LTC3803ES6-3#TRPBF [Linear]

LTC3803-3 - Constant Frequency Current Mode Flyback DC/DC Controller in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C;
LTC3803ES6-3#TRPBF
型号: LTC3803ES6-3#TRPBF
厂家: Linear    Linear
描述:

LTC3803-3 - Constant Frequency Current Mode Flyback DC/DC Controller in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总16页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3803-3  
Constant Frequency  
Current Mode Flyback  
DC/DC Controller in ThinSOT  
FEATURES  
DESCRIPTION  
The LTC®3803-3 is a constant frequency current mode  
flybackcontrolleroptimizedfordrivingN-channelMOSFETs  
in high input voltage applications. Constant frequency  
operation is maintained down to very light loads, resulting  
in less low frequency noise generation over a wide range  
ofloadcurrents.Slopecompensationcanbeprogrammed  
with an external resistor.  
n
V and V  
Limited Only by External Components  
IN  
OUT  
n
n
n
n
n
n
Adjustable Slope Compensation  
Internal Soft-Start  
–55°C to 150°C Operating Temperature Range  
Constant Frequency 300kHz Operation  
±±.ꢀ5 Reference Accuracy  
Current Mode Operation for Excellent Line and Load  
Transient Response  
No Minimum Load Requirement  
Low Quiescent Current: 240μA  
Low Profile (±mm) SOT-23 Package  
The LTC3803-3 provides ±±.ꢀ5 output voltage accuracy  
and consumes only 240μA of quiescent current. Ground-  
referenced current sensing allows LTC3803-3-based con-  
verters to accept input supplies beyond the LTC3803-3’s  
n
n
n
absolute maximum V . A micropower hysteretic start-up  
CC  
APPLICATIONS  
featureallowsefficientoperationathighinputvoltages.For  
simplicity, theLTC3803-3canalsobepoweredfromahigh  
n
Telecom Power Supplies  
V througharesistor,duetoitsinternalshuntregulator.An  
IN  
n
42V and ±2V Automotive Power Supplies  
internal undervoltage lockout shuts down the LTC3803-3  
when the input voltage is too low to provide sufficient gate  
drive to the external MOSFET.  
n
Auxiliary/Housekeeping Power Supplies  
Power over Ethernet Powered Devices  
n
L, LT, LTC, LTM, Burst Mode, Linear Technology and the Linear logo are registered trademarks  
and ThinSOT and No R  
are trademarks of Linear Technology Corporation. All other  
SENSE  
The LTC3803-3 is available in a low profile (±mm) 6-lead  
trademarks are the property of their respective owners.  
SOT-23 (ThinSOT ) package.  
TYPICAL APPLICATION  
5V Output Nonisolated Telecom Housekeeping Power Supply  
Efficiency vs Load Current  
±00  
9ꢀ  
90  
8ꢀ  
80  
7ꢀ  
70  
6ꢀ  
60  
ꢀꢀ  
ꢀ0  
V
IN  
V
= ꢀV  
OUT  
36V TO 72V  
UPS840  
V
OUT  
ꢀV  
T±  
2A MAX  
±μF  
±00V  
XꢀR  
300μF*  
6.3V  
±0k  
XꢀR  
±μF  
±0V  
XꢀR  
V
CC  
I
/RUN NGATE  
LTC3803-3  
FDC2ꢀ±2  
68mΩ  
TH  
82k  
470pF  
±ꢀ0pF  
200V  
4.7k  
V
V
V
V
= 36V  
= 48V  
= 60V  
= 72V  
IN  
IN  
IN  
IN  
GND  
SENSE  
V
FB  
220Ω  
20k  
±0ꢀk  
2ꢀ0  
7ꢀ0 ±000 ±2ꢀ0 ±ꢀ00 ±7ꢀ0 2000  
LOAD CURRENT (mA)  
ꢀ00  
38033 TA0±  
T±: COOPER CTX02-±ꢀ242  
*THREE ±00μF UNITS IN PARALLEL  
38033 TA02  
38033fd  
1
LTC3803-3  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
V
to GND  
CC  
Low Impedance Source .......................... –0.3V to 8V  
I
/RUN ±  
GND 2  
6 NGATE  
ꢀ V  
TH  
Current Fed....................................... 2ꢀmA into V *  
CC  
CC  
V
FB  
3
4 SENSE  
NGATE Voltage.......................................... –0.3V to VCC  
V , I /RUN Voltages............................... –0.3V to 3.ꢀV  
FB TH  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
SENSE Voltage............................................ –0.3V to ±V  
NGATE Peak Output Current (<±0μs) ......................... ±A  
Operating Junction Temperature Range (Notes 2, 3)  
LTC3803E-3, LTC3803I-3 ................... –40°C to ±2ꢀ°C  
LTC3803H-3....................................... –40°C to ±ꢀ0°C  
LTC3803MP-3.................................... –ꢀꢀ°C to ±ꢀ0°C  
Storage Temperature Range................... –6ꢀ°C to ±ꢀ0°C  
Lead Temperature (Soldering, ±0 sec) .................. 300°C  
T
JMAX  
= ±ꢀ0°C, θ = ±92°C/W  
JA  
*LTC3803-3 internal clamp circuit self regulates V voltage to 9.ꢀV.  
CC  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3803ES6-3#PBF  
LTC3803IS6-3#PBF  
LTC3803HS6-3#PBF  
LTC3803MPS6-3#PBF  
LEAD BASED FINISH  
LTC3803MPS6-3  
TAPE AND REEL  
PART MARKING*  
LTCJS  
PACKAGE DESCRIPTION  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
6-Lead Plastic TSOT-23  
PACKAGE DESCRIPTION  
6-Lead Plastic TSOT-23  
TEMPERATURE RANGE  
LTC3803ES6-3#TRPBF  
LTC3803IS6-3#TRPBF  
LTC3803HS6-3#TRPBF  
–40°C to ±2ꢀ°C  
–40°C to ±2ꢀ°C  
–40°C to ±ꢀ0°C  
–ꢀꢀ°C to ±ꢀ0°C  
TEMPERATURE RANGE  
–ꢀꢀ°C to ±ꢀ0°C  
LTCJT  
LTCJT  
LTC3803MPS6-3#TRPBF LTCJT  
TAPE AND REEL  
PART MARKING  
LTCJT  
LTC3803MPS6-3#TR  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VCC = 8V, unless otherwise noted. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
V
V
V
Turn On Voltage  
Turn Off Voltage  
LTC3803E-3, LTC3803I-3  
LTC3803H-3  
7.6  
7.ꢀ  
7.ꢀ  
8.7  
8.7  
8.7  
9.2  
9.2ꢀ  
9.4  
V
V
V
TURNON  
CC  
CC  
LTC3803MP-3  
l
l
l
l
V
LTC3803E-3  
LTC3803I-3  
LTC3803H-3  
LTC3803MP-3  
4.6  
4.4  
4
ꢀ.7  
ꢀ.7  
ꢀ.7  
ꢀ.7  
7
7
7
V
V
V
V
TURNOFF  
4
7.2  
l
V
V
V
V
Hysteresis (V  
– V )  
TURN0FF  
±
3
V
HYST  
CC  
CC  
TURNON  
Shunt Regulator Voltage  
I
CC  
= ±mA, V  
= 0V  
CLAMP±mA  
ITH/RUN  
LTC3803E-3, LTC3803I-3  
LTC3803H-3  
l
l
l
8.3  
8.3  
8
9.4  
9.4  
9.4  
±0.3  
±0.ꢀ  
±0.ꢀ  
V
V
V
LTC3803MP-3  
38033fd  
2
LTC3803-3  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VCC = 8V, unless otherwise noted. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Shunt Regulator Voltage  
I
CC  
= 2ꢀmA, V  
= 0V  
ITH/RUN  
CLAMP2ꢀmA  
CC  
l
l
l
LTC3803E-3, LTC3803I-3  
LTC3803H-3  
8.4  
8.4  
8.±  
9.ꢀ  
9.ꢀ  
9.ꢀ  
±0.ꢀ  
±0.7  
±0.7  
V
V
V
LTC3803MP-3  
V
V
– V  
Margin  
LTC3803E-3, LTC3803I-3,  
LTC3803H-3  
LTC3803MP-3  
MARGIN  
CLAMP±mA  
TURNON  
l
l
0.0ꢀ  
0.03  
0.6  
0.6  
V
V
I
CC  
Input DC Supply Current  
Normal Operation  
Start-Up  
(Note 4)  
V
V
= ±.3V  
TURNON  
240  
40  
3ꢀ0  
90  
μA  
μA  
ITH/RUN  
= V  
– ±00mV  
CC  
V
Shutdown Threshold (at I /RUN)  
V
> V  
, V  
Falling  
ITHSHDN  
TH  
CC  
TURNON ITH/RUN  
l
l
l
LTC3803E-3  
0.±ꢀ  
0.±0  
0.09  
0.28  
0.28  
0.28  
0.4ꢀ  
0.4ꢀ  
0.4ꢀ  
V
V
V
LTC3803I-3, LTC3803H-3  
LTC3803MP-3  
I
Start-Up Current Source  
V
= 0V  
0.2  
0.3  
0.4  
μA  
ITHSTART  
ITH/RUN  
V
FB  
Regulated Feedback Voltage  
(Note ꢀ)  
0°C ≤ T ≤ 8ꢀ°C  
0.788  
0.780  
0.780  
0.780  
0.780  
0.800  
0.800  
0.800  
0.800  
0.800  
0.8±2  
0.8±2  
0.820  
0.820  
0.820  
V
V
V
V
V
J
l
l
l
l
LTC3803E-3: –40°C ≤ T ≤ 8ꢀ°C  
J
LTC3803I-3: –40°C ≤ T ≤ ±2ꢀ°C  
J
J
LTC3803H-3: –40°C ≤ T ≤ ±ꢀ0°C  
LTC3803MP-3: –ꢀꢀ°C ≤ T ≤ ±ꢀ0°C  
J
V
Peak Current Sense Voltage  
R
= 0 (Note 6)  
IMAX  
m
SL  
l
l
l
LTC3803E-3  
90  
8ꢀ  
8ꢀ  
±00  
±00  
±00  
±±ꢀ  
±±ꢀ  
±20  
mV  
mV  
mV  
LTC3803I-3, LTC3803H-3  
LTC3803MP-3  
g
Error Amplifier Transconductance  
Output Voltage Line Regulation  
I
Pin Load = ±ꢀμA (Note ꢀ)  
200  
333  
0.0ꢀ  
±0  
ꢀ00  
μA/V  
mV/V  
nA  
TH/RUN  
ΔV  
(Note ꢀ)  
(Note ꢀ)  
O(LINE)  
I
f
V
Input Current  
FB  
ꢀ0  
330  
9.6  
90  
FB  
OSC  
Oscillator Frequency  
V
V
V
C
C
= ±.3V  
270  
70  
300  
8
kHz  
5
ITH/RUN  
ITH/RUN  
ITH/RUN  
DC  
DC  
Minimum Switch On Duty Cycle  
Maximum Switch On Duty Cycle  
Gate Drive Rise Time  
= ±.3V, V = 0.8V  
FB  
ON(MIN)  
ON(MAX)  
= ±.3V, V = 0.8V  
80  
5
FB  
t
t
I
t
= 3000pF  
40  
ns  
RISE  
LOAD  
LOAD  
Gate Drive Fall Time  
= 3000pF (Note 7)  
40  
ns  
FALL  
Peak Slope Compensation Output Current (Note 7)  
Soft-Start Time  
μA  
SLMAX  
SFST  
±.4  
ms  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
conjunction with board layout, the rated package thermal impedance and  
other environmental factors.  
Note 3: Junction temperature T is calculated from the ambient  
J
temperature T and power dissipation P according to the following  
A
D
Note 2: The LTC3803-3 is tested under pulsed load conditions such  
formula:  
that T ≈ T . The LTC3803E-3 is guaranteed to meet specifications  
J
A
T = T + (P • 230°C/W).  
J
A
D
from 0°C to 8ꢀ°C junction temperature. Specifications over the –40°C  
to ±2ꢀ°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3803I-3 is guaranteed over the –40°C to ±2ꢀ°C operating junction  
temperature range, the LTC3803H-3 is guaranteed over the –40°C to  
±ꢀ0°C operating junction temperature range and the LTC3803MP-3 is  
tested and guaranteed over the full –ꢀꢀ°C to ±ꢀ0°C operating junction  
temperature range. High junction temperatures degrade operating  
lifetimes; operating lifetime is derated for junction temperatures greater  
than ±2ꢀ°C. Note that the maximum ambient temperature consistent with  
these specifications is determined by specific operating conditions in  
Note 4: Dynamic supply current is higher due to the gate charge being  
delivered at the switching frequency.  
Note 5: The LTC3803-3 is tested in a feedback loop that servos V to the  
FB  
output of the error amplifier while maintaining I /RUN at the midpoint of  
TH  
the current limit range.  
Note 6: Peak current sense voltage is reduced dependent on duty cycle  
and an optional external resistor in series with the SENSE pin (R ). For  
SL  
details, refer to the programmable slope compensation feature in the  
Applications Information section.  
Note 7: Guaranteed by design.  
38033fd  
3
LTC3803-3  
T = 25°C unless otherwise noted.  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Reference Voltage  
vs Supply Voltage  
Reference Voltage  
vs VCC Shunt Regulator Current  
Reference Voltage vs Temperature  
820  
8±ꢀ  
8±0  
80ꢀ  
800  
79ꢀ  
790  
78ꢀ  
780  
801.0  
800.8  
800.6  
800.4  
800.2  
800.0  
799.8  
799.6  
799.4  
799.2  
799.0  
804  
803  
802  
80±  
V
= 8V  
V
b V  
CC  
CC  
CLAMP1mA  
800  
799  
798  
797  
796  
–30  
0
30  
60  
±20 ±ꢀ0  
–60  
90  
8
9.5  
6
7
7.5  
8.5  
9
±0  
I
20  
6.5  
0
2ꢀ  
±ꢀ  
(mA)  
V
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
CC  
CC  
38033 G0±  
38033 F02  
38033 G03  
Oscillator Frequency  
vs Temperature  
Oscillator Frequency  
vs Supply Voltage  
Oscillator Frequency  
vs VCC Shunt Regulator Current  
330  
320  
3±0  
300  
290  
280  
270  
330  
320  
3±0  
300  
290  
280  
270  
330  
320  
3±0  
300  
290  
280  
270  
V
= 8V  
CC  
–60 –30  
0
30  
60  
90 ±20 ±ꢀ0  
6
7
7.ꢀ  
8
8.ꢀ  
9
0
±0  
±ꢀ  
20  
2ꢀ  
30  
3ꢀ  
6.ꢀ  
TEMPERATURE (°C)  
V
SUPPLY VOLTAGE (V)  
I
CC  
(mA)  
CC  
38033 G04  
38033 G0ꢀ  
38033 G06  
VCC Undervoltage Lockout  
Thresholds vs Temperature  
VCC Shunt Regulator Voltage  
vs Temperature  
ICC Supply Current  
vs Temperature  
3ꢀ0  
32ꢀ  
300  
27ꢀ  
2ꢀ0  
22ꢀ  
200  
±0.0  
9.9  
9.8  
9.7  
9.6  
9.ꢀ  
9.4  
9.3  
9.2  
9.±  
9.0  
9.0  
8.ꢀ  
8.0  
7.ꢀ  
7.0  
6.ꢀ  
6.0  
ꢀ.ꢀ  
ꢀ.0  
4.ꢀ  
4.0  
V = 8V  
CC  
V
ITH/RUN  
= ±.3V  
V
TURNON  
I
= 2ꢀmA  
CC  
I
= ±mA  
V
CC  
TURNOFF  
–30  
0
30  
60  
±20 ±ꢀ0  
–60  
90  
–30  
0
30  
60  
±20 ±ꢀ0  
–60  
90  
–30  
0
30  
60  
±20 ±ꢀ0  
–60  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
38033 G09  
38033 G08  
38033 G07  
38033fd  
4
LTC3803-3  
T = 25°C unless otherwise noted.  
A
TYPICAL PERFORMANCE CHARACTERISTICS  
Start-Up ICC Supply Current  
vs Temperature  
ITH/RUN Shutdown Threshold  
vs Temperature  
ITH/RUN Start-Up Current Source  
vs Temperature  
800  
700  
600  
ꢀ00  
400  
300  
200  
±00  
0
4ꢀ0  
400  
90  
80  
70  
60  
ꢀ0  
40  
30  
20  
±0  
0
V
V
= V  
+ 0.±V  
TURNON  
V
= V  
TURNON  
– 0.±V  
CC  
ITH/RUN  
CC  
= 0V  
3ꢀ0  
300  
2ꢀ0  
200  
±ꢀ0  
±00  
–30  
0
30  
60  
±20 ±ꢀ0  
–60  
90  
–30  
0
30  
60  
±20 ±ꢀ0  
–30  
0
30  
60  
±20 ±ꢀ0  
–60  
90  
–60  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
38033 G±2  
38033 G±0  
38033 G±±  
Peak Current Sense Voltage  
vs Temperature  
Soft-Start Time vs Temperature  
±20  
±±ꢀ  
±±0  
±0ꢀ  
±00  
9ꢀ  
4.0  
3.ꢀ  
3.0  
2.ꢀ  
2.0  
±.ꢀ  
±.0  
0.ꢀ  
0
V
= 8V  
CC  
90  
8ꢀ  
80  
–30  
0
30  
60  
±20 ±ꢀ0  
–60  
90  
–30  
0
30  
60  
±20 ±ꢀ0  
–60  
90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
38033 G±3  
38033 G±4  
38033fd  
5
LTC3803-3  
PIN FUNCTIONS  
SENSE(Pin4):Thispinperformstwofunctions.Itmonitors  
switch current by reading the voltage across an external  
current sense resistor to ground. It also injects a current  
ramp that develops slope compensation voltage across  
an optional external programming resistor.  
I /RUN (Pin 1): This pin performs two functions. It  
TH  
serves as the error amplifier compensation point as well  
as the run/shutdown control input. Nominal voltage range  
is 0.7V to ±.9V. Forcing this pin below the shutdown  
threshold(V  
)causestheLTC3803-3toshutdown.  
ITHSHDN  
In shutdown mode, the NGATE pin is held low.  
V
(Pin 5): Supply Pin. Must be closely decoupled to  
CC  
GND (Pin 2).  
GND (Pin 2): Ground Pin.  
NGATE (Pin 6): Gate Drive for the External N-Channel  
V (Pin3):Receivesthefeedbackvoltagefromanexternal  
FB  
MOSFET. This pin swings from 0V to V .  
resistive divider across the output.  
CC  
BLOCK DIAGRAM  
V
CC  
SHUTDOWN  
COMPARATOR  
0.3μA 0.28V  
+
V
< V  
TURNON  
CC  
UNDERVOLTAGE  
LOCKOUT  
V
CC  
SHUNT  
800mV  
REFERENCE  
REGULATOR  
SHUTDOWN  
SOFT-  
START  
CLAMP  
CURRENT  
COMPARATOR  
V
+
CC  
ERROR  
AMPLIFIER  
GATE  
DRIVER  
+
SWITCHING  
R
S
NGATE  
LOGIC AND  
BLANKING  
CIRCUIT  
Q
6
V
FB  
3
2
SLOPE  
COMP  
CURRENT  
RAMP  
20mV  
GND  
300kHz  
OSCILLATOR  
±.2V  
SENSE  
4
I
/RUN  
TH  
±
38033 BD  
38033fd  
6
LTC3803-3  
OPERATION  
TheLTC3803-3isaconstantfrequencycurrentmodecon-  
troller for flyback and DC/DC boost converter applications  
in a tiny ThinSOT package. The LTC3803-3 is designed so  
that none of its pins need to come in contact with the input  
or output voltages of the power supply circuit of which it  
is a part, allowing the conversion of voltages well beyond  
the LTC3803-3’s absolute maximum ratings.  
voltage regulation loop is closed. For example, whenever  
the load current increases, output voltage will decrease  
slightly, and sensing this, the error amplifier raises the  
I /RUN voltage by sourcing current into the I /RUN pin,  
TH  
TH  
raising the current comparator threshold, thus increasing  
the peak currents through the transformer primary and  
secondary. Thisdeliversmorecurrenttotheload,bringing  
the output voltage back up.  
Main Control Loop  
The I /RUN pin serves as the compensation point for  
TH  
Duetospacelimitations,thebasicsofcurrentmodeDC/DC  
conversion will not be discussed here; instead, the reader  
isreferredtothedetailedtreatmentinApplicationNote ±9,  
or in texts such as Abraham Pressman’s Switching Power  
Supply Design.  
the control loop. Typically, an external series RC network  
is connected from I /RUN to ground and is chosen for  
TH  
optimalresponsetoloadandlinetransients.Theimpedance  
of this RC network converts the output current of the error  
amplifier to the I /RUN voltage which sets the current  
TH  
comparator threshold and commands considerable influ-  
Please refer to the Block Diagram and the Typical Ap-  
plication on the front page of this data sheet. An external  
resistive voltage divider presents a fraction of the output  
ence over the dynamics of the voltage regulation loop.  
Start-Up/Shutdown  
voltage to the V pin. The divider must be designed so  
FB  
that when the output is at the desired voltage, the V pin  
The LTC3803-3 has two shutdown mechanisms to disable  
FB  
voltage will equal the 800mV from the internal reference.  
and enable operation: an undervoltage lockout on the V  
CC  
If the load current increases, the output voltage will de-  
supply pin voltage, and a forced shutdown whenever ex-  
crease slightly, causing the V pin voltage to fall below  
ternal circuitry drives the I /RUN pin low. The LTC3803-3  
FB  
TH  
800mV. The error amplifier responds by feeding current  
transitionsintoandoutofshutdownaccordingtothestate  
into the I /RUN pin. If the load current decreases, the  
diagram (Figure ±).  
TH  
V
voltage will rise above 800mV and the error amplifier  
will sink current away from the I /RUN pin.  
FB  
TH  
ThevoltageattheI /RUNpincommandsthepulse-width  
TH  
LTC3803-3  
SHUT DOWN  
modulator formed by the oscillator, current comparator  
and RS latch. Specifically, the voltage at the I /RUN pin  
TH  
sets the current comparator’s trip threshold. The current  
comparator monitors the voltage across a current sense  
resistor in series with the source terminal of the external  
MOSFET. The LTC3803-3 turns on the external power  
MOSFET when the internal free-running 300kHz oscillator  
sets the RS latch. It turns off the MOSFET when the cur-  
rent comparator resets the latch or when 805 duty cycle  
is reached, whichever happens first. In this way, the peak  
current levels through the flyback transformer’s primary  
V
> V  
ITH/RUN  
ITHSHDN  
TURNON  
V
< V  
V
< V  
CC  
TURNOFF  
ITH/RUN ITHSHDN  
AND V > V  
CC  
(NOMINALLY ꢀ.7V)  
(NOMINALLY 0.28V)  
(NOMINALLY 8.7V)  
LTC3803-3  
ENABLED  
38033 F0±  
and secondary are controlled by the I /RUN voltage.  
TH  
Figure 1. Start-Up/Shutdown State Diagram  
Since the I /RUN voltage is increased by the error ampli-  
TH  
fier whenever the output voltage is below nominal, and  
decreased whenever output voltage exceeds nominal, the  
38033fd  
7
LTC3803-3  
OPERATION  
The undervoltage lockout (UVLO) mechanism prevents  
regulator from the V pin to GND will draw as much  
CC  
the LTC3803-3 from trying to drive a MOSFET with in-  
current as needed through this resistor to regulate the  
sufficient V . The voltage at the V pin must exceed  
V
voltage to around 9.ꢀV as long as the V pin is not  
GS  
CC  
CC CC  
V
(nominally 8.7V) at least momentarily to enable  
LTC3803-3 operation. The V voltage is then allowed  
forced to sink more than 2ꢀmA. This shunt regulator is  
always active, even when the LTC3803-3 is in shutdown,  
TURNON  
CC  
to fall to V  
(nominally ꢀ.7V) before undervoltage  
since it serves the vital function of protecting the V pin  
from seeing too much voltage.  
TURNOFF  
CC  
lockoutdisablestheLTC3803-3.ThiswideUVLOhysteresis  
range supports the use of a bias winding on the flyback  
transformer to power the LTC3803-3—see the section  
Powering the LTC3803-3.  
For higher efficiency or for wide V range applications,  
IN  
flybackcontrollersaretypicallypoweredthroughaseparate  
bias winding on the flyback transformer. The LTC3803-3  
The I /RUN pin can be driven below the shutdown  
has the wide UVLO hysteresis (±V min) and small V  
CC  
TH  
threshold (V  
) to force the LTC3803-3 into shut-  
supply current draw (<90μA when V < V  
) that is  
ITHSHDN  
CC  
TURNON  
down. An internal 0.3μA current source always tries to  
needed to support such bootstrapped hysteretic start-up  
pull this pin towards V . When the I /RUN pin voltage  
schemes.  
CC  
TH  
is allowed to exceed V  
, and V exceeds V  
,
ITHSHDN  
CC  
TURNON  
The V pin must be bypassed to ground immediately  
CC  
the LTC3803-3 begins to operate and an internal clamp  
adjacent to the IC pins with a minimum of a ±μF ceramic  
or tantalum capacitor. Proper supply bypassing is neces-  
sary to supply the high transient currents required by the  
MOSFET gate driver.  
immediately pulls the I /RUN pin up to about 0.7V. In  
TH  
operation, the I /RUN pin voltage will vary from roughly  
TH  
0.7V to ±.9V to represent current comparator thresholds  
from zero to maximum.  
Adjustable Slope Compensation  
Internal Soft-Start  
TheLTC3803-3injectsaμApeakcurrentrampoutthrough  
itsSENSEpinwhichcanbeusedforslopecompensationin  
designs that require it. This current ramp is approximately  
linear and begins at zero current at 85 duty cycle, reach-  
ing peak current at 805 duty cycle. Additional details are  
provided in the Applications Information section.  
An internal soft-start feature is enabled whenever the  
LTC3803-3 comes out of shutdown. Specifically, the I /  
TH  
RUN voltage is clamped and is prevented from reaching  
maximum until roughly ±.4ms has passed. This allows  
the input and output currents of LTC3803-3-based power  
supplies to rise in a smooth and controlled manner on  
start-up.  
Powering the LTC3803-3  
In the simplest case, the LTC3803-3 can be powered from  
a high voltage supply through a resistor. A built-in shunt  
38033fd  
8
LTC3803-3  
APPLICATIONS INFORMATION  
Many LTC3803-3 application circuits can be derived from  
TRANSFORMER DESIGN CONSIDERATIONS  
the topology shown in Figure 2.  
Transformer specification and design is perhaps the most  
critical part of applying the LTC3803-3 successfully. In  
addition to the usual list of caveats dealing with high fre-  
quency power transformer design, the following should  
prove useful.  
The LTC3803-3 itself imposes no limits on allowed power  
output,inputvoltageV ordesiredregulatedoutputvoltage  
IN  
V
OUT  
;thesearealldeterminedbytheratingsontheexternal  
power components. The key factors are: Q±’s maximum  
drain-source voltage (BV ), on-resistance (R  
)
DS(ON)  
DSS  
Turns Ratios  
and maximum drain current, T±’s saturation flux level and  
winding insulation breakdown voltages, C and C ’s  
IN  
OUT  
Due to the use of the external feedback resistor divider  
ratio to set output voltage, the user has relative freedom  
in selecting transformer turns ratio to suit a given appli-  
cation. Simple ratios of small integers, e.g., ±:±, 2:±, 3:2,  
etc. can be employed which yield more freedom in setting  
total turns and mutual inductance. Simple integer turns  
ratios also facilitate the use of “off-the-shelf” configu-  
maximum working voltage, ESR, and maximum ripple  
current ratings, and D± and R  
’s power ratings.  
SENSE  
T±  
L
BIAS  
D2  
V
IN  
D±  
V
rable transformers such as the Coiltronics VERSA-PAC  
OUT  
C
IN  
series in applications with high input to output voltage  
ratios. For example, if a 6-winding VERSA-PAC is used  
with three windings in series on the primary and three  
windings in parallel on the secondary, a 3:± turns ratio  
will be achieved.  
R3  
R
I
C
START  
L
L
SEC  
OUT  
PRI  
C
VCC  
V
CC  
±
2
6
/RUN NGATE  
LTC3803-3  
Q±  
TH  
C
C
R
SL  
4
GND  
R±  
SENSE  
Turns ratio can be chosen on the basis of desired duty  
cycle. However, remember that the input supply voltage  
plus the secondary-to-primary referred version of the  
flyback pulse (including leakage spike) must not exceed  
the allowed external MOSFET breakdown rating.  
V
FB  
R
SENSE  
3
R2  
38033 F02  
Figure 2. Typical LTC3803-3 Application Circuit  
Leakage Inductance  
SELECTING FEEDBACK RESISTOR DIVIDER VALUES  
Transformer leakage inductance (on either the primary  
or secondary) causes a voltage spike to occur after the  
outputswitch()turn-off.Thisisincreasinglyprominent  
at higher load currents, where more stored energy must  
be dissipated. In some cases a snubber circuit will be  
required to avoid overvoltage breakdown at the MOSFET’s  
drain node. Application Note ±9 is a good reference on  
snubber design.  
The regulated output voltage is determined by the resistor  
divider across V  
(R± and R2 in Figure 2). The ratio  
OUT  
of R2 to R± needed to produce a desired V  
calculated:  
can be  
OUT  
VOUT – 0.8V  
R2 =  
R1  
0.8V  
Choose resistance values for R± and R2 to be as large as  
possible in order to minimize any efficiency loss due to  
A bifilar or similar winding technique is a good way to  
minimize troublesome leakage inductances. However,  
remember that this will limit the primary-to-second-  
ary breakdown voltage, so bifilar winding is not always  
practical.  
the static current drawn from V , but just small enough  
OUT  
so that when V  
is in regulation, the error caused by  
OUT  
the nonzero input current to the V pin is less than ±5.  
FB  
A good rule of thumb is to choose R± to be 80k or less.  
38033fd  
9
LTC3803-3  
APPLICATIONS INFORMATION  
CURRENT SENSE RESISTOR CONSIDERATIONS  
currentcomparatorthreshold(ΔV  
)canbecalculated  
SENSE  
using the following equation:  
The external current sense resistor (R  
in Figure 2)  
SENSE  
allows the user to optimize the current limit behavior for  
the particular application. As the current sense resistor  
is varied from several ohms down to tens of milliohms,  
peak switch current goes from a fraction of an ampere to  
several amperes. Care must be taken to ensure proper  
circuit operation, especially with small current sense  
resistor values.  
Duty Cycle – 8%  
80%  
Note: LTC3803-3 enforces 85 < Duty Cycle < 805.  
ΔVSENSE  
=
• 5μA RSL  
A good starting value for R is ꢀ.9k, which gives a 30mV  
SL  
drop in current comparator threshold at 805 duty cycle.  
DesignsnotneedingslopecompensationmayreplaceR  
with a short circuit.  
SL  
For example, a peak switch current of ꢀA requires a sense  
resistor of 0.020Ω. Note that the instantaneous peak  
power in the sense resistor is 0.ꢀW and it must be rated  
accordingly. The LTC3803-3 has only a single sense line  
to this resistor. Therefore, any parasitic resistance in the  
ground side connection of the sense resistor will increase  
its apparent value. In the case of a 0.020Ω sense resis-  
tor, one milliohm of parasitic resistance will cause a ꢀ5  
reduction in peak switch current. So the resistance of  
printed circuit copper traces and vias cannot necessarily  
be ignored.  
INTERNAL WIDE HYSTERESIS UNDERVOLTAGE  
LOCKOUT  
TheLTC3803-3isdesignedtoimplementDC/DCconverters  
operatingfrominputvoltagesoftypically48Vormore.The  
standard operating topology employs a third transformer  
winding (L  
in Figure 2) on the primary side that pro-  
BIAS  
vides power for the LTC3803-3 via its V pin. However,  
CC  
this arrangement is not inherently self-starting. Start-up  
is affected by the use of an external trickle-charge resistor  
(R  
in Figure 2) and the presence of an internal wide  
START  
PROGRAMMABLE SLOPE COMPENSATION  
hysteresis undervoltage lockout circuit that monitors V  
pin voltage. Operation is as follows:  
CC  
TheLTC3803-3injectsarampingcurrentthroughitsSENSE  
pin into an external slope compensation resistor (R in  
Trickle-charge resistor R  
is connected to V and  
IN  
SL  
START  
Figure 2). This current ramp starts at zero right after the  
NGATE pin has been high for the LTC3803-3’s minimum  
duty cycle of 85. The current rises linearly towards a  
peak of ꢀμA at the maximum duty cycle of 805, shutting  
supplies a small current, typically on the order of ±00μA,  
to charge C . After some time, the voltage on C  
VCC  
VCC  
reaches the V turn-on threshold. The LTC3803-3 then  
CC  
turns on abruptly and draws its normal supply current.  
off once the NGATE pin goes low. A series resistor (R )  
TheNGATEpinbeginsswitchingandtheexternalMOSFET  
SL  
connecting the SENSE pin to the current sense resistor  
(Q±) begins to deliver power. The voltage on C  
begins  
VCC  
(R  
) thus develops a ramping voltage drop. From  
SENSE  
to decline as the LTC3803-3 draws its normal supply  
current, which exceeds that delivered by R . After  
the perspective of the SENSE pin, this ramping voltage  
adds to the voltage across the sense resistor, effectively  
reducing the current comparator threshold in proportion  
to duty cycle. This stabilizes the control loop against  
subharmonic oscillation. The amount of reduction in the  
START  
some time, typically tens of milliseconds, the output volt-  
age approaches its desired value. By this time, the third  
transformer winding is providing virtually all the supply  
current required by the LTC3803-3.  
38033fd  
10  
LTC3803-3  
APPLICATIONS INFORMATION  
One potential design pitfall is undersizing the value of  
In applications where a third transformer winding is  
undesirable or unavailable, the shunt regulator allows  
the LTC3803-3 to be powered through a single dropping  
resistor from V to V , in conjunction with a bypass  
capacitor C . In this case, the normal supply current  
VCC  
drawn by the LTC3803-3 will discharge C  
too rapidly;  
VCC  
before the third winding drive becomes effective, the V  
CC  
IN  
CC  
turn-off threshold will be reached. The LTC3803-3 turns  
capacitor, C , that closely decouples V to GND (see  
VCC  
CC  
off, and the V node begins to charge via R  
back up  
Figure 3). This simplicity comes at the expense of reduced  
CC  
START  
to the V turn-on threshold. Depending on the particular  
efficiency due to the static power dissipation in the R  
CC  
VCC  
situation, this may result in either several on-off cycles  
dropping resistor.  
beforeproperoperationisreachedorpermanentrelaxation  
The shunt regulator can draw up to 2ꢀmA through the  
oscillation at the V node.  
CC  
V
pin to GND to drop enough voltage across R  
to  
IN  
CC  
VCC  
Component selection is as follows:  
regulate V to around 9.ꢀV. For applications where V  
CC  
is low enough such that the static power dissipation in  
Resistor R  
should be made small enough to yield a  
START  
R
is acceptable, using the V shunt regulator is the  
VCC  
CC  
worst-case minimum charging current greater than the  
maximum rated LTC3803-3 start-up current, to ensure  
simplest way to power the LTC3803-3.  
there is enough current to charge C  
to the V turn-  
V
IN  
VCC  
CC  
on threshold. It should be made large enough to yield  
a worst-case maximum charging current less than the  
minimum rated LTC3803-3 supply current, so that in  
operation, most of the LTC3803-3’s supply current is  
delivered through the third winding. This results in the  
highest possible efficiency.  
R
LTC3803-3  
VCC  
V
CC  
GND  
C
VCC  
38033 F03  
Figure 3. Powering the LTC3803-3 Via the  
Internal Shunt Regulator  
CapacitorC shouldthenbemadelargeenoughtoavoid  
VCC  
the relaxation oscillation behavior described above. This  
is complicated to determine theoretically as it depends on  
the particulars of the secondary circuit and load behavior.  
Empirical testing is recommended.  
EXTERNAL PREREGULATOR  
The circuit in Figure 4 shows a third way to power the  
LTC3803-3. An external series preregulator consisting of  
seriespasstransistorQ±,ZenerdiodeD±,andbiasresistor  
R brings V to at least 7.6V nominal, well above the V  
The third transformer winding should be designed so that  
its output voltage, after accounting for the D2’s forward  
B
CC  
CC  
turn-off threshold. Resistor R  
momentarily charges  
voltagedrop,exceedsthemaximumV turn-offthreshold.  
START  
CC  
the V node up to the V turn-on threshold, enabling  
Also, thethirdwinding’snominaloutputvoltageshouldbe  
CC  
CC  
the LTC3803-3.  
at least 0.ꢀV below the minimum rated V clamp voltage  
CC  
to avoid running up against the LTC3803-3’s V shunt  
V
CC  
IN  
regulator, needlessly wasting power.  
R
Q±  
R
START  
LTC3803-3  
B
V
CC  
SHUNT REGULATOR  
V
CC  
D±  
GND  
C
VCC  
In applications including a third transformer winding,  
8.2V  
the internal V shunt regulator serves to protect the  
CC  
38033 F04  
LTC3803-3 from overvoltage transients as the third wind-  
ing is powering up.  
Figure 4. Powering the LTC3803-3 with an External Preregulator  
38033fd  
11  
LTC3803-3  
TYPICAL APPLICATIONS  
2W Isolated Housekeeping Telecom Converter  
BASꢀ±6  
PRIMARY SIDE  
±0V, ±00mA  
OUTPUT  
T±  
2.2μF  
±μF  
BASꢀ±6  
V
IN  
36V TO 7ꢀV  
SECONDARY SIDE  
±0V, ±00mA  
OUTPUT  
2.2μF  
BASꢀ±6  
9.2k  
±
±k 220k  
SECONDARY  
SIDE GROUND  
±nF  
LTC3803-3  
/RUN NGATE  
22k  
6
I
FDC2ꢀ±2  
TH  
2
3
4
V
GND  
CC  
T±: PULSE ENGINEERING PA0648  
OR TYCO TTI8698  
806Ω  
ꢀ.6k  
±μF  
V
SENSE  
FB  
0.±Ω  
38033 TA03  
PRIMARY GROUND  
38033fd  
12  
LTC3803-3  
TYPICAL APPLICATIONS  
4:1 Input Range 3.3V Output Isolated Flyback DC/DC Converter  
T±  
+
V
3.3V  
3A  
+
PA±277NL  
OUT  
V
IN  
±8V TO 72V  
±00μF  
6.3V  
s3  
2.2μF  
220k  
V
PDS±040  
IN  
±00k  
MMBTA42  
GND  
BASꢀ±6  
68Ω  
±ꢀ0pF  
PDZ6.8B  
V
CC  
±0Ω  
BASꢀ±6  
22Ω  
680Ω  
0.±μF  
±
2
3
6
4
I
/RUN  
TH  
GATE  
FDC2ꢀ±2  
LTC3803-3  
V
CC  
GND  
+
V
OUT  
4.7k  
SENSE  
V
FB  
BAT760  
0.±μF  
0.040Ω  
BASꢀ±6  
270Ω  
V
CC  
6.8k  
+
V
OUT  
±
6
4
V
OPTO  
COMP  
FB  
IN  
LT4430  
PS280±-±  
47pF  
±00k  
2.2nF  
22.±k  
0.±μF  
±
2
ꢀ6k  
2
3
GND  
0.33μF  
OC  
BASꢀ±6  
38033 TA0ꢀ  
Efficiency vs Load Current  
84  
82  
80  
78  
76  
74  
72  
V
IN  
V
IN  
= 48V  
= 24V  
70  
0
±
2
3
4
38033 TA0ꢀa  
I
(A)  
OUT  
38033fd  
13  
LTC3803-3  
PACKAGE DESCRIPTION  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 0ꢀ-08-±636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.9ꢀ  
REF  
±.22 REF  
±.4 MIN  
±.ꢀ0 – ±.7ꢀ  
2.80 BSC  
3.8ꢀ MAX 2.62 REF  
(NOTE 4)  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.4ꢀ  
6 PLCS (NOTE 3)  
0.9ꢀ BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.0± – 0.±0  
±.00 MAX  
0.30 – 0.ꢀ0 REF  
±.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
±. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
ꢀ. MOLD FLASH SHALL NOT EXCEED 0.2ꢀ4mm  
6. JEDEC PACKAGE REFERENCE IS MO-±93  
38033fd  
14  
LTC3803-3  
REVISION HISTORY (Revision history begins at Rev D)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
D
6/±0  
MP-grade part added. Reflected throughout the data sheet.  
± to ±6  
38033fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC3803-3  
TYPICAL APPLICATION  
Efficiency vs Load  
±00  
9ꢀ  
90  
8ꢀ  
80  
7ꢀ  
70  
V
= 3.3V  
OUT  
90% Efficient Synchronous Flyback Converter  
V
3.3V  
±.ꢀA  
*
OUT  
V
IN  
36V TO 72V  
T±  
Q2  
D±  
C
C
O
220k  
IN  
V
IN  
V
IN  
V
IN  
V
IN  
= 36V  
= 48V  
= 60V  
= 72V  
±nF  
33k  
±
2
3
6
4
I
/RUN  
TH  
Q±  
ꢀ00  
7ꢀ0  
±000 ±2ꢀ0 ±ꢀ00 ±7ꢀ0 2000  
GATE  
LOAD CURRENT (mA)  
38033 TA04b  
LTC3803-3  
0.±μF  
ꢀ60Ω  
4.7k  
V
GND  
= 0.8V  
CC  
8.06k  
Efficiency vs Load  
SENSE  
V
FB  
38033 TA04a  
±00  
9ꢀ  
90  
8ꢀ  
80  
7ꢀ  
70  
2ꢀ.ꢀk*  
FB  
±0μF  
±0V  
R
CS  
V
= ꢀV*  
OUT  
R
V
OUT  
T±: PULSE ENGINEERING PA±006  
Q±: FAIRCHILD FDC2ꢀ±2  
Q2: VISHAY Si9803  
C : TDK ±μF, ±00V, XꢀR  
IN  
C : TDK ±00μF, 6.3V, XꢀR  
O
R
: VISHAY OR IRC, 80mΩ  
CS  
*FOR ꢀV OUTPUT CHANGE R TO 42.2k  
D±: PHILIPS BASꢀ±6  
FB  
V
V
V
V
= 36V  
= 48V  
= 60V  
= 72V  
IN  
IN  
IN  
IN  
ꢀ00  
±000 ±2ꢀ0 ±ꢀ00 ±7ꢀ0 2000  
7ꢀ0  
LOAD CURRENT (mA)  
38033 TA04c  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT3ꢀ73  
Isolated Flyback Switching Regulator with 60V  
Integrated Switch  
3V ≤ V ≤ 40V, No Opto-Isolator or Third Winding Required, Up to 7W  
IN  
Output Power, MSOP-±6E  
LTC380ꢀ/  
LTC380ꢀ-ꢀ  
Adjustable Constant Frequency Flyback, Boost, SEPIC  
DC/DC Controller  
V
and V  
Limited Only by External Components, 3mm × 3mm DFN-±0,  
IN  
OUT  
MSOP-±0E Packages  
LTC3873/  
LTC3873-ꢀ  
No R  
™ Constant Frequency Flyback, Boost, SEPIC  
V
IN  
and V Limited Only by External Components, 8-pin ThinSOT or  
SENSE  
OUT  
Controller  
2mm × 3mm DFN-8 Packages  
LT37ꢀ7  
Boost, Flyback, SEPIC and Inverting Controller  
2.9V ≤ V ≤ 40V, ±00kHz to ±MHz Programmable Operating Frequency,  
IN  
3mm × 3mm DFN-±0 and MSOP-±0E Package  
LT37ꢀ8  
Boost, Flyback, SEPIC and Inverting Controller  
ꢀ.ꢀV ≤ V ≤ ±00V, ±00kHz to ±MHz Programmable Operating Frequency,  
IN  
3mm × 3mm DFN-±0 and MSOP-±0E  
LTC±87±/LTC±87±-±/ Wide Input Range, No R  
Low Quiescent Current  
Programmable Operating Frequency, 2.ꢀV ≤ V ≤ 36V, Burst Mode®  
SENSE  
IN  
LTC±87±-7  
Flyback, Boost and SEPIC Controller  
Operation at Light Load, MSOP-±0  
38033fd  
LT 0610 REV D • PRINTED IN USA  
LinearTechnology Corporation  
±630 McCarthy Blvd., Milpitas, CA 9ꢀ03ꢀ-74±7  
16  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-±900 FAX: (408) 434-0ꢀ07 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY