LTC3803ES6-5#TRM [Linear]

LTC3803-5 - Constant Frequency Current Mode Flyback DC/DC Controller in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C;
LTC3803ES6-5#TRM
型号: LTC3803ES6-5#TRM
厂家: Linear    Linear
描述:

LTC3803-5 - Constant Frequency Current Mode Flyback DC/DC Controller in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C

控制器
文件: 总12页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3803-5  
Constant Frequency  
Current Mode Flyback  
DC/DC Controller in ThinSOT  
U
FEATURES  
DESCRIPTIO  
The LTC®3803-5 is a constant frequency current mode  
flyback controller optimized for driving 4.5V and 6V-rated  
N-channel MOSFETs in high input voltage applications.  
The LTC3803-5 operates from inputs as low as 5V. Con-  
stant frequency operation is maintained down to very light  
loads, resulting in less low frequency noise generation  
over a wide range of load currents. Slope compensation  
can be programmed with an external resistor.  
VIN and VOUT Limited Only by External Components  
4.8V Undervoltage Lockout Threshold  
Operating Junction Temperature from –40°C to  
150°C  
Adjustable Slope Compensation  
Internal Soft-Start  
Constant Frequency 200kHz Operation  
±1.5% Reference Accuracy  
Current Mode Operation for Excellent Line and Load  
The LTC3803-5 provides ±1.5% output voltage accuracy  
and consumes only 240µA of quiescent current. Ground-  
referencedcurrentsensingallowsLTC3803-5-basedcon-  
verters to accept input supplies beyond the LTC3803-5’s  
absolute maximum VCC. For simplicity, the LTC3803-5  
can be powered from a high VIN through a resistor, due to  
its internal 8V shunt regulator. An internal undervoltage  
lockout shuts down the IC when the input voltage falls  
below 3.2V, guaranteeing at least 3.2V of gate drive to the  
external MOSFET.  
Transient Response  
No Minimum Load Requirement  
Low Quiescent Current: 240µA  
Low Profile (1mm) SOT-23 Package  
U
APPLICATIO S  
42V and 12V Automotive Power Supplies  
Telecom Power Supplies  
Auxiliary/Housekeeping Power Supplies  
Power Over Ethernet  
The LTC3803-5 is available in a low profile (1mm) 6-lead  
SOT-23 (ThinSOTTM) package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
ThinSOT is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Efficiency and Power Loss  
vs Output Power  
Dual Output Wide Input Range Converter  
10MQ100N  
90  
85  
80  
75  
70  
65  
60  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
VPH5-0155  
V
= 8V  
V
13V/0.3A  
20mA MIN  
LOAD  
IN  
IN  
6V TO 50V  
1µF  
100V  
3x  
V
V
= 12V  
= 24V  
IN  
22k  
PDZ9.1B  
7.5k  
22µF  
10V  
MMBTA42  
IN  
1µF  
100V  
PHM25NQ10T  
10nF  
LTC3803-5  
1µF  
100V  
I
/RUN NGATE  
TH  
GND  
V
6.5V/1.2A  
CC  
4.7k  
V
V
= 48V  
IN  
V
FB  
SENSE  
B3100  
47µF  
10V  
8.06k  
0.012  
0.1µF  
= 12V  
2
IN  
57.6k  
0
6
8
10  
12  
4
OUTPUT POWER (W)  
ALL CAPACITORS ARE X7R, TDK  
38035 TA01  
38035 TA01b  
38035f  
1
LTC3803-5  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
VCC to GND (Current Fed) .................... 25mA into VCC*  
NGATE Voltage ......................................... 0.3V to VCC  
VFB, ITH/RUN Voltages ..............................0.3V to 3.5V  
SENSE Voltage ........................................... 0.3V to 1V  
NGATE Peak Output Current (<10µs)........................ 1A  
Operating Junction Temperature Range (Note 2)  
LTC3803E-5 ....................................... – 40°C to 85°C  
LTC3803H-5 (Note 3) ....................... – 40°C to 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
ORDER PART  
NUMBER  
TOP VIEW  
LTC3803HS6-5  
LTC3803ES6-5  
I
TH  
/RUN 1  
GND 2  
6 NGATE  
5 V  
CC  
V
3
4 SENSE  
FB  
S6 PART  
MARKING  
S6 PACKAGE  
6-LEAD PLASTIC TSOT-23  
TJMAX = 150°C, θJA = 165°C/W  
LTBMH  
LTBPF  
*LTC3803-5 internal clamp circuit self regulates V voltage to 8V.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
CC  
ELECTRICAL CHARACTERISTICS  
LTC3803E-5: The indicates specifications which apply over the full –40°C  
to 85°C operating junction temperature range, otherwise specifications are at TJ = 25°C. VCC = 5V, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
4.8  
4
MAX  
5.7  
UNITS  
V
V
V
V
V
V
V
V
V
V
Turn On Voltage  
V
V
V
V
V
TURNON  
CC  
CC  
CC  
CC  
CC  
Turn Off Voltage  
3.3  
0.05  
6.2  
6.3  
4.9  
TURNOFF  
HYST  
Hysteresis  
V
– V  
0.8  
8
TURNON  
TURNOFF  
ITH/RUN  
Shunt Regulator Voltage  
Shunt Regulator Voltage  
I
I
= 1mA, V  
= 0V  
= 0V  
9.9  
CLAMP1mA  
CLAMP25mA  
CC  
CC  
= 25mA, V  
8.1  
10.3  
ITH/RUN  
I
Input DC Supply Current  
Normal Operation  
Undervoltage  
(Note 4)  
ITH/RUN  
CC  
V
V
= 1.3V  
240  
40  
350  
90  
µA  
µA  
= V  
– 100mV  
+ 100mV  
CC  
TURNON  
V
Shutdown Threshold (at I /RUN)  
V
V
= V  
0.12  
0.07  
0.28  
0.34  
0.45  
0.8  
V
ITHSHDN  
TH  
CC  
TURNON  
I
Start-Up Current Source  
= 0V  
µA  
ITHSTART  
ITH/RUN  
V
Regulated Feedback Voltage  
0°C T 85°C (Note 5)  
0.788  
0.780  
0.800  
0.800  
0.812  
0.816  
V
V
FB  
J
–40°C T 85°C (Note 5)  
J
g
Error Amplifier Transconductance  
Output Voltage Line Regulation  
Output Voltage Load Regulation  
I
Pin Load = ±5µA (Note 5)  
200  
333  
0.1  
500  
µA/V  
m
TH/RUN  
V  
V  
V
< V < V (Note 5)  
CLAMP  
mV/V  
O(LINE)  
TURNOFF  
CC  
I
I
/RUN Sinking 5µA (Note 5)  
/RUN Sourcing 5µA (Note 5)  
3
3
mV/µA  
mV/µA  
O(LOAD)  
TH  
TH  
I
f
V
Input Current  
FB  
(Note 5)  
10  
200  
6.5  
80  
50  
230  
8.5  
90  
nA  
kHz  
%
FB  
OSC  
Oscillator Frequency  
V
V
V
C
C
= 1.3V  
170  
70  
ITH/RUN  
ITH/RUN  
ITH/RUN  
DC  
DC  
Minimum Switch On Duty Cycle  
Maximum Switch On Duty Cycle  
Gate Drive Rise Time  
= 1.3V, V = 0.8V  
FB  
ON(MIN)  
= 1.3V, V = 0.8V  
%
ON(MAX)  
FB  
t
t
= 3000pF  
40  
ns  
RISE  
FALL  
LOAD  
LOAD  
Gate Drive Fall Time  
= 3000pF  
40  
ns  
V
Peak Current Sense Voltage  
Peak Slope Compensation Output Current  
Soft-Start Time  
R
= 0 (Note 6)  
90  
100  
5
115  
mV  
µA  
ms  
IMAX  
SLMAX  
SFST  
SL  
I
t
(Note 7)  
0.7  
38035f  
2
LTC3803-5  
LTC3803H-5: The indicates specifications which apply over the full –40°C  
ELECTRICAL CHARACTERISTICS  
(Notes 2, 3)  
to 150°C operating junction temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
3.9  
TYP  
4.8  
4
MAX  
5.7  
UNITS  
V
V
V
V
V
V
V
V
V
V
Turn On Voltage  
V
V
V
V
V
TURNON  
CC  
CC  
CC  
CC  
CC  
Turn Off Voltage  
3.2  
4.9  
TURNOFF  
HYST  
Hysteresis  
V
– V  
0.05  
6.2  
0.8  
8
TURNON  
TURNOFF  
ITH/RUN  
Shunt Regulator Voltage  
Shunt Regulator Voltage  
I
I
= 1mA, V  
= 0V  
= 0V  
10.4  
10.7  
CLAMP1mA  
CLAMP25mA  
CC  
CC  
= 25mA, V  
6.3  
8.1  
ITH/RUN  
I
Input DC Supply Current  
Normal Operation  
Undervoltage  
(Note 4)  
ITH/RUN  
CC  
V
V
= 1.3V  
240  
40  
350  
100  
µA  
µA  
= V  
– 100mV  
+ 100mV  
CC  
TURNON  
V
Shutdown Threshold (at I /RUN)  
V
V
= V  
0.08  
0.07  
0.28  
0.34  
0.45  
1
V
ITHSHDN  
TH  
CC  
TURNON  
I
Start-Up Current Source  
= 0V  
µA  
ITHSTART  
ITH/RUN  
V
Regulated Feedback Voltage  
0°C T 85°C (Note 5)  
0.788  
0.780  
0.800  
0.800  
0.812  
0.820  
V
V
FB  
J
–40°C T 150°C (Note 5)  
J
g
Error Amplifier Transconductance  
Output Voltage Line Regulation  
Output Voltage Load Regulation  
I
Pin Load = ±5µA (Note 5)  
200  
333  
0.1  
500  
µA/V  
m
TH/RUN  
V  
V  
V
< V < V (Note 5)  
CLAMP  
mV/V  
O(LINE)  
TURNOFF  
CC  
I
I
/RUN Sinking 5µA (Note 5)  
/RUN Sourcing 5µA (Note 5)  
3
3
mV/µA  
mV/µA  
O(LOAD)  
TH  
TH  
I
f
V
Input Current  
FB  
(Note 5)  
10  
200  
6.5  
80  
50  
230  
8.5  
90  
nA  
kHz  
%
FB  
OSC  
Oscillator Frequency  
V
V
V
C
C
= 1.3V  
170  
70  
ITH/RUN  
ITH/RUN  
ITH/RUN  
DC  
DC  
Minimum Switch On Duty Cycle  
Maximum Switch On Duty Cycle  
Gate Drive Rise Time  
= 1.3V, V = 0.8V  
FB  
ON(MIN)  
ON(MAX)  
= 1.3V, V = 0.8V  
%
FB  
t
t
= 3000pF  
40  
ns  
RISE  
FALL  
LOAD  
LOAD  
Gate Drive Fall Time  
= 3000pF  
40  
ns  
V
Peak Current Sense Voltage  
Peak Slope Compensation Output Current  
Soft-Start Time  
R
= 0 (Note 6)  
85  
100  
5
115  
mV  
µA  
ms  
IMAX  
SLMAX  
SFST  
SL  
I
t
(Note 7)  
0.7  
lifetime at junction temperatures greater than 125°C is derated to 1000  
hours.  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Dynamic supply current is higher due to the gate charge being  
delivered at the switching frequency.  
Note 2: The LTC3803H-5 is guaranteed to meet specifications from –40°C  
to 150°C. The LTC3803E-5 is guaranteed to meet specifications from 0°C  
to 85°C with specifications over the –40°C to 85°C temperature range  
assured by design, characterization and correlation with statistical process  
controls.  
Note 5: The LTC3803-5 is tested in a feedback loop that servos V to the  
FB  
output of the error amplifier while maintaining I /RUN at the midpoint of  
TH  
the current limit range.  
Junction temperature (T is calculated from the ambient temperature T  
Note 6: Peak current sense voltage is reduced dependent on duty cycle  
J)  
A
and the power dissipation P in the LTC3803-5 using the formula:  
and an optional external resistor in series with the SENSE pin (R ). For  
D
SL  
details, refer to the programmable slope compensation feature in the  
Applications Information section.  
Note 7: Guaranteed by design.  
T = T + (P • 230°C/W)  
Note 3: High junction temperatures degrade operating lifetimes. Operating  
J
A
D
38035f  
3
LTC3803-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Reference Voltage  
vs Supply Voltage  
Reference Voltage  
vs VCC Shunt Regulator Current  
Reference Voltage vs Temperature  
812  
808  
804  
800  
796  
792  
812  
808  
804  
800  
796  
792  
788  
812  
808  
804  
800  
796  
792  
788  
T
= 25°C  
V
= 5V  
T
= 25°C  
A
CC  
A
V
V  
CC  
CLAMP1mA  
788  
4.0  
5.0 5.5 6.0  
6.5 7.0 7.5  
4.5  
5
10  
20  
–50 –30 –10 10 30 50 70 90 110 130 150  
0
25  
15  
(mA)  
V
CC  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
I
CC  
38035 F02  
38035 G01  
38035 G03  
Oscillator Frequency  
vs Temperature  
Oscillator Frequency  
vs Supply Voltage  
Oscillator Frequency  
vs VCC Shunt Regulator Current  
220  
215  
210  
205  
200  
195  
190  
220  
215  
210  
205  
200  
195  
190  
185  
180  
220  
215  
210  
205  
200  
195  
190  
185  
180  
T
A
= 25°C  
V
CC  
= 5V  
T
= 25°C  
A
185  
180  
50 70  
–50 –30 –10 10 30  
90 110 130 150  
4.0 4.5  
5.5 6.0  
6.5 7.0  
7.5  
5.0  
0
5
15  
(mA)  
20  
25  
10  
I
TEMPERATURE (°C)  
V
CC  
SUPPLY VOLTAGE (V)  
CC  
38035 G04  
38035 G05  
38035 G06  
VCC Undervoltage Lockout  
Thresholds vs Temperature  
VCC Shunt Regulator Voltage  
vs Temperature  
ICC Supply Current  
vs Temperature  
6.0  
5.5  
5.0  
10.5  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
300  
280  
260  
240  
220  
200  
V
V
= 5V  
CC  
ITH/RUN  
= 1.3V  
V
TURNON  
I
= 25mA  
CC  
4.5  
4.0  
I
= 1mA  
CC  
V
TURNOFF  
3.5  
3.0  
–50  
30  
70 90  
–50  
30  
70 90  
–50  
30  
70 90  
–30 –10 10  
50  
110 130 150  
–30 –10 10  
50  
110 130 150  
–30 –10 10  
50  
110 130 150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3803 G07  
38035 G08  
38035 G08  
38035f  
4
LTC3803-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Start-Up ICC Supply Current  
vs Temperature  
ITH/RUN Shutdown Threshold  
vs Temperature  
500  
450  
400  
350  
ITH/RUN Start-Up Current Source  
vs Temperature  
70  
1000  
900  
800  
700  
600  
500  
V
CC  
= V  
TURNON  
– 0.1V  
V
V
= V  
+ 0.1V  
TURNON  
CC  
ITH/RUN  
= 0V  
60  
50  
40  
30  
20  
10  
0
300  
250  
200  
150  
100  
50  
400  
300  
200  
100  
0
0
–30 –10 10 30 50  
110 130 150  
50 70  
–50  
70 90  
50 70  
90 110 130 150  
–50 –30 –10 10 30  
90 110 130 150  
–50 –30 –10 10 30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3803 G11  
38035 G10  
38035 G12  
Peak Current Sense Voltage  
vs Temperature  
Soft-Start Time vs Temperature  
120  
115  
110  
105  
100  
95  
1.4  
1.2  
V
= 5V  
V
= 5V  
CC  
CC  
1.0  
0.8  
0.6  
0.4  
0.2  
0
90  
85  
80  
30 50  
30 50  
70 90 110 130 150  
–50 –30 –10 10  
70 90 110 130 150  
–50 –30 –10 10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
38035 G13  
38035 G14  
38035f  
5
LTC3803-5  
U
U
U
PI FU CTIO S  
ITH/RUN (Pin 1): This pin performs two functions. It SENSE (Pin 4): This pin performs two functions. It moni-  
servesastheerroramplifiercompensationpointaswellas tors switch current by reading the voltage across an  
the run/shutdown control input. Nominal voltage range is external current sense resistor to ground. It also injects a  
0.7V to 1.9V. Forcing this pin below 0.28V causes the current ramp that develops slope compensation voltage  
LTC3803-5 to shut down. In shutdown mode, the NGATE across an optional external programming resistor.  
pin is held low.  
VCC (Pin5):SupplyPin.MustbecloselydecoupledtoGND  
(Pin 2).  
GND (Pin 2): Ground Pin.  
V
FB (Pin 3): Receives the feedback voltage from an exter- NGATE (Pin 6): Gate Drive for the External N-Channel  
nal resistive divider across the output.  
MOSFET. This pin swings from 0V to VCC.  
W
BLOCK DIAGRA  
5
V
CC  
SHUTDOWN  
COMPARATOR  
0.3µA 0.28V  
+
V
CC  
< V  
TURNON  
UNDERVOLTAGE  
LOCKOUT  
V
CC  
SHUNT  
800mV  
REFERENCE  
REGULATOR  
SHUTDOWN  
SOFT-  
START  
CLAMP  
CURRENT  
COMPARATOR  
V
+
CC  
ERROR  
AMPLIFIER  
GATE  
DRIVER  
+
SWITCHING  
R
S
NGATE  
LOGIC AND  
BLANKING  
CIRCUIT  
Q
6
V
FB  
3
2
SLOPE  
COMP  
CURRENT  
RAMP  
20mV  
GND  
200kHz  
OSCILLATOR  
1.2V  
SENSE  
4
I
/RUN  
TH  
1
38035 BD  
38035f  
6
LTC3803-5  
U
OPERATIO  
The LTC3803-5 is a constant frequency current mode  
controller for flyback, SEPIC and DC/DC boost converter  
applications in a tiny ThinSOT package. The LTC3803-5 is  
designed so that none of its pins need to come in contact  
with the input or output voltages of the power supply  
circuit of which it is a part, allowing the conversion of  
voltageswellbeyondtheLTC3803-5’sabsolutemaximum  
ratings.  
decreased whenever output voltage exceeds nominal, the  
voltage regulation loop is closed. For example, whenever  
the load current increases, output voltage will decrease  
slightly, and sensing this, the error amplifier raises the  
ITH/RUN voltage by sourcing current into the ITH/RUN pin,  
raising the current comparator threshold, thus increasing  
the peak currents through the transformer primary and  
secondary. This delivers more current to the load, bring-  
ing the output voltage back up.  
Main Control Loop  
The ITH/RUN pin serves as the compensation point for the  
control loop. Typically, an external series RC network is  
connected from ITH/RUN to ground and is chosen for  
optimal response to load and line transients. The imped-  
ance of this RC network converts the output current of the  
error amplifier to the ITH/RUN voltage which sets the  
current comparator threshold and commands consider-  
able influence over the dynamics of the voltage regulation  
loop.  
Due to space limitations, the basics of current mode  
DC/DC conversion will not be discussed here; instead, the  
reader is referred to the detailed treatment in Application  
Note 19, or in texts such as Abraham Pressman’s Switch-  
ing Power Supply Design.  
Please refer to the Block Diagram and the Typical Applica-  
tion on the front page of this data sheet. An external  
resistive voltage divider presents a fraction of the output  
voltagetotheVFB pin.Thedividermustbedesignedsothat  
when the output is at the desired voltage, the VFB pin  
voltage will equal the 800mV from the internal reference.  
If the load current increases, the output voltage will  
decrease slightly, causing the VFB pin voltage to fall below  
800mV. The error amplifier responds by feeding current  
into the ITH/RUN pin. If the load current decreases, the VFB  
voltage will rise above 800mV and the error amplifier will  
sink current away from the ITH/RUN pin.  
Start-Up/Shutdown  
TheLTC3803-5hastwoshutdownmechanismstodisable  
and enable operation: an undervoltage lockout on the VCC  
supply pin voltage, and a forced shutdown whenever  
externalcircuitrydrivestheITH/RUNpinlow.TheLTC3803-  
5 transitions into and out of shutdown according to the  
state diagram (Figure 1).  
ThevoltageattheITH/RUNpincommandsthepulse-width  
modulator formed by the oscillator, current comparator  
and RS latch. Specifically, the voltage at the ITH/RUN pin  
sets the current comparator’s trip threshold. The current  
comparator monitors the voltage across a current sense  
resistor in series with the source terminal of the external  
MOSFET. The LTC3803-5 turns on the external power  
MOSFET when the internal free-running 200kHz oscillator  
setstheRSlatch. ItturnsofftheMOSFETwhenthecurrent  
comparator resets the latch or when 80% duty cycle is  
reached, whichever happens first. In this way, the peak  
current levels through the flyback transformer’s primary  
and secondary are controlled by the ITH/RUN voltage.  
LTC3803-5  
SHUT DOWN  
V
> V  
ITH/RUN  
ITHSHDN  
TURNON  
V
< V  
TURNOFF  
V
< V  
ITHSHDN  
CC  
(NOMINALLY 4V)  
ITH/RUN  
(NOMINALLY 0.28V)  
AND V > V  
CC  
(NOMINALLY 4.8V)  
LTC3803-5  
ENABLED  
38035 F01  
Figure 1. Start-Up/Shutdown State Diagram  
Since the ITH/RUN voltage is increased by the error ampli-  
fier whenever the output voltage is below nominal, and  
38035f  
7
LTC3803-5  
U
OPERATIO  
The undervoltage lockout (UVLO) mechanism prevents  
the LTC3803-5 from trying to drive a MOSFET with insuf-  
ficient VGS. The voltage at the VCC pin must exceed  
Powering the LTC3803-5  
In the simplest case, the LTC3803-5 can be powered from  
a high voltage supply through a resistor. A built-in shunt  
regulator from the VCC pin to GND will draw as much  
current as needed through this resistor to regulate the VCC  
voltage to around 8V as long as the VCC pin is not forced  
to sink more than 25mA. This shunt regulator is always  
active, even when the LTC3803-5 is in shutdown, since it  
serves the vital function of protecting the VCC pin from  
seeing too much voltage.  
V
TURNON (nominally 4.8V) at least momentarily to enable  
LTC3803-5 operation. The VCC voltage is then allowed to  
fall to VTURNOFF (nominally 4V) before undervoltage lock-  
out disables the LTC3803-5.  
The ITH/RUN pin can be driven below VSHDN (nominally  
0.28V)toforcetheLTC3803-5intoshutdown. Aninternal  
0.3µA current source always tries to pull this pin towards  
VCC. When the ITH/RUN pin voltage is allowed to exceed  
VSHDN, and VCC exceeds VTURNON, the LTC3803-5 begins  
to operate and an internal clamp immediately pulls the  
ITH/RUN pin up to about 0.7V. In operation, the ITH/RUN  
pin voltage will vary from roughly 0.7V to 1.9V to repre-  
sent current comparator thresholds from zero to maxi-  
mum.  
The VCC pin must be bypassed to ground immediately  
adjacent to the IC pins with a ceramic or tantalum capaci-  
tor. Proper supply bypassing is necessary to supply the  
high transient currents required by the MOSFET gate  
driver. 10µF is a good starting point.  
Adjustable Slope Compensation  
The LTC3803-5 injects a 5µA peak current ramp out  
through its SENSE pin which can be used for slope  
compensation in designs that require it. This current ramp  
is approximately linear and begins at zero current at 6.5%  
duty cycle, reaching peak current at 80% duty cycle.  
Additional details are provided in the Applications Infor-  
mation section.  
Internal Soft-Start  
An internal soft-start feature is enabled whenever the  
LTC3803-5 comes out of shutdown. Specifically, the  
ITH/RUNvoltageisclampedandispreventedfromreach-  
ing maximum until roughly 0.7ms has passed. This  
allows the input and output currents of LTC3803-5-  
based power supplies to rise in a smooth and controlled  
manner on start-up.  
38035f  
8
LTC3803-5  
W U U  
APPLICATIO S I FOR ATIO  
U
Many LTC3803-5 application circuits can be derived from  
TRANSFORMER DESIGN CONSIDERATIONS  
the topology shown in Figure 2.  
Transformer specification and design is perhaps the most  
critical part of applying the LTC3803-5 successfully. In  
addition to the usual list of caveats dealing with high  
frequencypowertransformerdesign,thefollowingshould  
prove useful.  
The LTC3803-5 itself imposes no limits on allowed power  
output, input voltage VIN or desired regulated output  
voltageVOUT;thesearealldeterminedbytheratingsonthe  
external power components. The key factors are: Q1’s  
maximum drain-source voltage (BVDSS), on-resistance  
(RDS(ON)) and maximum drain current, T1’s saturation  
flux level and winding insulation breakdown voltages, CIN  
and COUT’s maximum working voltage, ESR, and maxi-  
mum ripple current ratings, and D1 and RSENSE’s power  
ratings.  
Turns Ratios  
Due to the use of the external feedback resistor divider  
ratio to set output voltage, the user has relative freedom in  
selecting transformer turns ratio to suit a given applica-  
tion. Simple ratios of small integers, e.g., 1:1, 2:1, 3:2, etc.  
canbeemployedwhichyieldmorefreedominsettingtotal  
turns and mutual inductance. Simple integer turns ratios  
alsofacilitatetheuseofoff-the-shelfconfigurabletrans-  
formers such as the Coiltronics VERSA-PACTM series in  
applications with high input to output voltage ratios. For  
example, if a 6-winding VERSA-PAC is used with three  
windings in series on the primary and three windings in  
parallelonthesecondary,a3:1turnsratiowillbeachieved.  
V
IN  
D1  
T1  
V
OUT  
R
C
VCC  
C
L
L
SEC  
OUT  
IN PRI  
5
C
VCC  
V
CC  
1
2
6
I
/RUN NGATE  
LTC3803-5  
Q1  
TH  
C
C
R
SL  
4
GND  
R1  
SENSE  
V
FB  
R
SENSE  
Turns ratio can be chosen on the basis of desired duty  
cycle. However, remember that the input supply voltage  
plus the secondary-to-primary referred version of the  
flyback pulse (including leakage spike) must not exceed  
the allowed external MOSFET breakdown rating.  
3
R2  
38035 F02  
Figure 2. Typical LTC3803-5 Application Circuit  
SELECTING FEEDBACK RESISTOR DIVIDER VALUES  
Leakage Inductance  
The regulated output voltage is determined by the resistor  
divider across VOUT (R1 and R2 in Figure 2). The ratio of  
R2 to R1 needed to produce a desired VOUT can be  
calculated:  
Transformer leakage inductance (on either the primary or  
secondary) causes a voltage spike to occur after the  
output switch (Q1) turn-off. This is increasingly promi-  
nent at higher load currents, where more stored energy  
must be dissipated. In some cases a “snubber” circuit will  
be required to avoid overvoltage breakdown at the  
MOSFET’s drain node. Application Note 19 is a good  
reference on snubber design.  
VOUT – 0.8V  
R2 =  
R1  
0.8V  
Choose resistance values for R1 and R2 to be as large as  
possible in order to minimize any efficiency loss due to the  
static current drawn from VOUT, but just small enough so  
that when VOUT is in regulation, the error caused by the  
nonzero input current to the VFB pin is less than 1%. A  
good rule of thumb is to choose R1 to be 80k or less.  
A bifilar or similar winding technique is a good way to  
minimize troublesome leakage inductances. However,  
remember that this will limit the primary-to-secondary  
breakdown voltage, so bifilar winding is not always  
practical.  
VERSA-PAC is a trademark of Coiltronics, Inc.  
38035f  
9
LTC3803-5  
W U U  
U
APPLICATIO S I FOR ATIO  
CURRENT SENSE RESISTOR CONSIDERATIONS  
against subharmonic oscillation. The amount of reduction  
in the current comparator threshold (VSENSE) can be  
calculated using the following equation:  
The external current sense resistor (RSENSE in Figure 2)  
allows the user to optimize the current limit behavior for  
the particular application. As the current sense resistor is  
varied from several ohms down to tens of milliohms, peak  
switchcurrentgoesfromafractionofanamperetoseveral  
amperes. Care must be taken to ensure proper circuit  
operation, especially with small current sense resistor  
values.  
Duty Cycle – 6.5%  
VSENSE  
=
5µA •RSL  
73.5%  
Note: LTC3803-5 enforces 6.5% < Duty Cycle < 80%.  
A good starting value for RSL is 5.9k, which gives a 30mV  
drop in current comparator threshold at 80% duty cycle.  
DesignsnotneedingslopecompensationmayreplaceRSL  
with a short circuit.  
For example, a peak switch current of 5A requires a sense  
resistor of 0.020. Note that the instantaneous peak  
power in the sense resistor is 0.5W and it must be rated  
accordingly. The LTC3803-5 has only a single sense line  
to this resistor. Therefore, any parasitic resistance in the  
ground side connection of the sense resistor will increase  
its apparent value. In the case of a 0.020sense resistor,  
one milliohm of parasitic resistance will cause a 5%  
reduction in peak switch current. So the resistance of  
printed circuit copper traces and vias cannot necessarily  
be ignored.  
VCC SHUNT REGULATOR  
An internal shunt regulator allows the LTC3803-5 to be  
powered through a single dropping resistor from VIN to  
VCC, in conjunction with a bypass capacitor, CVCC, that  
closely decouples VCC to GND (see Figure 3). The shunt  
regulator can draw up to 25mA through the VCC pin to  
GND to drop enough voltage across RVCC to regulate VCC  
to around 8V. For applications where VIN is low enough  
such that the static power dissipation in RVCC is accept-  
able, using the VCC shunt regulator is the simplest way to  
power the LTC3803-5.  
PROGRAMMABLE SLOPE COMPENSATION  
The LTC3803-5 injects a ramping current through its  
SENSE pin into an external slope compensation resistor  
(RSL in Figure 2). This current ramp starts at zero right  
after the NGATE pin has been high for the LTC3803-5’s  
minimum duty cycle of 6.5%. The current rises linearly  
towards a peak of 5µA at the maximum duty cycle of 80%,  
shuttingoffoncetheNGATEpingoeslow.Aseriesresistor  
(RSL) connecting the SENSE pin to the current sense  
resistor (RSENSE) thus develops a ramping voltage drop.  
From the perspective of the SENSE pin, this ramping  
voltage adds to the voltage across the sense resistor,  
effectively reducing the current comparator threshold in  
proportion to duty cycle. This stabilizes the control loop  
EXTERNAL PREREGULATOR  
The circuit in Figure 4 shows another way to power the  
LTC3803-5. An external series preregulator consisting of  
series pass transistor Q1, Zener diode D1, and bias resis-  
tor RB brings VCC above the VCC turn-on threshold, en-  
abling the LTC3803-5.  
8V TO  
75 V  
IN  
V
IN  
Q1  
MMBTA42  
R
B
LTC3803-5  
100k  
R
LTC3803-5  
VCC  
V
CC  
V
CC  
C
VCC  
0.1µF  
D1  
6.8V  
GND  
GND  
C
VCC  
38035 F04  
38035 F03  
Figure 4. Powering the LTC3803-5  
with an External Preregulator  
Figure 3. Powering the LTC3803-5  
Via the Internal Shunt Regulator  
38035f  
10  
LTC3803-5  
U
TYPICAL APPLICATIO S  
2W Isolated Housekeeping Telecom Converter  
BAS516  
PRIMARY SIDE  
10V, 100mA  
OUTPUT  
T1  
2.2µF  
1µF  
BAS516  
V
IN  
36V TO 75V  
SECONDARY SIDE  
10V, 100mA  
OUTPUT  
2.2µF  
BAS516  
9.2k  
1
1k 220k  
SECONDARY  
SIDE GROUND  
1nF  
LTC3803-5  
/RUN NGATE  
22k  
6
I
FDC2512  
TH  
2
3
5
4
V
GND  
CC  
T1: PULSE ENGINEERING PA0648  
OR TYCO TTI8698  
806  
5.6k  
1µF  
V
SENSE  
FB  
0.1Ω  
38035 TA03  
PRIMARY GROUND  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
38035f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC3803-5  
U
TYPICAL APPLICATIO S  
90% Efficient Synchronous Flyback Converter  
Synchronous Flyback 5VOUT  
Synchronous Flyback 3.3VOUT  
V
3.3V  
1.5A  
*
OUT  
V
IN  
36V TO 72V  
T1  
Q2  
D1  
92  
91  
90  
89  
88  
87  
86  
85  
91  
C
C
IN  
270k  
O
1n  
33k  
1
2
3
6
5
4
90  
89  
88  
I
/RUN  
Q1  
GATE  
LTC3803-5  
TH  
0.1µF  
560  
5k  
V
GND  
CC  
8.06k  
SENSE  
V
FB  
25.5k*  
38035 TA04a  
1µF  
10V  
R
R
CS  
FB  
V
OUT  
0.5  
1.0  
1.5  
2.0  
2.5  
0.5  
1.5  
2.0  
1.0  
T1: PULSE ENGINEERING PA1006  
Q1: FAIRCHILD FDC2512  
Q2: VISHAY Si9803  
D1: PHILIPS BAS516  
R : VISHAY OR IRC, 80m  
CS  
: TDK 1µF, 100V, X5R *FOR 5V OUTPUT CHANGE  
IN  
OUTPUT CURRENT (A)  
38035 TA04c  
OUTPUT CURRENT (A)  
38035 TA04b  
C
C
: TDK 100µF, 6.3V, X5R  
R
TO 42.2k  
O
FB  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT®1425  
Isolated Flyback Switching Regulator  
with No External Power Devices  
No Optoisolator or “Third Winding” Required, Up to 6W Output  
LT1725  
General Purpose Isolated Flyback Controller  
No Optoisolator Required, V and V  
Power Components  
Limited Only by External  
IN  
OUT  
LTC1772  
LTC1871  
LTC1872  
SOT-23 Constant Frequency Current Mode Step-Down  
DC/DC Controller  
550kHz Switching Frequency, 2.4V to 9.8V V Range  
IN  
Wide Input Range, No R  
TM Current Mode  
Adjustable Switching Frequency, Programmable Undervoltage  
Lockout, Optional Burst Mode® Operation at Light Load  
SENSE  
Flyback, Boost and SEPIC Controller  
SOT-23 Constant Frequency Current Mode Boost DC/DC  
Controller  
550kHz Switching Frequency, 2.4V to 9.8V V Range  
IN  
LT1950  
LT1952  
Current Mode PWM Controller  
Current Mode PWM Controller  
Controller for Forward Converters from 30W to 300W  
Synchronous Controller for Forward Converters from  
30W to 500W  
LT3420  
Photoflash Capacitor Charger with Automatic Refresh  
Photoflash Capacitor Charger in 5-Pin SOT-23  
Synchronous Flyback Controller  
Specialized Flyback Charges High Voltage Photoflash Capacitors  
Quickly and Efficiently  
LT3468/LT3468-1  
LTC3806  
Minimal Component Count, Uses Small Transformers;  
V
from 2.5V to 16V  
IN  
High Efficiency (89%); Multiple Output with  
Excellent Cross Regulation  
LTC4441  
6A N-Channel MOSFET Driver  
Gate Drive Adjustable from 5V to 8V, Adjustable Blanking  
Prevents Ringing, 10-Lead MSSOP Package  
Burst Mode is a registered trademark of Linear Technology Corporation. No R  
is a trademark of Linear Technology Corporation.  
SENSE  
38035f  
LT/TP 1104 1K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY