LTC3779 [Linear]

A 7-Bit Current DAC with PMBus Interface;
LTC3779
型号: LTC3779
厂家: Linear    Linear
描述:

A 7-Bit Current DAC with PMBus Interface

文件: 总24页 (文件大小:1669K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC7106  
A 7-Bit Current DAC with  
PMBus Interface  
FEATURES  
DESCRIPTION  
The LTC®7106 is a precision, PMBus controlled, bidi-  
rectional current digital-to-analog converter that adjusts  
n
0.8% I  
Positive Output Current Accuracy  
DAC  
(Over Temp)  
n
1.5% I  
Negative Output Current Accuracy  
the output voltage of any conventional V referenced  
DAC  
FB  
(Over Temp)  
regulator. The LTC7106 can work with the vast majority  
of power management controllers or regulators to enable  
digital control of the output voltage. Internal power-on  
reset circuitry keeps the DAC output current at zero  
(high impedance IDAC) until a valid write takes place.  
Features include a range bit for easy interfacing to almost  
any impedance resistor divider, and an open-drain GPO  
output for controlling the Run or Enable pin of the DC/  
DC regulator. For most applications, the current DAC error  
is significantly attenuated with proper design. See more  
2
n
n
n
n
n
PMBus/I C Compliant Serial Interface  
Input Voltage Range: 2.5V to 5.5V  
High Impedance at IDAC Output When Disabled  
Wide IDAC Operation Voltage (0.4V to 2.0V)  
7-Bit Programmable DAC Output Current for DC/DC  
V
Control  
OUT  
n
n
n
Wide Range IDAC Output Current: 16μA to 256μA  
Programmable Slew Rate: 500ns ~ 3ms per Bit  
Available in a 10-Lead (3mm × 2mm) DFN Package  
detailaboutV  
accuracyintheApplicationsInformation  
OUT  
section of this data sheet. The LTC7106 is supported by  
the ADI LTpowerPlay® development tool with graphical  
user interface (GUI).  
APPLICATIONS  
n
General Purpose Power Systems  
All registered trademarks and trademarks are the property of their respective owners.  
n
Telecom Systems  
n
Industrial Applications  
TYPICAL APPLICATION  
Margin High and Margin Low  
ꢀꢁ  
ꢀꢁRꢀꢂꢁꢃ ꢄꢅ ꢅꢁꢆꢂRꢇ ꢈꢈ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁꢂꢃ  
I
= –40μA  
DAC  
R
ꢀꢁꢂ  
ꢀꢁꢂꢀꢁ  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
Rꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢂꢃꢄ ꢅꢆ ꢇꢄꢈ  
ꢀꢁꢂꢃꢄꢁ  
I
= 0μA  
Rꢀꢁ  
R
ꢀꢁꢂ  
DAC  
I
= 40μA  
DAC  
Rꢀ  
ꢁꢂꢃ  
ꢂꢃꢄꢀ  
ꢅꢆ ꢄꢃꢄꢀ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢁꢁ  
0μA TO 63μA  
ꢀꢁꢂꢃ ꢄAꢂꢁꢅ  
ꢀꢁ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ  
Rꢀ Rꢀ  
ꢀꢁꢂ  
Rꢀ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢀ  
–64μA TO 0μA  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁA  
PMBus INTERFACE  
ꢀꢁꢂ  
ALERT  
ꢂꢃꢄꢅꢆ  
ꢀꢁAꢂ  
ALERT  
ꢀꢁꢂ  
Aꢀꢁꢂꢃ  
Aꢀꢁꢂꢃ  
7106 TA01a  
ꢀꢀ  
Rev A  
1
Document Feedback  
For more information www.analog.com  
LTC7106  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
All Pins Except GND.................................. –0.3V to 6.0V  
Operating Junction Temperature Range... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
ꢀꢁꢂ ꢃꢄꢅꢆ  
ꢌꢍ  
ꢕꢇA  
ꢕꢉꢏ  
Aꢕꢅꢏꢌ  
Aꢕꢅꢏꢍ  
ꢋꢂꢁ  
ꢇꢇ  
ALERT  
ꢅꢗ  
ꢋꢗꢇ  
ꢄꢇAꢉ  
ꢇꢇꢈ ꢂAꢉꢊAꢋꢅ  
ꢌꢍꢎꢏꢅAꢇ ꢐꢑꢒꢒ × ꢓꢒꢒꢔ ꢂꢏAꢕꢀꢄꢉ ꢇꢖꢗ  
ꢙ ꢚꢚꢛꢉꢜꢆꢝ θ ꢙ ꢌꢞꢟꢠꢛꢉꢜꢆ  
θ
ꢘA  
ꢘꢉ  
http://www.linear.com/product/LTC7106#orderinfo  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC7106EDDB#PBF  
LTC7106IDDB#PBF  
TAPE AND REEL  
PART MARKING*  
LHCG  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTC7106EDDB#TRPBF  
LTC7106IDDB#TRPBF  
10-Lead (3mm × 2mm) Plastic DFN  
10-Lead (3mm × 2mm) Plastic DFN  
LHCG  
–40°C to 125°C  
Consult ADI Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
Rev A  
2
For more information www.analog.com  
LTC7106  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 2), VDD = 3.3V, unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
UNITS  
V
Power Supply  
2.5  
V
μA  
μA  
V
DD  
I
I
Supply Quiescent Current  
Supply Quiescent Current  
Undervoltage Rising Threshold  
Undervoltage Falling Threshold  
Enable Rising Threshold  
Enable Falling Threshold  
EN High  
EN = 0V  
700  
800  
1400  
Q
SHUTDOWN  
V
V
V
V
V
V
V
V
Rising  
Falling  
Rising  
Falling  
2.35  
2.15  
UVLO_R  
UVLO_F  
EN_R  
DD  
DD  
EN  
EN  
V
1.35  
V
0.8  
V
EN_F  
IDAC_OUT  
l
l
l
I
Accuracy  
Full Scale Positive  
0.4 ≤ V ≤ 2V (Note 3)  
Range = Normal  
Range = Low  
Range = High  
62.5  
15.5  
63  
63.5  
16.0  
μA  
μA  
μA  
μA  
DAC  
IDAC  
15.75  
252.00  
–64  
246.7  
–64.64  
255.3  
–63.36  
Full Scale Negative  
Range = Normal  
(0°C to 85°C)  
0.4 ≤ V  
≤ 2V (Note 3)  
IDAC  
l
l
l
Range = Normal  
Range = Low  
Range = High  
Range = Normal  
Range = Low  
Range = High  
Range = Normal  
Range = Low  
Range = High  
Range = Normal  
Range = Low  
Range = High  
–64.96  
–16.36  
–262.50  
–64  
–16  
–256  
1
–63.04  
–15.64  
–249.50  
μA  
μA  
μA  
LSB  
INL  
0.4 ≤ V  
0.4 ≤ V  
0.4 ≤ V  
0.4 ≤ V  
≤ 2V  
≤ 2V  
≤ 2V  
≤ 2V  
μA  
IDAC  
IDAC  
IDAC  
IDAC  
0.25  
4
μA  
μA  
–1  
1
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
nA  
–1.5  
–1.6  
–0.3  
–0.5  
–0.8  
1.5  
1.6  
0.3  
0.5  
0.8  
20  
DNL  
l
IHZ  
High-Z Current  
V
EN  
= 0  
Digital Input: SDA, SCL  
V
V
C
1.4  
10  
V
V
IH  
0.8  
IL  
Input Capacitance  
pF  
PIN  
Open-Drain Outputs: ALERTB, GPO, SDA  
Output Low Voltage  
V
I
= 3mA  
0.4  
V
OL  
SINK  
Rev A  
3
For more information www.analog.com  
LTC7106  
PMBus INTERFACE TIMING CHARACTERISTICS The l denotes the specifications which  
apply over the specified operating junction temperature range, otherwise specifications are at TA = 25°C (Note 2), VDD = 3.3V, unless  
otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
10  
TYP  
MAX  
UNITS  
kHz  
µs  
f
t
t
t
t
t
t
t
t
t
t
Serial Bus Operating Frequency  
Bus Free Time Between Stop and Start Condition  
Hold Time After (Repeated) Start Condition  
Repeated Start Condition Setup Time  
Stop Condition Setup Time  
Data Hold Time  
400  
SCL  
1.3  
0.6  
0.6  
0.6  
300  
0
BUF  
µs  
HD_SDA  
SU_SDA  
SU_STO  
HD_DAT(OUT)  
HD_DAT(IN)  
SU_DAT  
LOW  
µs  
µs  
900  
ns  
Input Data Hold Time  
ns  
Data Setup Time  
100  
1.3  
0.6  
ns  
Clock Low Period  
10000  
µs  
Clock High Period  
µs  
HIGH  
Stuck PMBus Timer  
30  
ms  
TIMEOUT_SMB  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
is derated for junction temperatures greater than 125°C. Note that the  
maximum ambient temperature consistent with these specifications is  
determined by specific operating conditions in conjunction with board  
layout, the rated package thermal impedance and other environmental  
factors. T is calculated from the ambient temperature T and power  
J
A
Note 2: The LTC7106 is tested under pulsed load conditions such that  
dissipation P according to the following formula:  
D
T ≈ T . The LTC7106E is guaranteed to meet performance specifications  
J
A
from 0°C to 85°C. Specifications over the –40°C to 125°C operating  
junction temperature range are assured by design, characterization and  
correlation with statistical process controls. The LTC7106I is guaranteed  
over the –40°C to 125°C operating junction temperature range. High  
junction temperatures degrade operating lifetimes; operating lifetime  
T = T + (P • 55°C/W).  
J A D  
Note 3: IDAC is a bidirectional current DAC, controlled by 2’s complementary  
logic. Under the setting of Range = Normal, I  
provides the maximum source current and I  
provides the maximum sink current. Max sink current generates the Highest  
, while Max source current generates the lowest V . See the Operation  
= 63µA for Code = 0111111  
= –64µA for Code = 1000000  
DAC  
DAC  
V
OUT  
OUT  
section for more details.  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VDD = 3.3V, VIDAC = 1.0V,  
Range = Normal unless otherwise noted.  
IDAC Leakage Current vs  
Temperature  
Quiescent Current vs Temperature  
PIDAC Full-Scale vs Temperature  
ꢀꢁꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁꢁ  
ꢀꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢁꢃꢃ  
ꢀꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢃꢃꢃ  
ꢀꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢀꢃꢃ  
ꢀꢁꢂꢃꢄꢄ  
ꢄ ꢁꢅꢆꢀꢁAꢇ  
ꢀꢁꢂꢃꢄꢅꢆꢇ ꢈ ꢆꢉꢉꢉꢉꢉꢉ  
RAꢁꢂꢃ  
ꢃ ꢄꢅ ꢆR ꢀ  
ꢃ ꢄ  
ꢁꢂ  
ꢇꢈꢉꢊꢋꢄꢌ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢀꢁ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢅꢆꢇ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃ ꢄꢂꢁ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
Rev A  
4
For more information www.analog.com  
LTC7106  
TA = 25°C, VDD = 3.3V, Range = Normal unless  
otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
NIDAC vs Temperature  
Differential Nonlinearity  
Integral Nonlinearity  
ꢀꢁꢂꢀ  
ꢀꢁꢀꢂ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢁꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢂꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢀꢂ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢂꢃꢁ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢁ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢂꢁꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢁ ꢀꢀ ꢀꢁ ꢀꢁ ꢀꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁꢁ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢁRAꢀꢄRꢁ ꢅꢆꢇꢈ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢂꢃ  
Buck Start-Up with IDAC  
Margin High and Margin Low  
ꢂꢃꢄꢅꢆ ꢇ ꢈꢉꢆꢊꢆ  
ꢌꢍꢁ  
ꢂꢃꢄꢅꢆ ꢇ ꢈꢉꢆꢊꢆ  
ꢎ ꢄꢋ  
ꢄ ꢅꢀ  
ꢁꢂꢃ  
ꢃ ꢄꢅꢆꢇA  
ꢁAꢂ  
I
= –60μA  
DAC  
ꢀꢁꢂ  
ꢃ ꢄꢅꢆA  
ꢁAꢂ  
ꢁꢂꢃ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢂꢃꢄꢅꢆꢃ  
I
= 0μA  
DAC  
ꢃ ꢄꢅA  
ꢁAꢂ  
I
= 60μA  
DAC  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃ ꢄꢂꢀ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢃ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
Boost Start-Up with IDAC  
Margin High and Margin Low  
I
= –40μA  
ꢂꢃꢄꢅꢆ ꢇ ꢂꢈꢃꢉꢊ  
ꢀ ꢁꢂꢃ  
ꢀꢁ  
ꢂꢃꢄꢅꢆ ꢇ ꢂꢈꢃꢉꢊ  
DAC  
DAC  
DAC  
ꢀꢁꢂ  
ꢀ ꢁꢂꢃ  
I
= 0μA  
I
= –40μA  
DAC  
I
= 40μA  
ꢀ ꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢂ  
ꢀꢁꢂꢃꢄꢁ  
I
= 0μA  
I
= 0μA  
DAC  
DAC  
I
= 40μA  
DAC  
ꢀꢁꢂ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁ  
ꢀꢁꢂꢃꢄꢁ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
ꢀꢁꢂꢃ ꢄꢁꢂ  
ꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢁꢂꢃꢄꢅꢆꢇ  
Rev A  
5
For more information www.analog.com  
LTC7106  
PIN FUNCTIONS  
V
(Pin 3): Input Supply. Bypass this pin to GND with a  
GPO (Pin 8): Open-Drain Digital Output. A pull-up resistor  
DD  
capacitor (0.1µF to 1µF).  
to V is required.  
DD  
IDAC (Pin 6): Bidirectional Current DAC Output.  
ALERT (Pin 4): Open-Drain Digital Output. A pull-up  
resistor to V is required.  
DD  
EN (Pin 7): Chip Enable Pin. Current DAC output is in  
Hi-Z state when EN is Grounded. Do not leave EN floating.  
ASEL1/ASEL0 (Pins 10, 9): Serial Bus Address Select  
Inputs. Each pin has three states (V , FLOATING and  
DD  
SDA(Pin1):SerialBusDataInputandOpen-DrainOutput.  
GND); these two pins provide 9 addresses.  
A pull-up resistor to V is required in the application.  
DD  
GND (Pin 5): Ground.  
SCL (Pin 2): Serial Bus Clock Input.  
Rev A  
6
For more information www.analog.com  
LTC7106  
BLOCK DIAGRAM  
ꢂꢃ  
ꢅꢅ  
RAꢃꢆꢂ  
ꢋꢅA  
ꢋꢌꢂꢛ RAꢔꢂ  
ꢄꢉꢅꢗꢘꢙꢍꢚ  
ꢉꢅAꢊ  
ꢕꢖꢑꢉꢔ  
ꢉꢅAꢊ  
ꢇꢐꢑꢒꢓ  
ꢉꢃꢔꢂRꢏAꢊꢂ  
ꢋꢊꢌ  
ALERT  
Rꢂꢏ  
Aꢋꢂꢌꢍ  
Aꢋꢂꢌꢎ  
AꢅꢅRꢂꢋꢋ  
Aꢅꢊ  
Rꢎ  
ꢆꢇꢈ  
ꢆꢃꢅ  
ꢕꢎꢍꢘ ꢑꢅ  
Rev A  
7
For more information www.analog.com  
LTC7106  
OPERATION  
MFR_IOUT_MARGIN_HIGH, MFR_IOUT_MARGIN_LOW  
after EN goes high.  
The LTC7106 is a PMBus controlled 7-bit D/A converter  
currentsource.ThroughitsPMBusinterface,theLTC7106  
receives a 7-bit DAC code and converts this value to a  
bidirectional analog output current through the pin IDAC.  
By connecting IDAC to the feedback node of a voltage  
SLEW RATE CONTROL  
To prevent abrupt changes in the D/A output current  
and subsequently the output voltage of the DC/DC regula-  
tor, an internal digital programmable slew rate control is  
included. The slew rate range can be programmed with  
a 6-bit register from 0.5µs/step to 3.58ms/step with a  
default value of 3.58ms/step.  
regulator,I  
canchangetheoutputvoltageoftheregula-  
DAC  
tor with the equation:  
V
OUT  
= V • (1 + R /R ) – I  
• R  
FB1  
REF  
FB1 FB2  
DAC  
where V is the reference voltage of the voltage regula-  
REF  
tor. R and R are the resistor divider for the voltage  
FB1  
regulator. I  
shown in Table 2.  
FB2  
is the programmed bidirectional current  
DAC  
CURRENT RANGE SETTING AND D/A PROGRAMMING  
A typical application diagram is shown on the front page.  
Therefore, the traditional pure analog designed oriented  
PWM controller can be controlled by a PMBus interface.  
The LTC7106 is a 7-bit bidirectional current DAC with a  
1µA LSB as its default setting. The MSB determines the  
current direction. When MSB is 0, I  
is sourcing cur-  
DAC  
rent (reducing V ), which is positive current flowing  
OUT  
This illustrates the flexibility of the LTC7106 providing a  
PMBusinterfacetoconventionalanalogDC/DCconverters.  
out of the pin, and when MSB is 1, I  
is sinking cur-  
DAC  
rent (increasing V ), which is negative current flowing  
OUT  
into the pin. The LTC7106 also provides range high and  
range low options through its digital interface to change  
the LSB value to 4µA expanding the output current range  
and subsequently widening the programmable output  
voltage range. Alternately for higher resolution, the low  
range is provided with a LSB of 0.25µA. Users have ad-  
ditional flexibility of choosing the resistor divider ratio and  
resistor values to meet the output specification target.  
However, the design is most accurate using the nominal  
range which is the recommended setting. Table 1 lists the  
output current range and Table 2 lists the detailed DAC  
CHIP ENABLE (EN PIN)  
The LTC7106 is activated by the EN pin. It turns on/off the  
device with threshold of 1.2V. When EN is low (<1.2V),  
IDAC is in high impedance (Hi-Z).  
However, PMBus interface is still active when EN is  
low which means users can program the device and  
readback the internal register's value. The device will  
execute the commands of MFR_IOUT_COMMAND,  
codes vs I  
current.  
DAC  
Table 1. Output Current Range  
Range  
LSB (μA)  
I
(µA)  
I
(µA)  
MAX  
MIN  
Nominal  
1
4
–64  
63  
Range High  
Range Low  
–256  
–16  
252  
0.25  
15.75  
Rev A  
8
For more information www.analog.com  
LTC7106  
OPERATION  
Table 2. IDAC Current and Corresponding DAC Codes  
DAC CODE  
I
(µA)  
DAC  
DAC CODE  
I
(µA)  
DAC  
RANGE RANGE  
RANGE RANGE  
[6] [5] [4] [3] [2] [1] [0] NOMINAL  
HIGH  
LOW  
[6] [5] [4] [3] [2] [1] [0] NOMINAL  
HIGH  
152  
156  
160  
164  
168  
172  
176  
180  
184  
188  
192  
196  
200  
204  
208  
212  
216  
220  
224  
228  
232  
236  
240  
244  
248  
252  
–256  
LOW  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
38  
39  
9.5  
1
4
0.25  
0.5  
0.75  
1
9.75  
10  
2
8
40  
3
12  
41  
10.25  
10.5  
10.75  
11  
4
16  
42  
5
20  
1.25  
1.5  
1.75  
2
43  
6
24  
44  
7
28  
45  
11.25  
11.5  
11.75  
12  
8
32  
46  
9
36  
2.25  
2.5  
2.75  
3
47  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
40  
48  
44  
49  
12.25  
12.5  
12.75  
13  
48  
50  
52  
3.25  
3.5  
3.75  
4
51  
56  
52  
60  
53  
13.25  
13.5  
13.75  
14  
64  
54  
68  
4.25  
4.5  
4.75  
5
55  
72  
56  
76  
57  
14.25  
14.5  
14.75  
15  
80  
58  
84  
5.25  
5.5  
5.75  
6
59  
88  
60  
92  
61  
15.25  
15.5  
15.75  
–16  
96  
62  
100  
104  
108  
112  
116  
120  
124  
128  
132  
136  
140  
144  
148  
6.25  
6.5  
6.75  
7
63  
–64  
–63  
–62  
–61  
–60  
–59  
–58  
–57  
–56  
–55  
–54  
–53  
–252 –15.75  
–248 –15.5  
–244 –15.25  
–240 –15  
–236 –14.75  
–232 –14.5  
–228 –14.25  
–224 –14  
–220 –13.75  
–216 –13.5  
7.25  
7.5  
7.75  
8
8.25  
8.5  
8.75  
9
9.25  
–212 –13.25  
Rev A  
9
For more information www.analog.com  
LTC7106  
OPERATION  
Table 2. IDAC Current and Corresponding DAC Codes (Continued)  
DAC CODE  
I
(µA)  
DAC  
DAC CODE  
I
(µA)  
DAC  
RANGE RANGE  
RANGE RANGE  
[6] [5] [4] [3] [2] [1] [0] NOMINAL  
HIGH  
LOW  
[6] [5] [4] [3] [2] [1] [0] NOMINAL  
HIGH  
–104  
–100  
–96  
–92  
–88  
–84  
–80  
–76  
–72  
–68  
–64  
–60  
–56  
–52  
–48  
–44  
–40  
–36  
–32  
–28  
–24  
–20  
–16  
–12  
–8  
LOW  
–6.5  
–6.25  
–6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
–52  
–51  
–50  
–49  
–48  
–47  
–46  
–45  
–44  
–43  
–42  
–41  
–40  
–39  
–38  
–37  
–36  
–35  
–34  
–33  
–32  
–31  
–30  
–29  
–28  
–27  
–208  
–13  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
–26  
–25  
–24  
–23  
–22  
–21  
–20  
–19  
–18  
–17  
–16  
–15  
–14  
–13  
–12  
–11  
–10  
–9  
–204 –12.75  
–200 –12.5  
–196 –12.25  
–192 –12  
–188 –11.75  
–184 –11.5  
–180 –11.25  
–176 –11  
–172 –10.75  
–168 –10.5  
–164 –10.25  
–5.75  
–5.5  
–5.25  
–5  
–4.75  
–4.5  
–4.25  
–4  
–3.75  
–3.5  
–3.25  
–3  
–160  
–156  
–152  
–148  
–144  
–140  
–136  
–132  
–128  
–124  
–120  
–116  
–112  
–108  
–10  
–9.75  
–9.5  
–9.25  
–9  
–2.75  
–2.5  
–2.25  
–2  
–8.75  
–8.5  
–8.25  
–8  
–8  
–7  
–1.75  
–1.5  
–1.25  
–1  
–6  
–7.75  
–7.5  
–7.25  
–7  
–5  
–4  
–3  
–0.75  
–0.5  
–0.25  
–2  
–6.75  
–1  
–4  
Rev A  
10  
For more information www.analog.com  
LTC7106  
OPERATION  
GPO  
Device Addressing  
GPO is a general purpose open-drain output pin, which  
can be set by PMBus command. It is designed to turn on/  
off the DC/DC regulator by connecting GPO to the RUN  
pin of the regulator. Once GPO is set high, it stays high  
even if the EN pin goes low as long as the device is not  
power cycled.  
TheLTC7106offersfourdifferenttypesofaddressingover  
the PMBus interface, specifically: 1) global, 2) device, 3)  
rail addressing and 4) alert response address (ARA).  
Global addressing provides a means of the PMBus master  
to address all LTC7106 devices on the bus. The LTC7106  
global addresses are fixed 0x5A or 0x5B (7 bit) or 0xB4  
or 0xB6 (8 bit) and cannot be disabled.  
ADDRESS  
Device addressing provides the standard means of  
the PMBus master communicating with a single instance  
of a LTC7106. The value of the device address is set by  
the ASEL0/ASEL1 configuration pins. Rail addressing  
provides a means of the PMBus master addressing a  
set of channels connected to the same output rail, simul-  
taneously. This is similar to global addressing, however,  
the PMBus address can be dynamically assigned by  
using the MFR_RAIL_ADDRESS command. It is recom-  
mendedthatrailaddressingshouldbelimitedtocommand  
write operations.  
The PMBus address is selected by ASEL0 and ASEL1  
pins. Each pin has three states: high, low and floating.  
The possible PMBus addresses are shown in Table 3.  
Table 3. Address Selection  
ASEL1  
GND  
ASEL0  
PMBus ADDRESS  
GND  
2A  
2C  
2E  
4A  
4C  
4E  
6A  
6C  
6E  
GND  
V
DD  
GND  
FLOAT  
GND  
V
V
V
DD  
DD  
DD  
V
DD  
All four means of PMBus addressing require the user to  
employdisciplinedplanningtoavoidaddressingconflicts.  
FLOAT  
GND  
FLOAT  
FLOAT  
FLOAT  
V
DD  
Fault Status  
FLOAT  
The STATUS_BYTE and ALERT pin provide fault status  
information of the LTC7106 to the host.  
PMBus SERIAL INTERFACE  
Bus Timeout Failure  
The LTC7106 serial interface is a PMBus-compliant slave  
device and can operate at any frequency between 10kHz  
and 400kHz. In addition the LTC7106 always responds to  
the global broadcast address of 0x5A or 0x5B (7-bit). The  
serial interface supports the following protocols defined  
in the PMBus specifications: 1) send command, 2) write  
byte, 3) group, 4) read byte and 5) read word. The PMBus  
write operations are not acted upon until a complete valid  
messageisreceivedbytheLTC7106includingtheSTOPbit.  
TheLTC7106implementsatimeoutfeaturetoavoidhang-  
ing the serial interface. The data packet timer begins at the  
first START event before the device address write byte.  
Data packet information must be completed within 25ms  
or the LTC7106 will tri-state the bus and ignore the given  
data packet. Data packet information includes the device  
address byte write, command byte, repeat start event  
(if a read operation), device address byte read (if a read  
operation), and all data bytes.  
Communication Failure  
The user is encouraged to use as high a clock rate as  
possible to maintain efficient data packet transfer be-  
tween all devices sharing the serial bus interface. The  
LTC7106 supports the full PMBus frequency range from  
10kHz to 400kHz.  
Attempts to access unsupported commands or writing  
invalid data to supported commands will result in a CML  
fault. The CML bit is set in the STATUS_BYTE command  
and the ALERT pin is pulled low.  
Rev A  
11  
For more information www.analog.com  
LTC7106  
OPERATION  
Similarity Between PMBus, SMBus and I C 2-Wire  
Interface  
2
The following PMBus protocols are supported:  
• Write Byte, Send Byte  
The PMBus 2-wire interface is an incremental extension  
• Read Byte, Read Word  
2
of the SMBus. SMBus is built upon I C with some minor  
• Alert Response Address  
differences in timing, DC parameters and protocol. The  
2
PMBus/SMBusprotocolsaremorerobustthansimpleI C  
Figure 3 through Figure 6 illustrate the aforementioned  
PMBus protocols. All transactions support GCP (group  
command protocol).  
bytecommandsbecausePMBus/SMBusprovidetimeouts  
to prevent bus hangs and valid operation commands. In  
2
general, a master device that can be configured for I C  
Figure 2 is a key to the protocol diagrams in this section.  
communication can be used for PMBus communication  
with little or no change to hardware or firmware. Repeat  
A value shown below a field in the following figures is a  
mandatory value for that field.  
2
start (restart) is not supported by all I C controllers but  
is required for SMBus/PMBus reads. If a general purpose  
The data formats implemented by PMBus are:  
2
I C controller is used, check that repeat start is supported.  
• Master transmitter transmits to slave receiver. The  
transfer direction in this case is not changed.  
For a description of the minor extensions and exceptions  
PMBus makes to SMBus, refer to PMBus Specification  
Part 1, Revision 1.1: Paragraph 5: Transport.  
• Master reads slave immediately after the first byte. At  
the moment of the first acknowledgment (provided by  
the slave receiver) the master transmitter becomes a  
master receiver and the slave receiver becomes a slave  
transmitter.  
2
ForadescriptionofthedifferencesbetweenSMBusandI C,  
refer to System Management Bus (SMBus) Specification  
Version 2.0: Appendix B—Differences Between SMBus  
2
and I C.  
• Combined format. During a change of direction within  
a transfer, the master repeats both a start condition and  
the slave address but with the R/W bit reversed. In this  
case, the master receiver terminates the transfer by  
generating a NACK on the last byte of the transfer and  
a STOP condition.  
PMBus SERIAL INTERFACE  
TheLTC7106communicateswithahost(master)usingthe  
standardPMBusserialbusinterface.TheTimingDiagram,  
Figure 1, shows the timing relationship of the signals on  
the bus. The two-bus lines, SDA and SCL, must be high  
when the bus is not in use. External pull-up resistors or  
current sources are required on these lines.  
Examples of these formats are shown in Figure 4 and  
Figure 5.  
The LTC7106 is a slave device. The master can com-  
municate with the LTC7106 using the following formats:  
• Master Transmitter, Slave Receiver  
• Master Receiver, Slave Transmitter  
Rev A  
12  
For more information www.analog.com  
LTC7106  
OPERATION  
ꢀꢁA  
ꢀꢉꢆꢁAꢇꢈ  
ꢀꢌ  
ꢅꢁꢆꢀꢁAꢈ  
ꢍꢉꢎ  
ꢃꢊꢋ  
ꢀꢂꢃ  
ꢀꢉꢆꢀꢇꢊꢈ  
ꢅꢁꢆꢀꢇAꢈ  
ꢀꢉꢆꢀꢇAꢈ  
ꢅꢐꢔꢅ  
ꢅꢁꢆꢁAꢇꢈ  
ꢕꢖꢗꢘ ꢎꢗꢖ  
ꢀꢇARꢇ  
ꢂꢊꢏꢁꢐꢇꢐꢊꢏ  
RꢑꢌꢑAꢇꢑꢁ ꢀꢇARꢇ  
ꢂꢊꢏꢁꢐꢇꢐꢊꢏ  
ꢀꢇꢊꢌ  
ꢀꢇARꢇ  
ꢂꢊꢏꢁꢐꢇꢐꢊꢏ ꢂꢊꢏꢁꢐꢇꢐꢊꢏ  
Figure 1. Timing Diagram  
A
A
ꢀꢁAꢂꢃ AꢄꢄRꢃꢀꢀ ꢈꢉ  
ꢄAꢅA ꢆꢇꢅꢃ  
ꢀꢅARꢅ ꢑꢒꢓꢄꢔꢅꢔꢒꢓ  
ꢀꢉ  
RꢃꢊꢃAꢅꢃꢄ ꢀꢅARꢅ ꢑꢒꢓꢄꢔꢅꢔꢒꢓ  
Rꢕ RꢃAꢄ ꢖꢆꢔꢅ ꢂAꢁꢗꢃ ꢒꢏ ꢌꢘ  
ꢈꢉ ꢈRꢔꢅꢃ ꢖꢆꢔꢅ ꢂAꢁꢗꢃ ꢒꢏ ꢍꢘ  
ꢀꢚꢒꢈꢓ ꢗꢓꢄꢃR A ꢏꢔꢃꢁꢄ ꢔꢓꢄꢔꢑAꢅꢃꢀ ꢅꢚAꢅ ꢅꢚAꢅ  
ꢏꢔꢃꢁꢄ ꢔꢀ RꢃꢛꢗꢔRꢃꢄ ꢅꢒ ꢚAꢂꢃ ꢅꢚꢃ ꢂAꢁꢗꢃ ꢒꢏ ꢙ  
A
Aꢑꢜꢓꢒꢈꢁꢃꢄꢝꢃ ꢖꢅꢚꢔꢀ ꢆꢔꢅ ꢊꢒꢀꢔꢅꢔꢒꢓ ꢞAꢇ ꢆꢃ ꢍ  
ꢏꢒR Aꢓ Aꢑꢜ ꢒR ꢌ ꢏꢒR A ꢓAꢑꢜꢘ  
ꢀꢅꢒꢊ ꢑꢒꢓꢄꢔꢅꢔꢒꢓ  
ꢊꢃꢑ ꢊAꢑꢜꢃꢅ ꢃRRꢒR ꢑꢒꢄꢃ  
ꢞAꢀꢅꢃR ꢅꢒ ꢀꢁAꢂꢃ  
ꢀꢁAꢂꢃ ꢅꢒ ꢞAꢀꢅꢃR  
ꢠꢠꢠ  
ꢑꢒꢓꢅꢔꢓꢗAꢅꢔꢒꢓ ꢒꢏ ꢊRꢒꢅꢒꢑꢒꢁ  
ꢋꢌꢍꢎ ꢏꢍꢐ  
Figure 2. PMBus Packet Protocol Diagram Element Key  
ꢀꢁAꢂꢃ AꢄꢄRꢃꢀꢀ ꢌꢍ  
A
ꢅꢆꢇꢇAꢈꢄ ꢅꢆꢄꢃ  
A
ꢄAꢉA ꢊꢋꢉꢃ  
A
ꢏꢐꢑꢒ ꢓꢑꢔ  
Figure 3. Write Byte Protocol  
ꢀꢁAꢂꢃ AꢄꢄRꢃꢀꢀ ꢅꢆ  
A
ꢏꢐꢑꢑAꢒꢄ ꢏꢐꢄꢃ  
A
ꢈꢉꢊꢋ ꢌꢊꢍ  
Figure 4. Send Byte Protocol  
A
ꢀꢁAꢂꢃ AꢄꢄRꢃꢀꢀ ꢉꢊ  
A
ꢅꢆꢇꢇAꢈꢄ ꢅꢆꢄꢃ  
A
ꢀꢊ ꢀꢁAꢂꢃ AꢄꢄRꢃꢀꢀ Rꢙ  
A
ꢄAꢓA ꢔꢕꢓꢃ ꢁꢆꢉ  
A
ꢄAꢓA ꢔꢕꢓꢃ ꢖꢗꢘꢖ  
ꢌꢍꢎꢏ ꢐꢎꢑ  
Figure 5. Read Word Protocol  
A
ꢀꢁAꢂꢃ AꢄꢄRꢃꢀꢀ ꢉꢊ  
A
ꢅꢆꢇꢇAꢈꢄ ꢅꢆꢄꢃ  
A
ꢀꢊ ꢀꢁAꢂꢃ AꢄꢄRꢃꢀꢀ Rꢕ  
A
ꢄAꢒA ꢓꢔꢒꢃ  
ꢌꢍꢎꢏ ꢐꢎꢏ  
Figure 6. Read Byte Protocol  
Rev A  
13  
For more information www.analog.com  
LTC7106  
REGISTER COMMAND DETAILS  
Table 4. LTC7106 Supported PMBus Commands  
PMBus CODE  
(8 BITS)  
0x01  
R/W TYPE  
R/W  
COMMAND NAME  
OPERATION  
DESCRIPTION  
Default is On: [7:0] = 0x80  
0x78  
R/W  
STATUS_BYTE  
Read Fault Status: CML, Write 1 to Reset  
Read PMBus Revision = 0x22 for Rev 1.2  
0x98  
Read  
PMBUS_REVISION  
MFR_CHIP_CTRL  
0xE2  
R/W  
[7:4] – Reserved: [7:0] = 0x00 Default  
[0] = GPO EN, [1] = Reserved, [2] = Write Protect, [3] = Timeout Status  
0xE4  
0xE5  
0xE6  
R/W  
R/W  
R/W  
MFR_DAC_CTRL  
[7:6] = Current Step Control, [5:0] = DAC Slew Rate Control  
MFR_IOUT_MARGIN_HIGH Same Format as MFR_IOUT_COMMAND  
MFR_IOUT_MAX  
Clamped Value that DAC Cannot Exceed. Default 7-Bit Value of 0x00 = Source  
Current Only  
0xE7  
0xE8  
Read  
R/W  
MFR_SPECIAL_ID  
MFR Special ID for LTC7106 = 0x8080  
MFR_IOUT_COMMAND  
I
Margining Command (see Table 5)  
OUT  
[5:0] Step Value, Source: [6] = 0, Sink: [6] = 1  
0xED  
0xFA  
R/W  
R/W  
MFR_IOUT_MARGIN LOW Same Format as MFR_IOUT_COMMAND  
MFR_RAIL_ADDRESS  
Set Common PMBus Address [6:0],  
[7] = 0 Enable, [7] = 1 Disable  
0xFD  
Write  
MFR_RESET  
Reset PMBus Interface to Power-On State  
Write Data is Ignored; 0, 1, 2 Bytes  
MFR_IOUT_COMMAND  
MFR_IOUT_MARGIN_LOW  
The DAC output current command is formatted as a 7-bit  
2’s complement value. When the operation register is set  
to 0x80,DACtakesthevaluestoredinthisregister.Setting  
bit[6] to 0 sources the current from the IC and bit[6] to 1  
sinks the current into the IC. Default value for this register  
is 0x00. The valid range of values are from 0x40 to 0x3 F.  
DAC margining register with the same format and rules  
as MFR_IOUT_COMMAND. The DAC value will take the  
value stored in this register when the operation register  
is set to margin low, 0x98.  
MFR_IOUT_MAX  
Do not attempt to write values outside of this range or  
undesired behavior may result. Writes to this register are  
inhibited when the WPB, bit [2] in MFR_CHIP_CTRL, is  
set high.  
Clamping value that DAC cannot exceed. The format is  
a 7-bit 2’s complement value, the same as the margin  
registers. Therefore, the DAC value cannot be a smaller  
2’s complement value than what is stored in this register.  
The 7-bit default value is 0x00 = cannot sink current. I  
OUT  
MFR_IOUT_MARGIN_HIGH  
cannotbesettoahighervalueunlessthisvalueischanged  
DAC margining register with the same format and rules  
as MFR_IOUT_COMMAND. The DAC value will take the  
value stored in this register when the operation register  
is set to margin high, 0xA8.  
to a negative number, bit [7] = 1.  
Setting this register to 0x40 allows the LTC7106 to sink  
the maximum current with no clamping.  
Rev A  
14  
For more information www.analog.com  
LTC7106  
REGISTER COMMAND DETAILS  
MFR_CHIP_CTRL  
Only a power cycle, POR, will reset this register to prevent  
unwantedimmediatecurrentchangesinIDAC.MFR_RESET  
will not reset this register.  
This register is for general chip control and status. Please  
refer to Table 7 for each bit description.  
In addition, IDAC must be at 0x00 to change the current  
Bits Description  
range selector to prevent unwanted large swings in I  
DAC  
[7:4] Reserved  
current. The time step selector, bits [5:0], can be changed  
at any time.  
[3]  
Timeout Status:  
Table 5. Programmable Delay Per Current Step  
Slew Rate Timer Clock (µs/Step)  
0 = No PMBus Timeout Occurred  
1 = A Timeout Occurred  
Writing a 1 to this bit will clear this bit  
Write Protect for Margin Registers  
0 = Write Allowed  
[5:0]  
0 0 0 0 0 0  
[5:0]  
= 3584 0 1 0 0 0 0  
[5:0]  
1 0 0 0 0 0  
= 16  
= 20  
= 24  
= 28  
= 32  
= 40  
= 48  
= 56  
= 64  
= 80  
= 96  
= 256  
0 0 0 0 0 1  
0 0 0 0 1 0  
0 0 0 0 1 1  
0 0 0 1 0 0  
0 0 0 1 0 1  
0 0 0 1 1 0  
0 0 0 1 1 1  
0 0 1 0 0 0  
0 0 1 0 0 1  
0 0 1 0 1 0  
0 0 1 0 1 1  
0 0 1 1 0 0  
0 0 1 1 0 1  
0 0 1 1 1 0  
0 0 1 1 1 1  
= 0.5  
= 1.0  
= 1.5  
= 2.0  
= 2.5  
= 3.0  
= 3.5  
= 4.0  
= 5.0  
= 6.0  
= 7.0  
= 8.0  
= 10  
0 1 0 0 0 1  
1 0 0 0 0 1  
1 0 0 0 1 0  
1 0 0 0 1 1  
1 0 0 1 0 0  
1 0 0 1 0 1  
1 0 0 1 1 0  
1 0 0 1 1 1  
1 0 1 0 0 0  
1 0 1 0 0 1  
1 0 1 0 1 0  
= 320  
[2]  
0 1 0 0 1 0  
0 1 0 0 1 1  
0 1 0 1 0 0  
0 1 0 1 0 1  
0 1 0 1 1 0  
0 1 0 1 1 1  
0 1 1 0 0 0  
0 1 1 0 0 1  
0 1 1 0 1 0  
0 1 1 0 1 1  
0 1 1 1 0 0  
0 1 1 1 0 1  
0 1 1 1 1 0  
0 1 1 1 1 1  
= 384  
= 448  
= 512  
1 = Writes Inhibited  
= 640  
[1]  
[0]  
Reserved  
= 768  
GPO, General Purpose Output  
0 = GPO Pulls Open Drain to GND  
1 = Hi-Z on GPO  
= 896  
= 1280*  
= 1280  
= 1536  
= 1792  
= 2560*  
= 2560  
= 3584*  
= 3584  
= 112 1 0 1 0 1 1  
= 128 1 0 1 1 0 0  
= 160 1 0 1 1 0 1  
= 192 1 0 1 1 1 0  
= 224 1 0 1 1 1 1  
MFR_DAC_CTRL  
8-bit register to control the I  
LSB current value and the  
DAC  
= 12  
timer count for the slew rate control. Default value = 0x40.  
= 14  
Bits Description  
* Duplicate Encoding  
[7:6] Selector Range for I  
Step Current:  
DAC  
b’00 = 0.25µA/Step, Range Low  
b’01 = 1.0µA/Step, Nominal  
b’10 = 4.0µA/Step, Range High  
b’11 = Reserved  
[5:0] Selector for Time in µs/Step  
Default Value 0x00 = Max = 3584µs/Step  
See Table 6 for Allowable Values  
Rev A  
15  
For more information www.analog.com  
LTC7106  
PMBus COMMAND DETAILS  
MFR_RESET  
OPERATION  
This command provides a means by which the user can  
perform a reset of the LTC7106. All latched faults (ALERT  
and status register) and register contents will be reset to a  
The OPERATION command is used to turn the unit on/off  
and for margining the output voltage.  
The ON bit is automatically reset to ON after a master  
shutdown (EN), power cycle, or MFR_RESET command.  
power-on condition by this command. V  
will remain in  
OUT  
regulation but may change due to the reset of the margin  
registers.  
The MARGIN_LOW/HIGH bits command the I  
refer-  
OUT  
ence to the offset value stored in either the MFR_IOUT_  
MARGIN_HIGH or MFR_IOUT_MARGIN_LOW.  
This write-only command accepts zero, one, or two data  
bytes but ignores them.  
This command has one data byte. It will accept one or two  
but ignores the second byte.  
MFR_RAIL_ADDRESS  
The MFR_RAIL_ADDRESS command allows all devices  
to share a common address, such as all devices attached  
to a single power supply rail. The desired 7-bit address  
value is written to the 7 bits of the data byte.  
Table 6. Supported OPERATION Command Register Values  
ACTION  
Turn Off Immediately  
Turn On  
VALUE  
0x00  
0x80  
0x98  
0xA8  
Margin Low  
TheMSB(bitB7)mustbesetlowtoenablecommunication  
using the MFR_RAIL_ADDRESS address. Setting this bit  
disables this address. The default for this register is 0x80.  
Margin High  
PMBus_REVISION  
ThePMBUS_REVISIONcommandindicatestherevisionof  
the PMBus to which the device is compliant. The LTC7106  
is PMBus Version 1.2 compliant in both Part I and Part II.  
ꢀꢆꢅꢇꢈ AꢉꢉRꢊꢋꢋ  
ꢅꢀ  
ꢅꢂ  
ꢍꢌꢊAR ꢅꢀ ꢈꢎ ꢊꢏAꢅꢌꢊ RAꢇꢌ AꢉꢉRꢊꢋꢋ  
ꢀꢁꢂꢃ ꢄꢂꢀ  
This read-only command has one data byte and will  
return 0x22.  
Figure 7. MFR_RAIL_ADDRESS Data Byte  
MFR_SPECIAL_ID  
The user should only perform command writes to this  
address. If a read is performed from this address and the  
rail devices do not respond with EXACTLY the same value,  
the LTC7106 will detect bus contention and abort its read  
command with no CML or ALERTB set.  
The 16-bit word representing a unique identification for  
LTpowerPlay.  
This read-only command has 2 data bytes and is set to  
0x8080.  
This command accepts one or two data bytes but the  
second is ignored.  
Rev A  
16  
For more information www.analog.com  
LTC7106  
PMBus COMMAND DETAILS  
STATUS_BYTE  
the fault is still present the status byte bit and ALERT will  
remain asserted. If the ALERT has previously been cleared  
by an ARA message, the ALERT will be re-asserted. If the  
faultisnolongerpresent,theALERTpinwillbede-asserted  
and the fault bit in the status byte will be cleared.  
TheSTATUS_BYTEcommandreturnsonebyteofinforma-  
tion with a summary of the unit’s fault condition.  
See Table 7 for a list of the status bits that are supported  
and the conditions in which each bit is set. Certain bits  
when set in the STATUS_BYTE also cause the ALERT pin  
to be asserted.  
All bits in the status byte are also cleared by toggling the  
RUN_MSTR pin or the ON bit in OPERATION. The bit will  
immediately be set again if the fault remains.  
Writinga1toaparticularbitinthestatusbytewillattempt  
to reset that fault in the status byte and the ALERT pin. If  
Table 7. Status Byte Bit Descriptions and Conditions  
CLEARABLE BY  
BIT  
DESCRIPTION  
None of the Above  
Communication Failure  
Temperature Fault  
CONDITION  
MFR_VOUT_MAX Register Exceeded  
(See Note 1)  
SET ALERT?  
WRITING ‘1’ TO BIT?  
0 (LSB)  
No  
Yes  
Yes  
1
2
3
4
5
6
7
Yes  
Not Implemented  
V
Undervoltage Fault  
Not Implemented  
IN  
Output Overcurrent Fault  
Not Implemented  
Output Overvoltage Fault  
Not Implemented  
OFF  
Not Implemented  
Busy  
Not Implemented  
Note 1: Communication failure is one of following faults: host sends too few bits, host reads too few bits, host writes too few bytes, improper R/W bit  
set, unsupported command code, attempt to write to a read-only command. See PMBus Specification v1.2, Part II, Sections 10.8 and 10.9 for more  
information.  
Rev A  
17  
For more information www.analog.com  
LTC7106  
APPLICATIONS INFORMATION  
Define ∆V  
as the V  
error caused by the I  
error  
OUT  
OUT  
DAC  
I
ACCURACY  
∆I , then we can derive the following equation from  
DAC  
DAC  
equation (1) and (2):  
TheLTC7106providesthreerangesofI outputcurrent.  
DAC  
However, only nominal range (LSB = 1µA) is optimized  
with the highest accuracy. It is recommended that users  
design the resistor divider using the nominal range of the  
IDAC setting.  
VOUT  
VOUT  
IDAC /IDAC  
Ratio – 1  
=
(3)  
Where:  
V
OUT0  
Ratio =  
(4)  
TWO’S COMPLEMENTARY CODE  
I
• R  
FB1  
DAC  
VID [6:0] of the LTC7106 is in the format of two’s comple-  
mentary. From Table 2, it is easy to program the register  
once the desired output current is known. For example, if  
output current is 20µA, then set VID [6:0] = 0010100. If  
the output current is –20µA, then set VID [6:0] = 1101100  
It is clear that when Ratio < 0 or Ratio ≥ 2, the V  
error  
OUT  
can be attenuated from the I  
error:  
DAC  
∆V  
V
∆I  
I
OUT  
DAC  
|
| ≤ |  
|
(5)  
OUT  
DAC  
for the nominal I  
setting.  
DAC  
Inthecaseofmarginhigh, I  
<0soRatio<0. Therefore,  
DAC  
the V  
factor of:  
error is always smaller than the I  
error by a  
OUT  
DAC  
V
ACCURACY  
OUT  
When I  
= 0, define:  
DAC  
V
OUT0  
– 1  
(6)  
RFB1  
RFB2 ⎦  
I • R  
FB1  
DAC  
VOUT0 = VREF 1+  
(1)  
In the case of margin low, I  
only be attenuated when:  
> 0. So the V  
error will  
(7)  
DAC  
OUT  
ReferringtoFigure8,theoutputvoltageissetaccordingto:  
V
OUT0  
RFB1  
RFB2 ⎦  
Ratio =  
> 2  
VOUT = VREF 1+  
IDAC RFB1  
(2)  
I
• R  
FB1  
DAC  
V
OUT0  
or  
I
• R  
<
FB1  
DAC  
2
ꢀꢁꢂ  
In other words, as long as V  
is margining low within  
OUT  
R
ꢀꢁꢂ  
50% of the V  
default value, V  
,the V  
OUT0  
error won't  
ꢂꢃꢄꢅꢆ  
OUT  
OUT  
Rꢁꢂ  
be larger than the I  
error.  
DAC  
ꢁAꢂ  
R
ꢀꢁꢂ  
ꢀꢁꢂꢃ ꢄꢂꢅ  
DESIGN EXAMPLES  
Figure 8. Setting the Output Voltage Using the LTC7106  
The LTC7106 can work with almost all the power manage-  
ment controllers or regulators. Figure 9, Figure 10 and  
Figure 11 show three design examples using the LTC7106  
to control the output voltage with a monolithic buck regu-  
lator, an μModule® and a boost controller.  
Rev A  
18  
For more information www.analog.com  
LTC7106  
APPLICATIONS INFORMATION  
Case One  
current amplitude is, the better accuracy the LTC7106  
can achieve. So it is easy to choose R  
= 10kΩ and  
TOP  
Assume that the LTC7150S, a monolithic buck regula-  
tor, provides a 1.5V output and requires to margin low  
R
BOT  
= 6.65kΩ. Then I  
= (1.5V – 1.0V)/10kΩ = + 50μA.  
DAC  
Choose MFR_CONTROL [6:5] = 00 (Range = Nominal) to  
set I LSB =1μA.  
V
from 1.5V to 1.0V (see Figure 9). The V is 0.6V  
OUT  
FB  
DAC  
and the voltage dividers are external. In order to achieve  
the best accuracy of the LTC7106, it is recommended to  
By looking in Table 2, choose DAC [6:0] = 0110010 to set  
design I  
in nominal range. Also within certain current  
theI =+50μA,whichwillmarginV from1.5Vto1.0V.  
DAC  
DAC OUT  
range (nominal, high or low), the larger the absolute I  
DAC  
ꢀꢁꢂꢃꢄꢅ  
ꢁꢂ  
ꢀꢁ  
Rꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂ  
ꢃꢄꢅꢀ ꢆꢇ ꢈꢉꢀ  
ꢀꢁꢂꢃꢄꢅꢆA  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃ  
ꢄꢅ  
ꢀꢁ  
ꢂꢃꢄꢅꢆꢇ  
ꢀꢀꢁꢂꢃ  
ꢀꢁꢀꢂꢃ  
ꢀꢀꢁꢂ  
ꢃꢀ  
ꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢀRAꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢃꢄꢅ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
ꢀꢁꢂ  
ꢀꢁꢂꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢄꢄ  
Rꢀ  
ꢀꢁꢂ  
4.7μF  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃA  
ꢀꢁ ꢂARꢃꢄꢅ ꢆꢁꢇ ꢈ  
ꢊRꢁꢂ ꢋꢌꢍꢈ ꢀꢁ ꢋꢈ  
ꢁꢉꢀ  
ꢀꢁꢂꢃ ꢄꢅ ꢂꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁA  
ꢇꢈꢉꢊꢋ ꢌꢍꢎꢏRꢅAꢐꢏ  
ꢀꢁꢂ  
ꢀꢁAꢂ  
ALERT  
ꢂꢃꢄꢅꢆ  
ALERT  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Aꢀꢁꢂꢃ  
Aꢀꢁꢂꢃ  
ꢁꢂꢃꢄ ꢅꢃꢆ  
Figure 9. Using the LTC7106 to Margin Low Monolithic Buck Regulator LTC7150S Providing 1.5V to 1.0V at 20A  
Rev A  
19  
For more information www.analog.com  
LTC7106  
APPLICATIONS INFORMATION  
Case Two  
Inthiscase,theμModuleLTM4636providesa1.2Voutput  
So we have to choose MFR_CONTROL [6:5] = 10  
(Range = High) to set I LSB = 4μA.  
and requires to margin high V  
from 1.2V to 2.0V (see  
OUT  
DAC  
Figure10).TheV oftheLTM4636isagain0.6V.However,  
FB  
From Table 3, choose DAC[6:0] = 1011000 to set the  
= –160µA, which will margin V from 1.2V to 2.0V.  
the top voltage divider is internal (R  
= 4.99kΩ), so the  
DAC  
TOP  
I
DAC  
OUT  
R
BOT  
is also fixed at 4.99kΩ. Then I  
= (1.2V – 2.0V)/  
4.99kΩ = –160μA.  
ꢀꢁ  
ꢀ ꢁ ꢂꢃꢂ ꢅ ꢆꢇꢈ ꢄ ꢅ ꢇꢉꢆꢄ Aꢀꢁ ꢂꢃ  
ꢇꢉ ꢀꢀ ꢄꢄ  
ꢀꢁꢂꢃꢀꢄꢃRꢅ ꢀꢆꢃ Rꢇꢈꢉ ꢀꢁ ꢂꢈꢊꢅ  
ꢀꢁ  
ꢀ ꢁꢂꢁ ꢄ ꢅꢆꢇꢈ ꢉꢊꢇRAꢅꢇ Aꢋ ꢋꢆꢉꢌꢈ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁꢂꢃꢄ ꢅꢆ ꢇꢈꢄ  
ꢀꢁꢂꢃ  
ꢀꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁ  
ꢀꢀ  
ꢀꢀꢁꢂ  
ꢀꢁꢁꢂꢃ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢀ  
ꢀꢀꢁꢂ  
ꢀꢁ  
ꢀꢀ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢄ ꢅꢆA  
ꢀꢁꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
Rꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁ  
ꢀꢁꢂꢃ  
ꢀꢁꢂRꢃꢄ  
ꢀꢀ  
ꢂꢃꢄꢅꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁ  
ꢀRꢁꢂ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀRAꢁꢂꢃꢄꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈ  
ꢀꢁ  
ꢀꢁꢀꢂꢃ  
ꢀꢁꢀꢂꢃ  
ꢀꢁꢂꢂꢃ  
ꢀꢁꢂꢃA  
ꢀꢁꢂꢃ ꢂꢄꢅ ꢆꢃꢇꢈ ꢁꢂ ꢅꢉꢁꢃ ꢊꢁRꢊꢆꢁꢋ  
ꢀꢁꢂꢃꢄ ꢆꢇꢈꢃꢉꢆ ꢊꢇꢃꢃꢋꢆꢊꢌꢈꢃꢋꢍꢆꢊꢎꢈꢆ  
ꢃꢄꢀꢃꢅꢂꢃꢄꢀꢃꢆꢂꢃꢄꢀꢃꢇꢂꢃꢄꢀꢃꢈꢂꢃꢉꢊꢋ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ ꢀꢁꢂꢃ ꢀꢁꢂꢃ ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢀꢄAꢅ ꢂꢆꢇꢁ ꢇꢀꢄꢃꢂꢀR  
160μA  
TO MARGIN HIGH  
FROM  
ꢀꢁꢂꢃ ꢄꢅ ꢂꢁꢂꢃ  
ꢀꢀ  
V
OUT  
1.2V TO 2V  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁA  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁꢂ  
ALERT  
ꢂꢃꢄꢅꢆ  
ꢀꢁAꢂ  
R A  
ALERT  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Aꢀꢁꢂꢃ  
Aꢀꢁꢂꢃ  
Figure 10. Using the LTC7106 to Margin High μModule LTM4636 Providing 1.2V to 2.0V at 40A  
Rev A  
20  
For more information www.analog.com  
LTC7106  
APPLICATIONS INFORMATION  
Case Three  
design criteria in Case One, we can choose R  
= 200kΩ  
TOP  
and R  
= 8.97kΩ for the best accuracy. Then I  
=
BOT  
DAC  
The LTC7106 can also work with boost converters. In  
this case, the LTC3784, a synchronous boost controller,  
providesa2-phase28V/10Aoutputandrequirestocontrol  
(28V – 18V)/200kΩ = +50µA. Choose MFR_CONTROL  
[6:5] = 00 (Range Nominal) to set I LSB = 1µA. By  
DAC  
looking in Table 2, choose DAC[6:0] = 0001110 to set the  
V
from 28V to 18V (see Figure 11). The VFB is 1.2V  
OUT  
I
= +50μA, which will margin V  
from 28V to 18V.  
DAC  
OUT  
and the voltage dividers are external. Based on the same  
3.3μH  
4mΩ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢀꢁꢃ  
ꢀꢁꢂꢀꢁꢃ  
ꢀꢁꢂ  
ꢁAꢂꢂ  
ꢁꢂAꢃ  
ꢀꢁꢁꢂꢃꢄ  
ꢃꢄꢀ  
ꢀꢁꢂꢃꢄ  
ꢅꢆꢇꢈ ꢂꢆ ꢄꢉꢊꢀ AꢋꢂꢌR  
ꢍꢂARꢂꢎꢏꢐ ꢑꢋ ꢀ  
ꢐꢆꢇꢌRꢌꢅ ꢋRꢆꢒ ꢀ  
ꢑꢍ  
ꢆꢏꢂ  
ꢀꢁꢂ  
ꢁꢑAꢍ  
ꢁꢂꢃ  
ꢂꢃꢄꢅꢆ  
ꢄꢅꢀ Aꢃ ꢆꢇA  
ꢀꢁꢂ  
3.3μH  
4mΩ  
ꢀꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢀꢁꢃ  
ꢀꢁꢁꢂ  
ꢀꢁꢂꢀꢁꢃ  
ꢀꢁꢂꢂꢃ  
ꢀRꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢁꢂꢃꢄ  
ꢀꢁꢂꢀꢃꢄ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃꢄꢅꢆꢆꢇꢈ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂꢃ  
ꢀꢁꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢂꢃ  
ꢀꢁꢂꢃꢄ  
ꢀꢁꢂꢃ ꢄꢅ ꢂꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂꢃA  
ꢄꢅ ꢆARꢇꢈꢉ ꢊꢅꢋ ꢌ  
ꢎRꢅꢆ ꢏꢐꢌ ꢄꢅ ꢑꢐꢌ  
ꢅꢍꢄ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁA  
ꢐꢒꢁꢖꢗ ꢑꢈꢂꢌRꢋAꢘꢌ  
ꢀꢁꢂ  
ALERT  
ꢂꢃꢄꢅꢆ  
ꢀꢁAꢂ  
ALERT  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Aꢀꢁꢂꢃ  
Aꢀꢁꢂꢃ  
ꢓꢃꢔꢕ ꢋꢃꢃ  
Figure 11. Using the LTC7106 with a Boost Controller to Vary VOUT from 28V to 18V  
Rev A  
21  
For more information www.analog.com  
LTC7106  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC7106#packaging for the most recent package drawings.  
DDB Package  
10-Lead Plastic DFN (3mm × 2mm)  
ꢄReꢪeꢫeꢬꢭe ꢙꢌꢐ ꢇꢎꢏ ꢮ ꢂꢡꢔꢂꢯꢔꢃꢦꢀꢀ Rev ꢩꢉ  
ꢂꢁꢤꢜ ±ꢂꢁꢂꢡ  
ꢄꢀ ꢅꢆꢇꢈꢅꢉ  
ꢂꢁꢦꢂ ±ꢂꢁꢂꢡ  
ꢀꢁꢡꢡ ±ꢂꢁꢂꢡ  
ꢃꢁꢃꢡ ±ꢂꢁꢂꢡ  
ꢖAꢐꢗAꢏꢈ  
ꢋꢘꢌꢙꢆꢊꢈ  
ꢂꢁꢀꢡ ±ꢂꢁꢂꢡ  
ꢂꢁꢡꢂ ꢞꢅꢐ  
ꢀꢁꢛꢚ ±ꢂꢁꢂꢡ  
ꢄꢀ ꢅꢆꢇꢈꢅꢉ  
Rꢈꢐꢋꢒꢒꢈꢊꢇꢈꢇ ꢅꢋꢙꢇꢈR ꢖAꢇ ꢖꢆꢌꢐꢟ Aꢊꢇ ꢇꢆꢒꢈꢊꢅꢆꢋꢊꢅ  
R ꢧ ꢂꢁꢃꢃꢡ  
ꢂꢁꢜꢂ ±ꢂꢁꢃꢂ  
ꢛꢁꢂꢂ ±ꢂꢁꢃꢂ  
ꢄꢀ ꢅꢆꢇꢈꢅꢉ  
ꢌꢣꢖ  
R ꢧ ꢂꢁꢂꢡ  
ꢌꢣꢖ  
ꢃꢂ  
ꢀꢁꢂꢂ ±ꢂꢁꢃꢂ  
ꢖꢆꢊ ꢃ ꢞAR  
ꢌꢋꢖ ꢒARꢗ  
ꢖꢆꢊ ꢃ  
ꢄꢀ ꢅꢆꢇꢈꢅꢉ  
R ꢧ ꢂꢁꢀꢂ ꢋR  
ꢂꢁꢀꢡ × ꢜꢡ°  
ꢄꢅꢈꢈ ꢊꢋꢌꢈ ꢤꢉ  
ꢂꢁꢤꢜ ±ꢂꢁꢂꢡ  
ꢄꢀ ꢅꢆꢇꢈꢅꢉ  
ꢐꢟAꢒꢑꢈR  
ꢄꢇꢇꢞꢃꢂꢉ ꢇꢑꢊ ꢂꢚꢂꢡ Rꢈꢓ ꢩ  
ꢂꢁꢀꢡ ±ꢂꢁꢂꢡ  
ꢂꢁꢦꢡ ±ꢂꢁꢂꢡ  
ꢂꢁꢀꢂꢂ Rꢈꢑ  
ꢂꢁꢡꢂ ꢞꢅꢐ  
ꢀꢁꢛꢚ ±ꢂꢁꢂꢡ  
ꢄꢀ ꢅꢆꢇꢈꢅꢉ  
ꢂ ꢨ ꢂꢁꢂꢡ  
ꢞꢋꢌꢌꢋꢒ ꢓꢆꢈꢎꢥꢈꢝꢖꢋꢅꢈꢇ ꢖAꢇ  
ꢊꢋꢌꢈꢍ  
ꢃꢁ ꢇRAꢎꢆꢊꢏ ꢐꢋꢊꢑꢋRꢒꢅ ꢌꢋ ꢓꢈRꢅꢆꢋꢊ ꢄꢎꢈꢐꢇꢔꢃꢉ ꢆꢊ ꢕꢈꢇꢈꢐ ꢖAꢐꢗAꢏꢈ ꢋꢘꢌꢙꢆꢊꢈ ꢒꢂꢔꢀꢀꢚ  
ꢀꢁ ꢇRAꢎꢆꢊꢏ ꢊꢋꢌ ꢌꢋ ꢅꢐAꢙꢈ  
ꢛꢁ Aꢙꢙ ꢇꢆꢒꢈꢊꢅꢆꢋꢊꢅ ARꢈ ꢆꢊ ꢒꢆꢙꢙꢆꢒꢈꢌꢈRꢅ  
ꢜꢁ ꢇꢆꢒꢈꢊꢅꢆꢋꢊꢅ ꢋꢑ ꢈꢝꢖꢋꢅꢈꢇ ꢖAꢇ ꢋꢊ ꢞꢋꢌꢌꢋꢒ ꢋꢑ ꢖAꢐꢗAꢏꢈ ꢇꢋ ꢊꢋꢌ ꢆꢊꢐꢙꢘꢇꢈ  
ꢒꢋꢙꢇ ꢑꢙAꢅꢟꢁ ꢒꢋꢙꢇ ꢑꢙAꢅꢟꢠ ꢆꢑ ꢖRꢈꢅꢈꢊꢌꢠ ꢅꢟAꢙꢙ ꢊꢋꢌ ꢈꢝꢐꢈꢈꢇ ꢂꢁꢃꢡꢢꢢ ꢋꢊ Aꢊꢣ ꢅꢆꢇꢈ  
ꢡꢁ ꢈꢝꢖꢋꢅꢈꢇ ꢖAꢇ ꢅꢟAꢙꢙ ꢞꢈ ꢅꢋꢙꢇꢈR ꢖꢙAꢌꢈꢇ  
ꢤꢁ ꢅꢟAꢇꢈꢇ ARꢈA ꢆꢅ ꢋꢊꢙꢣ A RꢈꢑꢈRꢈꢊꢐꢈ ꢑꢋR ꢖꢆꢊ ꢃ ꢙꢋꢐAꢌꢆꢋꢊ ꢋꢊ ꢌꢟꢈ ꢌꢋꢖ Aꢊꢇ ꢞꢋꢌꢌꢋꢒ ꢋꢑ ꢖAꢐꢗAꢏꢈ  
Rev A  
22  
For more information www.analog.com  
LTC7106  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
04/18 Clarified MFG_RAIL_ADDRESS and MFG_SPECIAL_ID paragraphs  
Changed from “Status Word” to “Status Byte”  
15  
16  
Rev A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
23  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC7106  
TYPICAL APPLICATION  
ꢋꢌ  
ꢁꢐꢥ  
ꢁꢐꢄ  
ꢁꢘꢜꢙ  
ꢃA  
ꢔꢕꢍ  
ꢗꢘꢝꢙ ꢍꢔ ꢅꢅꢙ  
ꢣꢝꢅꢙ ꢍRAꢌꢓꢋꢎꢌꢍꢤ  
ꢓꢞ  
ꢋꢌ  
ꢝꢘꢀꢐꢄ  
ꢎꢑꢍꢎRꢌAꢒ  
ꢓꢔꢕRꢏꢎ ꢖꢗꢘꢁꢙ  
ꢔR ꢚꢌꢛ  
ꢎꢌꢟꢕꢙ  
ꢈꢋAꢓ  
ꢁꢂꢠꢄ  
ꢃꢘꢂꢝꢢ  
ꢃꢘꢦꢜꢢ  
ꢜꢃꢝꢂꢓ  
ꢚꢌꢛ  
ꢁꢂꢂꢐꢄ  
ꢁꢅꢁꢂ  
ꢑꢡRꢟꢑꢀR  
Rꢍ  
ꢄꢈ  
ꢁꢀꢘꢜꢢ  
ꢨ ꢅꢇꢥꢩ  
ꢓꢞ  
ꢒꢪ ꢑꢎꢒꢃꢂꢗꢂ  
ꢀꢁA ꢂꢃ ꢄꢀꢁA  
ꢀꢁꢂꢃ ꢄꢅ ꢂꢁꢂꢃ  
ꢀꢀ  
ꢀꢁꢂ  
ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ ꢀꢁꢂ  
ꢀꢁ  
ꢀꢀ  
ꢀꢁA  
ꢀꢁꢂ  
ꢀꢁA  
ꢀꢁꢂ  
ALERT  
ꢂꢃꢄꢅꢆ  
ꢀꢁAꢂ  
ꢆꢇꢈꢉꢊ ꢋꢌꢍꢎRꢄAꢏꢎ  
ALERT  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
Aꢀꢁꢂꢃ  
Aꢀꢁꢂꢃ  
ꢀꢁꢂꢃ ꢄꢁꢅ  
Figure 12. Margining a LT8640S from 1.8V to 1.5V at 6A  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
4V < V < 20V, 0.6V < V  
LTC3605/LTC3605A 20V, 5A Synchronous Step-Down Regulator  
< 20V, 96% Maximum Efficiency,  
OUT  
IN  
4mm × 4mm QFN-24 Package  
LTC3626  
LTC3636  
LTC3779  
LTC3784  
LTC3807  
LTC3871  
LTM®4636  
LTC7150S  
LT®8640S  
20V, 2.5A Synchronous Step-Down Regulator with Current 95% Efficiency, V : 3.6V to 20V, V  
= 0.6V, I = 300µA,  
Q
IN  
OUT(MIN)  
and Temperature Monitoring  
ISD < 15µA, 3mm × 4mm QFN-20  
20V, Dual 6A Synchronous Step-Down Regulator  
95% Efficiency, V : 3.1V to 17V, V  
= 0.6V, I < 8µA (Both  
Q
IN  
OUT(MIN)  
Channels Enabled), ISD < 1µA, 3mm × 5mm QFN-24 Package  
150V V and V  
Synchronous 4-Switch Buck-Boost  
4.5V ≤ V ≤ 150V, Input or Output Average Current Loop, PLL,  
IN  
OUT  
IN  
DC/DC Controller  
TSSOP-38 Package  
Low I , Multiphase, Dual Channel Single Output  
4.5V (Down to 2.5V After Start-Up) ≤ V ≤ 60V, V  
PLL Fixed Frequency 50kHz to 900kHz , I = 28µA  
Q
Up to 60V,  
OUT  
Q
IN  
Synchronous Step-Up DC/DC Controller  
38V, Low I , Synchronous Step-Down Controller with  
PLL Fixed Frequency 50kHz to 900kHz, 4V ≤ V ≤ 38V,  
IN  
Q
24V Output Voltage Capability  
0.8V ≤ V  
≤ 24V, I = 50µA  
OUT Q  
100V Bidirectional PolyPhase® Buck or Boost Controller  
Dynamic Regulation of V , V  
and Current, PLL, Current Monitor,  
IN OUT  
48-Lead LQPF Package  
40A DC/DC µModule Step-Down Regulator  
20V, 20A Synchronous Step-Down Regulator  
42V, 6A Synchronous Step-Down Silent Switcher®2  
Complete 40A Switch Mode Power Supply, 4.75V ≤ V ≤ 15V, 0.6V  
IN  
≤ V  
≤ 3.3V, 16mm × 16mm × 7.12mm BGA  
OUT  
93% Efficiency, V : 3.1V to 20V, V  
= 0.6V, Output Remote  
IN  
OUT(MIN)  
Sense, 42-Lead 6mm × 5mm × 1.3mm BGA Package  
I = 2.5µA, V = 3.4V, V = 42V, V = 0  
OUT(MIN)  
Q
IN(MIN)  
OUT(MAX)  
Rev A  
D16851-0-4/18(A)  
www.analog.com  
24  
© ANALOG DEVICES, INC. 2017-2018  

相关型号:

LTC3779HFE#PBF

LTC3779 - 150V VIN and VOUT Synchronous 4-Switch Buck-Boost Controller; Package: TSSOP; Pins: 38; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC3779IFE#PBF

LTC3779 - 150V VIN and VOUT Synchronous 4-Switch Buck-Boost Controller; Package: TSSOP; Pins: 38; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3780

High Efficiency, Synchronous, 4-Switch Buck-Boost Controller
Linear

LTC3780

High Effi ciency, Synchronous, 4-Switch Buck-Boost Controller
Linear System

LTC3780EG

High Efficiency, Synchronous, 4-Switch Buck-Boost Controller
Linear

LTC3780EG#PBF

LTC3780 - High Efficiency, Synchronous, 4-Switch Buck-Boost Controller; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3780EG#TR

LTC3780 - High Efficiency, Synchronous, 4-Switch Buck-Boost Controller; Package: SSOP; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3780EG-PBF

High Efficiency, Synchronous 4-Switch Buck-Boost Controller
Linear

LTC3780EGPBF

High Efficiency, Synchronous 4-Switch Buck-Boost Controller
Linear

LTC3780EUH

High Efficiency, Synchronous, 4-Switch Buck-Boost Controller
Linear

LTC3780EUH#TR

LTC3780 - High Efficiency, Synchronous, 4-Switch Buck-Boost Controller; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3780EUHPBF

High Efficiency, Synchronous 4-Switch Buck-Boost Controller
Linear