LTC3785EUF-1-TRPBF [Linear]

10V, High Effi ciency, Buck-Boost Controller with Power Good; 10V ,高效率艾菲,降压 - 升压型控制器,具有电源良好
LTC3785EUF-1-TRPBF
型号: LTC3785EUF-1-TRPBF
厂家: Linear    Linear
描述:

10V, High Effi ciency, Buck-Boost Controller with Power Good
10V ,高效率艾菲,降压 - 升压型控制器,具有电源良好

控制器
文件: 总20页 (文件大小:240K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3785-1  
10V, High Efficiency,  
Buck-Boost Controller  
with Power Good  
FEATURES  
DESCRIPTION  
The LTC®3785-1 is a high power synchronous buck-boost  
controller that drives all N-channel power MOSFETs from  
input voltages above, below and equal to the output volt-  
age. With an input range of 2.7V to 10V, the LTC3785-1 is  
well suited for a wide variety of single or dual cell Li-Ion  
or multi-cell alkaline/NiMH applications.  
n
Single Inductor Architecture Allows V Above,  
IN  
Below or Equal to V  
OUT  
n
Power Good Output Indicator  
n
2.7V to 10V Input and Output Range  
n
Up to 96% Efficiency  
n
Up to 10A of Output Current  
TM  
n
All N-Channel MOSFETs, No R  
SENSE  
Theoperatingfrequencycanbeprogrammedfrom100kHz  
to 1MHz. The soft-start time and current limit are also  
programmable. The soft-start capacitor doubles as the  
faulttimerwhichcanprogramtheICtolatchofforrecycle  
after a determined off time. Burst Mode operation is user  
controlled and can be enabled by driving the MODE pin  
high. The LTC3785-1 includes a Power Good output that  
indicates when the output voltage is within 7.5% of its  
designed setpoint.  
n
n
n
n
n
n
n
True Output Disconnect During Shutdown  
Programmable Current Limit and Soft-Start  
Optional Short-Circuit Shutdown Timer  
Output Overvoltage and Undervoltage Protection  
Programmable Frequency: 100kHz to 1MHz  
Selectable Burst Mode® Operation  
Available in 24-Lead (4mm × 4mm) Exposed Pad  
QFN Package  
APPLICATIONS  
Protection features include foldback current limit,  
short-circuit and overvoltage protection.  
n
Palmtop Computers  
n
Handheld Instruments  
, LT, LTC, LTM and Burst Mode are registered trademarks of Linear Technology  
Corporation. No R  
is a trademark of Linear Technology Corporation.  
SENSE  
n
Wireless Modems  
All other trademarks are the property of their respective owners.  
n
Cellular Telephones  
TYPICAL APPLICATION  
V
IN  
2.7V  
Efficiency vs Input Voltage  
V
OUT  
4.7μF  
TO 10V  
V
IN  
V
CC  
100  
95  
215k  
127k  
V
= 3.3V  
= 500kHz  
OUT  
OSC  
I
SVIN  
F
22μF  
TG1  
V
SENSE  
1.3k  
215k  
A
V
BST1  
270pF  
0.22μF  
I
= 2A  
LOAD  
SW1  
FB  
I
SSW1  
I
LOAD  
= 1A  
127k  
1nF  
12k  
V
DRV  
BG1  
4.7μH  
90  
LTC3785-1  
I
B
D
V
C
V
3.3V  
5A  
OUT  
RT  
SVOUT  
TG2  
49.9k  
85  
MODE  
2.5  
5.5  
7
8.5  
10  
4
V
(V)  
IN  
PGOOD  
RUN/SS  
V
BST2  
37851 TA01b  
0.22μF  
SW2  
100μF  
I
I
LSET  
SSW2  
CCM  
BG2  
42.2k  
2.2nF  
GND  
C
37851 TA01a  
37851f  
1
LTC3785-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Input Supply Voltage (V )......................... –0.3V to 11V  
IN  
I
, I  
.............................................. –0.3V to 11V  
SVOUT SVIN  
SW1, SW2, I  
24 23 22 21 20 19  
, I  
Voltage:  
SSW1 SSW2  
RUN/SS  
1
2
3
4
5
6
18  
17  
16  
I
SSW1  
DC............................................................. –1V to 11V  
Pulsed, <1μs............................................. –2V to 12V  
V
C
BG1  
V
FB  
DRV  
25  
RUN/SS, MODE, CCM, V , V Voltages ...... –0.3V to 6V  
DRV CC  
V
15 BG2  
14  
13 SW2  
SENSE  
PGOOD Voltage............................................ –0.3V to 6V  
I
I
LSET  
SSW2  
TG1, V  
Voltages................................... –0.3V to 16V  
CCM  
BST1  
With Respect to SW1............................... –0.3V to 6V  
TG2, V Voltages................................... –0.3V to 16V  
7
8
9 10 11 12  
BST2  
With Respect to SW2............................... –0.3V to 6V  
BG1, BG2 Voltage ........................................ –0.3V to 6V  
Peak Driver Output Current < 10μs  
UF PACKAGE  
24-LEAD (4mm s 4mm) PLASTIC QFN  
T
= 125°C, θ = 37°C/W 4 LAYER BOARD  
JA  
JMAX  
EXPOSED PAD (PIN 25) IS GND, MUST BE SOLDERED TO PCB  
(TG1, TG2, BG1, BG2).................................................3A  
V
Average Output Current.................................100mA  
CC  
Operating Temperature Range.................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
24-Lead (4mm × 4mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC3785EUF-1#PBF  
LTC3785EUF-1#TRPBF  
37851  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = VOUT = VDRV = VBST1 = VBST2 = 3.6V, RT = 49.9k, RILSET = 59k.  
PARAMETER  
Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
IN  
l
Input Operating Voltage  
Quiescent Current—Burst Mode Operation  
Quiescent Current—Shutdown  
Quiescent Current—Active  
Error Amp  
2.7  
10  
200  
25  
V
μA  
μA  
V = 0V, MODE = 3.6V (Note 4)  
86  
15  
0.8  
C
RUN/SS = 0V, V  
= 0V  
OUT  
MODE = 0V (Note 4)  
1.5  
mA  
l
Feedback Voltage  
(Note 5)  
(Note 5)  
1.200  
1.225  
1
–500  
900  
90  
1.25  
500  
V
nA  
μA  
μA  
dB  
Feedback Input Current  
Error Amp Source Current  
Error Amp Sink Current  
Error Amp A  
VOL  
V
CC  
V
CC  
V
CC  
Regulator  
Maximum Regulating Voltage  
Regulation Voltage  
l
l
V
V
= 5V, I  
= 3.6V, I  
= –20mA  
VCC  
4.15  
3.3  
4.35  
3.5  
4.55  
3.6  
V
V
IN  
= –20mA  
IN  
VCC  
37851f  
2
LTC3785-1  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = VOUT = VDRV = VBST1 = VBST2 = 3.6V, RT = 49.9k, RILSET = 59k.  
PARAMETER  
Regulator Sink Current  
CONDITIONS  
= V = 5V  
MIN  
TYP  
800  
MAX  
UNITS  
V
V
μA  
CC  
OUT  
CC  
Run/Soft-Start  
l
RUN/SS Threshold  
When IC is Enabled  
0.35  
0.7  
1.9  
–1  
1
1.1  
5
V
V
μA  
μA  
When EA is at Maximum Boost Duty Cycle  
RUN/SS Input Current  
RUN/SS Discharge Current  
Current Limit  
RUN/SS = 0V  
During Current Limit  
l
l
Current Limit Sense Threshold  
I
I
to I  
to I  
, R  
SSW1 ILSET  
SSW1 ILSET  
= 121k  
= 59k  
20  
55  
60  
105  
100  
155  
mV  
mV  
SVIN  
SVIN  
, R  
l
l
Reverse Current Limit Sense Threshold  
Input Current  
I
I
to I  
, CCM > 2V  
SVOUT  
–50  
–110  
–15  
80  
10  
0.1  
–170  
–35  
150  
20  
5
mV  
mV  
μA  
μA  
μA  
SSW2  
SSW2  
SVOUT  
to I  
, CCM < 0.4V  
I
I
I
SVIN  
SVOUT  
SSW1 SSW2  
, I  
l
l
CCM Input Threshold (High)  
CCM Input Threshold (Low)  
CCM Input Current  
Burst Mode Operation  
Mode Threshold  
2.2  
0.8  
V
V
μA  
0.4  
1
0.01  
l
1.5  
0.01  
1.4  
2.2  
1
V
μA  
μs  
Mode Input Current  
t
ON  
Time  
Oscillator  
l
l
Frequency Accuracy  
Switching Characteristics  
Maximum Duty Cycle  
370  
80  
509  
650  
kHz  
Boost (% Switch BG2 On)  
Buck (% Switch TG1 On)  
90  
99  
%
%
TG1, TG2 Driver Impedance  
BG1, BG2 Driver Impedance  
TG1, TG2 Rise Time  
BG1, BG2 Rise Time  
TG1, TG2 Fall Time  
2
2
Ω
Ω
C
C
C
C
= 3300pF (Note 3)  
= 3300pF (Note 3)  
= 3300pF (Note 3)  
= 3300pF (Note 3)  
20  
20  
20  
20  
100  
100  
ns  
ns  
ns  
ns  
ns  
ns  
LOAD  
LOAD  
LOAD  
LOAD  
BG1, BG2 Fall Time  
Buck Driver Nonoverlap Time  
Boost Driver Nonoverlap Time  
Power Good  
TG1 to BG1  
TG2 to BG2  
Undervoltage Threshold  
Undervoltage Hysteresis  
Overvoltage Threshold  
V
V
Falling, % Below FB Regulation Voltage  
–5  
5
–7.5  
1.5  
7.5  
–10.5  
10.5  
%
%
%
SENSE  
Rising % Above FB Regulation Voltage,  
MODE = 0V  
SENSE  
Overvoltage Hysteresis  
PGOOD Output Low  
PGOOD Leakage  
–2  
200  
%
mV  
μA  
I
V
V
= 500μA  
500  
5
500  
PGOOD  
= 5.5V  
PGOOD  
SENSE  
V
SENSE  
Input Current  
= Measured FB Voltage  
1
nA  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 3: Specification is guaranteed by design and not 100% tested in production.  
Note 4: Current measurements are performed when the outputs are not switching.  
Note 5: The IC is tested in a feedback loop to make the measurement.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC3785E-1 is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over –40°C to 85°C operating  
37851f  
3
LTC3785-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
Li-Ion to 3.3V Efficiency vs  
Load Current  
Two Li-Ion to 7V Efficiency vs  
Load Current  
Li-Ion/9V to 5V VOUT Efficiency vs  
Load Current  
100  
90  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Burst Mode  
OPERATION  
Burst Mode  
OPERATION  
Burst Mode  
OPERATION  
80  
80  
70  
70  
FIXED  
FREQUENCY  
FIXED  
FREQUENCY  
FIXED  
FREQUENCY  
60  
50  
60  
50  
V
IN  
V
IN  
V
IN  
V
IN  
= 9V  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
= 4.2V  
= 3.6V  
= 3V  
= 4.2V  
= 3.6V  
= 2.7V  
V
V
V
= 8.4V  
= 7.2V  
= 5.4V  
IN  
IN  
IN  
IN  
IN  
IN  
V
V
MOSFET Si7940  
MOSFET Si7940  
MOSFET Si7940  
L = 4.7μH WURTH WE-PD  
L = 5.6μH MSS1260  
L = 5.6μH MSS1260  
f
= 500kHz  
f
= 430kHz  
f
= 430kHz  
OSC  
OSC  
OSC  
0.0001 0.001  
0.01  
0.1  
1
10  
0.0001 0.001  
0.01  
0.1  
1
10  
0.0001 0.001  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
37851 G03  
37851 G02  
37851 G01  
Burst Mode Ripple  
Line Transient Response  
VOUT Load Transient  
V
OUT  
V
OUT  
500mV/  
DIV  
200mV/  
DIV  
V
OUT  
50mV/DIV  
AC  
COUPLED  
V
IN  
3V TO  
8.5V  
I
LOAD  
INDUCTOR  
CURRENT  
1A/DIV  
10mA TO 2A  
37851 G05  
I
V
C
= 300μA 500μs/DIV  
LOAD  
OUT  
OUT  
37851 G06  
V
V
C
= 3.6V  
100μs/DIV  
= 5V  
IN  
37851 G04  
V
C
= 3.3V  
= 100μF  
5μs/DIV  
= 3.3V  
OUT  
OUT  
= 100μF  
OUT  
OUT  
= 100μF  
Normalized Oscillator Frequency  
vs Temperature  
VFB vs Temperature  
Oscillator Frequency vs RT  
1.2255  
1.2250  
1.2245  
1.2240  
1.2235  
1.2230  
1.2225  
1.2220  
1.2215  
1.2210  
1200  
1000  
1.0  
0.8  
0.6  
0.4  
800  
600  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
400  
200  
0
50  
TEMPERATURE (°C)  
100  
20  
40  
60  
80  
100  
–50 –25  
0
25  
75  
–50  
–25  
25  
50  
75  
100  
0
TEMPERATURE (°C)  
RT (kΩ)  
37851 G09  
37851 G07  
37851 G08  
37851f  
4
LTC3785-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN Start-Up Voltage vs  
Temperature  
VIN Burst Quiescent Current vs  
Temperature  
OV and UV Thresholds vs  
Temperature  
2.490  
2.485  
2.480  
2.475  
8
6
100  
95  
90  
85  
80  
OV THRESHOLD  
4
2
0
–2  
–4  
–6  
–8  
2.470  
2.465  
UV THRESHOLD  
–50  
0
25  
50  
75  
100  
–25  
–50  
–25  
25  
50  
75  
100  
0
–50  
–25  
25  
50  
75  
100  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
37851 G10  
37851 G11  
37851 G12  
PIN FUNCTIONS  
RUN/SS (Pin 1): Run Control and Soft-Start Input. An  
internal 1μA charges the soft-start capacitor and will  
charge to approximately 2.5V. During a current limit fault,  
the soft-start capacitor will incrementally discharge. Once  
the pin drops below 1.225V the IC will enter fault mode,  
turning off the outputs for 32 times the soft-start time. If  
>5μA (at RUN/SS = 1.225V) is applied externally, the part  
will latch off after a fault is detected. If >40μA (at RUN/SS  
= 1.225V) is applied externally, current limit faults will not  
discharge the SS capacitor.  
V
(Pin 4): Overvoltage and Undervoltage Sense.  
SENSE  
The overvoltage threshold is internally set 7.5% above  
the regulated FB voltage and the undervoltage threshold  
is internally set 7.5% below the FB regulated voltage. This  
pin can be tied to FB but to optimize the response time it  
isrecommendedthataseparatevoltagedividerfromV  
OUT  
be applied. The divider can be skewed from the feedback  
value to achieve the desired UV or OV threshold.  
I
(Pin 5): Current Limit Set. A resistor from this pin  
LSET  
to ground sets the current limit threshold from the I  
SVIN  
V (Pin 2): Error Amp Output. A frequency compensation  
C
and I  
pins.  
SSW1  
network is connected from this pin to the FB pin to com-  
pensate the loop. See the section “Closing the Feedback  
Loop” for guidelines.  
CCM (Pin 6): Continuous Conduction Mode Control Pin.  
When set low, the inductor current is allowed to go slightly  
negative (–15mV referenced to the I  
– I  
pins).  
SVOUT  
SSW2  
FB (Pin 3): Feedback Pin. Connect resistor divider tap  
here. The feedback reference voltage is typically 1.225V  
The output voltage can be adjusted from 2.7V to 10V ac-  
cording to the following formula:  
Whendrivenhigh,thereversecurrentlimitissettothesimilar  
value of the forward current limit set by the I pin.  
LSET  
RT (Pin 7): Oscillator Programming Pin. A resistor from  
this pin to GND sets the free-running frequency of the IC.  
f
2.5e10/RT.  
R1+R2  
VOUT = 1.225V •  
R2  
OSC  
37851f  
5
LTC3785-1  
PIN FUNCTIONS  
MODE (Pin 8): Burst Mode Control Pin.  
I
(Pin 18): Forward Current Limit Comparator Non-  
SSW1  
inverting Input. This pin is normally connected to the  
source of the N-channel MOSFET A (TG1 driven).  
• MODE = High: Enable Burst Mode Operation. In Burst  
Mode operation the operation is variable frequency,  
which provides a significant efficiency improvement  
at light loads. The Burst Mode operation will continue  
until the pin is driven low.  
SW1 (Pin 19): Ground Reference for Driver A. Gate drive  
from TG1 will reference to the common point of output  
switches A and B.  
• MODE=Low:DisableBurstModeoperationandmaintain  
low noise, constant frequency operation.  
TG1, TG2 (Pins 20, 12): Top gate drive pins drive the  
top N-channel MOSFET switches A and D with a voltage  
swing equal to V – V  
superimposed on the SW1  
CC  
DIODE  
PGOOD (Pin 9): Open drain output. PGOOD is pulled to  
and SW2 nodes respectively.  
V (Pin 21): Boosted Floating Driver Supply for the  
BST1  
ground when the voltage on V  
is not within 7.5%  
SENSE  
of its setpoint. PGOOD will also be pulled low when the  
part is in shutdown or input UVLO.  
Buck Switch A. This pin will swing from a diode below  
V
CC  
up to V + V – V  
.
IN  
CC  
DIODE  
I
(Pin 10): Reverse Current Limit Comparator Non-  
SVOUT  
invertingInput. Thispinisnormallyconnectedtothedrain  
I
(Pin 22): Forward Current Limit Comparator Invert-  
SVIN  
of the N-channel MOSFET D (TG2 driven).  
ing Input. This pin is normally connected to the drain of  
N-channel MOSFET A (TG1 driven).  
V
(Pin 11): Boosted Floating Driver Supply for Boost  
BST2  
Switch D. This pin will swing from a diode below V up  
V
CC  
(Pin 23): Internal 4.5V LDO Regulator Output. The  
CC  
to V  
+ V – V .  
driver and control circuits are powered from this voltage  
to limit the maximum VGS drive voltage. Decouple this pin  
to power ground with at least a 4.7μF ceramic capacitor.  
OUT  
CC  
DIODE  
SW2 (Pin 13): Ground Reference for Driver D. Gate drive  
from TG2 will reference to the common point of output  
switches C and D.  
For low V applications, V can be bootstrapped from  
IN  
CC  
V
through a Schottky diode.  
OUT  
I
(Pin 14): Reverse Current Limit Comparator Invert-  
SSW2  
V
(Pin 24): Input Supply Pin for the V Regulator. A  
CC  
IN  
ing Input. This pin is normally connected to the source of  
ceramic capacitor of at least 10μF is recommended close  
the N-channel MOSFET D (TG2 driven).  
to the V and GND pins.  
IN  
V
(Pin 16): Driver Supply for Ground Referenced  
DRV  
Exposed Pad (Pin 25): The GND and PGND pins are con-  
nected to the Exposed Pad which must be connected to  
the PCB ground for electrical contact and rated thermal  
performance.  
Switches. Connect this pin to V potential.  
CC  
BG1, BG2 (Pins 17, 15): Bottom gate driver pins drive  
the ground referenced N-channel MOSFET switches B  
and C.  
37851f  
6
LTC3785-1  
BLOCK DIAGRAM  
V
IN  
2.7V TO 10V  
24  
V
IN  
1.225V  
+
+
FAULT  
LOGIC  
TSD  
100% DUTY  
CHARGE PUMP  
1.225V  
V
4.5V REG  
IDEAL DIODE  
REF  
C
VCC  
V
CC  
V
BE  
+
23  
22  
RUN UVLO  
I
2.4V  
SVIN  
1/25k  
I
+
LIMIT  
g
m
1μA  
C
SS  
RUN/SS  
1
V = 60k/R  
ILSET  
2μA  
TG1  
ADRV  
MA  
C
20  
21  
19  
18  
16  
17  
IN  
V
I
+
BST1  
LIM(OUT)  
+
X10  
SW1  
I
I
LIM(OUT)  
MAX  
C
A
SW1  
10μA MAX  
V = 90k/R  
ILSET  
I
SSW1  
SAMPLED  
TG1  
BBM  
SW1  
DELAY  
D1  
OPT  
SW1  
PULSE  
V
DRV  
–7.5%  
7.5%  
+
UV  
BG1  
UV  
OV  
V
V
OUT  
OUT  
BG1  
BDRV  
MB  
+
OV  
V
OUT  
LOW  
+
V
SENSE  
1.8V  
4
TG2  
BG2  
PGND  
BBM  
SW2  
SW2  
PULSE  
15mV  
OR  
1X I  
+
DELAY  
L1  
1.225V  
+
R1  
100% DUTY  
CHARGE PUMP  
FB  
LIMIT  
3
2
I
DISABLE  
SVOUT  
C
P1  
V
10  
R2  
OUT  
REVERSE  
LIMIT  
V
C
D2  
OPT  
V
REV  
REVERSE  
CURRENT LIMIT  
(ZERO LIMIT FOR BURST)  
R
T
TG2  
RT  
MD  
12  
11  
OSC  
DDRV  
7
V
BST2  
1 = Burst Mode OPERATION  
0 = FIXED FREQUENCY  
C
B
SW2  
+
13  
14  
1.5V  
BURST  
LOGIC  
SW2  
MC  
BURST  
MODE  
I
SSW2  
8
5
SAMPLED  
V
DRV  
SS  
BG2  
CDRV  
15  
6
C
OUT  
R
ILSET  
I
LSET  
I
I
COMP  
COMP  
I
LIM  
LIMIT  
SET  
MAX  
PGND  
1/2 LIMIT AT V  
OUT  
< 1V  
UV  
OV  
CCM  
0 = 15mV  
1 = I  
V
REV  
SD  
LIMIT  
UVLO  
PGOOD  
GND/PGND  
25  
9
37851 BD  
37851f  
7
LTC3785-1  
OPERATION  
MAIN CONTROL LOOP  
V
IN  
V
OUT  
The LTC3785-1 is a buck-boost voltage mode controller  
that provides an output voltage above, equal to or below  
the input voltage.  
TG1  
BG1  
D
C
A
TG2  
BG2  
L
SW1  
SW2  
B
The LTC proprietary topology and control architecture also  
employs drain-to-source sensing (No R ) for forward  
SENSE  
37851 F01  
and reverse current limiting. The controller provides all  
N-channel MOSFET output switch drive, facilitating single  
packagemultiplepowerswitchtechnologyalongwithlower  
Figure 1. Response Time Test Circuit  
R
. The error amp output voltage (V ) determines the  
DS(ON)  
C
90%  
MAX  
D
outputdutycycleoftheswitches.SincetheV pinisaltered  
C
BOOST  
A ON, B OFF  
signal, it provides rejection of high frequency noise.  
BOOST REGION  
PWM C, D SWITCHES  
D
MIN  
The FB pin receives the voltage feedback signal, which  
is compared to the internal reference voltage by the er-  
ror amplifier. The top MOSFET drivers are biased from a  
floating bootstrap capacitor, which is normally recharged  
during each off cycle through an external diode when the  
top MOSFET turns off. Optional Schottky diodes can be  
connected across synchronous switch B and D to provide  
a lower drop during the dead time and eliminate efficiency  
loss due to body diode reverse recovery.  
BOOST  
FOUR SWITCH PWM  
BUCK/BOOST REGION  
D
MAX  
BUCK  
D ON, C OFF  
PWM A, B SWITCHES  
BUCK REGION  
D
BUCK  
MIN  
37851 F02  
Figure 1. Response Time Test Circuit  
theremainderoftheswitchingperiod.SwitchesAandBwill  
alternate similar to a typical synchronous buck regulator.  
As the control voltage increases, the duty cycle of switch  
A increases until the max duty cycle of the converter in  
The main control loop is shut down by pulling the RUN/  
SS pin low. An internal 1μA current source charges the  
RUN/SS pin and when the pin voltage is higher than 0.7V  
buck mode reaches D  
, given by:  
MAX_BUCK  
the IC is enabled. The V voltage is then clamped to the  
C
RUN/SS voltage minus 0.7V while C is slowly charged  
D
= 100 – D4(SW)%  
SS  
MAX_BUCK  
duringstart-up.Thissoft-startclampingpreventsinrush  
where D4(SW) = duty cycle % of the four switch range.  
D4(SW) = (300ns • f) • 100%  
current draw from the input power supply.  
POWER SWITCH CONTROL  
where f = operating frequency, Hz.  
Figure1showsasimplifieddiagramofhowthefourpower  
Beyond this point the “four switch” or buck-boost region  
is reached.  
switchesareconnectedtotheinductor,V ,V andGND.  
IN OUT  
Figure 2 shows the regions of operation for the LTC3785-1  
as a function of duty cycle D. The power switches are  
properly controlled so that the transfer between modes  
is continuous.  
Buck-Boost or Four Switch (V ~ V  
)
OUT  
IN  
When the error amp output voltage, V , is above ap-  
proximately 0.65V, switch pair AD remain on for duty  
C
cycle D  
, and the switch pair AC begin to phase  
MAX_BUCK  
Buck Region (V > V  
)
OUT  
IN  
in. As switch pair AC phases in, switch pair BD phases  
Switch D is always on and switch C is always off during  
out accordingly. When the V voltage reaches the edge of  
C
buck mode. When the error amp output voltage, V , is  
the buck-boost range, approximately 0.7V, the AC switch  
C
approximatelyabove0.1V,outputAbeginstoswitch.During  
pair completely phase out the BD pair, and the boost phase  
theofftimeofswitchA, synchronousswitchBturnsonfor  
begins at duty cycle, D4(SW).  
37851f  
8
LTC3785-1  
OPERATION  
Theinputvoltage,V ,wherethefourswitchregionbegins  
In Burst Mode operation the maximum output current is  
given by:  
IN  
is given by:  
VOUT  
1– 300ns • f  
1.2 • V  
IN  
VIN =  
V
IOUT(MAX,BURST)  
A
f L • VOUT + V  
(
)
(
)
IN  
the point at which the four switch region ends is given  
by:  
Burst Mode operation is user-controlled by driving the  
MODE pin high to enable and low to disable.  
V = V (1 – D) = V (1 – 300ns • f) V  
IN  
OUT  
OUT  
V
REGULATOR  
CC  
Boost Region (V < V  
)
IN  
OUT  
An internal P-channel low dropout regulator produces  
4.35V at the V pin from the V supply pin. V powers  
Switch A is always on and switch B is always off during  
boostmode. Whentheerrorampoutputvoltage, V , isap-  
proximatelyabove0.7V, switchpairCandDwillalternately  
switchtoprovideaboostedoutputvoltage. Thisoperation  
is typical to a synchronous boost regulator. The maximum  
duty cycle of the converter is limited to 90% typical.  
CC  
IN  
CC  
the drivers and internal circuitry of the LTC3785-1. The  
V pin regulator can supply a peak current of 100mA and  
CC  
C
must be bypassed to ground with a minimum of 4.7μF  
placed directly adjacent to the V and GND pins. Good  
CC  
bypassing is necessary to supply the high transient cur-  
rent required by the MOSFET gate drivers and to prevent  
interactionbetweenchannels. Ifdesired, theV regulator  
CC  
Burst Mode OPERATION  
can be connected to V  
through a Schottky diode to  
OUT  
During Burst Mode operation, the LTC3785-1 delivers  
energy to the output until it is regulated and then goes  
into a sleep state where the outputs are off and the IC  
is consuming only 86μA. In Burst Mode operation, the  
output ripple has a variable frequency component, which  
is dependent upon load current  
providehighergatedriveinlowinputvoltageapplications.  
The V regulator can also be driven with an external 5V  
CC  
source directly (without a Schottky diode).  
TOPSIDE MOSFET DRIVER SUPPLY (V  
, V  
BST1 BST2  
)
The external bootstrap capacitors connected to the V  
and V  
BST1  
During the period where the converter is delivering en-  
ergy to the output, the inductor will reach a peak current  
pins supply the gate drive voltage for the top-  
BST2  
side MOSFET switches A and D. When the top MOSFET  
switch A turns on, the switch node SW1 rises to V and  
determined by an on time, t , and will terminate at zero  
ON  
IN  
current for each cycle. The on time is given by:  
the V  
pin rises to approximately V + V . When the  
BST2  
IN CC  
2.4  
bottom MOSFET switch B turns on, the switch node SW1  
tON  
=
drops low and the boost capacitor is charged through the  
V • f  
IN  
diode connected to V . When the top MOSFET switch D  
CC  
where f is the oscillator frequency.  
turns on, the switch node SW2 rises to V  
pin rises to approximately V  
and the V  
OUT  
BST2  
The peak current is given by:  
+ V . When the bottom  
OUT  
CC  
MOSFET switch C turns on, the switch node SW2 drops  
V
L
IN • tON  
low and the boost capacitor is charged through the diode  
IPEAK  
=
connectedtoV .Theboostcapacitorsneedtostoreabout  
CC  
100 times the gate charge required by the top MOSFET  
switch A and D. In most applications a 0.1μF to 0.47μF,  
X5R or X7R dielectric capacitor is adequate.  
2.4  
f L  
IPEAK  
=
So the peak current is independent of V and inversely  
IN  
proportional to the f • L product optimizing the energy  
transfer for various applications.  
37851f  
9
LTC3785-1  
OPERATION  
RUN/SOFT-START (RUN/SS)  
the range is a constant, tightening the UV threshold will  
loosen the OV threshold and vice versa.  
The RUN/SS pin serves as the enable to the LTC3785-1,  
soft-start function, and fault programming. A 1μA current  
source charges the external capacitor. Once the RUN/SS  
voltageisaboveadiodedrop(~0.7V)theICisenabled.Once  
the IC is enabled, the RUN/SS voltage minus a diode drop  
POWER GOOD COMPARATOR  
The PGOOD pin is an open-drain output which indicates  
thestatusofthebuck-boostconverteroutput. Theoutput  
(RUN/SS – 0.7V) clamps the output of the error amp (V )  
C
voltage is monitored at V  
via a resistor divider tap  
SENSE  
to limit duty cycle. The range of the duty cycle clamping is  
approximately 0.7V to 1.7V. The RUN/SS pin is clamped  
to approximately 2.2V. If current limit is reached the pin  
will begin to discharge with a current determined by the  
magnitude of inductor current overcurrent limit, but not  
to exceed 10μA. This function will be described in more  
detail in the “Forward Current Limit” section.  
fromV  
toGND.Thevaluesusedforthisresistordivider  
OUT  
are typically selected to be the same as those used in the  
error amplifier feedback divider. If the voltage on V  
SENSE  
either falls 7.5% below (UV condition) or rises 7.5%  
above (OV condition) the regulation voltage, the PGOOD  
open-drain output will pull low signaling the output is  
out of regulation. Once an out of regulation condition is  
triggered, the voltage on V  
must rise 1.5% above  
SENSE  
OSCILLATOR  
theUVthresholdorfall2%belowtheOVthresholdbefore  
the pull-down will turn off. In addition, there is a 15μs  
deglitch delay to help prevent false trips due to voltage  
transients caused by line or load steps. Depending upon  
the application, this delay may be insufficient. A capaci-  
The frequency of operation is set through a resistor from  
the RT pin to ground where f (2.5e /RT)Hz.  
10  
ERROR AMP  
tor can be placed from V  
to GND to add additional  
SENSE  
deglitch filtering, ensuring PGOOD doesn’t trip during  
a transient. The PGOOD output will also pull low during  
shutdownandinputundervoltagelockouttoindicatethese  
fault conditions.  
The error amplifier is a voltage mode amplifier with a  
reference voltage of 1.225V internally connected to the  
non-inverting input. The loop compensation components  
are configured around the amplifier to provide loop com-  
pensationfortheconverter. TheRUN/SSpinwillclampthe  
error amp output, V , to provide a soft-start function.  
FORWARD CURRENT LIMIT  
C
The LTC3785-1 is designed to sense the input current by  
samplingthevoltageacrossMOSFETAduringtheontimeof  
UNDERVOLTAGE AND OVERVOLTAGE PROTECTION  
theswitch(TG1=High).ThesensepinsareI  
andI  
.
The LTC3785-1 incorporates overvoltage (OV) and  
undervoltage (UV) functions for fault protection and  
transient limitation. Both comparators are connected  
SVIN  
SSW1  
A current sense resistor can be used if increased accuracy  
isrequired.Thecurrentlimitthresholdcanbeprogrammed  
with a resistor on the I  
pin. Once the desired current  
can be determined by the  
to the V  
pin, which usually has a similar voltage  
LSET  
SENSE  
limit has been chosen, R  
following formula:  
6000  
divider as the error amplifier without the compensation.  
The overvoltage threshold is 7.5% above the reference.  
The undervoltage threshold is 7.5% below the reference  
with both comparators having 1% hysteresis. During an  
overvoltage fault, all output switching stops until the fault  
ceases.Duringanundervoltagefault,theICiscommanded  
to run fixed frequency only (disabled Burst Mode opera-  
tion). If the design requires a tightened threshold to one  
of the comparator thresholds the voltage divider on the  
ILSET  
RILSET  
=
Ω
RDS(ON)A ILIMIT  
where R  
= R  
of N-channel MOSFET switch A  
DS(ON)A  
DS(ON)  
and I  
= current limit in Amps.  
LIMIT  
Once the voltage between I  
and I  
exceeds the  
SVIN  
SSW1  
threshold, current will be sourced out of FB to take control  
V
pin can be skewed to achieve the threshold. Since  
SENSE  
37851f  
10  
LTC3785-1  
OPERATION  
of the voltage loop, resulting in a lower output voltage  
to regulate the input current. This fault condition causes  
the RUN/SS capacitor to begin discharging. The level of  
the discharge current depends on how much the current  
exceeds the programmed threshold. Figure 3 is a simpli-  
fied diagram of the current sense and fault circuitry. If the  
current limit fault duration is long enough to discharge the  
RUN/SS capacitor below 1.225V, the fault latch is set and  
will cycle the RUN/SS capacitor 16 times (1μA charging  
and1μAdischargingoftheRUN/SScapacitor)tocreatean  
off time of 32 times the soft-start time before the outputs  
are allowed to switch to restart the output voltage. If the  
current limit fault level exceeds 150% of the programmed  
placingadiode(anodetiedtoV )andaresistorfromV  
OUT OUT  
totheRUN/SSpin.ThecurrentsourcedintoRUN/SSwillbe  
0.7dividedbytheresistorvalue. Toignoreallfaults  
V
OUT  
sourcegreaterthan4AintotheRUN/SSpin(At1.225Von  
theRUN/SSpin).Sincethemaximumfaultcurrentislimited,  
this will prevent any discharging of the RUN/SS capacitor,  
the soft-start capacitor will need to be sized accordingly to  
accommodatetheextrachargingcurrentatstart-up.  
Duringanoutputshort-circuitorifV islessthan1.8V,the  
OUT  
current limit folds back to 50% of the programmed level.  
REVERSE CURRENT LIMIT  
I
level at any time, the I  
comparator is tripped and  
The LTC3785-1 can be programmed to provide full class  
D operation or allowed to source and sink current equal to  
the current limit set value. This is achieved by asserting a  
high level on the CCM pin. To minimize the reverse output  
current, the CCM pin should be driven low or strapped to  
ground. During this mode only, –15mV typical is allowed  
LIMIT  
MAX  
output switches B and D are turned on to discharge the  
inductor current for the remainder of the cycle.  
To have the power converter latch-off on a fault, a pull-up  
currentbetween4μAand7μAontheRUN/SSpinwillallow  
the RUN/SS capacitor to discharge during an extended  
fault,butwillpreventcyclingofthefaultwhichwillcausethe  
converter to stay off. One method to implement this is by  
across output switch D and is sensed with the I  
SSW2  
and  
SVOUT  
I
pins.  
THERMAL SD  
S FAULT  
I
COMP  
V
IN  
LIMIT  
1.225V  
0.7V  
+
+
I
SVIN  
g
= 1/20k  
m
S LOGIC  
+
22  
20  
g
m
A
TG1  
V = 60k/R  
ILSET  
ILSET  
(15k/R  
WHEN V < 1.8V)  
OUT  
RUN  
SW1  
19  
18  
I
COMP  
MAX  
1μA  
+
RUN/SS  
TURN  
I
+
X10  
1
4
SSW1  
SWITCHES  
SAMPLED  
C
SS  
2.2V  
B AND D ON  
V = 90k/R  
ILSET  
1/3 • I  
LIM(OUT)  
10μA MAX  
BG1 17  
B
D
2μA  
L1  
CCM  
6
CCM = HIGH = 6k/R  
ILSET  
I
LIM(OUT)  
30μA MAX  
CCM = LOW = 15mV  
V
OUT  
I
SVOUT  
+
+
V
10  
12  
OUT  
SWITCH D  
OFF  
ERROR AMP  
1.225V  
+
R1  
C
OUT  
REVERSE  
CURRENT LIMIT  
TG2  
FB  
3
2
C
P1  
V
C
SW2  
13  
14  
15  
R2  
I
SSW2  
SAMPLED  
I
LSET  
I
I
COMP  
COMP  
I
LIM  
LIMIT  
SET  
5
MAX  
BG2  
C
R
ILSET  
37851 F03  
Figure 3. Block Diagram of Current Limit Fault Circuitry  
37851f  
11  
LTC3785-1  
APPLICATIONS INFORMATION  
INDUCTOR SELECTION  
This formula has a maximum at V = 2V , where I  
OUT(MAX)  
=
IN  
OUT  
RMS  
I
/2.Thissimpleworst-caseconditioniscommonly  
The high frequency operation of the LTC3785-1 allows  
the use of small surface mount inductors. The inductor  
current ripple is typically set 20% to 40% of the maximum  
inductor current. For a given ripple the inductance terms  
are given as follows:  
usedfordesignbecauseevensignificantdeviationsdonot  
offer much relief. Note that ripple current ratings from ca-  
pacitormanufacturersareoftenbasedononly2000hours  
of life which makes it advisable to derate the capacitor.  
In boost mode, the discontinuous current shifts from the  
2 • VOUT – V  
100  
input to the output, so C  
must be capable of reducing  
V
OUT  
(
)
IN(MIN)  
IN(MIN)  
L >  
, (Boost Mode)  
the output voltage ripple. The effects of ESR (equivalent  
series resistance) and the bulk capacitance must be  
considered when choosing the right capacitor for a given  
output ripple voltage. The steady ripple due to charging  
and discharging the bulk capacitance is given by:  
2
f IOUT(MAX) • %Ripple • VOUT  
VOUT • VIN(MAX)– VOUT 100  
(
)
L >  
, (Buck Mode)  
f IOUT(MAX) • %Ripple • V  
IN(MAX)  
where:  
f = Operating frequency, Hz  
%Ripple = Allowable inductor current ripple, %  
= Minimum input voltage (limit to V /2  
IOUT(MAX) • VOUT – V  
(
)
IN(MIN)  
VRIPPLE_BOOST  
=
COUT • VOUT • f  
VOUT • VIN(MAX) – VOUT  
(
)
V
IN(MIN)  
OUT  
VRIPPLE_BUCK  
=
8 L •COUT • VIN(MAX) • f2  
minimum for worst case), V  
V
V
= Maximum input voltage, V  
IN(MAX)  
where C = output filter capacitor, F  
OUT  
= Output voltage, V  
OUT  
The steady ripple due to the voltage drop across the ESR  
is given by:  
I
= Maximum output load current, A  
OUT(MAX)  
Forhighefficiencychooseaninductorwithahighfrequency  
core material, such as ferrite, to reduce core loses. The  
inductorshouldhavelowESR(equivalentseriesresistance)  
ΔV  
= I  
• ESR  
BOOST,ESR  
L(MAX,BOOST)  
V
IN(MAX) – VOUT • V  
(
)
ΔVBUCK,ESR  
=
OUT •ESR  
2
to reduce the I R losses, and must be able to handle the  
L • f • VIN  
peak inductor current without saturating. Molded chokes  
or chip inductors usually do not have enough core to sup-  
port the peak inductor currents in the 3A to 6A region. To  
minimize radiated noise, use a toroid, pot core or shielded  
bobbin inductor.  
Multiple capacitors placed in parallel may be needed to  
meet the ESR and RMS current handling requirements.  
Dry tantalum, special polymer, aluminum electrolytic and  
ceramic capacitors are all available in surface mount  
packages. Ceramic capacitors have excellent low ESR  
characteristics but can have a high voltage coefficient.  
Capacitors are now available with low ESR and high ripple  
current ratings such as OS-CON and POSCAP.  
C AND C  
IN  
SELECTION  
OUT  
In boost mode, input current is continuous. In buck mode,  
inputcurrentisdiscontinuous.Inbuckmode,theselection  
of input capacitor, C , is driven by the need to filter the  
IN  
input square wave current. Use a low ESR capacitor, sized  
to handle the maximum RMS current. For buck operation,  
the maximum RMS capacitor current is given by:  
POWER N-CHANNEL MOSFET SELECTION AND  
EFFICIENCY CONSIDERATIONS  
The LTC3785-1 requires four external N-channel power  
MOSFETs, two for the top switches (switches A and D,  
shown in Figure 1) and two for the bottom switches  
VOUT  
VOUT  
IRMS ~IOUT(MAX)  
• 1–  
V
V
IN  
IN  
37851f  
12  
LTC3785-1  
APPLICATIONS INFORMATION  
(switches B and C shown in Figure 1). Important param-  
eters for the power MOSFETs are the breakdown voltage  
Switch C operates in boost mode as the control switch. Its  
power dissipation at maximum current is given by:  
V
,thresholdvoltageV  
,on-resistanceR  
RSS  
,
BR(DSS)  
GS(TH)  
DS(ON)  
V
OUT – V • V  
(
)
IN  
OUT  
PC(BOOST) =  
IOUT(MAX)2 ρT  
reverse transfer capacitance C  
and maximum current  
2
V
I
. The drive voltage is set by the 4.35V V supply.  
IN  
DS(MAX)  
CC  
Consequently,logic-levelthresholdMOSFETsmustbeused  
in LTC3785-1 applications. If the input voltage is expected  
todropbelow5V,thensub-logicthresholdMOSFETsshould  
be considered. In order to select the power MOSFETs, the  
power dissipated by the device must be known.  
I
• RDS(ON) + k • VOUT  
OUT(MAX) • CRSS • f  
3
V
IN  
whereC isusuallyspecifiedbytheMOSFETmanufactur-  
RSS  
ers. The constant k, which accounts for the loss caused by  
reverse recovery current, is inversely proportional to the  
gate drive current and has an empirical value of 1.0.  
For switch A, the maximum power dissipation happens  
in boost mode, when it remains on all the time. Its maxi-  
mum power dissipation at maximum output current is  
given by:  
For switch D, the maximum power dissipation happens in  
boost mode when its duty cycle is higher than 50%. Its  
maximum power dissipation at maximum output current  
is given by:  
2
VOUT  
PA(BOOST) =  
IOUT(MAX) ρT RDS(ON)  
V
IN  
VOUT  
V
IN  
PD BOOST =  
IOUT(MAX)2 ρT RDS(ON)  
(
)
where ρT is a normalization factor (unity at 25°C) ac-  
counting for the significant variation in on-resistance with  
temperature,typicallyabout0.4%/°CasshowninFigure 4.  
For a maximum junction temperature of 125°C, using a  
value ρT = 1.5 is reasonable.  
Typically, switch A has the highest power dissipation and  
switch B has the lowest power dissipation unless a short  
occurs at the output. From a known power dissipated  
in the power MOSFET, its junction temperature can be  
obtained using the following formula:  
Switch B operates in buck mode as the synchronous  
rectifier. Its power dissipation at maximum output current  
is given by:  
T = T + P • R  
J
A
TH(JA)  
The R  
to be used in the equation normally includes  
TH(JA)  
V – VOUT  
IN  
PB(BUCK) =  
IOUT(MAX)2 ρT RDS(ON)  
the R  
for the device plus the thermal resistance from  
TH(JC)  
V
IN  
the case to the ambient temperature (R  
). This value  
TH(CA)  
of T can then be compared to the original, assumed value  
J
2.0  
1.5  
1.0  
0.5  
0
used in the iterative calculation process.  
SCHOTTKY DIODE (D1, D2) SELECTION  
Optional Schottky diodes D1 and D2 shown in the Block  
Diagramconductduringthedeadtimebetweentheconduc-  
tion of the power MOSFET switches. They are intended to  
prevent the body diode of synchronous switches B and D  
from turning on and storing charge during the dead time.  
In particular, D2 significantly reduces reverse recovery  
current between switch D turn off and switch C turn on,  
which improves converter efficiency and reduces switch  
C voltage stress. In order for D2 to be effective, it must  
50  
100  
–50  
150  
0
JUNCTION TEMPERATURE (°C)  
37851 F04  
Figure 4. Normalized RDS(ON) vs Temperature  
be located in very close proximity to SWD.  
37851f  
13  
LTC3785-1  
APPLICATIONS INFORMATION  
CLOSING THE FEEDBACK LOOP  
The unity gain frequency of the error amplifier with the  
type 1 compensation is given by:  
The LTC3785-1 incorporates voltage mode control. The  
control to output gain is given by:  
1
fUG =  
2 • π R1CP1  
GBuck = 1.6 • V , Buck Mode  
IN  
2
Mostapplicationsdemandanimprovedtransientresponse  
toallowasmalleroutputltercapacitor.Toachieveahigher  
bandwidth, type III compensation is required as shown  
in Figure 6. Two zeros are required to compensate for the  
double pole response.  
1.6 • VOUT  
GBOOST  
=
, Boost Mode  
V
IN  
The output filter exhibits a double-pole response and is  
given by:  
1
1
fPOLE1  
fZERO1  
fZERO2  
fPOLE2  
=
=
(a very low frequency)  
fFILTER_POLE  
=
2 • π • 32e3 CP1R1  
2 • π • L COUT  
1
where C  
is the output filter capacitor.  
OUT  
2 • π RZ CP1  
The output filter zero is given by:  
1
1
fFILTER_ZERO  
=
2 • π R1CZ1  
2 • π RESR COUT  
1
whereR isthecapacitorequivalentseriesresistance.  
ESR  
2 • π RZ CP2  
Atroublesomefeatureinboostmodeistherighthalfplane  
zero (RHP), and is given by:  
V
OUT  
1.225V  
+
2
R1  
C
Z1  
V
ERROR  
AMP  
IN  
fRHPZ  
=
FB  
2 • π IOUT L • VOUT  
C
P1  
R2  
V
C
R
Z
The loop gain is typically rolled off before the RHP zero  
frequency.  
C
P2  
37851 F06  
A simple type I compensation network (Figure 5) can be  
incorporated to stabilize the loop but at a cost of reduced  
bandwidthandslowertransientresponse.Toensureproper  
phase margin, the loop must cross over almost a decade  
before the L-C double pole.  
Figure 6. Error Amplifier with Type III Compensation  
EFFICIENCY CONSIDERATIONS  
The percentage efficiency of a switching regulator is  
equal to the output power divided by the input power  
times 100%.  
V
OUT  
1.225V  
FB  
+
ERROR  
AMP  
R1  
It is often useful to analyze individual losses to determine  
what is limiting the efficiency and which change would  
produce the most improvement. Although all dissipative  
elements in circuits produce losses, four main sources  
account for most of the losses in LTC3785-1 application  
circuits:  
C
P1  
R2  
V
C
37851 F05  
Figure 5. Error Amplifier with Type I Compensation  
37851f  
14  
LTC3785-1  
APPLICATIONS INFORMATION  
1. DC I R losses. These arise from the resistances of the  
2
Determine the Inductor Value  
MOSFETs, sensing resistor (if used), inductor and PC  
board traces and cause the efficiency to drop at high  
output currents.  
SettingtheInductorRippleto40%andusingtheequations  
in the Inductor Selection section gives:  
2
2.7 • 3.3 – 2.7 • 100  
(
)
(
)
2. Transition loss. This loss arises from the brief voltage  
transition time of switch A or switch C. It depends upon  
theswitchvoltage,inductorcurrent,driverstrengthand  
MOSFET capacitance, among other factors.  
L >  
= 0.67μH  
2
500 • 103 • 3 • 40 • 3.3  
(
)
3.3 • 10 – 3.3 • 100  
500 • 103 • 3 • 40 • 10  
(
)
L >  
= 3.7μH  
2
Transition Loss ~ V  
• I • C  
L
• f  
RSS  
SW  
where C  
is the reverse transfer capacitance.  
Sotheworst-caserippleforthisapplicationisduringbuck  
mode so a standard inductor value of 3.3μH is chosen.  
RSS  
3. C and C  
loss. The input capacitor has the difficult  
IN  
OUT  
joboflteringthelargeRMSinputcurrenttotheregula-  
tor in buck mode. The output capacitor has the more  
difficult job of filtering the large RMS output current in  
Determine the Proper Inductor Type Selection  
The highest inductor current is during boost mode and  
is given by:  
boost mode. Both C and C  
are required to have  
IN  
OUT  
2
low ESR to minimize the AC I R loss and sufficient  
capacitance to prevent the RMS current from causing  
additional upstream losses in fuses or batteries.  
VOUT IOUT  
IL(MAX_ AV)  
=
V • η  
IN  
where η = estimated efficiency in this mode (use 80%).  
4. Other losses. Optional Schottky diodes D1 and D2 are  
responsible for conduction losses during dead time  
and light load conduction periods. Core loss is the  
predominant inductor loss at light loads. Turning on  
switch C causes reverse recovery current loss in boost  
mode.Whenmakingadjustmentstoimproveefficiency,  
the input current is the best indicator of changes in  
efficiency. If you make a change and the input current  
decreases, then the efficiency has increased. If there  
is no change in input current, then there is no change  
in efficiency.  
3.3 • 3  
2.7 • 0.8  
IL(MAX_ AV)  
=
= 4.6A  
To limit the maximum efficiency loss of the inductor ESR  
to below 5% the equation is:  
VOUT IOUT • %Loss  
IL(MAX_ AV)2 100  
ESRL(MAX)  
~
= 24mΩ  
A suitable inductor for this application could be a Coiltron-  
ics CD1-3R8 which has a rating DC current of 6A and ESR  
of 13mΩ.  
5. V regulator loss. In applications where the input  
CC  
voltage is above 5V, such as two Li-Ion cells, the V  
CC  
regulator will dissipate some power due the differential  
voltage and the average output current to the drive the  
Choose a Proper MOSFET Switch  
gates of the output switches. The V pin can be driven  
Using the same guidelines for ESR of the inductor, one  
suitable MOSFET could be the Siliconix Si7940DP which  
is a dual MOSFET in a surface mount package with 25mΩ  
at 2.5V and a total gate charge of 12nC.  
CC  
directly from a high efficiency external 5V source if  
desired to incrementally improve overall efficiency at  
lighter loads.  
Checking the power dissipation of each switch will ensure  
reliable operation since the thermal resistance of the  
package is 60°C/W.  
DESIGN EXAMPLE  
As a design example, assume V = 2.7V to 10V (3.6V  
IN  
nominal Li-Ion with 9V adapter), V  
= 3.3V (5%),  
OUT  
I
= 3A and f = 500kHz.  
OUT(MAX)  
37851f  
15  
LTC3785-1  
APPLICATIONS INFORMATION  
The maximum power dissipation of switch A and C oc-  
curs in boost mode. Assuming a junction temperature  
Themaximumcurrentisset25%aboveI  
toaccount  
L(PEAK)  
for worst-case variation at 100°C = 6A.  
of T = 100°C with ρ  
IN  
Considerations section:  
= 1.3, the power dissipation at  
J
100C  
6000  
V
= 2.7, and using the equations from the Efficiency  
RILSET  
=
= 42k  
0.025 • 6  
Choose the Input and Output Capacitance  
2
3.3  
2.7  
PA(BOOST) =  
PC(BOOST) =  
• 3 • 1.3 • 0.025 = 0.43W  
The input capacitance should filter current ripple which is  
worst case in buck mode. Since the input current could  
reach 6A, a capacitor ESR of 10mΩ or less will yield an  
input ripple of 60mV.  
3.3 – 2.7 • 3.3  
(
)
• 32 • 1.3 • 0.025  
2.72  
3
The output capacitance should filter current ripple which  
is worst in boost mode, but is usually dictated by the loop  
response, the maximum load transient and the allowable  
transient response.  
+ 1• 3.33 •  
• 0.45 – 9 • 500 • 103  
2.7  
= 0.09W  
The maximum power dissipation of switch B and D occurs  
in buck mode and is given by:  
PC BOARD LAYOUT CHECKLIST  
10 – 3.3  
The basic PC board layout requires a dedicated ground  
plane layer. Also, for high current, a multilayer board  
provides heat sinking for power components.  
PB(BUCK) =  
• 32 1.3 • 0.025 = 0.20W  
10  
3.3  
10  
PD(BOOST) =  
• 32 1.3 • 0.025 = 0.10W  
• The ground plane layer should not have any traces and  
it should be as close as possible to the layer with power  
MOSFETs.  
Now to double check the T of the package with 50°C  
J
ambient. Since this is a dual NMOS package we can add  
switches A + B and C + D worst case. For applications  
wheretheMOSFETsareinseparatepackageseachdevice’s  
• Place C , switch A, switch B and D1 in one compact  
IN  
area. Place C , switch C, switch D and D2 in one  
OUT  
compact area.  
maximum T would have to be calculated.  
J
• Useimmediateviastoconnectthecomponents(includ-  
ingtheLTC3785-1’sGND/PGNDpin)tothegroundplane.  
Use several large vias for each power component.  
T
= T + θ (PA + PB)  
A JA  
J(PKG1)  
= 50 + 60 • (0.43 + 0.20) = 88°C  
= T + θ (PC + PD)  
T
J(PKG2)  
A
JA  
• Use planes for V and V  
to maintain good voltage  
OUT  
IN  
filtering and to keep power losses low.  
= 50 + 60 • (0.09 + 0.10) = 60°C  
• Floodallunusedareasonalllayerswithcopper.Flooding  
with copper will reduce the temperature rise of power  
components. Connect the copper areas to any DC net  
Set The Maximum Current Limit  
The equation for setting the maximum current limit of the  
IC is given by:  
(V or GND). When laying out the printed circuit board,  
IN  
the following checklist should be used to ensure proper  
operation of the LTC3785-1.  
6000  
RDS(ON)A ILIMIT  
RILSET  
=
Ω
37851f  
16  
LTC3785-1  
APPLICATIONS INFORMATION  
• Segregatethesignalandpowergrounds.Allsmall-signal  
components should return to the GND pin at one point.  
The sources of switch B and switch C should also con-  
nect to one point at the GND of the IC.  
• Connect the top driver boost capacitor C closely to  
A
the V  
and SW1 pins. Connect the top driver boost  
BST1  
capacitor C closely to the V  
and SW2 pins.  
B
BST2  
• Connect the input capacitors C and output capaci-  
IN  
• Place switch B and switch C as close to the controller  
as possible, keeping the PGND, BG and SW traces  
short.  
tors C  
close to the power MOSFETs. These capaci-  
OUT  
tors carry the MOSFET AC current in boost and buck  
mode.  
• Keep the high dV/dT SW1, SW2, V  
, V  
, TG1 and  
• Connect FB and V  
pin resistive dividers to the (+)  
SENSE  
BST1 BST2  
TG2 nodes away from sensitive small-signal nodes.  
terminals of C  
and signal ground. If a small V  
OUT SENSE  
decoupling capacitor is used, it should be as close as  
possible to the LTC3785-1 GND pin.  
• The path formed by switch A, switch B, D1 and the C  
IN  
capacitor should have shortleads andPCtracelengths.  
The path formed by switch C, switch D, D2 and the  
• Route I  
and I  
leads together with minimum PC  
SVIN  
SSW1  
C
capacitor also should have short leads and PC  
tracespacing.EnsureaccuratecurrentsensingwithKel-  
vin connections across MOSFET A or sense resistor.  
OUT  
trace lengths.  
Theoutputcapacitor()terminalsshouldbeconnected  
as close as possible to the (–) terminals of the input  
capacitor.  
• Route I  
and I  
leads together with minimum  
SSW2  
SVOUT  
PC trace spacing. Ensure accurate current sensing  
with Kelvin connections across MOSFET D or sense  
resistor.  
• Connect the V decoupling capacitor C  
closely to  
CC  
VCC  
the V and PGND pins.  
• Connect the feedback network close to IC, between the  
CC  
V and FB pins.  
C
37851f  
17  
LTC3785-1  
TYPICAL APPLICATION  
V
9V REGULATED  
WALL ADAPTER  
IN  
2.7V TO 10V  
+
C
VCC  
Li-Ion  
2.7V TO 4.2V  
4.7μF  
1nF  
V
IN  
RUN/SS  
V
CC  
I
205k  
SVIN  
124k  
C
IN  
MA = MB = MC = MD = 1/2 Si7940DY  
L1 = WÜRTH ELECTRONICS 744311470  
D1 = D2 = PMEG2020EJ  
V
TG1  
MA  
SENSE  
22μF  
CMDSH-3  
V
C
A
BST1  
270pF  
1.3k  
0.22μF  
SW1  
R1  
205k  
OPTIONAL  
D1  
I
SSW1  
V
DRV  
BG1  
FB  
MB  
MD  
L1  
4.7μH  
R2  
124k  
1nF  
LTC3785-1  
12k  
V
C
V
3.3V  
3A  
OUT  
RT  
I
SVOUT  
TG2  
R
T
OPTIONAL  
D2  
59k  
100k  
V
PGOOD  
MODE  
OUT  
CMDSH-3  
V
BST2  
C
B
R
ILSET  
0.22μF  
SW2  
42.2k  
I
I
C
LSET  
SSW2  
OUT  
100μF  
CCM  
BG2  
MC  
GND  
37851 TA02  
37851f  
18  
LTC3785-1  
PACKAGE DESCRIPTION  
UF Package  
24-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1697)  
0.70 p 0.05  
4.50 p 0.05  
3.10 p 0.05  
2.45 p 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 p 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH  
R = 0.20 TYP OR  
0.35 s 45° CHAMFER  
R = 0.115  
TYP  
0.75 p 0.05  
4.00 p 0.10  
(4 SIDES)  
23 24  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 p 0.10  
1
2
2.45 p 0.10  
(4-SIDES)  
(UF24) QFN 0105  
0.25 p 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGD-X)—TO BE APPROVED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
37851f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC3785-1  
TYPICAL APPLICATION  
Li-Ion/9V Wall Adapter to 5V/2A  
V
9V REGULATED  
WALL ADAPTER  
IN  
2.7V TO 10V  
+
C
VCC  
Li-Ion  
2.7V TO 4.2V  
4.7μF  
1nF  
V
IN  
RUN/SS  
V
CC  
I
205k  
SVIN  
66.5k  
C
IN  
MA = MB = MC = MD = 1/2 Si7940DY  
L1 = RLF7030T-3R3M4R1  
V
TG1  
MA  
SENSE  
22μF  
CMDSH-3  
D1 = D2 = PMEG2020EJ  
V
C
A
BST1  
270pF  
1.3k  
0.22μF  
SW1  
OPTIONAL  
D1  
205k  
I
SSW1  
V
DRV  
BG1  
FB  
MB  
MD  
L1  
3.3μH  
1nF  
LTC3785-1  
I
66.5k  
12k  
59k  
V
C
V
5V  
2A  
OUT  
RT  
SVOUT  
TG2  
OPTIONAL  
D2  
100k  
V
OUT  
PGOOD  
MODE  
CMDSH-3  
V
BST2  
C
B
0.22μF  
SW2  
42.2k  
I
I
LSET  
SSW2  
C
OUT  
100μF  
CCM  
BG2  
MC  
GND  
37851 TA03  
RELATED PARTS  
PART  
DESCRIPTION  
COMMENTS  
NUMBER  
LTC3443  
LTC3444  
1.2A I , 600kHz, Synchronous Buck-Boost DC/DC Converter  
V : 2.4V to 5.5V, V : 2.4V to 5.25V, I = 28μA, I < 1μA,  
OUT  
IN  
OUT  
Q
SD  
MS Package  
500mA I , 1.5MHz Synchronous Buck-Boost DC/DC Converter V : 2.7V to 5.5V, V : 0.5V to 5.25V, Optimized for WCDMA RF  
OUT  
IN  
OUT  
Amplifier Bias  
LTC3531  
LTC3531-3  
LTC3531-3.3  
200mA I , Synchronous Buck-Boost DC/DC Converter  
V : 1.8V to 5.5V, V : 2V to 5V, I = 35μA, I < 1μA,  
OUT  
IN  
OUT  
Q
SD  
MS, DFN Packages  
LTC3532  
LTC3533  
LTC3780  
LTC3785  
LTM4605  
LTM4607  
500mA I , 2MHz, Synchronous Buck-Boost DC/DC Converter  
V : 2.4V to 5.5V, V : 2.4V to 5.25V, I = 35μA, I < 1μA,  
OUT  
IN  
OUT  
Q
SD  
MS, DFN Packages  
2A Wide Input Voltage Synchronous Buck-Boost DC/DC Converter V : 1.8V to 5.5V, V : 1.8V to 5.25V, I = 40μA, I < 1μA,  
IN  
OUT  
Q
SD  
DFN Package  
High Efficiency, Synchronous, 4-Switch Buck-Boost Controller  
V : 4V to 36V, V : 0.8V to 30V, I = 1.5mA, I < 55μA,  
IN OUT Q SD  
SSOP-24, QFN-32 Packages  
10V, High Efficiency, Synchronous, No R , Buck-Boost  
SENSE  
Controller  
V : 2.7V to 10V, V : 2.7V to 10V, I = 86mA, I < 15μA,  
IN  
OUT  
Q
SD  
QFN-24 Package  
5A to 12A Buck-Boost μModule  
4.5V ≤ V ≤ 20V, 0.8V ≤ V  
≤ 16V, 15mm × 15mm × 2.8mm  
≤ 24V, 15mm × 15mm × 2.8mm  
IN  
OUT  
LGA Package  
5A to 12A Buck-Boost μModule  
4.5V ≤ V ≤ 36V, 0.8V ≤ V  
IN  
OUT  
LGA Package  
37851f  
LT 0908 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3785EUF-PBF

10V, High Effi ciency, Synchronous, No RSENSE Buck-Boost Controller
Linear

LTC3785EUF-TR

10V, High Effi ciency, Synchronous, No RSENSE Buck-Boost Controller
Linear

LTC3785EUF-TRPBF

10V, High Effi ciency, Synchronous, No RSENSE Buck-Boost Controller
Linear

LTC3785IUF

IC 3 A SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PQCC24, 4 X 4 MM, PLASTIC, MO-220WGGD, QFN-24, Switching Regulator or Controller
Linear

LTC3785IUF#PBF

LTC3785 - 10V, High Efficiency, Synchronous, No RSENSE Buck-Boost Controller; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3785IUF#TR

IC 3 A SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PQCC24, 4 X 4 MM, PLASTIC, MO-220WGGD, QFN-24, Switching Regulator or Controller
Linear

LTC3785IUF#TRPBF

LTC3785 - 10V, High Efficiency, Synchronous, No RSENSE Buck-Boost Controller; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3786

Multi-Phase Current Mode Step-Up DC/DC Controller
Linear System

LTC3786EMSE#PBF

LTC3786 - Low IQ Synchronous Boost Controller; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3786EMSE-PBF

Low IQ Synchronous Boost Controller
Linear

LTC3786EMSEPBF

Low IQ Synchronous Boost Controller
Linear

LTC3786EUD-PBF

Low IQ Synchronous Boost Controller
Linear