
= 30µA  
VON  
ION  
V
= 0V  
100  
10  
100  
50  
0
1
10  
100  
1
2
3
–50 –25  
0
25  
50  
TEMPERATURE (°C)  
75  
100 125  
0
I
CURRENT (µA)  
ON  
V
VOLTAGE (V)  
ON  
3714 G20  
3714 G21  
3714 G22  
Maximum Current Sense  
Threshold vs Temperature  
Maximum Current Sense  
Threshold vs VRNG Voltage  
Maximum Current Sense  
Threshold vs RUN/SS Voltage  
150  
125  
150  
140  
130  
120  
110  
100  
300  
250  
200  
150  
100  
50  
V
RNG  
= 1V  
V
RNG  
= 1V  
100  
75  
50  
25  
0
0
1.5  
2
2.5  
3
3.5  
–50 –25  
0
25  
50  
75 100 125  
0.5  
1.0  
1.25  
1.5  
1.75  
2.0  
0.75  
RUN/SS VOLTAGE (V)  
TEMPERATURE (°C)  
V
VOLTAGE (V)  
RNG  
3714 G23  
3714 G11  
3714 G10  
Feedback Reference Voltage  
vs Temperature  
Error Amplifier gm vs Temperature  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.62  
0.61  
0.60  
0.59  
0.58  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3714 G12  
3714 G13  
3714f  
6
LTC3714  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input and Shutdown Currents  
vs Input Voltage  
EXTVCC Switch Resistance  
vs Temperature  
INTVCC Load Regulation  
10  
8
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
1200  
1000  
800  
60  
50  
40  
30  
20  
10  
0
EXTV OPEN  
CC  
6
SHUTDOWN  
600  
4
400  
200  
0
2
EXTV = 5V  
CC  
0
0
10  
20  
30  
40  
50  
–50 –25  
0
25  
50  
75 100 125  
20  
INPUT VOLTAGE (V)  
30  
35  
0
5
10  
15  
25  
TEMPERATURE (°C)  
INTV LOAD CURRENT (mA)  
CC  
3714 G25  
3714 G14  
3714 G24  
RUN/SS Pin Current  
vs Temperature  
FCB Pin Current vs Temperature  
3
2
0
–0.25  
–0.50  
–0.75  
PULL-DOWN CURRENT  
1
0
–1.00  
–1.25  
–1.50  
PULL-UP CURRENT  
–1  
–2  
–50 –25  
0
25  
50  
75 100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
3714 G16  
3714 G15  
RUN/SS Latchoff Thresholds  
vs Temperature  
Undervoltage Lockout Threshold  
vs Temperature  
5.0  
4.5  
4.0  
3.5  
4.0  
3.5  
3.0  
2.5  
LATCHOFF ENABLE  
LATCHOFF THRESHOLD  
3.0  
2.0  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (C)  
3714 G17  
3714 G18  
3714f  
7
LTC3714  
U
U
U
PI FU CTIO S  
BG (Pin 1): Bottom Gate Drive. Drives the gate of the  
mum output current and can be set from 0.5V to 2V by a  
resistive divider from INTVCC. The sense voltage defaults  
to 70mV when this pin is tied to ground, 140mV when tied  
to INTVCC.  
bottom N-channel MOSFET between ground and INTVCC.  
PGND (Pin 2): Power Ground. Connect this pin closely to  
the bottom of the sense resistor or if no sense resistor is  
used, to the source of the bottom N-channel MOSFET, the  
(–) terminal of CVCC and the (–) terminal of CIN.  
I
TH (Pin 14): Current Control Threshold and Error Ampli-  
fier Compensation Point. The current comparator thresh-  
old increases with this control voltage. The voltage ranges  
from 0V to 2.4V with 0.8V corresponding to zero sense  
voltage (zero current).  
SENSE (Pin 3): Current Sense Comparator Input. The (+)  
input to the current comparator is normally connected to  
the SW node unless using a sense resistor (see Applica-  
tions Information).  
OPVIN (Pin 15): Internal Op Amp Supply. Connect to  
INTVCC or a separate supply greater than 5V.  
OP(Pin 16): Negative Input of the Internal Op Amp.  
OP+ (Pin 17): Positive Input of the Internal Op Amp.  
OPOUT (Pin 18): Output of the Internal Op Amp.  
SW(Pin4):SwitchNode.The()terminalofthebootstrap  
capacitor CB connects here. This pin swings from a diode  
voltage drop below ground up to VIN.  
TG (Pin 5): Top Gate Drive. Drives the top N-channel  
MOSFET with a voltage swing equal to INTVCC superim-  
posed on the switch node voltage SW.  
SGND (Pin 19): Signal Ground. All small-signal compo-  
nents and compensation components should connect to  
this ground, which in turn connects to PGND at one point.  
BOOST (Pin 6): Boosted Floating Driver Supply. The (+)  
terminal of the bootstrap capacitor CB connects here. This  
pin swings from a diode voltage drop below INTVCC up to  
VIN + INTVCC.  
FCB (Pin 20): Forced Continous Input. Tie this pin to  
ground to force continuous synchronous operation at low  
load, to INTVCC to enable discontinuous mode operation  
atlowloadortoaresistivedividerfromasecondaryoutput  
when using a secondary winding.  
VID0-VID4 (Pins 7, 8, 9, 24, 25): VID Digital Inputs. The  
voltageidentification(VID)codesetstheinternalfeedback  
resistordividerratiofordifferentoutputvoltagesasshown  
in Table 1. If unconnected, the pins are pulled high by  
internal 2.5µA current sources.  
ION (Pin 21): On-Time Current Input. Tie a resistor from  
VIN tothispintosettheone-shottimercurrentandthereby  
set the switching frequency.  
RUN/SS (Pin 10): Run Control and Soft-Start Input. A  
capacitor to ground at this pin sets the ramp time to full  
output current (approximately 3s/µF) and the time delay  
for overcurrent latchoff (see Applications Information).  
Forcing this pin below 0.8V shuts down the device.  
VFB (Pin 22): Error Amplifier Feedback Input. This pin  
connectstoboththeerroramplifierinputandtotheoutput  
of the internal resistive divider. It can be used to attach  
additional compensation components if desired.  
VOSENSE (Pin 23): Output Voltage Sense. The output  
voltage connects here to the input of the internal resistive  
feedback divider.  
VON (Pin11):On-TimeVoltageInput. Voltagetrippointfor  
the on-time comparator. Tying this pin to the output  
voltage makes the on-time proportional to VOUT. The  
comparatorinputdefaultsto0.7Vwhenthepinisgrounded,  
2.4V when the pin is tied to INTVCC.  
EXTVCC (Pin 26): External VCC Input. When EXTVCC ex-  
ceeds 4.7V, an internal switch connects this pin to INTVCC  
and shuts down the internal regulator so that controller  
andgatedrivepowerisdrawnfromEXTVCC.Donotexceed  
7V at this pin and ensure that EXTVCC < VIN.  
PGOOD (Pin 12): Power Good Output. Open drain logic  
output that is pulled to ground when the output voltage is  
not within ±10% of the regulation point.  
VIN (Pin 27): Main Input Supply. Decouple this pin to  
SGND with an RC filter (1, 0.1µF).  
VRNG (Pin 13): Sense Voltage Range Input. The voltage at  
this pin is ten times the nominal sense voltage at maxi-  
3714f  
8
LTC3714  
U
U
U
PI FU CTIO S  
INTVCC (Pin 28): Internal 5V Regulator Output. The driver  
and control circuits are powered from this voltage. De-  
couple this pin to power ground with a minimum of 4.7µF  
tantalum or other low ESR capacitor.  
U
U
W
FU CTIO AL DIAGRA  
R
ON  
V
IN  
27  
V
11  
V
21  
I
ON  
20 FCB  
26 EXTV  
CC  
IN  
ON  
4.7V  
+
C
IN  
1µA  
+
0.7V  
2.4V  
0.6V  
REF  
0.6V  
1
5V  
REG  
+
F
OST  
BOOST  
6
TG  
5
V
=
VON  
ION  
t
ON  
(10pF)  
R
S
C
B
I
Q
FCNT  
M1  
SW  
4
ON  
20k  
+
+
L1  
SENSE  
3
SWITCH  
LOGIC  
I
I
REV  
CMP  
V
OUT  
INTV  
28  
CC  
SHDN  
OV  
+
C
VCC  
1.4V  
BG  
1
C
OUT  
M2  
V
RNG  
PGND  
2
13  
X
(0.5 TO 2)  
PGOOD  
12  
0.7V  
3.3µA  
V
OSENSE  
23  
1
R2  
10k  
0.54V  
240k  
+
1V  
Q2 Q4  
5× (ALL VID PINS)  
UV  
OV  
INTV  
Q6  
CC  
2.5µA  
VID0  
7
8
Q3 Q1  
+
Q5  
VID1  
VID2  
VID3  
VID4  
+
VID  
9
0.66V  
0.8V  
DAC  
RUN  
SHDN  
SS  
24  
+
1.2µA  
EA  
×5.3  
6V  
25  
+
0.6V  
R1  
C
C
SS  
C1  
I
TH  
RUN/SS  
V
SGND  
19  
14  
10  
22  
0.6V  
FB  
0.4V  
R
C
3714 FD  
OPV  
IN  
15  
+
OP  
OP  
17  
16  
+
OPOUT  
18  
OP AMP  
SGND  
19  
3714f  
9
LTC3714  
U
OPERATIO  
Main Control Loop  
The operating frequency is determined implicitly by the  
top MOSFET on-time and the duty cycle required to  
maintain regulation. The one-shot timer generates an on-  
time that is proportional to the ideal duty cycle, thus  
holding frequency approximately constant with changes  
in VIN and VOUT. The nominal frequency can be adjusted  
with an external resistor RON.  
TheLTC3714isaconstanton-time, currentmodecontrol-  
ler for DC/DC step-down converters. In normal operation,  
the top MOSFET is turned on for a fixed interval deter-  
mined by a one-shot timer OST. When the top MOSFET is  
turned off, the bottom MOSFET is turned on until the  
current comparator ICMP trips, restarting the one-shot  
timer and initiating the next cycle. Inductor current is  
determined by sensing the voltage between the PGND and  
SENSE pins using either the bottom MOSFET on-resis-  
tance or a separate sense resistor. The voltage on the ITH  
pin sets the comparator threshold corresponding to in-  
ductor valley current. The error amplifier EA adjusts this  
voltage by comparing the feedback signal VFB from the  
output voltage with an internal 0.6V reference. The feed-  
back voltage is derived from the output voltage by a  
resistive divider DAC that is set by the VID code pins VID0-  
VID4. If the load current increases, it causes a drop in the  
feedback voltage relative to the reference. The ITH voltage  
thenrisesuntiltheaverageinductorcurrentagainmatches  
the load current.  
Overvoltage and undervoltage comparators OV and UV  
pull the PGOOD output low if the output feedback voltage  
exitsa±10%windowaroundtheregulationpoint.Further-  
more, inanovervoltagecondition, M1isturnedoffandM2  
is turned on and held on until the overvoltage condition  
clears.  
Foldback current limiting is provided if the output is  
shorted to ground. As VFB drops, the buffered current  
threshold voltage ITHB is pulled down by clamp Q3 to a 1V  
level set by Q2 and Q6. This reduces the inductor valley  
current level to one sixth of its maximum value as VFB  
approaches ground.  
Pulling the RUN/SS pin low forces the controller into its  
shutdown state, turning off both M1 and M2. Releasing  
the pin allows an internal 1.2µA current source to charge  
up an external soft-start capacitor CSS. When this voltage  
reaches 1.5V, the controller turns on and begins switch-  
ing, but with the ITH voltage clamped at approximately  
0.6V below the RUN/SS voltage. As CSS continues to  
charge, the soft-start current limit is removed.  
At low load currents, the inductor current can drop to zero  
and become negative. This is detected by current reversal  
comparator IREV which then shuts off M2, resulting in  
discontinuous operation. Both switches will remain off  
with the output capacitor supplying the load current until  
the ITH voltage rises above the zero current level (0.8V) to  
initiate another cycle. Continuous synchronous operation  
can be forced in the LTC3714 by bringing the FCB pin  
below 0.6V. The benefit of forced continuous operation is  
lower output voltage ripple, faster transient response to  
currentloadstepsandamuchquieterfrequencyspectrum  
so that it won’t interfere with any neighboring noise  
sensitive components.  
3714f  
10  
LTC3714  
U
OPERATIO  
Internal Op Amp  
INTVCC/EXTVCC Power  
The internal op amp allows the user to program accurate  
offsets to the output voltage during power saving modes.  
By connecting the OP+ pin to the output, the OPOUT pin to  
the VOSENSE pin and an external resistor R1 between the  
OPand OPOUT pins, the op amp is hooked up as a unity-  
gain feedback amplifier. Resistors R2 and R3, together  
with series switches, can then be placed on the OPpin to  
allow negative offsets to be switched onto the output  
voltage (see Figures 2a and 2b). The accuracy of the offset  
will depend on the matching of the external resistors R1 to  
R2 and R3.*  
Power for the top and bottom MOSFET drivers and most  
of the internal controller circuitry is derived from the  
INTVCC pin. The top MOSFET driver is powered from a  
floating bootstrap capacitor CB. This capacitor is re-  
chargedfromINTVCC throughanexternalSchottkydiode  
DB when the top MOSFET is turned off. When the EXTVCC  
pin is grounded, an internal 5V low dropout regulator  
supplies the INTVCC power from VIN. If EXTVCC rises  
above 4.7V, the internal regulator is turned off, and an  
internal switch connects EXTVCC to INTVCC. This allows  
ahighefficiencysourceconnectedtoEXTVCC, suchasan  
external 5V supply or a secondary output from the  
converter, to provide the INTVCC power. Voltages up to  
7V can be applied to EXTVCC for additional gate drive. If  
the input voltage is low and INTVCC drops below 3.5V,  
undervoltage lockout circuitry prevents the power  
switches from turning on.  
For applications that require less accurate output offsets,  
or none at all, the user can use the internal op amp for true  
differential remote sensing of the output voltage by con-  
necting OPOUT to VOSENSE and using OP+ and OPfor  
differential sensing across the output capacitor as shown  
in Figure 2c.  
*An alternate configuration, shown in Figure 2b, can be used to program  
offsets as well. Either configuration can be used, depending upon the logic  
of control signals. If offsets are not required, the op amp can be used to  
remotely sense the output voltage, proving true differential sense.  
V
OUT  
V
OUT  
OPV  
15  
IN  
R1  
+
OP  
OPV  
15  
IN  
+
OP  
17  
+
VID DAC  
17  
+
V
R2  
OPOUT  
18  
OSENSE  
23  
18  
23  
VID DAC  
OP  
BATTERY  
MODE  
OFFSET  
16  
V
FB  
OP  
16  
V
FB  
22  
R1  
22  
R2  
R1  
R2  
R3  
R3  
3714 F02b  
SLEEP  
MODE  
OFFSET  
BATTERY  
MODE  
OFFSET  
3714 F02b  
SLEEP  
MODE  
OFFSET  
Figure 2a  
Figure 2b  
OPV  
15  
IN  
+
OP  
R
R
+
17  
+
V
OPOUT  
18  
V
OUT  
OUT  
OSENSE  
23  
OP  
16  
R
3714 F02c  
V
R
Figure 2c  
3714f  
11  
LTC3714  
W U U  
U
APPLICATIO S I FOR ATIO  
The basic LTC3714 application circuit is shown in  
Figure 1. External component selection is primarily de-  
termined by the maximum load current and begins with  
the selection of the sense resistance and power MOSFET  
switches. The LTC3714 can use either a sense resistor or  
theon-resistanceofthesynchronouspowerMOSFETfor  
determining the inductor current. The desired amount of  
ripple current and operating frequency largely deter-  
mines the inductor value. Finally, CIN is selected for its  
ability to handle the large RMS current into the converter  
and COUT is chosen with low enough ESR to meet the  
output voltage ripple and transient specification.  
MOSFET as the current sense element by simply connect-  
ingtheSENSEpintotheswitchnodeSWatthedrainofthe  
bottom MOSFET. This improves efficiency, but one must  
carefully choose the MOSFET on-resistance as discussed  
below.  
Power MOSFET Selection  
The LTC3714 requires two external N-channel power  
MOSFETs, one for the top (main) switch and one for the  
bottom (synchronous) switch. Important parameters for  
the power MOSFETs are the breakdown voltage V(BR)DSS  
threshold voltage V(GS)TH, on-resistance RDS(ON), reverse  
transfercapacitanceCRSS andmaximumcurrentIDS(MAX)  
,
.
Maximum Sense Voltage and VRNG Pin  
The gate drive voltage is set by the 5V INTVCC supply.  
Consequently, logic-level threshold MOSFETs must be  
used in LTC3714 applications. If the input voltage is  
expected to drop below 5V, then sub-logic level threshold  
MOSFETs should be considered.  
Inductor current is determined by measuring the voltage  
across a sense resistance that appears between the PGND  
and SENSE pins. The maximum sense voltage is set by the  
voltage applied to the VRNG pin and is equal to approxi-  
mately (0.133)VRNG. The current mode control loop will  
not allow the inductor current valleys to exceed  
(0.133)VRNG/RSENSE. In practice, one should allow some  
margin for variations in the LTC3714 and external compo-  
nent values and a good guide for selecting the sense  
resistance is:  
When the bottom MOSFET is used as the current sense  
element, particular attention must be paid to its on-  
resistance. MOSFET on-resistance is typically specified  
with a maximum value RDS(ON)(MAX) at 25°C. In this case,  
additional margin is required to accommodate the rise in  
MOSFET on-resistance with temperature:  
VRNG  
10 IOUT(MAX)  
RSENSE  
=
RSENSE  
RDS(ON)(MAX)  
=
ρT  
An external resistive divider from INTVCC can be used to  
set the voltage of the VRNG pin between 0.5V and 2V  
resulting in nominal sense voltages of 50mV to 200mV.  
Additionally, the VRNG pin can be tied to SGND or INTVCC  
in which case the nominal sense voltage defaults to 70mV  
or 140mV, respectively. The maximum allowed sense  
voltage is about 1.33 times this nominal value.  
The ρT term is a normalization factor (unity at 25°C)  
accounting for the significant variation in on-resistance  
with temperature, typically about 0.4%/°C as shown in  
Figure 3. Junction-to-case temperature is about 30°C in  
most applications. For a maximum ambient temperature  
of 70°C, using a value ρ100°C = 1.3 is reasonable.  
The power dissipated by the top and bottom MOSFETs  
strongly depends upon their respective duty cycles and  
the load current. When the LTC3714 is operating in  
continuous mode, the duty cycles for the MOSFETs are:  
Connecting the SENSE Pin  
TheLTC3714canbeusedwithorwithoutasenseresistor.  
When using a sense resistor, it is placed between the  
source of the bottom MOSFET M2 and ground. Connect  
theSENSEpintothesourceofthebottomMOSFETsothat  
the resistor appears between the SENSE and PGND pins.  
Using a sense resistor provides a well defined current  
limit, but adds cost and reduces efficiency. Alternatively,  
one can eliminate the sense resistor and use the bottom  
VOUT  
DTOP  
DBOT  
=
=
V
IN  
V – VOUT  
IN  
V
IN  
3714f  
12  
LTC3714  
W U U  
APPLICATIO S I FOR ATIO  
U
2.0  
1.5  
1.0  
0.5  
0
Tying a resistor RON from VIN to the ION pin yields an on-  
time inversely proportional to VIN. For a step-down con-  
verter, this results in approximately constant frequency  
operation as the input supply varies:  
VOUT  
VVONRON(10pF)  
f =  
Toholdfrequencyconstantduringoutputvoltagechanges,  
tie the VON pin to VOUT. The VON pin has internal clamps  
that limit its input to the one-shot timer. If the pin is tied  
below 0.7V, the input to the one-shot is clamped at 0.7V.  
Similarly, if the pin is tied above 2.4V, the input is clamped  
at 2.4V.  
50  
100  
50  
150  
0
JUNCTION TEMPERATURE (°C)  
3714 F02  
Figure 3. RDS(ON) vs Temperature  
Because the voltage at the ION pin is about 0.7V, the  
currentintothispinisnotexactlyinverselyproportionalto  
VIN, especially in applications with lower input voltages.  
To correct for this error, an additional resistor RON2  
connected from the ION pin to the 5V INTVCC supply will  
further help to stabilize the frequency.  
The resulting power dissipation in the MOSFETs at maxi-  
mum output current are:  
PTOP = DTOP OUT(MAX)  
I
2 ρT(TOP) RDS(ON)(MAX)  
+ k VIN IOUT(MAX) CRSS  
2
f
PBOT = DBOT OUT(MAX)  
2 ρT(BOT) RDS(ON)(MAX)  
I
Both MOSFETs have I2R losses and the top MOSFET  
includesanadditionaltermfortransitionlosses,whichare  
largest at high input voltages. The constant k = 1.7A–1 can  
be used to estimate the amount of transition loss. The  
bottomMOSFETlossesaregreatestwhenthebottomduty  
cycle is near 100%, during a short-circuit or at high input  
voltage.  
5V  
0.7V  
RON2  
=
RON  
Changes in the load current magnitude will also cause  
frequency shift. Parasitic resistance in the MOSFET  
switches and inductor reduce the effective voltage across  
the inductance, resulting in increased duty cycle as the  
loadcurrentincreases.Bylengtheningtheon-timeslightly  
as current increases, constant frequency operation can be  
maintained. This is accomplished with a resistive divider  
from the ITH pin to the VON pin and VOUT. The values  
required will depend on the parasitic resistances in the  
specific application. A good starting point is to feed about  
25% of the voltage change at the ITH pin to the VON pin as  
shown in Figure 4a. Place capacitance on the VON pin to  
filter out the ITH variations at the switching frequency. The  
resistor load on ITH reduces the DC gain of the error amp  
and degrades load regulation, which can be avoided by  
using the PNP emitter follower of Figure 4b.  
Operating Frequency  
The choice of operating frequency is a tradeoff between  
efficiency and component size. Low frequency operation  
improvesefficiencybyreducingMOSFETswitchinglosses  
but requires larger inductance and/or capacitance in order  
to maintain low output ripple voltage.  
TheoperatingfrequencyofLTC3714applicationsisdeter-  
mined implicitly by the one-shot timer that controls the  
on-time tON of the top MOSFET switch. The on-time is set  
by the current into the ION pin and the voltage at the VON  
pin according to:  
V
tON  
=
VON (10pF)  
I
ION  
3714f  
13  
LTC3714  
W U U  
U
APPLICATIO S I FOR ATIO  
R
R
VON1  
3k  
VON1  
30k  
V
V
ON  
V
OUT  
V
OUT  
ON  
C
R
VON  
C
VON2  
VON  
R
0.01µF  
VON2  
100k  
10k  
10k  
0.01µF  
LTC3714  
TH  
LTC3714  
TH  
INTV  
CC  
R
R
C
C
Q1  
2N5087  
I
I
C
C
C
C
3714 F04a  
3714 F04b  
(4a)  
(4b)  
Figure 4. Correcting Frequency Shift with Load Current Changes  
Inductor Selection  
Schottky Diode D1 Selection  
Given the desired input and output voltages, the inductor  
value and operating frequency determine the ripple  
current:  
The Schottky diode D1 shown in Figure 1 conducts during  
the dead time between the conduction of the power  
MOSFET switches. It is intended to prevent the body diode  
ofthebottomMOSFETfromturningonandstoringcharge  
during the dead time, causing a modest (about 1%)  
efficiency loss. The diode can be rated for about one half  
to one fifth of the full load current since it is on for only a  
fraction of the duty cycle. In order for the diode to be  
effective,theinductancebetweenitandthebottomMOSFET  
must be as small as possible, mandating that these  
components be placed adjacently. The diode can be omit-  
ted if the efficiency loss is tolerable.  
VOUT  
fL  
VOUT  
V
IN  
IL =  
1−  
Lower ripple current reduces cores losses in the inductor,  
ESR losses in the output capacitors and output voltage  
ripple. Highest efficiency operation is obtained at low  
frequency with small ripple current. However, achieving  
this requires a large inductor. There is a tradeoff between  
component size, efficiency and operating frequency.  
CIN and COUT Selection  
A reasonable starting point is to choose a ripple current  
that is about 40% of IOUT(MAX). The largest ripple current  
occurs at the highest VIN. To guarantee that ripple current  
does not exceed a specified maximum, the inductance  
should be chosen according to:  
The input capacitance CIN is required to filter the square  
wave current at the drain of the top MOSFET. Use a low  
ESR capacitor sized to handle the maximum RMS current.  
VOUT  
V
IN  
V
IN  
VOUT  
IRMS IOUT(MAX)  
– 1  
VOUT  
fIL(MAX)  
VOUT  
V
IN(MAX)  
L =  
1−  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT(MAX)/2. This simple worst-case condition is  
commonly used for design because even significant  
deviations do not offer much relief. Note that ripple  
current ratings from capacitor manufacturers are often  
basedononly2000hoursoflifewhichmakesitadvisable  
to derate the capacitor.  
Once the value for L is known, the type of inductor must be  
selected. A variety of inductors designed for high current,  
low voltage applications are available from manufacturers  
such as Sumida and Panasonic.  
3714f  
14  
LTC3714  
W U U  
APPLICATIO S I FOR ATIO  
U
The selection of COUT is primarily determined by the ESR  
required to minimize voltage ripple and load step  
transients. The output ripple VOUT is approximately  
bounded by:  
to store about 100 times the gate charge required by the  
top MOSFET. In most applications 0.1µF to 0.47µF is  
adequate.  
Discontinuous Mode Operation and FCB Pin  
1
The FCB pin determines whether the bottom MOSFET  
remains on when current reverses in the inductor. Tying  
this pin above its 0.6V threshold (typically to INTVCC)  
enables discontinuous operation where the bottom  
MOSFET turns off when inductor current reverses. The  
load current at which current reverses and discontinuous  
operation begins, depends on the amplitude of the induc-  
tor ripple current. The ripple current depends on the  
choice of inductor value and operating frequency as well  
as the input and output voltages.  
VOUT ≤ ∆IL ESR +  
8fCOUT  
Since IL increases with input voltage, the output ripple is  
highestatmaximuminputvoltage.Typically,oncetheESR  
requirement is satisfied, the capacitance is adequate for  
filtering and has the necessary RMS current rating.  
Multiple capacitors placed in parallel may be needed to  
meet the ESR and RMS current handling requirements.  
Dry tantalum, special polymer, POSCAP aluminum elec-  
trolytic and ceramic capacitors are all available in surface  
mount packages. Special polymer capacitors offer very  
low ESR but have lower capacitance density than other  
types. Tantalum capacitors have the highest capacitance  
density but it is important to only use types that have been  
surge tested for use in switching power supplies. Alumi-  
num electrolytic capacitors have significantly higher ESR,  
but can be used in cost-sensitive applications providing  
that consideration is given to ripple current ratings and  
long term reliability. Ceramic capacitors have excellent  
low ESR characteristics but can have a high voltage  
coefficient and audible piezoelectric effects. The high Q of  
ceramic capacitors with trace inductance can also lead to  
significant ringing. When used as input capacitors, care  
must be taken to ensure that ringing from inrush currents  
and switching does not pose an overvoltage hazard to the  
powerswitchesandcontroller. Highperformancethrough-  
hole capacitors may also be used, but an additional  
ceramic capacitor in parallel is recommended to reduce  
the effect of their lead inductance.  
TyingtheFCBpinbelowthe0.6Vthresholdforcescontinu-  
ous synchronous operation, allowing current to reverse at  
light loads.  
In addition to providing a logic input to force continuous  
operation, the FCB pin provides a means to maintain a  
flyback winding output when the primary is operating in  
discontinuous mode. The secondary output VSEC is nor-  
mally set as shown in Figure 5 by the turns ratio N of the  
transformer. However, if the controller goes into discon-  
tinuous mode and halts switching due to a light primary  
load current, then VSEC will droop. An external resistor  
divider from VSEC to the FCB pin sets a minimum voltage  
VSEC(MIN) below which continuous operation is forced  
until VSEC has risen above its minimum.  
R4  
VSEC(MIN) = 0.6V 1+  
R3  
V
IN  
+
C
IN  
V
IN  
1N4148  
Top MOSFET Driver Supply (CB, DB)  
V
V
TG  
SEC  
OUT  
OPTIONAL  
EXTV  
+
LTC3714  
EXTV  
C
AnexternalbootstrapcapacitorCBconnectedtotheBOOST  
pinsuppliesthegatedrivevoltageforthetopsideMOSFET.  
This capacitor is charged through diode DB from INTVCC  
when the switch node is low. When the top MOSFET turns  
on, the switch node rises to VIN and the BOOST pin rises  
to approximately VIN + INTVCC. The boost capacitor needs  
SEC  
CC  
SW  
1µF  
CC  
CONNECTION  
5V < V < 7V  
R4  
R3  
SEC  
T1  
1:N  
+
SENSE  
C
OUT  
FCB  
BG  
SGND  
PGND  
3714 F05  
Figure 5. Secondary Output Loop and EXTVCC Connection  
3714f  
15  
LTC3714  
W U U  
U
APPLICATIO S I FOR ATIO  
Fault Conditions: Current Limit and Foldback  
To further limit current in the event of a short circuit to  
ground, the LTC3714 includes foldback current limiting. If  
the output falls by more than 50%, then the maximum  
sense voltage is progressively lowered to about one sixth  
of its full value.  
The maximum inductor current is inherently limited in a  
currentmodecontrollerbythemaximumsensevoltage.In  
the LTC3714, the maximum sense voltage is controlled by  
the voltage on the VRNG pin. With valley current control,  
the maximum sense voltage and the sense resistance  
determine the maximum allowed inductor valley current.  
The corresponding output current limit is:  
Minimum Off-Time and Dropout Operation  
The minimum off-time tOFF(MIN) is the smallest amount of  
time that the LTC3714 is capable of turning on the bottom  
MOSFET, tripping the current comparator and turning the  
MOSFET back off. This time is generally about 250ns. The  
minimum off-time limit imposes a maximum duty cycle of  
tON/(tON +tOFF(MIN)).Ifthemaximumdutycycleisreached,  
due to a dropping input voltage for example, then the  
output will drop out of regulation. The minimum input  
voltage to avoid dropout is:  
VSNS(MAX)  
*RDS(ON)ρT  
1
+ ∆IL  
ILIMIT  
=
2
The current limit value should be checked to ensure that  
ILIMIT(MIN) >IOUT(MAX).Theminimumvalueofcurrentlimit  
generallyoccurswiththelowestVIN atthehighestambient  
temperature. Note that it is important to check for self-  
consistency between the assumed junction temperature  
and the resulting value of ILIMIT which heats the MOSFET  
switches.  
t
ON + tOFF(MIN)  
V
= VOUT  
IN(MIN)  
tON  
Caution should be used when setting the current limit  
based upon the RDS(ON) of the MOSFETs. The maximum  
current limit is determined by the minimum MOSFET on-  
resistance. Data sheets typically specify nominal and  
maximum values for RDS(ON), but not a minimum. A  
reasonable assumption is that the minimum RDS(ON) lies  
the same amount below the typical value as the maximum  
liesaboveit.ConsulttheMOSFETmanufacturerforfurther  
guidelines.  
Output Voltage Programming  
The output voltage is digitally set to levels between 0.6V  
and 1.75V using the voltage identification (VID) inputs  
VID0-VID4. An internal 5-bit DAC configured as a preci-  
sion resistive voltage divider sets the output voltage in  
increments according to Table 1. The VID codes are  
compatiblewithIntelMobilePentium® IIIprocessorspeci-  
fications. Each VID input is pulled up by an internal 2.5µA  
current source from the INTVCC supply and includes a  
series diode to prevent damage from VID inputs that  
exceed the supply.  
*Use RSENSE value here if a sense resistor is connected between SENSE and PGND.  
3714f  
16  
LTC3714  
W U U  
APPLICATIO S I FOR ATIO  
INTVCC Regulator  
U
Table 1. VID Output Voltage Programming  
VID4  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
VID3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
VID2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
VID1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
VID0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
V
(V)  
OUT  
An internal P-channel low dropout regulator produces the  
5V supply that powers the drivers and internal circuitry  
within the LTC3714. The INTVCC pin can supply up to  
50mA RMS and must be bypassed to ground with a  
minimum of 4.7µF tantalum or other low ESR capacitor.  
Good bypassing is necessary to supply the high transient  
currents required by the MOSFET gate drivers. Applica-  
tions using large MOSFETs with a high input voltage and  
high frequency of operation may cause the LTC3714 to  
exceed its maximum junction temperature rating or RMS  
current rating. Most of the supply current drives the  
MOSFET gates unless an external EXTVCC source is used.  
1.75V  
1.70V  
1.65V  
1.60V  
1.55V  
1.50V  
1.45V  
1.40V  
1.35V  
1.30V  
1.25V  
1.20V  
1.15V  
1.10V  
1.05V  
1.00V  
In continuous mode operation, this current is IGATECHG  
=
f(Qg(TOP) + Qg(BOT)). The junction temperature can be  
estimated from the equations given in Note 2 of the  
Electrical Characteristics. For example, the LTC3714EG is  
limited to less than 14mA from a 30V supply:  
TJ = 70°C + (14mA)(30V)(130°C/W) = 125°C  
0.975V  
0.950V  
0.925V  
0.900V  
0.875V  
0.850V  
0.825V  
0.800V  
0.775V  
0.750V  
0.725V  
0.700V  
0.675V  
0.650V  
0.625V  
0.600V  
Forlargercurrents, considerusinganexternalsupplywith  
the EXTVCC pin.  
3714f  
17  
LTC3714  
W U U  
U
APPLICATIO S I FOR ATIO  
EXTVCC Connection  
3. EXTVCC connected to an output derived boost network.  
The low voltage output can be boosted using a charge  
pump or flyback winding to greater than 4.7V. The system  
will start-up using the internal linear regulator until the  
boosted output supply is available.  
The EXTVCC pin can be used to provide MOSFET gate drive  
and control power from the output or another external  
source during normal operation. Whenever the EXTVCC  
pin is above 4.7V the internal 5V regulator is shut off and  
an internal 50mA P-channel switch connects the EXTVCC  
pintoINTVCC.INTVCC powerissuppliedfromEXTVCC until  
this pin drops below 4.5V. Do not apply more than 7V to  
the EXTVCC pin and ensure that EXTVCC VIN. The follow-  
ing list summarizes the possible connections for EXTVCC:  
External Gate Drive Buffers  
The LTC3714 drivers are adequate for driving up to about  
60nC into MOSFET switches with RMS currents of 50mA.  
Applications with larger MOSFET switches or operating at  
frequencies requiring greater RMS currents will benefit  
fromusingexternalgatedrivebufferssuchastheLTC1693.  
Alternately, the external buffer circuit shown in Figure 6  
can be used. Note that the bipolar devices reduce the  
signal swing at the MOSFET gate, and benefit from in-  
creased EXTVCC voltage of about 6V.  
1. EXTVCC grounded. INTVCC is always powered from the  
internal 5V regulator.  
2. EXTVCC connected to an external supply. A high effi-  
ciency supply compatible with the MOSFET gate drive  
requirements (typically 5V) can improve overall  
efficiency.  
BOOST  
INTV  
CC  
Q1  
Q3  
FMMT619  
FMMT619  
10Ω  
10Ω  
GATE  
OF M1  
GATE  
OF M2  
TG  
BG  
Q2  
FMMT720  
Q4  
FMMT720  
SW  
PGND  
3714 F06  
Figure 6. Optional External Gate Driver  
3714f  
18  
LTC3714  
W U U  
APPLICATIO S I FOR ATIO  
U
Soft-Start and Latchoff with the RUN/SS Pin  
troller turns off both power MOSFETs, shutting down the  
converter permanently. The RUN/SS pin must be actively  
pulled down to ground in order to restart operation.  
The RUN/SS pin provides a means to shut down the  
LTC3714 as well as a timer for soft-start and overcurrent  
latchoff. Pulling the RUN/SS pin below 1.5V puts the  
LTC3714 into a low quiescent current shutdown (IQ ≤  
30µA). Releasing the pin allows an internal 1.2µA internal  
current source to charge up the external timing capacitor  
CSS.IfRUN/SShasbeenpulledallthewaytoground,there  
is a delay before starting of about:  
The overcurrent protection timer requires that the soft-  
start timing capacitor CSS be made large enough to guar-  
antee that the output is in regulation by the time CSS has  
reachedthe4Vthreshold.Ingeneral,thiswilldependupon  
the size of the output capacitance, output voltage and load  
currentcharacteristic.Aminimumsoft-startcapacitorcan  
be estimated from:  
1.5V  
1.2µA  
C
SS > COUT VOUT RSENSE (104 [F/Vs])  
tDELAY  
=
C
SS = 1.3s/µF CSS  
(
)
Generally 0.1µF is more than sufficient.  
When the voltage on RUN/SS reaches 1.5V, the LTC3714  
begins operating with a clamp on ITH of approximately  
0.9V. As the RUN/SS voltage rises to 3V, the clamp on ITH  
is raised until its full 2.4V range is available. This takes an  
additional 1.3s/µF, during which the load current is folded  
backuntiltheoutputreaches50%ofitsfinalvalue. Thepin  
can be driven from logic as shown in Figure 7. Diode D1  
reduces the start delay while allowing CSS to charge up  
slowly for the soft-start function.  
Overcurrent latchoff operation is not always needed or  
desired. Load current is already limited during a short-  
circuit by the current foldback circuitry and latchoff  
operation can prove annoying during troubleshooting.  
The feature can be overridden by adding a pull-up current  
of >5µA to the RUN/SS pin. The additional current pre-  
ventsthedischargeofCSS duringafaultandalsoshortens  
the soft-start period. Using a resistor to VIN as shown in  
Figure 7a is simple, but slightly increases shutdown  
current. Connecting a resistor to INTVCC as shown in  
Figure 7b eliminates the additional shutdown current, but  
requires a diode to isolate CSS. Any pull-up network must  
be able to pull RUN/SS above the 4.5V maximum thresh-  
old that arms the latchoff circuit and overcome the 4µA  
maximum discharge current.  
After the controller has been started and given adequate  
time to charge up the output capacitor, CSS is used as a  
short-circuit timer. After the RUN/SS pin charges above  
4V, if the output voltage falls below 75% of its regulated  
value, then a short-circuit fault is assumed. A 1.7µA cur-  
rent then begins discharging CSS. If the fault condition  
persists until the RUN/SS pin drops to 3.5V, then the con-  
INTV  
CC  
R *  
SS  
V
IN  
RUN/SS  
3.3V OR 5V  
RUN/SS  
*
D2*  
R
SS  
D1  
C
SS  
C
SS  
3714 F07  
*OPTIONAL TO OVERRIDE  
OVERCURRENT LATCHOFF  
(7a)  
(7b)  
Figure 7. RUN/SS Pin Interfacing with Latchoff Defeated  
3714f  
19  
LTC3714  
W U U  
U
APPLICATIO S I FOR ATIO  
Efficiency Considerations  
When making any adjustments to improve efficiency, the  
final arbiter is the total input current for the regulator at  
your operating point. If you make a change and the input  
current decreases, then you improved the efficiency. If  
thereisnochangeininputcurrent, thenthereisnochange  
in efficiency.  
The percent efficiency of a switching regulator is equal to  
the output power divided by the input power times 100%.  
It is often useful to analyze individual losses to determine  
what is limiting the efficiency and which change would  
produce the most improvement. Although all dissipative  
elements in the circuit produce losses, four main sources  
account for most of the losses in LTC3714 circuits:  
Checking Transient Response  
The regulator loop response can be checked by looking at  
the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
a load step occurs, VOUT immediately shifts by an amount  
equal to ILOAD (ESR), where ESR is the effective series  
resistance of COUT. ILOAD also begins to charge or  
dischargeCOUT generatingafeedbackerrorsignalusedby  
the regulator to return VOUT to its steady-state value.  
During this recovery time, VOUT can be monitored for  
overshoot or ringing that would indicate a stability prob-  
lem. The ITH pin external components shown in Figure 8  
will provide adequate compensation for most applica-  
tions. For a detailed explanation of switching control loop  
theory see Linear Technology Application Note 76.  
1. DC I2R losses. These arise from the resistances of the  
MOSFETs, inductor and PC board traces and cause the  
efficiency to drop at high output currents. In continuous  
mode the average output current flows through L, but is  
chopped between the top and bottom MOSFETs. If the two  
MOSFETs have approximately the same RDS(ON), then the  
resistanceofoneMOSFETcansimplybesummedwiththe  
resistances of L and the board traces to obtain the DC I2R  
loss.Forexample,ifRDS(ON) =0.01andRL =0.005,the  
loss will range from 15mW up to 1.5W as the output  
current varies from 1A to 10A for a 1.5V output.  
2. Transition loss. This loss arises from the brief amount  
of time the top MOSFET spends in the saturated region  
during switch node transitions. It depends upon the input  
voltage, load current, driver strength and MOSFET capaci-  
tance, among other factors. The loss is significant at input  
voltages above 20V and can be estimated from:  
Design Example  
As a design example, take a supply with the following  
specifications: VIN = 7V to 24V (15V nominal),  
VOUT = 1.15V ±100mV, IOUT(MAX) = 15A, f = 300kHz. First,  
2
Transition Loss (1.7A–1) VIN IOUT CRSS  
f
calculate the timing resistor with VON = VOUT  
:
3. INTVCC current. This is the sum of the MOSFET driver  
and control currents. This loss can be reduced by supply-  
ing INTVCC current through the EXTVCC pin from a high  
efficiency source, such as an output derived boost net-  
work or alternate supply if available.  
1
RON  
=
= 330k  
300kHz 10pF  
(
)(  
)
and choose the inductor for about 40% ripple current at  
the maximum VIN:  
4. CIN loss. The input capacitor has the difficult job of  
filtering the large RMS input current to the regulator. It  
must have a very low ESR to minimize the AC I2R loss and  
sufficient capacitance to prevent the RMS current from  
causing additional upstream losses in fuses or batteries.  
1.15V  
1.15V  
24V  
L =  
1−  
= 0.6µH  
300kHz 0.4 15A  
(
)( )(  
)
Choosing a standard value of 0.68µH results in a maxi-  
Other losses, including COUT ESR loss, Schottky diode D1  
conduction loss during dead time and inductor core loss  
generally account for less than 2% additional loss.  
mum ripple current of:  
1.15V  
1.15V  
24V  
IL =  
1–  
= 5.4A  
300kHz 0.68µH  
(
)(  
)
3714f  
20  
LTC3714  
W U U  
APPLICATIO S I FOR ATIO  
U
Next, choose the synchronous MOSFET switch. Because  
of the narrow duty cycle and large current, a single SO-8  
MOSFET will have difficulty dissipating the power lost in  
the switch. Choosing two IRF7811s (RDS(ON) = 0.013,  
186mV  
1
2
ILIMIT  
+
5.4A = 20A  
(
)
0.5 1.6 0.013Ω  
(
)( )(  
)
and double check the assumed TJ in the MOSFET:  
C
RSS = 60pF) yields a nominal sense voltage of:  
2
VSNS(NOM) = (15A)(0.5)(1.3)(0.013) = 127mV  
24V – 1.15V 20A  
PBOT  
=
1.6 0.013Ω = 1.98W  
)(  
(
)
24V  
2
Tying VRNG to INTVCC will set the current sense voltage  
range for a nominal value of 140mV with current limit  
occurring at 186mV. To check if the current limit is  
acceptable,assumeajunctiontemperatureofabout100°C  
above a 50°C ambient with ρ150°C = 1.6:  
TJ = 50°C + (1.98W)(50°C/W) = 149°C  
9
10  
11  
12  
13  
14  
19  
21  
22  
20  
23  
24  
15  
16  
8
C
VID2  
VID1  
VID0  
BOOST  
TG  
SS  
0.1µF  
7
RUN/SS  
D
B
CMDSH-3  
6
V
IN  
V
ON  
7V TO 24V  
C
R
C
IN  
PG  
B
22µF  
25V  
×3  
100k  
0.33µF  
5
M1  
L1  
PGOOD  
IRF7811  
0.68µH  
V
OUT  
1.15V  
15A  
4
C
C1  
2.2nF  
V
I
SW  
RNG  
C
R
OUT  
C
270µF  
2V  
M2  
IRF7811  
×2  
20k  
3
SENSE  
TH  
D1  
UPS840  
C
×5  
C2  
LTC3714  
SGND  
100pF  
2
PGND  
BG  
C
0.01µF  
ION  
1
I
ON  
C
VCC  
4.7µF  
28  
27  
26  
25  
18  
17  
V
INTV  
CC  
FB  
R
1Ω  
F
C
100pF  
FB  
FCB  
V
IN  
C
F
0.1µF  
V
EXTV  
5V  
OSENSE  
CC  
R
ON  
VID3  
VID4  
330k  
OPV  
OPOUT  
IN  
+
OP  
OP  
3714 F08  
C
C
: UNITED CHEMICON THCR70EIH226ZT  
IN  
: PANASONIC EEFUE0D271  
OUT  
L1: SUMIDA CEP125-4712-T007  
Figure 8. CPU Core Voltage Regulator 1.15V/15A at 300kHz without Active Voltage Positioning  
3714f  
21  
LTC3714  
W U U  
U
APPLICATIO S I FOR ATIO  
Because the top MOSFET is on for such a short time, a  
single IRF7811 will be sufficient. Checking its power  
dissipation at current limit with ρ80°C = 1.2:  
1
3
VOUT(STEP) = 15A  
0.025Ω = 125mV  
(
)
(
)
By positioning the output voltage 60mV above the regula-  
tionpointatnoload,itwilldrop65mVbelowtheregulation  
point after the load step. However, when the load disap-  
pears or the output is stepped from 15A to 0A, the 65mV  
isrecovered. Thisway, atotalof65mVchangeisobserved  
on VOUT in all conditions, whereas a total of ±75mV or  
150mV is seen on VOUT without voltage positioning.  
1.15V  
24V  
2
PTOP  
=
20A 1.2 0.013Ω +  
(
) ( )(  
)
2
1.7 24V 20A 60pF 300kHz  
)( ) ( )( )(  
= 0.299W + 0.353W = 0.652W  
(
)
TJ = 50°C + (0.652W)(50°C/W) = 82.6°C  
Implementingactivevoltagepositioningrequiressettinga  
precise gain between the sensed current and the output  
voltage. Because of the variability of MOSFET on-resis-  
tance, it is prudent to use a sense resistor with active  
voltage positioning. In order to minimize power lost in this  
resistor, a low value of 0.003is chosen. The nominal  
sense voltage will now be:  
The junction temperatures will be significantly less at  
nominal current, but this analysis shows that careful  
attention to heat sinking will be necessary in this circuit.  
CIN is chosen for an RMS current rating of about 6A at  
temperature. The output capacitors are chosen for a low  
ESR of 0.005to minimize output voltage changes due to  
inductor ripple current and load steps. The ripple voltage  
will be only:  
VSNS(NOM) = (0.003)(15A) = 45mV  
To maintain a reasonable current limit, the voltage on the  
VRNG pin is reduced to 0.5V by connecting it between  
INTVCC andGND,correspondingtoa50mVnominalsense  
voltage.  
VOUT(RIPPLE) = IL(MAX) (ESR) = (5.4A) (0.005)  
= 27mV  
However, a 0A to 15A load step will cause an output  
change of up to:  
Next, the gain of the LTC3714 error amplifier must be  
determined. ThechangeinITH voltageforacorresponding  
change in the output current is:  
VOUT(STEP) =ILOAD (ESR)=(15A)(0.005)=±75mV  
The complete circuit is shown in Figure 8.  
12V  
VRNG  
Active Voltage Positioning  
ITH  
=
RSENSE IOUT  
Active voltage positioning (also termed load “deregula-  
tion” or droop) describes a technique where the output  
voltage varies with load in a controlled manner. It is useful  
in applications where rapid load steps are the main cause  
of error in the output voltage. By positioning the output  
voltage at or above the regulation point at zero load, and  
below the regulation point at full load, one can use more  
of the error budget for the load step. This allows one to  
reduce the number of output capacitors by relaxing the  
ESR requirement.  
= 24 0.00315A = 1.08V  
( )( )(  
)
The corresponding change in the output voltage is deter-  
mined by the gain of the error amplifier and feedback  
divider. The LTC3714 error amplifier has a  
transconductance gm that is constant over both tempera-  
ture and a wide ±40mV input range. Thus, by connecting  
aloadresistanceRVP totheITH pin, theerroramplifiergain  
can be precisely set for accurate voltage positioning.  
In the design example, Figure 8, five 0.025capacitors  
are required in parallel to keep the output voltage within  
tolerance. Using active voltage positioning, the same  
specification can be met with only threecapacitors. In this  
case, the load step will cause an output voltage change of:  
0.6V  
VOUT  
ITH = gmRVP  
VOUT  
3714f  
22  
LTC3714  
W U U  
APPLICATIO S I FOR ATIO  
U
Solving for this resistance value:  
nominal value of the ITH pin voltage when the error  
amplifier input is zero. To set the beginning of the load line  
at the regulation point, the ITH pin voltage must be set to  
correspond to zero output current. The relation between  
voltage and the output current is:  
V
OUT ITH  
RVP  
=
=
(0.6V)gm VOUT  
(1.15V)(1.08V)  
(0.6V)(1.7mS)(60mV)  
= 20.3k  
12V  
VRNG  
1
2
ITH(NOM)  
=
=
RSENSE OUT  
I
IL + 0.75V  
The gain setting resistance RVP is implemented with two  
resistors, RVP1 connected from ITH to ground and RVP2  
connectedfromITH toINTVCC. Theparallelcombinationof  
these resistors must equal RVP and their ratio determines  
12V  
0.5V  
1
2
0.0030A – 5.4A + 0.75V  
(
)
= 0.55V  
9
10  
11  
12  
13  
8
7
6
5
4
C
VID2  
VID1  
VID0  
BOOST  
TG  
SS  
0.1µF  
RUN/SS  
D
B
CMDSH-3  
V
IN  
V
ON  
7V TO 24V  
C
R
R
R
PG  
100k  
C
IN  
RNG1  
10k  
RNG2  
B
10µF  
25V  
×3  
90.1k  
0.33µF  
M1  
IRF7811  
L1  
0.68µH  
PGOOD  
V
OUT  
1.15V/15A  
V
SW  
RNG  
M2  
IRF7811  
×2  
D1  
UPS840  
C
C
OUT  
C1  
LTC3714  
R
C
R
VP2  
270µF  
2V  
2.2nF  
20k  
185k  
14  
19  
21  
22  
20  
23  
24  
15  
16  
3
I
SENSE  
PGND  
BG  
×3  
TH  
R
C
VP1  
C1  
23k  
100pF  
R
SENSE  
2
SGND  
0.003Ω  
C
0.01µF  
ION  
1
I
ON  
C
VCC  
C
100pF  
FB  
4.7µF  
28  
27  
26  
25  
18  
17  
V
INTV  
FB  
CC  
R
F
1Ω  
FCB  
V
V
IN  
C
F
0.1µF  
EXTV  
5V  
OSENSE  
CC  
R
ON  
VID3  
OPV  
VID4  
330k  
OPOUT  
INTV  
0.1µF  
IN  
CC  
+
OP  
OP  
3714 F08  
C
C
: UNITED CHEMICON THCR70EIH226ZT  
IN  
: PANASONIC EEFUE0D271  
OUT  
L1: SUMIDA CEP125-4712-T007  
Figure 9. CPU Core Voltage Regulator with Active Voltage Positioning 1.15V/15A at 300kHz  
3714f  
23  
LTC3714  
W U U  
U
APPLICATIO S I FOR ATIO  
Solving for the required values of the resistors:  
The modified circuit is shown in Figure 9. Refer to Linear  
Technology Design Solutions 10 for additional informa-  
tion about output voltage positioning.  
5V  
5V  
RVP1  
=
RVP  
=
20.3k  
5V – ITH(NOM)  
5V – 0.55V  
PC Board Layout Checklist  
= 23k  
5V  
ITH(NOM)  
When laying out the printed circuit board, use the follow-  
ing checklist to ensure proper operation of the controller.  
5V  
0.55V  
RVP2  
=
RVP  
=
20.3k = 185k  
C
VCC  
LTC3714  
+
M1  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
M2  
D1  
BG  
INTV  
EXTV  
CC  
V
C
IN  
IN  
C
F
PGND  
V
IN  
R
R
F
3
SENSE  
SW  
CC  
V
C
OUT  
OUT  
D
B
+
4
ON  
VID4  
VID3  
5
TG  
C
B
6
BOOST  
VID0  
VID1  
VID2  
RUN/SS  
V
OSENSE  
7
V
FB  
C
ION  
C
FB  
8
I
ON  
9
FCB  
C
SS  
10  
11  
12  
13  
14  
SGND 19  
18  
V
OPOUT  
ON  
17  
16  
15  
+
PGOOD  
OP  
V
OP  
RNG  
C
C1  
R
C
I
TH  
OPV  
IN  
C
C2  
3714 F10  
BOLD LINES INDICATE HIGH CURRENT PATHS  
Figure 10. LTC3714 Layout Diagram  
3714f  
24  
LTC3714  
W U U  
APPLICATIO S I FOR ATIO  
U
These items are also illustrated in Figures 10 and 11.  
• Keep the high dV/dT SW, BOOST and TG nodes away  
from sensitive small-signal nodes.  
• Segregate the signal and power grounds. All small  
signal components should return to the SGND pin at  
onepointwhichisthentiedtothePGNDpinclosetothe  
source of M2.  
• Connect the INTVCC decoupling capacitor CVCC closely  
to the INTVCC and PGND pins.  
• Connect the top driver boost capacitor CB closely to the  
BOOST and SW pins.  
• Place M2 as close to the controller as possible, keeping  
the PGND, BG and SENSE traces short.  
• Connect the VIN pin decoupling capacitor CF closely to  
the VIN and PGND pins.  
Connect the input capacitor(s) CIN close to the power  
MOSFETs. This capacitor carries the MOSFET AC  
current.  
• VID0-VID4 interface circuitry must return to SGND.  
V
IN  
C
IN  
C
IN  
C
IN  
C
IN  
TO PGND  
(PIN 2)  
PGND  
R
SENSE  
SW  
M1  
M1  
M2  
SENSE  
TO SENSE  
(PIN 3)  
D1  
M2  
M2  
PGND  
L1  
C
OUT  
C
OUT  
C
C
OUT OUT  
V
OUT  
3714 F11  
Figure 11. General Layout of External Power Components  
3714f  
25  
LTC3714  
U
TYPICAL APPLICATIO  
Performance Data for Intel Compatible Mobile Microprocessor Power Supply with Active Voltage Positioning  
Line Transient Reponse from VIN = 9V to 17V Load Transient Reponse for IOUT = 8A to 23A  
VIN  
1.395V  
5V/DIV  
VOUT  
(1.35V)  
50mV/DIV  
1.213V  
VOUT  
50mV/DIV  
AC COUPLED  
23A  
ILOAD  
10A/DIV  
8A  
50µs/DIV  
3714 TA02  
20µs/DIV  
3714 TA03  
Efficiency  
95  
V
= 1.35V  
OUT  
90  
85  
80  
75  
70  
V
= 8.5V  
IN  
V
= 15V  
IN  
V
= 24V  
IN  
0
3
6
9
12 15 18 21  
LOAD CURRENT (A)  
3714 TA04  
3714f  
26  
LTC3714  
U
TYPICAL APPLICATIO  
Transmeta CrusoeTM Microprocessor Power Supply with Active Voltage Positioning  
200k  
VID2  
3.3V  
INTV  
CC  
VRON  
VID1 VID0  
3.3V  
U1  
LTC3714EG  
VID1  
BAT54  
1M  
200k  
200k  
9
10  
11  
12  
13  
8
V
IN  
VID2  
1µF  
0.1µF  
7
RUN/SS  
VID0  
BOOST  
TG  
1k  
V
0.01µF  
CMDSH-3  
1k  
6
V
V
ON  
IN  
2k  
100Ω  
OUT  
5V TO 24V  
C
IN  
3.2k  
5
10µF  
35V  
×2  
IRF7811  
L1  
POWER GOOD  
PGOOD  
0.22µF  
V
OUT  
4
20k  
220pF  
820pF  
13k 1%  
0.6V To 1.75V  
8A  
V
RNG  
SW  
10k  
1.8µH  
3
SENSE  
+
C
1µF  
6.3V  
OUT  
LTC3714EG  
270µF  
2V  
80.6k 1%  
14  
19  
20  
21  
22  
23  
24  
18  
15  
2
I
TH  
PGND  
BG  
×2  
1
IRF7811  
SGND  
FCB  
MBRS340  
4.7µF  
BAT54  
0.1µF  
10k  
28  
INTV  
CC  
1Ω  
0.005Ω  
1000pF  
100pF  
V
IN  
I
ON  
330k  
200k  
0.1µF  
V
IN  
27  
25  
26  
17  
16  
V
V
V
FB  
IN  
VID4  
OSENSE  
VID3  
3.3V  
VID4  
200k  
5V  
3.3V  
VID3  
EXTV  
CC  
DPSLP  
BAT54C  
START  
+
OPOUT  
OP  
R22  
100k  
OPV  
IN  
OP  
0.01µF  
75k  
1%  
V
OUT  
100k  
1%  
453k  
1%  
START  
DPSLP  
3714 TA01  
U
PACKAGE DESCRIPTIO  
G Package  
28-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
10.07 – 10.33*  
(.397 – .407)  
28 27 26 25 24 23 22 21 20 19 18  
5.20 – 5.38**  
(.205 – .212)  
1.73 – 1.99  
(.068 – .078)  
16 15  
17  
0° – 8°  
7.65 – 7.90  
(.301 – .311)  
.65  
(.0256)  
BSC  
.13 – .22  
.55 – .95  
(.005 – .009)  
(.022 – .037)  
.05 – .21  
(.002 – .008)  
.25 – .38  
(.010 – .015)  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
G28 SSOP 0501  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
Crusoe is a trademark of Transmeta Corporation.  
3714f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
27  
LTC3714  
U
TYPICAL APPLICATIO  
Intel Compatible Mobile Microprocessor Power Supply with Active Voltage Positioning  
INTV  
3.3V  
V
RON  
CC  
200k  
3.3V  
2k  
200k  
200k  
9
8
VID2  
VID1  
VID0  
BOOST  
TG  
0.1µF  
100Ω  
1µF  
1k  
10  
11  
12  
13  
7
RUN/SS  
7V V 24V  
IN  
POWER GOOD  
6
V
C
IN  
ON  
3.2k  
0.22µF  
10µF  
35V  
×4  
5
IRF7811  
×2  
L1  
0.68µH  
10k  
PGOOD  
V
OUT  
0.6V TO 1.75V  
23A  
4
V
SW  
RNG  
CMDSH-3  
C
3
OUT  
IRF7811  
+
SENSE  
270µF  
MBRS  
340T3  
×3  
220pF  
100pF  
2V  
×4  
LTC3714  
20k  
14  
19  
21  
22  
20  
23  
24  
18  
15  
2
200k  
1%  
I
PGND  
R
TH  
SENSE  
0.003Ω  
INTV  
CC  
1
220pF  
SGND  
BG  
10nF  
28  
I
INTV  
CC  
ON  
20.5k  
1%  
+
4.7µF  
10V  
V
FB  
1Ω  
27  
25  
26  
17  
16  
1k  
FCB  
V
IN  
0.1µF  
200k  
V
VID4  
3.3V  
OSENSE  
200k  
3.3V  
VID3  
EXTV  
5V  
CC  
+
OPOUT  
OP  
806k  
1%  
10k  
1%  
INTV  
CC  
OPV  
IN  
OP  
0.1µF  
GMUXSEL  
330k  
10k  
1%  
INTV  
CC  
806k  
1%  
277k  
1%  
10k  
100Ω  
DPSLP#  
DPRSLPVR  
3714 TA01  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
GN-16 Package, 0.8V Reference, Burst Mode Operation  
GN-24 Package, 5-Bit VID, 0.8V , Burst Mode Operation,  
LTC1778  
Low Duty Cycle, No R  
TM Step-Down Controller  
SENSE  
LTC3711  
5-Bit Adjustable, Low Duty Cycle, No R  
,
SENSE  
REF  
Step-Down Controller  
0.925V V  
2V  
OUT  
LTC3716  
LTC3778  
Dual Phase, High Efficiency Step-Down Controller  
Wide V , No R Step-Down Controller  
2-Phase, 5-Bit VID (0.6V to 1.75V), Narrow 36-Pin SSOP, 3.5V V 36V  
IN  
4V V 36V, True Current Mode Control, 1A I 20A  
OUT  
IN  
SENSE  
IN  
No R  
is a trademark of Linear Technology Corporation.  
SENSE  
3714f  
LT/TP 0602 2K • PRINTED IN USA  
28 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2001  

相关型号:

LTC3716

2-Phase, 5-Bit VID, Current Mode, High Efficiency, Synchronous Step-Down Switching Regulator
Linear

LTC3716EG

2-Phase, 5-Bit VID, Current Mode, High Efficiency, Synchronous Step-Down Switching Regulator
Linear

LTC3716EG#PBF

LTC3716 - 2-Phase, 5-Bit VID, Current Mode, High Efficiency, Synchronous Step-Down Switching Regulator; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3716EG#TR

LTC3716 - 2-Phase, 5-Bit VID, Current Mode, High Efficiency, Synchronous Step-Down Switching Regulator; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3716EG#TRPBF

LTC3716 - 2-Phase, 5-Bit VID, Current Mode, High Efficiency, Synchronous Step-Down Switching Regulator; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3717

Wide Operating Range, No RSENSE Step-Down Controller for DDR/QDR Memory Termination
Linear

LTC3717-1

Wide Operating Range, No RSENSE TM Step-Down Controller for DDR/QDR Memory Termination
Linear

LTC3717EGN

Wide Operating Range, No RSENSE Step-Down Controller for DDR/QDR Memory Termination
Linear

LTC3717EGN#PBF

暂无描述
Linear

LTC3717EGN#TRPBF

LTC3717 - Wide Operating Range, No RSENSE Step-Down Controller for DDR/QDR Memory Termination; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3717EUH-1

Wide Operating Range, No RSENSE TM Step-Down Controller for DDR/QDR Memory Termination
Linear

LTC3717EUH-1#PBF

LTC3717-1 - Wide Operating Range, No RSENSE Step-Down Controller for DDR/QDR Memory Termination; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear