LTC3803ES6-3 [Linear]

Constant Frequency Current Mode Flyback DC/DC Controller in ThinSOT; 采用ThinSOT封装的恒定频率电流模式反激式DC / DC控制器
LTC3803ES6-3
型号: LTC3803ES6-3
厂家: Linear    Linear
描述:

Constant Frequency Current Mode Flyback DC/DC Controller in ThinSOT
采用ThinSOT封装的恒定频率电流模式反激式DC / DC控制器

开关 光电二极管 控制器
文件: 总16页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3803-3  
Constant Frequency  
Current Mode Flyback  
DC/DC Controller in ThinSOT  
U
FEATURES  
DESCRIPTIO  
VIN and VOUT Limited Only by External Components  
Adjustable Slope Compensation  
Internal Soft-Start  
–40°C to 125°C Operating Temperature Range  
Constant Frequency 300kHz Operation  
1.5% Reference Accuracy  
Current Mode Operation for Excellent Line and Load  
The LTC®3803-3 is a constant frequency current mode  
flybackcontrolleroptimizedfordriving6V-ratedN-channel  
MOSFETs in high input voltage applications. Constant  
frequency operation is maintained down to very light  
loads, resulting in less low frequency noise generation  
over a wide range of load currents. Slope compensation  
can be programmed with an external resistor.  
Transient Response  
No Minimum Load Requirement  
Low Quiescent Current: 240μA  
Low Profile (1mm) SOT-23 Package  
The LTC3803-3 provides 1.5% output voltage accuracy  
and consumes only 240μA of quiescent current. Ground-  
referencedcurrentsensingallowsLTC3803-3-basedcon-  
verters to accept input supplies beyond the LTC3803-3’s  
absolute maximum VCC. A micropower hysteretic start-up  
feature allows efficient operation at high input voltages.  
For simplicity, the LTC3803-3 can also be powered from  
a high VIN through a resistor, due to its internal 9.4V shunt  
regulator. An internal undervoltage lockout shuts down  
the LTC3803-3 when the input voltage falls below 4.4V,  
guaranteeing at least 4.4V of gate drive to the external  
MOSFET.  
U
APPLICATIO S  
Telecom Power Supplies  
42V and 12V Automotive Power Supplies  
Auxiliary/Housekeeping Power Supplies  
Power Over Ethernet Powered Devices  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
The LTC3803-3 is available in a low profile (1mm) 6-lead  
SOT-23 (ThinSOTTM) package.  
U
TYPICAL APPLICATIO  
5V Output Nonisolated Telecom Housekeeping Power Supply  
Efficiency vs Load Current  
V
IN  
100  
36V TO 72V  
V
= 5V  
UPS840  
OUT  
V
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
OUT  
5V  
T1  
2A MAX  
1μF  
300μF*  
6.3V  
10k  
100V  
X5R  
X5R  
1μF  
10V  
X5R  
V
CC  
I
/RUN NGATE  
LTC3803-3  
FDC2512  
TH  
82k  
470pF  
150pF  
200V  
4.7k  
V
V
V
V
= 36V  
= 48V  
= 60V  
= 72V  
IN  
IN  
IN  
IN  
GND  
SENSE  
V
FB  
68mΩ  
220Ω  
20k  
105k  
250  
750 1000 1250 1500 1750 2000  
LOAD CURRENT (mA)  
500  
38033 TA01  
T1: COOPER CTX02-15242  
*THREE 100μF UNITS IN PARALLEL  
38033 TA02  
38033fa  
1
LTC3803-3  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
VCC to GND  
TOP VIEW  
Low Impedance Source .......................... 0.3V to 8V  
Current Fed...................................... 25mA into VCC*  
NGATE Voltage ......................................... 0.3V to VCC  
VFB, ITH/RUN Voltages ..............................0.3V to 3.5V  
SENSE Voltage ........................................... 0.3V to 1V  
NGATE Peak Output Current (<10μs)........................ 1A  
Operating Temperature Range (Note 2)  
I
/RUN 1  
GND 2  
6 NGATE  
5 V  
TH  
CC  
V
3
4 SENSE  
FB  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
TJMAX = 125°C, θJA = 230°C/W  
ORDER PART NUMBER  
S6 PART MARKING  
LTC3803E-3 ....................................... – 40°C to 85°C  
LTC3803I-3 ...................................... – 40°C to 125°C  
Junction Temperature (Note 3)............................ 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
LTC3803ES6-3  
LTC3803IS6-3  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
LTCJS  
LTCJT  
Lead Free Part Marking: http://www.linear.com/leadfree/  
*LTC3803-3 internal clamp circuit self regulates VCC voltage to 9.5V.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The indicates specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 8V, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
V
Turn On Voltage  
Turn Off Voltage  
7.6  
8.7  
9.2  
V
TURNON  
TURNOFF  
CC  
CC  
LTC3803E-3  
LTC3803I-3  
4.6  
4.4  
5.7  
5.7  
7
7
V
V
V
V
V
V
V
V
V
V
Hysteresis (V  
– V )  
TURN0FF  
1
3
V
V
V
V
HYST  
CC  
TURNON  
Shunt Regulator Voltage  
Shunt Regulator Voltage  
I
I
= 1mA, V = 0V  
ITH/RUN  
8.3  
8.4  
0.05  
9.4  
9.5  
0.6  
10.3  
10.5  
CLAMP1mA  
CLAMP25mA  
MARGIN  
CC  
CC  
CC  
= 25mA, V  
= 0V  
CC  
ITH/RUN  
– V  
Margin  
TURNON  
CLAMP1mA  
I
Input DC Supply Current  
Normal Operation  
Start-Up  
(Note 4)  
CC  
V
= 1.3V  
240  
40  
350  
90  
μA  
μA  
ITH/RUN  
= V  
V
CC  
– 100mV  
TURNON  
V
I
Shutdown Threshold (at I /RUN)  
V
= V  
LTC3803E-3  
LTC3803I-3  
– 100mV  
ITHSHDN  
TH  
CC  
TURNON  
0.15  
0.10  
0.28  
0.28  
0.45  
0.45  
V
V
Start-Up Current Source  
V
= 0V  
0.2  
0.3  
0.4  
μA  
ITHSTART  
ITH/RUN  
V
Regulated Feedback Voltage (Note 5)  
0°C T 85°C  
0.788  
0.780  
0.780  
0.800  
0.800  
0.800  
0.812  
0.812  
0.820  
V
V
V
FB  
A
LTC3803E-3: –40°C T 85°C  
A
LTC3803I-3: –40°C T 125°C  
A
V
g
Peak Current Sense Voltage  
R
= 0 (Note 6)  
SL  
LTC3803E-3  
LTC3803I-3  
IMAX  
90  
85  
100  
100  
115  
115  
V
V
Error Amplifier Transconductance  
Output Voltage Line Regulation  
I
Pin Load = 5μA (Note 5)  
200  
333  
0.05  
10  
500  
μA/V  
mV/V  
nA  
m
TH/RUN  
ΔV  
V
< V < V  
(Note 5)  
CLAMP  
O(LINE)  
TURNOFF  
CC  
I
f
V
Input Current  
FB  
(Note 5)  
50  
FB  
OSC  
Oscillator Frequency  
V
= 1.3V  
270  
300  
330  
kHz  
ITH/RUN  
38033fa  
2
LTC3803-3  
ELECTRICAL CHARACTERISTICS  
The indicates specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 8V, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
8
MAX  
9.6  
UNITS  
%
DC  
ON(MIN)  
DC  
ON(MAX)  
Minimum Switch On Duty Cycle  
Maximum Switch On Duty Cycle  
Gate Drive Rise Time  
V
V
C
C
= 1.3V, V = 0.8V  
FB  
ITH/RUN  
ITH/RUN  
= 1.3V, V = 0.8V  
70  
80  
40  
40  
5
90  
%
FB  
t
t
I
t
= 3000pF  
ns  
RISE  
LOAD  
LOAD  
Gate Drive Fall Time  
= 3000pF (Note 7)  
ns  
FALL  
Peak Slope Compensation Output Current  
Soft-Start Time  
(Note 7)  
μA  
SLMAX  
SFST  
1.4  
ms  
Note 4: Dynamic supply current is higher due to the gate charge being  
delivered at the switching frequency.  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: The LTC3803-3 is tested in a feedback loop that servos V to the  
FB  
output of the error amplifier while maintaing I /RUN at the midpoint of  
TH  
Note 2: The LTC3803E-3 is guaranteed to meet specifications from 0°C to  
85°C. Specifications over the 40°C to 85°C operating temperature range  
are assured by design, characterization and correlation with statistical  
process controls. The LTC3803I-3 is guaranteed to meet performance  
specifications over the –40°C to 125°C operating temperature range.  
the current limit range.  
Note 6: Peak current sense voltage is reduced dependent on duty cycle  
and an optional external resistor in series with the SENSE pin (R ). For  
details, refer to the programmable slope compensation feature in the  
SL  
Applications Information section.  
Note 3: T is calculated from the ambient temperature T and power  
J
A
Note 7: Guaranteed by design.  
dissipation P according to the following formula:  
D
T = T + (P • 230°C/W).  
J
A
D
38033fa  
3
LTC3803-3  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C unless otherwise noted.  
U W  
Reference Voltage  
vs Supply Voltage  
Reference Voltage  
Reference Voltage vs Temperature  
vs VCC Shunt Regulator Current  
801.0  
800.8  
800.6  
800.4  
800.2  
800.0  
799.8  
799.6  
799.4  
799.2  
799.0  
812  
808  
804  
800  
796  
792  
788  
804  
803  
802  
801  
V
V  
V
= 8V  
CC  
CLAMP1mA  
CC  
800  
799  
798  
797  
796  
6
7
7.5  
8
8.5  
9
9.5  
6.5  
–30 –10 10 30 50  
110 130  
5
10  
20  
–50  
70 90  
0
25  
15  
(mA)  
V
CC  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
I
CC  
38033 F02  
38033 G01  
38033 G03  
Oscillator Frequency  
vs Temperature  
Oscillator Frequency  
vs Supply Voltage  
Oscillator Frequency  
vs VCC Shunt Regulator Current  
330  
320  
310  
300  
290  
280  
270  
330  
320  
310  
300  
290  
280  
270  
330  
320  
310  
300  
290  
280  
270  
V
= 8V  
CC  
0
10  
15  
I
20  
25  
30  
35  
50 70  
5
–50 –30 –10 10 30  
90 110 130  
6
7
7.5  
8
8.5  
9
6.5  
(mA)  
TEMPERATURE (°C)  
V
SUPPLY VOLTAGE (V)  
CC  
CC  
38033 G06  
38033 G04  
38033 G05  
VCC Undervoltage Lockout  
Thresholds vs Temperature  
VCC Shunt Regulator Voltage  
vs Temperature  
ICC Supply Current  
vs Temperature  
10.0  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
9.0  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
350  
325  
300  
275  
250  
225  
200  
175  
150  
V
V
= 8V  
CC  
ITH/RUN  
= 1.3V  
V
TURNON  
I
= 25mA  
I
CC  
= 1mA  
CC  
V
TURNOFF  
–50  
30  
70 90  
110 130  
–30 –10 10  
50  
30 50  
TEMPERATURE (°C)  
–50  
30  
80 90  
–50 –30 –10 10  
70 90 110 130  
–30 –10 10  
50  
110 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
38033 G08  
38033 G07  
38033 G09  
38033fa  
4
LTC3803-3  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C unless otherwise noted.  
U W  
Start-Up ICC Supply Current  
vs Temperature  
ITH/RUN Shutdown Threshold  
vs Temperature  
ITH/RUN Start-Up Current Source  
vs Temperature  
70  
60  
50  
40  
30  
20  
10  
0
700  
600  
500  
400  
300  
200  
100  
0
450  
400  
V
= V  
– 0.1V  
V
V
= V  
+ 0.1V  
TURNON  
CC  
TURNON  
CC  
ITH/RUN  
= 0V  
350  
300  
250  
200  
150  
100  
–50 –30  
130  
–50 –30  
130  
–10 10 30 50 70 90 110  
–10 10 30 50 70 90 110  
–30 –10 10 30 50  
110 130  
–50  
70 90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
38033 G10  
38033 G12  
38033 G11  
Peak Current Sense Voltage  
vs Temperature  
Soft-Start Time vs Temperature  
120  
115  
110  
105  
100  
95  
3.5  
V
= 8V  
CC  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
90  
85  
0
80  
30 50  
TEMPERATURE (°C)  
–50  
10  
90  
150  
110 130  
–50 –30 –10 10  
70 90 110 130  
50 70  
–30 –10  
30  
TEMPERATURE (°C)  
38033 G13  
38033 G14  
38033fa  
5
LTC3803-3  
U
U
U
PI FU CTIO S  
SENSE (Pin 4): This pin performs two functions. It moni-  
tors switch current by reading the voltage across an  
external current sense resistor to ground. It also injects a  
current ramp that develops slope compensation voltage  
across an optional external programming resistor.  
ITH/RUN (Pin 1): This pin performs two functions. It  
servesastheerroramplifiercompensationpointaswellas  
the run/shutdown control input. Nominal voltage range is  
0.7V to 1.9V. Forcing this pin below 0.28V causes the  
LTC3803-3 to shut down. In shutdown mode, the NGATE  
pin is held low.  
V
CC (Pin5):SupplyPin.MustbecloselydecoupledtoGND  
(Pin 2).  
GND (Pin 2): Ground Pin.  
NGATE (Pin 6): Gate Drive for the External N-Channel  
MOSFET. This pin swings from 0V to VCC.  
V
FB (Pin 3): Receives the feedback voltage from an exter-  
nal resistive divider across the output.  
W
BLOCK DIAGRA  
5
V
CC  
SHUTDOWN  
COMPARATOR  
0.3μA 0.28V  
+
V
< V  
TURNON  
CC  
UNDERVOLTAGE  
LOCKOUT  
V
CC  
SHUNT  
800mV  
REFERENCE  
REGULATOR  
SHUTDOWN  
SOFT-  
START  
CLAMP  
CURRENT  
COMPARATOR  
V
+
CC  
ERROR  
AMPLIFIER  
GATE  
DRIVER  
+
SWITCHING  
R
S
NGATE  
LOGIC AND  
BLANKING  
CIRCUIT  
Q
6
V
FB  
3
2
SLOPE  
COMP  
CURRENT  
RAMP  
20mV  
GND  
300kHz  
OSCILLATOR  
1.2V  
SENSE  
4
I /RUN  
TH  
1
38033 BD  
38033fa  
6
LTC3803-3  
U
OPERATIO  
ThevoltageattheITH/RUNpincommandsthepulse-width  
modulator formed by the oscillator, current comparator  
and RS latch. Specifically, the voltage at the ITH/RUN pin  
sets the current comparator’s trip threshold. The current  
comparator monitors the voltage across a current sense  
resistor in series with the source terminal of the external  
MOSFET. The LTC3803-3 turns on the external power  
MOSFET when the internal free-running 300kHz oscillator  
setstheRSlatch. ItturnsofftheMOSFETwhenthecurrent  
comparator resets the latch or when 80% duty cycle is  
reached, whichever happens first. In this way, the peak  
current levels through the flyback transformer’s primary  
and secondary are controlled by the ITH/RUN voltage.  
The LTC3803-3 is a constant frequency current mode  
controller for flyback and DC/DC boost converter applica-  
tions in a tiny ThinSOT package. The LTC3803-3 is de-  
signedsothatnoneofitspinsneedtocomeincontactwith  
the input or output voltages of the power supply circuit of  
which it is a part, allowing the conversion of voltages well  
beyond the LTC3803-3’s absolute maximum ratings.  
Main Control Loop  
Due to space limitations, the basics of current mode  
DC/DC conversion will not be discussed here; instead, the  
reader is referred to the detailed treatment in Application  
Note 19, or in texts such as Abraham Pressman’s Switch-  
ing Power Supply Design.  
Since the ITH/RUN voltage is increased by the error ampli-  
fier whenever the output voltage is below nominal, and  
decreased whenever output voltage exceeds nominal, the  
voltage regulation loop is closed. For example, whenever  
the load current increases, output voltage will decrease  
slightly, and sensing this, the error amplifier raises the  
ITH/RUN voltage by sourcing current into the ITH/RUN pin,  
raising the current comparator threshold, thus increasing  
the peak currents through the transformer primary and  
secondary. This delivers more current to the load, bring-  
ing the output voltage back up.  
Please refer to the Block Diagram and the Typical Applica-  
tion on the front page of this data sheet. An external  
resistive voltage divider presents a fraction of the output  
voltagetotheVFB pin.Thedividermustbedesignedsothat  
when the output is at the desired voltage, the VFB pin  
voltage will equal the 800mV from the internal reference.  
If the load current increases, the output voltage will  
decrease slightly, causing the VFB pin voltage to fall below  
800mV. The error amplifier responds by feeding current  
into the ITH/RUN pin. If the load current decreases, the VFB  
voltage will rise above 800mV and the error amplifier will  
sink current away from the ITH/RUN pin.  
The ITH/RUN pin serves as the compensation point for the  
control loop. Typically, an external series RC network is  
connected from ITH/RUN to ground and is chosen for  
optimal response to load and line transients. The imped-  
ance of this RC network converts the output current of the  
error amplifier to the ITH/RUN voltage which sets the cur-  
rent comparator threshold and commands considerable  
influenceoverthedynamicsofthevoltageregulationloop.  
38033fa  
7
LTC3803-3  
U
OPERATIO  
Start-Up/Shutdown  
LTC3803-3 operation. The VCC voltage is then allowed to  
fall to VTURNOFF (nominally 5.7V) before undervoltage  
lockout disables the LTC3803-3. This wide UVLO hyster-  
esis range supports the use of a bias winding on the  
flyback transformer to power the LTC3803-3—see the  
section Powering the LTC3803-3.  
TheLTC3803-3hastwoshutdownmechanismstodisable  
and enable operation: an undervoltage lockout on the VCC  
supply pin voltage, and a forced shutdown whenever  
external circuitry drives the ITH/RUN pin low. The  
LTC3803-3 transitions into and out of shutdown accord-  
ing to the state diagram (Figure 1).  
The ITH/RUN pin can be driven below VSHDN (nominally  
0.28V) to force the LTC3803-3 into shutdown. An internal  
0.3μA current source always tries to pull this pin towards  
VCC. When the ITH/RUN pin voltage is allowed to exceed  
LTC3803-3  
SHUT DOWN  
V
SHDN, and VCC exceeds VTURNON, the LTC3803-3 begins  
to operate and an internal clamp immediately pulls the  
ITH/RUNpinuptoabout0.7V.Inoperation,theITH/RUNpin  
voltagewillvaryfromroughly0.7Vto1.9Vtorepresentcur-  
rent comparator thresholds from zero to maximum.  
V
> V  
ITH/RUN  
ITHSHDN  
TURNON  
V
< V  
TURNOFF  
V
< V  
ITHSHDN  
CC  
(NOMINALLY 5.7V)  
ITH/RUN  
(NOMINALLY 0.28V)  
AND V > V  
CC  
(NOMINALLY 8.7V)  
Internal Soft-Start  
An internal soft-start feature is enabled whenever the  
LTC3803-3 comes out of shutdown. Specifically, the  
ITH/RUNvoltageisclampedandispreventedfromreach-  
ing maximum until roughly 1.4ms has passed. This  
allows the input and output currents of LTC3803-3-  
based power supplies to rise in a smooth and controlled  
manner on start-up.  
LTC3803-3  
ENABLED  
38033 F01  
Figure 1. Start-Up/Shutdown State Diagram  
The undervoltage lockout (UVLO) mechanism prevents  
the LTC3803-3 from trying to drive a MOSFET with insuf-  
ficient VGS. The voltage at the VCC pin must exceed  
VTURNON (nominally 8.7V) at least momentarily to enable  
38033fa  
8
LTC3803-3  
U
OPERATIO  
Powering the LTC3803-3  
The VCC pin must be bypassed to ground immediately  
adjacent to the IC pins with a minimum of a 1μF ceramic  
or tantalum capacitor. Proper supply bypassing is neces-  
sary to supply the high transient currents required by the  
MOSFET gate driver.  
In the simplest case, the LTC3803-3 can be powered from  
a high voltage supply through a resistor. A built-in shunt  
regulator from the VCC pin to GND will draw as much  
currentasneededthroughthisresistortoregulatetheVCC  
voltage to around 9.5V as long as the VCC pin is not forced  
to sink more than 25mA. This shunt regulator is always  
active, even when the LTC3803-3 is in shutdown, since it  
serves the vital function of protecting the VCC pin from  
seeing too much voltage.  
Adjustable Slope Compensation  
TheLTC3803-3injectsa5μApeakcurrentrampoutthrough  
its SENSE pin which can be used for slope compensation  
indesignsthatrequireit.Thiscurrentrampisapproximately  
linear and begins at zero current at 8% duty cycle, reach-  
ing peak current at 80% duty cycle. Additional details are  
provided in the Applications Information section.  
For higher efficiency or for wide VIN range applications,  
flyback controllers are typically powered through a sepa-  
rate bias winding on the flyback transformer. The  
LTC3803-3 has a wide UVLO hysteresis (1V min) and  
small VCC supply current draw (<90μA when VCC  
<
VTURNON) that is needed to support such bootstrapped  
hysteretic start-up schemes.  
38033fa  
9
LTC3803-3  
W U U  
U
APPLICATIO S I FOR ATIO  
TRANSFORMER DESIGN CONSIDERATIONS  
Many LTC3803-3 application circuits can be derived from  
the topology shown in Figure 2.  
Transformer specification and design is perhaps the most  
critical part of applying the LTC3803-3 successfully. In  
addition to the usual list of caveats dealing with high fre-  
quency power transformer design, the following should  
prove useful.  
The LTC3803-3 itself imposes no limits on allowed power  
output, input voltage VIN or desired regulated output volt-  
age VOUT; these are all determined by the ratings on the  
external power components. The key factors are: Q1’s  
maximum drain-source voltage (BVDSS), on-resistance  
(RDS(ON))andmaximumdraincurrent,T1’ssaturationflux  
level and winding insulation breakdown voltages, CIN and  
Turns Ratios  
Due to the use of the external feedback resistor divider  
ratio to set output voltage, the user has relative freedom in  
selecting transformer turns ratio to suit a given applica-  
tion. Simple ratios of small integers, e.g., 1:1, 2:1, 3:2, etc.  
canbeemployedwhichyieldmorefreedominsettingtotal  
turns and mutual inductance. Simple integer turns ratios  
alsofacilitatetheuseofoff-the-shelfconfigurabletrans-  
formers such as the Coiltronics VERSA-PACTM series in  
applications with high input to output voltage ratios. For  
example, if a 6-winding VERSA-PAC is used with three  
windings in series on the primary and three windings in  
parallelonthesecondary,a3:1turnsratiowillbeachieved.  
C
OUT’s maximum working voltage, ESR, and maximum  
ripple current ratings, and D1 and RSENSE’s power ratings.  
T1  
L
BIAS  
D2  
V
IN  
D1  
V
OUT  
C
IN  
R3  
R
I
C
OUT  
START  
L
L
SEC  
PRI  
5
C
VCC  
V
CC  
1
2
6
/RUN NGATE  
LTC3803-3  
Q1  
TH  
C
C
R
SL  
4
GND  
R1  
SENSE  
Turns ratio can be chosen on the basis of desired duty  
cycle. However, remember that the input supply voltage  
plus the secondary-to-primary referred version of the  
flyback pulse (including leakage spike) must not exceed  
the allowed external MOSFET breakdown rating.  
V
FB  
R
SENSE  
3
R2  
38033 F02  
Figure 2. Typical LTC3803-3 Application Circuit  
SELECTING FEEDBACK RESISTOR DIVIDER VALUES  
Leakage Inductance  
The regulated output voltage is determined by the resistor  
divideracrossVOUT (R1andR2inFigure2). TheratioofR2  
to R1 needed to produce a desired VOUT can be calculated:  
Transformer leakage inductance (on either the primary or  
secondary) causes a voltage spike to occur after the  
output switch (Q1) turn-off. This is increasingly promi-  
nent at higher load currents, where more stored energy  
must be dissipated. In some cases a “snubber” circuit will  
be required to avoid overvoltage breakdown at the  
MOSFET’s drain node. Application Note 19 is a good  
reference on snubber design.  
VOUT – 0.8V  
R2 =  
R1  
0.8V  
Choose resistance values for R1 and R2 to be as large as  
possible in order to minimize any efficiency loss due to the  
static current drawn from VOUT, but just small enough so  
that when VOUT is in regulation, the error caused by the  
nonzero input current to the VFB pin is less than 1%. A  
good rule of thumb is to choose R1 to be 80k or less.  
A bifilar or similar winding technique is a good way to  
minimize troublesome leakage inductances. However,  
remember that this will limit the primary-to-secondary  
breakdown voltage, so bifilar winding is not always  
practical.  
38033fa  
10  
LTC3803-3  
W U U  
APPLICATIO S I FOR ATIO  
U
CURRENT SENSE RESISTOR CONSIDERATIONS  
in the current comparator threshold (ΔVSENSE) can be  
calculated using the following equation:  
The external current sense resistor (RSENSE in Figure 2)  
allows the user to optimize the current limit behavior for  
the particular application. As the current sense resistor is  
varied from several ohms down to tens of milliohms, peak  
switchcurrentgoesfromafractionofanamperetoseveral  
amperes. Care must be taken to ensure proper circuit  
operation, especially with small current sense resistor  
values.  
Duty Cycle – 8%  
ΔVSENSE  
=
• 5μA RSL  
80%  
Note: LTC3803-3 enforces 8% < Duty Cycle < 80%.  
A good starting value for RSL is 5.9k, which gives a 30mV  
drop in current comparator threshold at 80% duty cycle.  
DesignsnotneedingslopecompensationmayreplaceRSL  
with a short circuit.  
For example, a peak switch current of 5A requires a sense  
resistor of 0.020Ω. Note that the instantaneous peak  
power in the sense resistor is 0.5W and it must be rated  
accordingly. The LTC3803-3 has only a single sense line  
to this resistor. Therefore, any parasitic resistance in the  
ground side connection of the sense resistor will increase  
its apparent value. In the case of a 0.020Ω sense resistor,  
one milliohm of parasitic resistance will cause a 5%  
reduction in peak switch current. So the resistance of  
printed circuit copper traces and vias cannot necessarily  
be ignored.  
INTERNAL WIDE HYSTERESIS UNDERVOLTAGE  
LOCKOUT  
The LTC3803-3 is designed to implement DC/DC convert-  
ersoperatingfrominputvoltagesoftypically48Vormore.  
The standard operating topology employs a third trans-  
former winding (LBIAS in Figure 2) on the primary side that  
provides power for the LTC3803-3 via its VCC pin. How-  
ever, this arrangement is not inherently self-starting.  
Start-up is affected by the use of an external “trickle-  
charge” resistor (RSTART in Figure 2) and the presence of  
an internal wide hysteresis undervoltage lockout circuit  
that monitors VCC pin voltage. Operation is as follows:  
PROGRAMMABLE SLOPE COMPENSATION  
The LTC3803-3 injects a ramping current through its  
SENSE pin into an external slope compensation resistor  
(RSL in Figure 2). This current ramp starts at zero right  
after the NGATE pin has been high for the LTC3803-3’s  
minimum duty cycle of 8%. The current rises linearly  
towards a peak of 5μA at the maximum duty cycle of 80%,  
shuttingoffoncetheNGATEpingoeslow.Aseriesresistor  
(RSL) connecting the SENSE pin to the current sense  
resistor (RSENSE) thus develops a ramping voltage drop.  
From the perspective of the SENSE pin, this ramping  
voltage adds to the voltage across the sense resistor,  
effectively reducing the current comparator threshold in  
proportion to duty cycle. This stabilizes the control loop  
against subharmonic oscillation. The amount of reduction  
“Trickle charge” resistor RSTART is connected to VIN and  
supplies a small current, typically on the order of 100μA,  
to charge CVCC. After some time, the voltage on CVCC  
reaches the VCC turn-on threshold. The LTC3803-3 then  
turnsonabruptlyanddrawsitsnormalsupplycurrent.The  
NGATE pin begins switching and the external MOSFET  
(Q1) begins to deliver power. The voltage on CVCC begins  
to decline as the LTC3803-3 draws its normal supply  
current, which exceeds that delivered by RSTART. After  
some time, typically tens of milliseconds, the output  
voltage approaches its desired value. By this time, the  
third transformer winding is providing virtually all the  
supply current required by the LTC3803-3.  
38033fa  
11  
LTC3803-3  
W U U  
U
APPLICATIO S I FOR ATIO  
One potential design pitfall is undersizing the value of  
capacitor CVCC. In this case, the normal supply current  
drawn by the LTC3803-3 will discharge CVCC too rapidly;  
before the third winding drive becomes effective, the VCC  
turn-off threshold will be reached. The LTC3803-3 turns  
off, and the VCC node begins to charge via RSTART back up  
to the VCC turn-on threshold. Depending on the particular  
situation, this may result in either several on-off cycles  
before proper operation is reached or permanent relax-  
ation oscillation at the VCC node.  
In applications where a third transformer winding is unde-  
sirable or unavailable, the shunt regulator allows the  
LTC3803-3 to be powered through a single dropping  
resistor from VIN to VCC, in conjunction with a bypass  
capacitor, CVCC, that closely decouples VCC to GND (see  
Figure 3). This simplicity comes at the expense of reduced  
efficiency due to the static power dissipation in the RVCC  
dropping resistor.  
The shunt regulator can draw up to 25mA through the VCC  
pintoGNDtodropenoughvoltageacrossRVCC toregulate  
VCC to around 9.5V. For applications where VIN is low  
enough such that the static power dissipation in RVCC is  
acceptable, using the VCC shunt regulator is the simplest  
way to power the LTC3803-3.  
Component selection is as follows:  
Resistor RSTART should be made small enough to yield a  
worst-case minimum charging current greater than the  
maximum rated LTC3803-3 start-up current, to ensure  
there is enough current to charge CVCC to the VCC turn-on  
threshold.Itshouldbemadelargeenoughtoyieldaworst-  
case maximum charging current less than the minimum  
ratedLTC3803-3supplycurrent,sothatinoperation,most  
oftheLTC3803-3’ssupplycurrentisdeliveredthroughthe  
thirdwinding.Thisresultsinthehighestpossibleefficiency.  
V
IN  
R
VCC  
LTC3803-3  
V
CC  
GND  
C
VCC  
38033 F03  
CapacitorCVCC shouldthenbemadelargeenoughtoavoid  
therelaxationoscillationbehaviordescribedabove.Thisis  
complicated to determine theoretically as it depends on  
the particulars of the secondary circuit and load behavior.  
Empirical testing is recommended.  
Figure 3. Powering the LTC3803-3 Via the  
Internal Shunt Regulator  
EXTERNAL PREREGULATOR  
The circuit in Figure 4 shows a third way to power the  
LTC3803-3. An external series preregulator consisting of  
series pass transistor Q1, Zener diode D1, and bias resis-  
tor RB brings VCC to at least 7.6V nominal, well above the  
maximum rated VCC turn-off threshold of 6.8V. Resistor  
START momentarily charges the VCC node up to the VCC  
turn-on threshold, enabling the LTC3803-3.  
The third transformer winding should be designed so that  
its output voltage, after accounting for the D2’s forward  
voltage drop, exceeds the maximum VCC turn-off thresh-  
old. Also, the third winding’s nominal output voltage  
should be at least 0.5V below the minimum rated VCC  
clampvoltagetoavoidrunningupagainsttheLTC3803-3’s  
VCC shunt regulator, needlessly wasting power.  
R
V
IN  
VCC SHUNT REGULATOR  
R
Q1  
R
START  
LTC3803-3  
B
Inapplicationsincludingathirdtransformerwinding, the  
internal VCC shunt regulator serves to protect the  
LTC3803-3 from overvoltage transients as the third  
winding is powering up.  
V
CC  
D1  
8.2V  
GND  
C
VCC  
38033 F04  
Figure 4. Powering the LTC3803-3 with an External Preregulator  
38033fa  
12  
LTC3803-3  
U
TYPICAL APPLICATIO S  
2W Isolated Housekeeping Telecom Converter  
BAS516  
PRIMARY SIDE  
10V, 100mA  
OUTPUT  
T1  
2.2μF  
1μF  
BAS516  
V
IN  
36V TO 75V  
SECONDARY SIDE  
10V, 100mA  
OUTPUT  
2.2μF  
BAS516  
9.2k  
1
1k 220k  
SECONDARY  
SIDE GROUND  
1nF  
LTC3803-3  
/RUN NGATE  
22k  
6
I
FDC2512  
TH  
2
3
5
4
V
GND  
CC  
T1: PULSE ENGINEERING PA0648  
OR TYCO TTI8698  
806Ω  
5.6k  
1μF  
V
SENSE  
FB  
0.1Ω  
38033 TA03  
PRIMARY GROUND  
38033fa  
13  
LTC3803-3  
TYPICAL APPLICATIO S  
U
4:1 Input Range 3.3V Output Isolated Flyback DC/DC Converter  
T1  
+
V
3.3V  
3A  
+
PA1277NL  
OUT  
V
IN  
18 V TO 72V  
100μF  
6.3V  
× 3  
2.2μF  
220k  
MMBTA42  
V
PDS1040  
IN  
100k  
GND  
BAS516  
68Ω  
150pF  
PDZ6.8B  
V
CC  
10Ω  
BAS516  
22Ω  
680Ω  
0.1μF  
1
2
3
6
5
4
FDC2512  
I
/RUN  
GATE  
LTC3803-3  
TH  
V
IN  
GND  
+
V
OUT  
4.7k  
SENSE  
V
FB  
BAT760  
0.1μF  
0.040Ω  
270Ω  
V
CC  
6.8k  
+
V
1
2
3
6
5
4
OUT  
V
OPTO  
COMP  
FB  
BAS516  
IN  
LT4430  
PS2801-1  
47pF  
100k  
2.2nF  
22.1k  
0.1μF  
1
2
56k  
GND  
0.33μF  
OC  
BAS516  
38033 TA05  
Efficiency vs Load Current  
84  
82  
80  
78  
76  
74  
72  
V
V
= 48V  
= 24V  
IN  
IN  
70  
0
1
2
3
4
38033 TA05a  
I
(A)  
OUT  
38033fa  
14  
LTC3803-3  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
38033fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC3803-3  
TYPICAL APPLICATIO S  
U
Efficiency vs Load  
100  
95  
90  
85  
80  
75  
70  
V
= 3.3V  
OUT  
90% Efficient Synchronous Flyback Converter  
V
3.3V  
1.5A  
*
OUT  
V
V
V
V
V
= 36V  
= 48V  
= 60V  
= 72V  
IN  
36V TO 72V  
IN  
IN  
IN  
IN  
T1  
Q2  
D1  
C
C
O
IN  
220k  
500  
1000 1250 1500 1750 2000  
750  
LOAD CURRENT (mA)  
38083 TA04b  
1n  
33k  
1
2
3
6
5
4
I
/RUN  
Q1  
GATE  
TH  
LTC3803-3  
Efficiency vs Load  
0.1μF  
560Ω  
V
GND  
= 0.8V  
CC  
100  
95  
90  
85  
80  
75  
70  
V
= 5V*  
OUT  
8.06k  
4.7k  
SENSE  
V
FB  
38033 TA04a  
25.5k*  
10μF  
10V  
R
CS  
R
FB  
V
OUT  
T1: PULSE ENGINEERING PA1006  
Q1: FAIRCHILD FDC2512  
Q2: VISHAY Si9803  
C : TDK 1μF, 100V, X5R  
IN  
C : TDK 100μF, 6.3V, X5R  
O
R
CS  
: VISHAY OR IRC, 80mΩ  
D1: PHILIPS BAS516  
*FOR 5V OUTPUT CHANGE R TO 42.2k  
FB  
V
IN  
V
IN  
V
IN  
V
IN  
= 36V  
= 48V  
= 60V  
= 72V  
500  
1000 1250 1500 1750 2000  
750  
LOAD CURRENT (mA)  
38083 TA04c  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
No Optoisolator or “Third Winding” Required, Up to 6W Output  
LT®1425  
Isolated Flyback Switching Regulator  
with No External Power Devices  
LT1725  
General Purpose Isolated Flyback Controller  
No Optoisolator Required, V and V  
Limited Only by External  
IN  
OUT  
Power Components  
LTC1871  
Wide Input Range, No R  
Flyback, Boost and SEPIC Controller  
TM Current Mode  
Adjustable Switching Frequency, Programmable Undervoltage  
Lockout, Optional Burst Mode® Operation at Light Load  
SENSE  
LT1950  
LT3420  
Current Mode PWM Controller  
Controller for Forward Converters from 30W to 300W  
Photoflash Capacitor Charger with Automatic Refresh  
Photoflash Capacitor Charger in 5-Pin SOT-23  
Specialized Flyback Charges High Voltage Photoflash Capacitors  
Quickly and Efficiently  
LT3468/LT3468-1  
Minimal Component Count, Uses Small Transformers;  
V
from 2.5V to 16V  
IN  
LTC3803  
LTC3803-5  
LTC3806  
Constant Frequency Flyback Controller  
Constant Frequency Flyback Controller  
Synchronous Flyback Controller  
200kHz Switching Frequency, Low Profile (1mm) ThinSOT Package  
200kHz Switching Frequency, 4.8V Turn-On Voltage  
High Efficiency (89%); Multiple Output with  
Excellent Cross Regulation  
Burst Mode is a registered trademark of Linear Technology Corporation. No R  
is a trademark of Linear Technology Corporation.  
SENSE  
38033fa  
LT 0407 • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2006  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY