LTC3726IGN#TRPBF [Linear]

LTC3726 - Secondary-Side Synchronous Forward Controller; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C;
LTC3726IGN#TRPBF
型号: LTC3726IGN#TRPBF
厂家: Linear    Linear
描述:

LTC3726 - Secondary-Side Synchronous Forward Controller; Package: SSOP; Pins: 16; Temperature Range: -40°C to 85°C

驱动器
文件: 总20页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3900  
Synchronous Rectifier Driver  
for Forward Converters  
FeaTures  
DescripTion  
The LTC®3900 is a secondary-side synchronous recti-  
fier driver designed to be used in isolated forward con-  
verter power supplies. The chip drives N-channel rectifier  
MOSFETs and accepts pulse sychronization from the  
primary-side controller via a pulse transformer.  
n
N-Channel Synchronous Rectifier MOSFET Driver  
n
Programmable Timeout Protection  
n
Reverse Inductor Current Protection  
n
Pulse Transformer Synchronization  
n
Wide V Supply Range: 4.5V to 11V  
CC  
n
n
n
15ns Rise/Fall Times at V = 5V, C = 4700pF  
CC  
L
TheLTC3900incorporatesafullrangeofprotectionforthe  
external MOSFETs. A programmable timeout function is  
included that disables both drivers when the synchroniza-  
tion signal is missing or incorrect. Additionally, the chip  
sensestheoutputinductorcurrentthroughthedrain-source  
resistance of the catch MOSFET, shutting off the MOSFET  
if the inductor current reverses. The LTC3900 also shuts  
off the drivers if the supply voltage is too low.  
Undervoltage Lockout  
Small SO-8 Package  
applicaTions  
n
48V Input Isolated DC/DC Converters  
Isolated Telecom Power Supplies  
High Voltage Distributed Power  
Step-Down Converters  
Industrial Control System Power Supplies  
Automotive and Heavy Equipment  
n
n
L, LT, LTC, LTM, Linear Technology, Burst Mode and the Linear logo are registered trademarks  
of Linear Technology Corporation. All other trademarks are the property of their respective  
owners.  
n
n
Typical applicaTion  
ISOLATION  
BARRIER  
L0  
Z
V
3.3V  
40A  
OUT  
V
IN  
36V TO 72V  
+
D3  
C
OUT  
Q
Efficiency  
T1  
C
R
Z
95  
90  
85  
80  
75  
70  
65  
GATE  
OUT  
V
V
= 3.3V  
OUT  
REG  
R
Q1  
CS2  
R
B
R
CS1  
D
= 36V  
Z
IN  
Q3  
+
CS  
V
= 72V  
IN  
OC  
CG  
Q4  
470Ω  
V
IN  
= 48V  
V
CC  
I
SENSE  
CS  
R
TMR  
R
CS3  
LTC3900  
10mΩ  
LT1952  
C
TIMER  
VCC  
FG  
C
SG  
C
TMR  
S
OUT  
SYNC  
GND  
COMP  
GND  
T2  
R
SG  
SYNC  
270Ω  
25 30  
LOAD CURRENT (A)  
0
5
10 15 20  
35 40  
R1  
OPTO  
V
IN  
3900 F10b  
LT4430  
COMP  
GND  
OC  
OCI  
FB  
R2  
3900 F01  
Figure 1. Simplified Isolated Synchronous Forward Converter  
3900fb  
1
LTC3900  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
Supply Voltage  
TOP VIEW  
+
V ........................................................................12V  
CC  
CS  
CS  
1
2
3
4
8
7
6
5
SYNC  
TIMER  
GND  
FG  
Input Voltage  
CS , TIMER .............................. 0.3V to (V +0.3V)  
CC  
CG  
SYNC ...................................................... –12V to 12V  
V
CC  
Input Current  
S8 PACKAGE  
8-LEAD PLASTIC SO  
= 150°C, θ = 130°C/W  
+
CS ....................................................................15mA  
T
JMAX  
Operating Junction Temperature Range (Note 2)  
JA  
LTC3900E........................................... –40°C to 125°C  
LTC3900I............................................ –40°C to 125°C  
LTC3900H .......................................... –40°C to 150°C  
LTC3900MP ....................................... –55°C to 150°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
orDer inForMaTion  
LEAD FREE FINISH  
LTC3900ES8#PBF  
LTC3900IS8#PBF  
LTC3900HS8#PBF  
LTC3900MPS8#PBF  
LEAD BASED FINISH  
LTC3900ES8  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTC3900ES8#TRPBF  
LTC3900IS8#TRPBF  
LTC3900HS8#TRPBF  
LTC3900MPS8#TRPBF  
TAPE AND REEL  
3900  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
PACKAGE DESCRIPTION  
3900  
–40°C to 125°C  
3900  
–40°C to 150°C  
3900  
–55°C to 150°C  
PART MARKING*  
3900  
TEMPERATURE RANGE  
–40°C to 125°C  
LTC3900ES8#TR  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
8-Lead Plastic Small Outline  
LTC3900IS8  
LTC3900IS8#TR  
3900  
–40°C to 125°C  
LTC3900HS8  
LTC3900HS8#TR  
LTC3900MPS8#TR  
3900  
–40°C to 150°C  
LTC3900MPS8  
3900  
–55°C to 150°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C. VCC = 5V unless otherwise specified. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
11  
UNITS  
l
l
V
V
Supply Voltage Range  
4.5  
5
V
CC  
V
V
Undervoltage Lockout Threshold  
Undervoltage Lockout Hysteresis  
Rising Edge  
Rising Edge to Falling Edge  
4.1  
0.5  
4.5  
V
V
UVLO  
CC  
CC  
l
l
I
V
Supply Current  
V
= 0V  
0.5  
7
1
15  
mA  
mA  
VCC  
CC  
SYNC  
SYNC  
f
= 100kHz, C = C = 4700pF (Note 4)  
FG  
CG  
Timer  
l
l
V
Timer Threshold Voltage  
Timer Input Current  
–10%  
V
/5  
10%  
–10  
V
TMR  
TMR  
CC  
I
V
= 0V  
–6  
µA  
TMR  
3900fb  
2
LTC3900  
elecTrical characTerisTics The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C. VCC = 5V unless otherwise specified. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
40  
MAX  
UNITS  
l
t
Timer Discharge Time  
Timer Pin Clamp Voltage  
C
C
= 1000pF, R  
TMR  
= 4.7k  
= 4.7k  
120  
ns  
V
TMRDIS  
TMR  
TMR  
V
= 1000pF, R  
2.5  
TMRMAX  
TMR  
Current Sense  
+
l
l
I
I
+
CS Input Current  
V
V
+ = 0V  
1
1
µA  
µA  
V
CS  
CS  
CS  
CS  
CS Input Current  
– = 0V  
+
V
V
CS Pin Clamp Voltage  
I
IN  
= 5mA, V = –5V  
SYNC  
11  
CSMAX  
CS  
Current Sense Threshold Voltage  
V
– = 0V  
7.5  
3
1
10.5  
13.5  
18  
20  
mV  
mV  
mV  
CS  
l
l
LTC3900E/LTC3900I (Note 5)  
LTC3900H/LTC3900MP (Note 5)  
SYNC Input  
l
l
I
SYNC Input Current  
V
= 10V  
SYNC  
1
10  
µA  
SYNC  
V
SYNC Input Positive Threshold  
SYNC Positive Input Hysteresis  
1.0  
1.4  
0.2  
1.8  
V
V
SYNCP  
(Note 6)  
(Note 6)  
l
V
SYNC Input Negative Threshold  
SYNC Negative Input Hysteresis  
–1.8  
–1.4  
0.2  
–1.0  
V
V
SYNCN  
Driver Output  
R
Driver Pull-Up Resistance  
Driver Pull-Down Resistance  
Driver Peak Output Current  
I
= –100mA  
OUT  
0.9  
0.9  
2
1.2  
1.6  
2.0  
Ω
Ω
Ω
ONH  
l
l
LTC3900E/LTC3900I  
LTC3900H/LTC3900MP  
R
I
= 100mA  
1.2  
1.6  
2.0  
Ω
Ω
Ω
ONL  
OUT  
l
l
LTC3900E/LTC3900I  
LTC3900H/LTC3900MP  
I
PK  
(Note 6)  
A
Switching Characteristics (Note 7)  
t
SYNC Input to Driver Output Delay  
C
= C = 4700pF, V  
SYNC  
=
=
5V  
5V  
d
FG  
CG  
l
l
LTC3900E/LTC3900I  
LTC3900H/LTC3900MP  
60  
15  
120  
150  
ns  
ns  
l
t
Minimum SYNC Pulse Width  
Driver Rise/Fall Time  
V
C
=
5V  
75  
ns  
ns  
SYNC  
SYNC  
FG  
t , t  
= C = 4700pF, V  
r
f
CG  
SYNC  
calculated from the ambient temperature (T , in °C) and power dissipation  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
A
(P , in watts) according to the formula:  
D
T = T + (P θ ), where θ (in °C/W) is the package thermal  
J
A
D
JA  
JA  
impedance.  
Note 2: The LTC3900 is tested under pulsed load conditions such that  
Note 3: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
specified.  
Note 4: Supply current in normal operation is dominated by the current  
needed to charge and discharge the external MOSFET gates. This current  
will vary with supply voltage, switching frequency and the external  
MOSFETs used.  
T
T . The LTC3900E is guaranteed to meet performance specifications  
J
A
from 0°C to 85°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured  
by design, characterization and correlation with statistical process  
controls. The LTC3900I is guaranteed over the –40°C to 125°C operating  
junction temperature range. The LTC3900H is guaranteed over the full  
–40°C to 150°C operating junction temperature range. The LTC3900MP  
is guaranteed and tested over the full –55°C to 150°C operating junction  
temperature range. High junction temperatures degrade operating  
lifetimes; operating lifetime is derated for junction temperatures greater  
than 125°C. Note that the maximum ambient temperature consistent  
with these specifications is determined by specific operating conditions  
in conjunction with board layout, the rated package thermal impedance  
Note 5: The current sense comparator threshold has a 0.33%/°C  
temperature coefficient (TC) to match the TC of the external MOSFET  
R
DS(ON)  
.
Note 6: Guaranteed by design, not subject to test.  
Note 7: Rise and fall times are measured using 10% and 90% levels. Delay  
times are measured from 1.4V at SYNC input to 20%/80% levels at the  
driver output.  
and other environmental factors. The junction temperature (T , in °C) is  
J
3900fb  
3
LTC3900  
Typical perForMance characTerisTics  
Timeout vs VCC  
Timeout vs Temperature  
Timeout vs RTMR  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
4.80  
4.75  
10  
9
8
7
6
5
4
3
2
1
0
T
= 25°C  
V
= 5V  
T
= 25°C  
A
CC  
A
R
= 51k  
R
= 51k  
V
= 5V  
CC  
TMR  
TMR  
TMR  
TMR  
C
= 470pF  
C
= 470pF  
C
= 470pF  
TMR  
4
6
7
8
9
10  
11  
–75 –50  
0
25 50 75 100 125 150  
5
–25  
0
10 20 30 40 50 60 70 80 90 100  
V
(V)  
TEMPERATURE (°C)  
R
(kΩ)  
CC  
TMR  
3900 G01  
3900 G02  
3900 G03  
Current Sense Threshold vs  
Temperature  
VCS(MAX) Clamp Voltage vs CS+  
Input Current  
SYNC Positive Threshold vs  
Temperature  
18  
17  
16  
15  
14  
13  
12  
11  
10  
1.8  
T
= 25°C  
V
= 5V, 11V  
17  
15  
13  
11  
9
A
CC  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
V
CC  
= 11V  
V
CC  
= 5V  
7
5
3
–25  
0
25 50 75  
125 150  
25  
–75 –50  
100  
0
5
10  
15  
CS INPUT CURRENT (mA)  
20  
30  
–25  
0
25 50 75  
125 150  
–75 –50  
100  
+
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3900 G04  
3900 G05  
3900 G06  
SYNC Negative Threshold vs  
Temperature  
Propagation Delay vs  
Temperature  
Propagation Delay vs VCC  
–1.0  
–1.1  
–1.2  
–1.3  
–1.4  
–1.5  
–1.6  
–1.7  
–1.8  
120  
110  
100  
90  
120  
110  
100  
90  
V
= 5V, 11V  
T
= 25°C  
LOAD  
V
C
= 5V  
CC  
A
CC  
LOAD  
C
= 4.7nF  
= 4.7nF  
80  
80  
70  
70  
SYNC TO FG  
60  
60  
SYNC TO FG  
SYNC TO CG  
50  
50  
SYNC TO CG  
40  
40  
–25  
0
25 50 75  
125 150  
4
5
6
7
8
9
10  
11  
–75 –50  
100  
–25  
0
25 50 75  
100  
125 150  
–75 –50  
TEMPERATURE (°C)  
V
(V)  
CC  
TEMPERATURE (°C)  
3900 G07  
3900 G08  
3900 G09  
3900fb  
4
LTC3900  
Typical perForMance characTerisTics  
Propagation Delay vs CLOAD  
Rise/Fall Time vs VCC  
Rise/Fall Time vs Temperature  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
120  
110  
100  
90  
V
C
= 5V  
T
= 25°C  
= 5V  
T
= 25°C  
LOAD  
CC  
LOAD  
A
CC  
A
= 4.7nF  
V
C
= 4.7nF  
80  
70  
RISE TIME  
SYNC TO FG  
RISE TIME  
60  
FALL TIME  
SYNC TO CG  
FALL TIME  
50  
0
40  
0
5
6
7
8
9
11  
–25  
0
25 50 75 125 150  
100  
4
10  
–75 –50  
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
V
CC  
(V)  
C
LOAD  
(nF)  
3900 G11  
3900 G10  
3900 G12  
Undervoltage Lockout Threshold  
Voltage vs Temperature  
Rise/Fall Time vs Load  
Capacitance  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
T
= 25°C  
CC  
4.4  
A
V
= 5V  
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
RISING EDGE  
RISE TIME  
FALLING EDGE  
FALL TIME  
0
–25  
0
25 50 75  
125 150  
100  
–75 –50  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
C
LOAD  
(nF)  
3900 G13  
3900 G14  
VCC Supply Current vs  
Temperature  
VCC Supply Current vs Load  
Capacitance  
20  
18  
16  
14  
12  
10  
8
30  
25  
20  
15  
10  
5
C
= 4.7nF  
T
f
= 25°C  
SYNC  
LOAD  
A
= 100kHz  
V
= 11V  
CC  
V
= 11V  
CC  
V
= 5V  
CC  
8
V
= 5V  
CC  
6
4
0
–25  
0
25 50 75  
125 150  
–75 –50  
100  
0
1
2
3
4
5
6
7
9
10  
TEMPERATURE (°C)  
C
(nF)  
LOAD  
3900 G15  
3900 G16  
3900fb  
5
LTC3900  
pin FuncTions  
+
CS , CS (Pin 1, 2): Current Sense Differential Input.  
GND (Pin 6): The V bypass capacitor should be con-  
CC  
+
Connect CS through a series resistor to the drain of the  
nected directly to this GND pin.  
external catch MOSFET, Q4. Connect CS to the source.  
TIMER(Pin7):TimerInput. Connectthispintoanexternal  
R-C network to program the timeout period. The LTC3900  
resets the timer at every negative transition of the SYNC  
input. If the SYNC signal is missing or incorrect, the  
LTC3900 pulls both CG and FG low once the TIMER pin  
goes above the timeout threshold. See the Timer section  
for more details on programming the timeout period.  
The LTC3900 monitors the CS inputs 250ns after CG goes  
high. If the inductor current reverses and flows into the  
+
MOSFET causing CS to rise above CS by more than  
10.5mV, the LTC3900 pulls CG low. See the Current Sense  
section for more details on choosing the resistance value  
for R  
to R  
.
CS1  
CS3  
CG (Pin 3): Catch MOSFET Gate Driver. This pin drives the  
gate of the external N-channel catch MOSFET, Q4.  
SYNC (Pin 8): Driver Synchronization Input. This input  
is signal edge sensitive. A negative voltage slew at SYNC  
forces FG to pull high and CG to pull low. A positive volt-  
age slew at SYNC forces FG to pull low and CG to pull  
high. The SYNC input can accept both pulse or square  
wave signals.  
V
CC  
(Pin 4): Main Supply Input. This pin powers the driv-  
ers and the rest of the internal circuitry. Bypass this pin  
to GND using a 4.7µF ceramic capacitor in close proximity  
to the LTC3900.  
FG (Pin 5): Forward MOSFET Gate Driver. This pin drives  
the gate of the external N-channel forward MOSFET, Q3.  
block DiagraM  
+
SYNC  
+
S
V
CC  
4
+1.4V  
–1.4V  
SYNC  
S
SYNC  
8
SYNC  
AND  
DRIVER  
LOGIC  
5
3
FG  
+
CS  
1
2
IS  
CS  
+
DISABLE  
DRIVER  
10.5mV  
Z
CS  
11V  
CG  
TIMER  
RESET  
UVLO  
TMR  
TIMER  
7
R1  
180k  
R2  
45k  
Z
TMR  
0.5 • V  
CC  
M
TMR  
3900 BD  
6
GND  
3900fb  
6
LTC3900  
applicaTions inForMaTion  
Overview  
load through Q3, T1 and L . In the next period, Q1 turns  
O
off, SG goes low and T2 generates a positive pulse at the  
LTC3900 SYNC input. The LTC3900 forces FG to turn off  
and CG to turn on, Q4 conducts. Current continues to  
In a typical forward converter topology, a power trans-  
former is used to provide the functions of input/output  
isolation and voltage step-down to achieve the required  
low output voltage. Schottky diodes are often used on  
the secondary-side to provide rectification. Schottky  
diodes, though easy to use, result in a loss of efficiency  
due to relatively high voltage drops. To improve efficiency,  
synchronousoutputrectifiersutilizingN-channelMOSFETs  
can be used instead of Schottky diodes. The LTC3900  
provides all of the necessary functions required to drive  
the synchronous rectifier MOSFETs.  
flow to the load through Q4 and L . Figure 2 shows the  
O
LTC3900 synchronization waveforms.  
External MOSFET Protection  
Aprogrammabletimerandadifferentialinputcurrentsense  
comparator are included in the LTC3900 for protection  
of the external MOSFET during power down and Burst  
Mode® operation. The chip also shuts off the MOSFETs  
if V < 4.1V.  
CC  
Figure1showsasimplifiedforwardconverterapplication.  
T1 is the power transformer; Q1 is the primary-side power  
transistor driven by the primary controller, LT1952 output  
(OUT).ThepulsetransformerT2providessynchronization  
Whentheprimarycontrollerispoweringdown,theprimary  
controller shuts down first and the LTC3900 continues to  
operate for a while by drawing power from the V  
bypass  
CC  
andisdrivenbyLT1952synchronizationsignal,S orSG  
cap, C . The SG signal stops switching and there is no  
OUT  
VCC  
fromtheprimarycontroller. Q3andQ4aresecondary-side  
synchronous switches driven by the LTC3900’s FG and CG  
SYNC pulse to the LTC3900. The LTC3900 keeps one of  
the drivers turned on depending on the polarity of the  
last SYNC pulse. If the last SYNC pulse is positive, CG  
will remain high and the catch MOSFET, Q4 will stay on.  
The inductor current will start falling down to zero and  
continue going in the negative direction due to the voltage  
thatisstillpresentacrosstheoutputcapacitor(thecurrent  
output. Inductor L and capacitor C  
form the output  
O
OUT  
filter to provide a steady DC output voltage for the load.  
Also shown in Figure 1 is the feedback path from V  
OUT  
throughtheoptocouplerdriverLT4430andanoptocoupler,  
back to the primary controller to regulate V  
.
OUT  
now flows from C  
back to L ). If Q4 is turned off while  
OUT  
O
Each full cycle of the forward converter operation con-  
sists of two periods. In the first period, Q1 turns on and  
the primary-side delivers power to the load through T1.  
SG goes high and T2 generates a negative pulse at the  
LTC3900 SYNC input. The LTC3900 forces FG to turn on  
and CG to turn off, Q3 conducts. Current flows to the  
the inductor current is negative, the inductor current will  
produce high voltage across Q4, resulting in a MOSFET  
avalanche. Depending on the amount of energy stored in  
the inductor, this avalanche energy may damage Q4.  
GATE  
(OUT)  
SG  
OUT  
(S  
)
SYNC  
FG  
CG  
3900 F02  
Figure 2. Synchronization Waveforms  
3900fb  
7
LTC3900  
applicaTions inForMaTion  
ThetimercircuitandcurrentsensecomparatorinLTC3900  
are used to prevent reverse current buildup in the output  
inductor.  
designed to be of the same magnitude (1.4V typical) but  
opposite in polarity. In some situations, for example dur-  
ing power up or power down, the SYNC pulse magnitude  
may be low, slightly higher or lower than the threshold of  
the comparators. This can cause only one of the SYNC  
comparators to trip. This also appears as incorrect SYNC  
pulse and the timer will not reset.  
Timer  
Figure 3 shows the LTC3900 timer internal and external  
circuits. The timer operates by using an external R-C  
charging network to program the time-out period. On  
every negative transition at the SYNC input, the chip  
generates a 200ns pulse to reset the timer cap. If the  
SYNC signal is missing or incorrect, allowing the timer  
cap voltage to go high, it shuts off both drivers once the  
voltage reaches the time-out threshold. Figure 4 shows  
the timer waveforms.  
The timeout period is determined by the external R  
TMR  
and C  
values and is independent of the V voltage.  
TMR  
CC  
This is achieved by making the timeout threshold a ratio  
of V . The ratio is 0.2x, set internally by R1 and R2 (see  
CC  
Figure 3). The timeout period should be programmed to  
be around one period of the primary switching frequency  
using the following formula:  
TIMEOUT = 0.2 • R  
• C  
+ 0.27E-6  
TMR  
TMR  
A typical forward converter cycle always turns on Q3  
and Q4 alternately and the SYNC input should alternate  
between positive and negative pulses. The LTC3900 timer  
also includes sequential logic to monitor the SYNC input  
sequence. If after one negative pulse, the SYNC compara-  
tor receives another negative pulse, the LTC3900 will not  
reset the timer cap. If no positive SYNC pulse appears,  
both drivers are shut off once the timer times out. Once  
positive pulses reappear the timer resets and the drivers  
start switching again. This is to protect the external com-  
ponents in situations where only negative SYNC pulse is  
present and FG output remains high. Figure 5 shows the  
timer waveforms with incorrect SYNC pulses.  
To reduce error in the timeout setting due to the discharge  
time, select C between 100pF and 1000pF. Start with a  
TMR  
C
C
around 470pF and then calculate the required R  
.
TMR  
TMR  
shouldbeplacedascloseaspossibletotheLTC3900  
, the TIMER pin  
TMR  
with minimum PCB trace between C  
TMR  
and GND. This is to reduce any ringing caused by the PCB  
trace inductance when C  
introduce error to the timeout setting.  
discharges. This ringing may  
TMR  
The timer input also includes a current sinking clamp  
circuit (Z  
in Figure 3) that clamps this pin to about  
TMR  
0.5 • V if there is missing SYNC/timer reset pulse. This  
CC  
clamp circuit prevents the timer cap from getting fully  
charged up to the rail, which results in a longer discharge  
+
TheLTC3900hastwoseparateSYNCcomparators(S and  
S intheBlockDiagram)todetectthepositiveandnegative  
pulses. The threshold voltages of both comparators are  
SG  
SYNC  
V
CC  
LAST  
PULSE  
R2  
R1  
4
7
FG  
R
TMR  
TMR  
TIMEOUT  
CG  
TIMER RESET  
(INTERNAL)  
TIMER  
RESET  
Z
TMR  
C
TMR  
3900 F03  
TIMER  
TIMEOUT  
THRESHOLD  
3900 F04  
Figure 3. Timer Circuit  
Figure 4. Timer Waveforms  
3900fb  
8
LTC3900  
applicaTions inForMaTion  
time. The current sinking capability of the circuit is around  
1mA. The timeout function can be disabled by connecting  
the timer pin to GND.  
10.5mV to prevent tripping under light load conditions.  
If the product of the inductor negative peak current and  
MOSFET R  
is higher than 10.5mV, the LTC3900 will  
DS(ON)  
operate in discontinuous current mode. Figure 6 shows  
the LTC3900 operating in discontinuous current mode;  
the CG output goes low before the next negative SYNC  
pulse, as soon as the inductor current becomes negative.  
Discontinuous current mode is sometimes undesirable.  
Current Sense  
The differential input current sense comparator is used  
for sensing the voltage across the drain-to-source termi-  
+
nals of Q4 through the CS and CS pins. If the inductor  
+
To disable discontinuous current mode operation, add a  
current reverses into the Q4 causing CS to rise above  
+
resistor divider, R  
and R  
at the CS pin to increase  
CS1  
CS2  
CS by more than 10.5mV, the LTC3900 pulls CG low. This  
the 10.5mV threshold so that the LTC3900 operates in  
continuous mode at no load.  
comparator is used to prevent inductor reverse current  
buildupduringpowerdownorBurstModeoperation,which  
may cause damage to the MOSFET. The 10.5mV input  
threshold has a positive temperature coefficient, which  
+
The LTC3900 CS pin has an internal current sinking  
clamp circuit (Z in the Block Diagram) that clamps the  
CS  
closely matches the TC of the external MOSFET R  
.
DS(ON)  
pin to 11V. The clamp circuit is to be used together with  
+
The current sense comparator is only active 250ns after  
CG goes high; this is to avoid any ringing immediately  
after Q4 is switched on.  
the external series resistor, R  
to protect the CS pin  
CS1  
from high Q4 drain voltage in the power transfer cycle.  
During the power transfer cycle, Q4 is off, the drain volt-  
age of Q4 is determined by the primary input voltage and  
the transformer turns ratio. This voltage can be high and  
Under light load conditions, if the inductor average cur-  
rent is less than half of its peak-to-peak ripple current,  
the inductor current will reverse into Q4 during a portion  
of the switching cycle, forcing CS to rise above CS .  
The current sense comparator input threshold is set at  
+
may damage the LTC3900 if CS is connected directly to  
+
the drain of Q4. The current sinking capability of the clamp  
circuit is 5mA minimum.  
TIMER DO NOT RESET  
AT SECOND NEGATIVE  
SYNC PULSE  
SG  
MISSING/LOW  
POSITIVE  
SYNC PULSE  
TIMER RESET AFTER  
RECEIVING POSITIVE  
SYNC PULSE  
SYNC  
SYNC  
FG  
FG  
CG  
CG  
TIMER RESET  
(INTERNAL)  
INDUCTOR  
CURRENT  
TIMEOUT  
0A  
CURRENT SENSE  
COMPARATOR TRIP  
3900 F06a  
TIMEOUT  
THRESHOLD  
TIMER  
Figure 6a. Discontinuous Current Mode Operation at No Load  
3900 F05  
Figure 5. Timer Waveforms with Incorrect SYNC Pulses  
3900fb  
9
LTC3900  
applicaTions inForMaTion  
The value of the resistors, R , R  
and R , should  
To minimize this delay and error, do not use resistance  
value higher than required and make the PCB trace from  
CS1 CS2  
CS3  
be calculated using the following formulas to meet both  
the threshold and clamp voltage requirements:  
+
the resistors to the LTC3900 CS /CS pins as short as  
possible. Add a series resistor, R  
with value equal to  
CS3  
k = 48 • I  
• R  
–1  
RIPPLE  
DS(ON)  
parallel sum of R and R to the CS pin and connect  
CS1  
CS2  
R
CS2  
R
CS1  
R
CS3  
= {200 • V  
• (N /N ) –2200 • (1 + k)} /k  
the other end of R  
directly to the source of Q4.  
IN(MAX)  
S
P
CS3  
= k • R  
CS2  
SYNC Input  
= {R  
• R } / {R  
+ R  
}
CS1  
CS2  
CS1  
CS2  
Figure 7 shows the external circuit for the LTC3900 SYNC  
input. With a selected type of pulse transformers, the  
If k = 0 or less than zero, R is not needed and R  
CS2  
CS1  
= R = {V  
• (N /N ) – 11V} / 5mA  
values of the C and R  
should be adjusted to obtain  
CS3  
IN(MAX)  
S P  
SG  
SYNC  
an optimum SYNC pulse amplitude and width. A bigger  
where:  
capacitor, C , generates a higher and wider SYNC pulse.  
SG  
I
= Inductor peak-to-peak ripple current  
RIPPLE  
Thepeakofthispulseshouldbemuchhigherthanthetypi-  
cal LTC3900 SYNC threshold of 1.4V. Amplitudes greater  
than 5V will help to speed up the SYNC comparator and  
reduce the SYNC to drivers propagation delay. The pulse  
width should be wider than 75ns. Overshoot during the  
pulse transformer reset interval must be minimized and  
kept below the minimum SYNC threshold of 1V. The  
amount of overshoot can be reduced by having a smaller  
R
DS(ON)  
= On-resistance of Q4 at I /2  
RIPPLE  
V
= Primary side main supply maximum input  
IN(MAX)  
voltage  
N /N = Power transformer T1, turn ratio  
S
P
If the LTC3900 still operates in discontinuous mode with  
the calculated resistance value, increase the value of R  
CS1  
R
.
SYNC  
toraisethethreshold. TheresistorsR andR andthe  
CS1  
CS2  
+
CS pins input capacitance plus the PCB trace capacitance  
form an R-C delay; this slows down the response time  
+
C
SG  
220pF  
of the comparator. The resistors and CS input leakage  
PRIMARY  
CONTROLLER  
SG  
T2  
LTC3900  
SYNC  
currents also create an input offset error.  
R
SYNC  
470Ω  
(S  
)
OUT  
T2: COILCRAFT Q4470B  
OR PULSE P0926  
3900 F07  
SYNC  
Figure 7. SYNC Input Circuit  
FG  
CG  
INDUCTOR  
CURRENT  
0A  
ADJUSTED CURRENT  
SENSE THRESHOLD  
3900 F06b  
Figure 6b. Continuous Current Mode Operation  
with Adjusted Current Sense Threshold  
3900fb  
10  
LTC3900  
applicaTions inForMaTion  
An alternative method of generating the SYNC pulse is  
shown in Figure 8. This circuit produces square SYNC  
pulses with amplitude dependent on the logic supply  
voltage. The SYNC pulse width can be adjusted with R1  
and C1 without affecting the pulse amplitude.  
derived from the power transformer T1, the LTC3900 will  
initially remain off. During that period (V < 4.1V), the  
CC  
output rectifier MOSFETs Q3 and Q4 will remain off and  
the MOSFETs body diodes will conduct. The MOSFETs  
may experience very high power dissipation due to a high  
voltage drop in the body diodes. To prevent MOSFET dam-  
Fornonisolatedapplications,theSYNCinputcanbedriven  
directly by a bipolar square pulse. To reduce the propa-  
gation delay, make the positive and negative magnitude  
of the square wave much greater than the 1.4V SYNC  
threshold.  
age, V voltage greater than 4.1V should be provided  
CC  
quickly. The V supply circuit shown in Figure 9 will pro-  
CC  
vide power for the LTC3900 within the first few switching  
pulses of the primary controller, preventing overheating  
of the MOSFETs.  
V
Regulator  
CC  
MOSFET Selection  
The V supply for the LTC3900 can be generated by peak  
CC  
TherequiredMOSFETR  
on allowable power dissipation and maximum required  
output current.  
shouldbedeterminedbased  
DS(ON)  
rectifying the transformer secondary winding as shown  
in Figure 9. The Zener diode D sets the output voltage to  
Z
(V – 0.7V). A resistor, R (on the order of a few hundred  
Z
B
Thebodydiodesconductduringthepower-upphase,when  
ohms), in series with the base of Q  
may be required  
REG  
the LTC3900 V supply is ramping up. The CG and FG  
CC  
to surpress high frequency oscillations depending on  
’s selection.  
signals stay low and the inductor current flows through  
the body diodes. The body diodes must be able to handle  
Q
REG  
The LTC3900 has an UVLO detector that pulls the drivers  
the load current during start-up until V reaches 4.1V.  
CC  
output low if V < 4.1V. The UVLO detector has 0.5V of  
CC  
The LTC3900 drivers dissipate power when switching  
MOSFETs. The power dissipation increases with switch-  
hysteresis to prevent chattering.  
In a typical forward converter, the secondary-side circuits  
have no power until the primary-side controller starts  
operating. Since the power for biasing the LTC3900 is  
ing frequency, V and size of the MOSFETs. To calculate  
CC  
D3  
MBR0540  
T1  
SECONDARY  
WINDING  
74HC14  
PRIMARY  
CONTROLLER  
74HC132  
SG  
R
Z
2k  
R
0.1µF  
B
R1  
470Ω  
T2  
LTC3900  
SYNC  
10Ω  
Q
REG  
BCX55  
R
74HC14  
SYNC  
470Ω  
C1  
V
D
CC  
Z
220pF  
7.5V  
C
VCC  
4.7µF  
3900 F09  
SYNC  
SG  
3900 F08  
Figure 9. VCC Regulator  
Figure 8. Symmetrical SYNC Drive  
3900fb  
11  
LTC3900  
applicaTions inForMaTion  
the driver dissipation, the total gate charge Q is used.  
2. Connect the two MOSFET drain terminals directly to  
the transformer. The two MOSFET sources should be as  
close together as possible.  
G
This parameter is found on the MOSFET manufacturers  
data sheet.  
The power dissipated in each LTC3900 MOSFET driver  
is:  
3. Keep the timer, SYNC and V regulator circuit away  
CC  
from the high current path of Q3, Q4 and T1.  
P
= Q • V • f  
4. Place the timer capacitor, C  
, as close as possible  
TMR  
DRIVER  
G
CC SW  
to the LTC3900.  
where f is the switching frequency of the converter.  
SW  
5. Keep the PCB trace from the resistors R , R  
and  
CS1 CS2  
+
PC Board Layout Checklist  
R
CS3  
to the LTC3900 CS /CS pins as short as possible.  
Connecttheotherendsoftheresistorsdirectlytothedrain  
and source of the MOSFET, Q4.  
When laying out the printed circuit board, the following  
checklist should be used to ensure proper operation of  
the LTC3900 for your layout:  
1.Connectthe4.7µFbypasscapacitorascloseaspossible  
to the V and GND pins.  
CC  
Typical applicaTions  
36V to 72V, 3.3V at 40A Synchronous Forward Converter  
V
B1  
PA0912.002  
L1  
47k  
82k  
• •  
+V  
IN  
36V TO 72V  
V
OUT  
3.3V, 40A  
BAS516  
0.1µF  
BCX55  
12V  
C
OUT  
Q2  
PH3230  
2x  
Q3  
PH3230  
2x  
100µF  
3x  
18V  
10k  
2.2µF  
LTC3900  
5
6
3
1
FG  
CG  
+
370k  
7
10k  
10k  
GND  
CS  
13.2k  
27k  
14  
15  
8
V
B1  
1µF  
Si7846  
SD_V  
SEC  
OUT  
4
8
2
7
115k  
V
CC  
CS  
3
9
5
R
OSC  
V
IN  
BAT760  
SYNC TIMER  
8V  
BIAS  
BLANK  
GND  
1nF  
1nF  
13  
12  
11  
10  
16  
15k  
0.22µF  
0.1µF  
SS_MAXDC  
PGND  
59k  
10k  
33k  
39k  
0.010R  
LT1952 DELAY  
= 2.5V OC  
1nF  
8V  
BIAS  
6
1
2
V
R
470Ω  
560R  
220pF  
COMP  
I
SENSE  
• •  
Q4470-B  
FB = 1.23V  
SOUT  
R22  
270Ω  
22k  
2.2k  
V
B1  
NEC  
C16  
10pF  
PS2701  
L1: PA0713, PULSE ENGINEERING  
ALL CAPACITORS X7R, CERAMIC, TDK  
8V BIAS  
R24  
27.4k  
1%  
1
6
C15  
R23  
3.3k  
C13  
1µF  
V
OPTO  
IN  
6.8nF  
LT4430  
5
4
2
GND  
OC  
COMP  
FB  
C14  
33nF  
3
R25  
6.04k  
1%  
3900 TA01  
3900fb  
12  
LTC3900  
Typical applicaTions  
36V to 72V Input to 12V and 24V (or 12V), 2A Output Converter in 1/8th Brick Footprint  
V
IN  
36V TO 72V  
V
L1A  
U1  
L1: DRQ127-220  
0.1µF  
7
9
V
24V  
2A  
OUT2  
BCX56  
82k  
1.5mH  
2
Q2  
Q3  
0.1µF  
10k  
2.2µF  
PDZ10B  
BAS516  
1
3
F
C
G
G
+
150µF  
BAS516  
BAS516  
10k  
V
IN  
16V  
L1B  
4
8
V
12V  
2A  
OUT1  
V
Si7462  
V
FB  
LT1952-1  
COMP  
22k  
33k  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
47k  
S
S
OUT  
OUT  
Q4  
Q5  
10  
BC857BF  
FB = 1.23V  
V
U1  
IN  
115k  
1.2k  
T1  
PA1577  
F
C
G
G
R
OUT  
PGND  
DELAY  
OC  
1µF  
OSC  
33µF  
16V  
SYNC  
100pF  
145k  
0.030R  
0.1µF  
MAXDC  
V
= 2.5V  
R
680Ω  
LTC3900  
+
SD  
GND  
I
10k  
10k  
SENSE  
1
8
7
6
5
13.3k  
CS  
SYNC  
BLANK  
2
220pF  
CS  
TIMER  
GND  
FG  
82k  
470pF  
560R  
0.47µF  
3
V
AUX  
CG  
S
OUT  
CG  
340k  
4
FG  
V
V
CC  
OUT1  
V
22k  
56k  
IN  
BCX55  
38.3k  
1k  
PE-68386  
1µF  
PDZ7.5B  
Q2, Q3, Q4, Q5 = Si7850  
PS2801-1  
LT4430  
OPTO  
GND COMP  
OC FB  
470R  
1
2
3
6
5
4
V
U1  
V
AUX  
V
CC  
3.92k  
5.23k  
15nF  
100k  
V
FB  
BAS516  
V
OUT1  
1µF  
3900 TA02  
33pF  
The LTC3900 can drive multiple synchronous output  
rectifiers. The 12V and 24V or 12V output converter  
has good cross regulation due to low voltage drops in  
the output MOSFETs. Other combinations like 3.3V and  
–5V or 1.5V and 5V can be easily achieved by changing  
the transformer turns ratio.  
3900fb  
13  
LTC3900  
Typical applicaTions  
18V to 40V Input to 14V at 14A Output Converter in 1/4 Brick Footprint  
PZTA42  
V
IN  
18V TO 40V  
V
U1  
22k  
PA1494.362  
33µF  
1.5mH  
V
14V  
14A  
OUT1  
2, 3  
1
6.8µF  
×4  
+
150µF  
PXE  
PDZ10B  
BAS516  
HAT2266  
4, 5  
FG  
6
7
V
IN  
CG  
40R2-4421.003  
11  
LTC4441  
1
2
3
4
5
10  
9
BAS521  
82k  
10k  
PGND OUT  
HAT2266  
×2  
680µH  
0.1µF  
V
AUX  
332k  
0.1µF  
220pF  
BL  
R
DRV  
CC  
8
Si3459  
V
LTC3900  
47k  
V
U1  
BL  
IN  
BAS516  
1
8
7
6
5
7
0.004R  
+
CS  
CS  
SYNC  
SGND  
IN  
FB  
255R  
57.6k  
BAS516  
10k  
2
3
4
6
2.2µF  
220pF  
TIMER  
GND  
FG  
EN  
PGND  
470pF  
560R  
255R  
10k  
V
0.22µF  
GATE  
R
CG  
CG  
S
OUT  
FG  
V
CC  
GATE  
BCX55  
V
AUX  
1k  
V
FB  
1µF  
LT1952-1  
COMP  
PE-68386  
22k  
33k  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
U1  
S
OUT  
PDZ7.5B  
BAS516  
FB = 1.23V  
V
BC857BF  
IN  
115k  
R
OUT  
PGND  
DELAY  
OC  
4.7µF  
OSC  
SYNC  
158k  
2K  
0.47µF  
220R  
15nF  
MAXDC  
0.1µF  
PS2801-1  
LT4430  
V OPTO  
270R  
1
2
3
6
V
R
= 2.5V  
V
AUX  
CC  
GND COMP  
OC FB  
5
4
1.96k  
82.5k  
SD  
GND  
I
V
SENSE  
FB  
13.3k  
165k  
BLANK  
V
OUT1  
1µF  
1.2k  
82k  
2.2nF  
1µF  
3.65k  
22k  
158k  
3900 TA03a  
33pF  
V
IN  
V
R
By Using Active Reset and 60V MOSFETs Converter is Achieving 94% to 95%  
Efficiency with Only Four MOSFETs.  
96  
94  
92  
90  
88  
86  
84  
V
V
= 24V  
IN  
OUT  
= 14V  
82  
0
2
4
6
8
10  
12 14  
I
(A)  
OUT  
3900 TA03b  
3900fb  
14  
LTC3900  
Typical applicaTions  
36V to 72V Input to 12V, 14A Output Converter in 1/8th Brick Footprint  
T1  
V
L2  
1.5mH  
L1  
3µH  
U1  
PA0423  
V
12V  
14A  
OUT  
PZTA42  
7
1
6
2
5
33µF  
PDZ10B  
BAS516  
2.2µF  
47k  
10k  
HAT2244  
10  
82k  
V
IN  
36V TO 72V  
LTC3900  
CG  
560R  
5
8
6
7
3
1
2
4
FB  
+
370k  
SYNC  
GND  
TIMER  
CS  
CS  
Si7430  
2k  
10k  
LT1952-1  
13.3k  
133k  
82k  
470pF  
38.3k  
7
3
9
5
14  
11  
10  
15  
8
1nF  
SD/V  
SEC  
OUT  
OC  
V
CC  
R
OSC  
1µF  
PDZ7.5  
PE-68386  
BLANK  
SS  
I
SENSE  
1µF  
158k  
0.1µF  
1k  
BCX55  
V
V
0.010  
IN  
U1  
22k  
GND  
4.7µF  
3900 TA04a  
6
1
2
13  
12  
16  
V
PGND  
R
20k  
75k  
COMP  
FB  
DELAY  
12.4k  
220pF  
47nF  
S
OUT  
97.6k  
V
U1  
L1: PULSE PA1393.302  
L2: COILCRAFT DO1607B-155  
ALL CERAMIC CAPS ARE X5R OR X7R  
The Efficiency of 12V Output Converter is Over 95% at 8A Output.  
96  
94  
92  
90  
88  
86  
84  
V
V
= 48V  
IN  
OUT  
= 12V  
82  
8
12  
14  
0
2
4
6
10  
I
(A)  
OUT  
3900 TA04b  
3900fb  
15  
LTC3900  
Typical applicaTions  
18V to 72V Input to 12V at 13A Active Reset Converter Fits in 1/8th Brick Size  
PZTA42  
V
IN  
18V TO 72V  
V
U1  
33k  
40R2-4444.004  
V
R2  
1.5mH  
PA2050.103  
V
12V  
13A  
OUT  
7
1
+
2.2µF  
×3  
10V  
BAS516  
330µF  
HAT2169  
FG  
HAT2173  
×2  
10  
6
2
33µF  
V
IN  
CG  
V
5
0.22µF  
U1  
BAS521  
33nF  
1, 6  
2, 4  
BAS516  
57Ω  
680µH  
3
5
HAT2173  
×2  
Si2325  
LTC4440  
0.006Ω  
1k  
0.1µF  
BCX55  
220pF  
237Ω  
22k  
GATE  
7.5V  
V
FB  
LT1952-1  
10k  
LTC3900  
220pF  
BAS516  
22k  
33k  
10k  
10k  
1
16  
1
2
3
4
8
7
6
5
+
COMP  
S
OUT  
CS  
CS  
SYNC  
TIMER  
GND  
GATE  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
FB = 1.23V  
V
IN  
V
U1  
560R  
BC857  
174k  
1µF  
R
OUT  
PGND  
DELAY  
OC  
4.7µF  
137k  
OSC  
CG  
CG  
PE-68386  
SYNC  
V
FG  
FG  
CC  
1µF  
39.2K  
MAXDC  
0.1µF  
13.3k  
470pF  
V
= 2.5V  
R
PS2801-1  
LT4430  
47k  
470R  
1k  
1
2
3
6
5
4
SD  
GND  
I
V
OPTO  
GND COMP  
OC FB  
SENSE  
CC  
7.87k  
10nF  
BLANK  
V
FB  
22k  
348k  
189k  
332k  
BAS516  
V
OUT  
1.2k  
1µF  
V
R2  
V
B
18.2k  
3900 TA05a  
2.2nF  
10pF  
The High Efficiency of Converter is Achieved by Precise MOSFET Timing Provided  
by LT1952 and LTC3900 Controllers.  
96  
94  
92  
90  
88  
86  
84  
82  
80  
24V  
48V  
IN  
IN  
0
2
4
6
8
10  
12  
14  
I
(A)  
OUT  
3900 TA05b  
3900fb  
16  
LTC3900  
Typical applicaTions  
Synchronous Forward Converter With Pulse Skip Mode  
PZTA42  
V
IN  
36V TO 72V  
V
U1  
82k  
1.5mH  
PA1671  
V
3.3V  
30A  
OUT  
7
1
+
2.2µF  
PDZ10B  
BAS516  
HA2165  
10  
6
2
100µF  
470µF  
V
IN  
FG  
CG  
10nF  
5
2.2R  
10k  
Si7430  
T1  
PA0369  
V
AUX  
1.5nF  
B0540W  
R_DCM  
3.3M  
+
*
0.02µF  
10k  
38.3k  
0.015R  
B0540W  
0.22µF  
1
2
3
4
8
7
6
5
CS  
CS  
SYNC  
TIMER  
GND  
10k  
220pF  
470pF  
560R  
V
CG  
CG  
V
S
OUT  
FB  
LT1952-1  
COMP  
FB = 1.23V  
22k  
BC857  
33k  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
U1  
FG  
FG  
CC  
S
S
OUT  
OUT  
LTC3900  
BCX55  
1k  
V
IN  
1µF  
115k  
PE-68386  
R
OUT  
PGND  
DELAY  
OC  
1µF  
OSC  
PDZ7.5B  
SYNC  
0.47µF  
133k  
910Ω  
82k  
MAXDC  
PS2801-1  
LT4430  
OPTO  
GND COMP  
OC FB  
0.1µF  
13.3k  
270R  
1
2
3
6
5
4
V
= 2.5V  
R
V
CC  
1.96k  
18.2k  
SD  
GND  
I
15nF  
82.5k  
V
FB  
SENSE  
BAS516  
BLANK  
V
OUT  
1.2k  
22.1k  
158k  
1µF  
442k  
47pF  
3900 TA06a  
V
IN  
*CONVERTERS THAT USE THE LTC3900 CAN BE FORCED TO OPERATE IN DISCONTINUOUS CURRENT MODE  
AT LIGHT LOADS BY OFFSETTING THE CURRENT SENSE INPUT WITH R_DCM RESISTOR.  
The Discontinuous Current Mode (DCM) Operation of Circuit is About 10% More Efficient  
with 1A-2A Loads. The No Load Input Current is 15mA in DCM Versus 90mA in CCM.  
95  
85  
75  
65  
V
V
= 48V  
IN  
OUT  
= 3.3V  
55  
45  
CONTINUOUS  
CURRENT MODE  
DISCONTINUOUS  
CURRENT MODE  
35  
0
5
10  
15  
(A)  
20  
25  
30  
I
OUT  
3900 TA06b  
3900fb  
17  
LTC3900  
package DescripTion  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 .005  
.160 .005  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
3
4
2
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
0°– 8° TYP  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE  
MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS  
SHALL NOT EXCEED .006" (0.15mm)  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
SO8 0303  
3900fb  
18  
LTC3900  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE DESCRIPTION  
PAGE NUMBER  
B
5/11 Added H- and MP-grade parts. Reflected throughout the data sheet.  
1 to 20  
3900fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC3900  
Typical applicaTion  
36V to 72V Input to 12V at 20A “No Optocoupler” Synchronous “Bus Converter”  
L1  
V
U1  
2.4µH  
V
PA0815.002  
OUT  
47k  
82k  
• •  
12V, 10ꢀ,  
20A MAX  
V
IN  
36V TO 72V  
BAS516  
0.1µF  
BCX55  
12V  
C
OUT  
33µF, 16V  
X5R, TDK  
×3  
Si7370  
×2  
PH4840  
18V  
10k  
×2  
2.2µF, 100V  
×2  
LTC3900  
5
6
3
1
FG  
CG  
+
PH21NQ15  
370k  
7
10k  
10k  
×2  
GND  
CS  
13.2k  
27k  
14  
15  
8
V
U1  
1µF  
SD_V  
SEC  
OUT  
4
8
2
7
115k  
V
CS  
3
9
5
CC  
R
OSC  
V
IN  
SYNC TIMER  
BAT  
760  
8V  
BIAS  
BLANK  
GND  
1µF  
C
T
13  
12  
11  
10  
16  
R
T
0.47µF  
0.1µF  
SS_MAXDC  
PGND  
1nF  
15k  
59k  
10k  
39k  
9mΩ  
LT1952 DELAY  
= 2.5V OC  
1nF  
8V  
BIAS  
6
1
2
V
R
470Ω  
560Ω  
220pF  
COMP  
I
SENSE  
SOUT  
L1: PULSE PA1494.242  
ALL CAPACITORS ARE TDK, X5R CERAMIC  
• •  
FB = 1.23V  
Q4470-B  
3900 TA07a  
LTC3900-Based Synchronous “Bus Converter” Efficiency vs Load Current  
16  
12  
8
96.0  
95.5  
95.0  
94.5  
94.0  
93.5  
93.0  
EFFICIENCY  
POWER LOSS  
V
V
= 48V  
IN  
OUT  
= 12V  
4
4
6
8
10 12 14 16 18 20  
LOAD CURRENT (A)  
3900 TA07b  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1952/LT1952-1 Synchronous Forward Converter Controllers  
Ideal for Medium Power 24V or 48V Input Isolated Applications  
LTC3901  
Secondary Side Synchronous Driver for Push-Pull and Full  
Bridge Converters  
Similar to the LTC3900, Used in Full Bridge and Push-Pull  
Converters  
LT4430  
LT1431  
Secondary Side Optocoupler Driver  
Programmable Reference  
Optocoupler Driver with Precise Reference Voltage  
Adjustable Shunt Voltage Regulator with 100mA Sink Capability  
LTC3726/LTC3725 Synchronous No Opto Forward Converter Controller Chip Set Ideal for Medium Power 24V or 48V Input Isolated Applications  
LTC3723-1/  
LTC3723-2  
Synchronous Push-Pull Controllers  
High Efficiency with On-Chip MOSFET Drivers  
LTC3721-1/  
LTC3721-2  
Nonsynchronous Push-Pull Controllers  
Synchronous Phase Modulated Full Bridge Controllers  
Minimizes External Components, On-Chip MOSFET Drivers  
Ideal for High Power 24V or 48V Input Applications  
LTC3722/  
LTC3722-2  
3900fb  
LT 0511 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY