LTC3816EFE#TRPBF [Linear]

LTC3816 - Single-Phase Wide VIN Range DC/DC Controller for Intel IMVP-6/IMVP-6.5 CPUs; Package: TSSOP; Pins: 38; Temperature Range: -40°C to 85°C;
LTC3816EFE#TRPBF
型号: LTC3816EFE#TRPBF
厂家: Linear    Linear
描述:

LTC3816 - Single-Phase Wide VIN Range DC/DC Controller for Intel IMVP-6/IMVP-6.5 CPUs; Package: TSSOP; Pins: 38; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总44页 (文件大小:758K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3816  
Single-Phase Wide V  
IN  
Range DC/DC Controller for  
Intel IMVP-6/IMVP-6.5 CPUs  
DescripTion  
FeaTures  
The LTC®3816 is a single-phase synchronous step-down  
DC/DCswitchingregulatorcontrollerthatdrivesN-channel  
power MOSFETs in a constant-frequency voltage mode  
architecture. The controller’s leading edge modulation to-  
pologyallowsextremelylowoutputvoltagesandsupports  
a phase-lockable switching frequency up to 550kHz. The  
output voltage is programmed using a 7-bit VID code.  
n
Supports 7-Bit IMVP-6/IMVP-6.5 VID Code and  
Features  
n
Wide V Range: 4.5V to 36V Operation with  
IN  
Optional Line Feedforward Compensation  
n
t
< 35ns, Capable of Very Low Duty Cycle  
ON(MIN)  
n
Temperature Compensated Inductor DCR or Sense  
Resistor Output Current Monitoring  
n
Differential Remote Output Voltage Sensing with  
Programmable Active Voltage Positioning  
Phase-Lockable Fixed Frequency: 150kHz to 550kHz  
TheLTC3816featuresalloftheIMVP-6/IMVP-6.5require-  
ments, including start-up to a preset boot voltage, differ-  
ential remote output voltage sensing with programmable  
n
n
n
n
n
n
n
n
Programmable UVLO, Preset V  
at Boot-Up  
OUT  
active voltage positioning, I  
output current reporting,  
MON  
Programmable Slow Slew Rate Sleep State Exit  
Internal LDO for Single Supply Operation  
Overvoltage and Overcurrent Protection  
PWRGD and VRTT# Thermal Throttling Flags  
Power Optimization During Sleep and Light Load  
38-Pin Thermally Enhanced eTSSOP and 5mm × 7mm  
QFN Packages  
power optimization during sleep state, and fast or slow  
slew rate sleep state exit.  
Fault protection features include input undervoltage  
lockout, cycle-by-cycle current limit, output overvoltage  
protection, and PWRGD and overtemperature flags.  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and R  
SENSE  
is a trademark of Linear Technology Corporation. All other trademarks are the property of their  
respective owners. Protected by U.S. Patents, including 5408150, 5055767, 5481178, 6580258.  
applicaTions  
n
Embedded Computing  
n
Mobile Computers, Internet Devices  
n
Navigation Displays  
Typical applicaTion  
High Efficiency, Synchronous IMVP-6/ IMVP-6.5 Step-Down Controller  
V
V3  
CCP  
1.1V  
V
IN  
3.3V  
Efficiency and Power Loss  
vs Load Current  
4.5V TO 36V  
+
47µF s2 + 10µF s2  
4.7µF  
56Ω 1.9k 1.9k  
V
EXTV  
INTV  
IN  
CC  
CC  
TG  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
9
8
7
6
5
4
3
2
1
0
V
V
= 12V, f  
CC(CORE)  
FORCED CONTINUOUS MODE  
= 400kHz  
= 0.75V, V  
PWRGD  
CLKEN#  
VRTT#  
PWRGD  
CLKEN#  
VRTT#  
IN  
OSC  
0.33µH,  
1.3mΩ  
= 5V  
EXTVCC  
0.1µF  
BOOST  
SW  
VR  
ON  
VR  
ON  
V
CC(CORE)  
NTC  
10k  
+
DPRSLPVR  
DPRSLPVR  
MODE/SYNC  
RFREQ  
BG  
330µF s3  
+ 10µF s20  
MODE/SYNC  
INTV  
BSOURCE  
CC  
EFFICIENCY  
2.55k  
LFF  
LTC3816  
I
SENP  
SENN  
VID0-VID6  
0.1µF  
I
RPTC  
CSLEW  
SS  
6.98k  
8.25k  
I
MAX  
R
22pF  
PTC  
I
TCFB  
V
+ V  
EXTVCC  
LOSS  
IN  
470pF  
15nF  
14k  
I
TC  
5.1k  
10k  
I
MON  
PREI  
I
SERVO  
0.01  
0.1  
1
10  
MON  
MON  
21k  
12k  
15nF  
22pF  
LOAD CURRENT (A)  
V
FB  
V
V
3816 TA01b  
CC(SEN)  
SS(SEN)  
2.2nF  
10pF  
COMP  
3816 TA01  
GND  
3816f  
LTC3816  
absoluTe MaxiMuM raTings (Notes 1, 8)  
Input Supply Voltage (V )......................... –0.3V to 40V  
DPRSLPVR, VRTT# .................................. –0.3V to 3.3V  
SS(SEN)  
IN  
Topside Driver Voltage (BOOST)................ –0.3V to 46V  
V
, BSOURCE ................................. –0.3V to 0.3V  
Switch Voltage (SW)..................................... –5V to 40V  
INTV RMS Output Current .................................50mA  
CC  
INTV , EXTV , (BOOST-SW) .................. –0.3V to 6V  
Operating Junction Temperature Range  
CC  
CC  
, PREI  
I
, I  
, I  
, RPTC, VR , V ,  
(Note 3).................................................. –40°C to 125°C  
Storage Temperature Range .................. –65°C to 125°C  
Lead Temperature (Soldering, 10sec)  
SENN TCFB  
MON MON  
ON CC(SEN)  
V , SS, VIDn, RFREQ, MODE/SYNC,  
FB  
LFF, I  
, I  
.........................–0.3V to INTV + 0.3V  
SENP MAX CC  
PWRGD, CLKEN# ........................................ –0.3V to 6V  
eTSSOP.............................................................300°C  
pin conFiguraTion  
TOP VIEW  
1
2
I
I
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
I
MAX  
SENN  
TOP VIEW  
I
SENP  
TCFB  
3
LFF  
I
TC  
38 37 36 35 34 33 32  
4
VRTT#  
CLKEN#  
PWRGD  
SW  
PREI  
I
MON  
MON  
PREI  
I
1
2
3
4
5
6
7
8
9
31 CLKEN#  
30 PWRGD  
5
MON  
MON  
6
RPTC  
VR  
RPTC  
SW  
TG  
29  
28  
7
ON  
VR  
ON  
8
TG  
V
V
SS(SEN)  
V
V
27 BOOST  
SS(SEN)  
9
BOOST  
CC(SEN)  
SERVO  
V
26  
CC(SEN)  
SERVO  
IN  
39  
39  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
V
IN  
GND  
25 EXTV  
CC  
EXTV  
CC  
V
FB  
V
FB  
24 INTV  
23 BG  
CC  
INTV  
CC  
COMP  
SS  
COMP  
BG  
SS 10  
22 BSOURCE  
BSOURCE  
MODE/SYNC  
RFREQ  
VID6  
DPRSLPVR  
CSLEW  
VID0  
DPRSLPVR 11  
CSLEW 12  
21 MODE/SYNC  
20  
RFREQ  
13 14 15 16 17 18 19  
UHF PACKAGE  
VID1  
VID5  
VID2  
VID4  
VID3  
38-LEAD (5mm s 7mm) PLASTIC QFN  
= 125°C, θ = 34°C/W  
T
JMAX  
JA  
FE PACKAGE  
EXPOSED PAD (PIN 39) IS GND, MUST BE SOLDERED TO PCB  
38-LEAD PLASTIC eTSSOP  
T
= 125°C, θ = 29°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 39) IS GND, MUST BE SOLDERED TO PCB  
3816f  
LTC3816  
orDer inForMaTion  
LEAD FREE FINISH  
LTC3816EFE#PBF  
LTC3816IFE#PBF  
LTC3816EUHF#PBF  
LTC3816IUHF#PBF  
TAPE AND REEL  
PART MARKING*  
LTC3816FE  
LTC3816FE  
3816  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
LTC3816EFE#TRPBF  
LTC3816IFE#TRPBF  
LTC3816EUHF#TRPBF  
LTC3816IUHF#TRPBF  
38-Lead Plastic eTSSOP  
38-Lead Plastic eTSSOP  
38-Lead (5mm × 7mm) Plastic QFN  
38-Lead (5mm × 7mm) Plastic QFN  
3816  
Consult LTC Marketing for parts specified with wider operating junction temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, BSOURCE = EXTVCC = 0V, VRON = 5V, unless  
otherwise noted. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Supply Input and INTV Linear Regulator  
CC  
l
l
V
V
V
Supply Voltage Range  
Supply Current  
V
V
> V  
UVLO  
4.5  
36  
V
IN  
IN  
IN  
INTVCC  
I
VIN  
Normal Mode  
Shutdown  
= V  
, f  
= 400kHz (Note 4)  
11  
27  
mA  
µA  
BOOST  
ON  
INTVCC OSC  
VR = 0V  
100  
5.5  
INTV  
Internal V Voltage  
4.9  
4.25  
3.7  
5.2  
V
%
%
V
CC  
CC  
V
V
V
V
V
V
Line Regulation  
Load Regulation  
7.5V < V < 36V  
1.0  
INTVCC(LINE)  
INTVCC(LOAD)  
EXTVCC  
IN  
Load = 0mA to 20mA  
–0.25  
4.50  
0.4  
–1.0  
4.75  
EXTV Switchover Voltage  
EXTV Ramping Positive  
CC  
CC  
EXTV Hysteresis  
V
EXTVCC(HYS)  
EXTVCC(DROP)  
UVLO  
CC  
EXTV Voltage Drop  
Load = 20mA, V  
= 5V  
40  
100  
4.1  
mV  
V
CC  
EXTVCC  
INTV Undervoltage Reset  
INTV Ramping Positive  
3.9  
CC  
CC  
Undervoltage Hystersis  
0.4  
V
Switcher Control Loop  
l
l
l
V
V
= (V  
– V  
)
V > 0.75V (Note 5)  
CC(CORE)  
0.75  
6
10  
%
mV  
mV  
CC(CORE)  
CC(CORE)  
CC(SEN)  
SS(SEN)  
0.5V ≤ V  
0.3V ≤ V  
≤ 0.75V (Note 5)  
CC(CORE)  
CC(CORE)  
< 0.5V (Note 5)  
V
Voltage Line Regulation  
V
= 7.5V to 36V (Note 5)  
0.002  
80  
%/V  
dB  
V  
CC(CORE)  
IN  
CC(CORE)  
A
EA  
Error Amplifier DC Gain  
No load  
(Note 6)  
f
I
Error Amplifier Unity-Gain Bandwidth  
20  
MHz  
BW  
Error Amplifier Output Source Current  
Error Amplifier Output Sink Current  
V
COMP  
V
COMP  
= 0V  
= 5V  
–1.5  
mA  
mA  
COMP  
5
I
I
I
I
V
V
V
Input Current  
Input Current  
V
V
= V  
, 0V ≤ V ≤ 1.5V  
CC(SEN)  
30  
–60  
0.1  
0.1  
µA  
µA  
µA  
µA  
VCC(SEN)  
VSS(SEN)  
VFB  
CC(SEN)  
SS(SEN)  
ISENN  
CC(SEN)  
= 0V  
SS(SEN)  
Input Current  
0V ≤ V ≤ 2V  
FB  
FB  
I
Input Current  
0V ≤ V  
≤ 1.5V  
ITCFB  
TCFB  
ITCFB  
3816f  
LTC3816  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, BSOURCE = EXTVCC = 0V, VRON = 5V, unless  
otherwise noted. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Core Supply Start-Up Voltage  
V
V
= INTV (IMVP-6 Configuration)  
1.2  
1.1  
V
V
BOOT  
OVF  
IMON  
IMON  
CC  
< 1.1V (IMVP-6.5 Configuration)  
l
l
V
Overvoltage Fault Threshold  
V
IMON  
V
IMON  
= INTV (IMVP-6 Configuration)  
1.65  
1.53  
1.7  
1.55  
V
V
CC  
< 1.1V (IMVP-6.5 Configuration)  
I
I
SS Pull-Up Current  
V
V
= 0V  
–1  
µA  
SS  
SS  
CSLEW Pull-Up Current  
= 0V  
CSLEW  
CSLEW  
IMVP-6 and V  
IMVP-6.5 or V  
= INTV  
= 0V  
–10  
–40  
µA  
µA  
DPRSLPVR  
DPRSLPVR  
CC  
I
RPTC Source Current  
RPTC = 0V  
–90  
–100  
0.47  
–110  
–11  
µA  
V
RPTC  
V
I
RPTC Thermal Shutdown Threshold  
RPTC  
l
I
Source Current  
MAX  
–9  
35  
–10  
–20  
µA  
µA  
V
IMAX  
V
IMAX  
= 0V, 1× Current Limit Duration  
= 0V, 2× Current Limit Duration  
MAX  
45  
630  
µs  
µs  
t
2× Current Limit Duration  
2× Current Limit Period  
IMAX2×  
V
V
Current Comparator Offset  
V
V
= 1.0V, V  
= V  
– V  
IMAX  
3
2
mV  
mV  
µA  
µA  
V
ILIM  
IMAX  
ILIM  
ISENP  
Reverse-Current Comparator Offset  
= 1.0V, V  
= V  
– V  
ISENP ISENN  
IREV  
ISENN  
IREV  
I
I
I
I
Input Current  
Input Current  
0V ≤ V  
0V ≤ V  
≤ 1.5V  
≤ 1.5V  
1
ISENP  
ISENN  
SENP  
SENN  
ISENP  
ISENN  
20  
V
IMVP-6/IMVP-6.5 Selection Threshold  
Regulator On Source Current  
2.4  
–1  
IMON  
I
VR = 0V  
µA  
VRON  
ON  
VR  
ON  
Regulator On Threshold  
Regulator Power-Down Threshold  
Rising Edge  
Falling Edge  
1.18  
1.2  
0.65  
1.22  
V
V
Oscillator and Drivers  
f
Oscillator Frequency  
RFREQ Floats  
375  
180  
530  
400  
210  
580  
425  
240  
640  
kHz  
kHz  
kHz  
OSC  
V
V
= 0V  
RFREQ  
RFREQ  
= 2.5V  
f
Minimum Synchronization Input Frequency  
Maximum Synchronization Input Frequency  
150  
kHz  
kHz  
SYNC  
550  
–9  
V
MODE/SYNC Synchronization Threshold  
RFREQ Source Current  
1.6  
V
SYNC  
I
V
RFREQ  
= 0V  
–10  
–11  
µA  
RFREQ  
V
MODE  
MODE/SYNC Force Continuous Threshold  
V
IMON  
V
IMON  
= INTV (IMVP-6 Configuration)  
1.6  
0.5  
V
V
CC  
< 1.1V (IMVP-6.5 Configuration)  
DC  
Maximum TG Duty Cycle  
MODE/SYNC = 0, RFREQ Floats  
(Note 6)  
90  
35  
%
ns  
ns  
Ω
Ω
Ω
Ω
MAX  
ON(MIN)  
DEAD  
t
t
TG Minimum Pulse Width  
Driver Dead-Time  
30  
TG R  
TG R  
BG R  
BG R  
TG Driver Pull-Up On-Resistance  
TG Driver Pull-Down On-Resistance  
BG Driver Pull-Up On-Resistance  
BG Driver Pull-Down On-Resistance  
TG High, I  
= –100mA (Note 7)  
= 100mA (Note 7)  
= –100mA (Note 7)  
= 100mA (Note 7)  
2.6  
1.2  
2.6  
0.9  
UP  
OUT  
TG Low, I  
DOWN  
UP  
OUT  
BG High, I  
OUT  
BG Low, I  
DOWN  
OUT  
3816f  
LTC3816  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, BSOURCE = EXTVCC = 0V, VRON = 5V, unless  
otherwise noted. (Notes 2, 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
0.3  
1
UNITS  
VID, DPRSLPVR, LFF Parameters  
V
V
VID Input Low Threshold  
VID Input High Threshold  
VID Input Leakage Current  
DPRSLPVR Input Threshold  
LFF Pull-Up Current  
V
V
IL(VID)  
IH(VID)  
VID  
0.7  
I
0V ≤ V ≤ 5V  
µA  
V
VID  
V
V
V
= INTV (IMVP-6 Configuration)  
1.6  
–1  
1
DPRSLPVR  
LFF  
IMON  
CC  
I
LFF  
= 0V  
LFF  
µA  
V
V
LFF Input Threshold  
PWRGD, CLKEN#, VRTT#  
V
Positive Power Good Threshold  
Negative Power Good Threshold  
With Respect to VID V  
150  
–240  
175  
–270  
200  
–300  
mV  
mV  
PWRGD  
CC(CORE)  
I
PWRGD, CLKEN# Leakage Current  
VRTT# Leakage Current  
V
VRTT#  
= V  
= 5V  
CLKEN#  
10  
100  
µA  
µA  
LEAK  
PWRGD  
V
= 3.3V  
V
OL  
PWRGD, CLKEN# Output Low Voltage  
VRTT# Output Low Voltage  
I
I
= 2mA  
= 20mA  
0.1  
0.075  
0.3  
0.18  
V
V
OUT  
OUT  
t
t
PWRGD Glitch Filter  
Power Good to Power Bad  
Rising V Edge to CLKEN#  
750  
75  
µs  
µs  
PWRGD  
l
l
CLKEN# Falling Edge Delay  
50  
5
100  
20  
CLKEN#  
BOOT  
Falling Edge  
t
t
CLKEN# to PWRGD Rising Edge Delay  
10  
ms  
ns  
CLK(PWRGD)  
VR(PWRGD)  
VR to PWRGD Falling Edge Delay  
ON  
VR Falling Edge  
ON  
100  
Note 1: Stresses beyond those listed under Absolute Maximum  
Ratings may cause permanent damage to the device. Exposure to any  
Absolute Maximum Rating condition for extended periods may affect  
device reliability and lifetime.  
Note 4: The dynamic input supply current is a function of the power  
MOSFET gate charging (QG • fOSC). See Applications Information for  
more information.  
Note 5: The LTC3816 is measured in a feedback loop that adjusts  
Note 2: All currents into device pins are positive; all currents out of  
device pins are negative. All voltages are referenced to ground unless  
otherwise specified.  
VCC(SEN) – VSS(SEN) to achieve a specified COMP pin voltage. The AITC  
amplifier is configured as an inverter with gain = –1.  
Note 6: Guaranteed by design, not subject to test.  
Note 3: The LTC3816 is tested under pulse load conditions such that  
TJ ≈ TA. The LTC3816E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 125°C operating  
junction temperature range are assured by design, characterization and  
correlation with statistical process controls. LTC3816I specifications are  
guaranteed over the full –40°C to 125°C operating junction temperature  
range. Note that the maximum ambient temperature consistent with  
these specifications is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal impedance  
Note 7: On-resistance limit is guaranteed by design and correlation  
with statistical process controls.  
Note 8: The LTC3816 includes overtemperature protection that is  
intended to protect the device during momentary overload conditions.  
The maximum rated junction temperature will be exceeded when this  
protection is active. Continuous operation above the specified absolute  
maximum operating junction temperature may impair device reliability  
or permanently damage the device.  
and other environmental factors. T is calculated from the ambient  
J
temperature, T , and power dissipation, P , according to the following  
A
D
formula,  
LTC3816EFE: T = T + (P • 29°C/W)  
J
A
D
LTC3816EUHF: T = T + (P • 34°C/W)  
J
A
D
3816f  
LTC3816  
Typical perForMance characTerisTics  
Efficiency vs Load Current  
Efficiency vs VCC(CORE)  
Efficiency vs VIN with VEXTVCC = 0V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 12V, f  
CC(CORE)  
LAST PAGE CIRCUIT  
= 400kHz  
V
= 12V, f  
= 400kHz, V  
= 0V  
V
V
= 0.75V, f  
= 400kHz  
OSC  
IN  
OSC  
IN  
OSC  
EXTVCC  
CC(CORE)  
= 0.75V, V  
= 0V  
FORCED CONTINOUS MODE  
LAST PAGE CIRCUIT  
= 0V  
EXTVCC  
EXTVCC  
FORCED CONTINOUS MODE  
LAST PAGE CIRCUIT  
PULSE-SKIPPING  
MODE  
FORCED CONTINUOUS  
MODE  
V
= 0.50V  
CC(CORE)  
CC(CORE)  
CC(CORE)  
CC(CORE)  
V
IN  
V
IN  
V
IN  
= 5V  
= 12V  
= 24V  
V
V
V
= 0.75V  
= 1.00V  
= 1.20V  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
3816 G03  
3816 G01  
3816 G02  
Efficiency vs fOSC with  
VEXTVCC = 0V  
Efficiency vs fOSC with  
VEXTVCC = 5V  
Efficiency vs VIN with VEXTVCC = 5V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 12V, V  
EXTVCC  
= 0.75V  
V
V
= 12V, V  
EXTVCC  
= 0.75V  
V
V
= 0.75V, f  
= 400kHz  
IN  
CC(CORE)  
IN  
CC(CORE)  
CC(CORE)  
EXTVCC  
OSC  
= 0V  
= 5V  
= 5V  
FORCED CONTINOUS MODE  
LAST PAGE CIRCUIT  
FORCED CONTINOUS MODE  
LAST PAGE CIRCUIT  
FORCED CONTINOUS MODE  
LAST PAGE CIRCUIT  
f
= 210kHz  
= 400kHz  
= 580kHz  
f
= 210kHz  
= 400kHz  
= 580kHz  
OSC  
OSC  
f
f
V
IN  
V
IN  
= 12V  
= 24V  
OSC  
OSC  
f
f
OSC  
OSC  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
3816 G05  
3816 G06  
3816 G04  
Load Regulation with  
AVP Slope = –3mV/A  
VCC(CORE) vs Temperature  
0.755  
0.754  
0.753  
0.752  
0.751  
0.750  
0.749  
0.748  
0.747  
0.746  
0.745  
10  
0
V
V
= 12V, f  
= 400kHz  
IN  
EXTVCC  
OSC  
= 0V  
AVP SLOPE = –3mV/A  
FORCED CONTINOUS MODE  
LAST PAGE CIRCUIT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
V
V
= 0.5V  
= 1.2V  
CC(CORE)  
CC(CORE)  
–80  
–50  
0
25  
50  
75 100 125  
–25  
0
4
8
12  
28  
16  
20  
24  
TEMPERATURE (°C)  
LOAD CURRENT (A)  
3816 G07  
3816 G08  
3816f  
LTC3816  
Typical perForMance characTerisTics  
Load Regulation vs Temperature  
Line Regulation  
0.7520  
0
f
= 400kHz, V  
= 0V  
OSC  
EXTVCC  
5A LOAD  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
FORCED CONTINUOUS MODE  
NO LOAD  
0.7515  
0.7510  
LAST PAGE CIRCUIT  
PTC CONFIGURATION (FIGURE 12)  
10A LOAD  
R
R
= VISHAY TFPT1206L1002FV  
LPTC  
VDCRP  
= 23.2k, C  
= 10nF  
0.7505  
0.7500  
0.7495  
0.7490  
0.7485  
VDCRP  
NTC CONFIGURATION,  
LAST PAGE CIRCUIT  
NO TEMPERATURE COMPENSATION  
LAST PAGE CIRCUIT, REPLACE NTC  
WITH 10k RESISTOR  
20A LOAD  
IDEAL VALUE  
V
V
= 12V, f  
EXTVCC  
L = VISHAY IHLP5050CE01 0.33µH  
= 400kHz  
OSC  
IN  
= 0V, AVP = –3mV/A  
0.7480  
4
8
16  
(V)  
20  
24  
28  
0
12  
V
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
IN  
3816 G10  
3816 G09  
Load Step in Forced Continuous  
Mode  
VIMON vs Temperature  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= 12V, f  
= 400kHz  
OSC  
IN  
= 0V, AVP = –3mV/A  
EXTVCC  
R
= 5.1k, R  
= 21k  
PREIMON  
IMON  
20A LOAD  
PTC CONFIGURATION (FIGURE 12)  
R
R
= VISHAY TFPT1206L1002FV  
LPTC  
VDCRP  
V
CC(CORE)  
= 23.2k, C  
= 10nF  
VDCRP  
50mV/DIV  
NTC CONFIGURATION,  
LAST PAGE CIRCUIT  
NO TEMPERATURE COMPENSATION  
LAST PAGE CIRCUIT, REPLACE NTC  
WITH 10k RESISTOR  
10A LOAD  
5A LOAD  
LOAD  
CURRENT  
20A/DIV  
IDEAL VALUE  
L = VISHAY IHLP5050CE01 0.33µH  
–50 25 75 100 125  
50  
TEMPERATURE (°C)  
3816 G12  
V
V
OSC  
= 12V  
= 0.75V  
= 400kHz  
20µs/DIV  
0
–25  
IN  
CC(CORE)  
f
3816 G11  
FORCED CONTINUOUS MODE  
AVP SLOPE = –3mV/A  
Narrow TG Pulse Width with Low  
VCC(CORE) Ripple  
Pulse-Skipping Mode at No Load  
with Low VCC(CORE) Ripple  
Pulse-Skipping Mode  
at 0.2A Load  
V
CC(CORE)  
20mV/DIV  
V
V
CC(CORE)  
20mV/DIV  
CC(CORE)  
20mV/DIV  
V
-V  
TG SW  
2V/DIV  
V
BG  
5V/DIV  
V
-V  
TG SW  
2V/DIV  
V
-V  
TG SW  
2V/DIV  
ZOOM IN  
V
-V  
TG SW  
1V/DIV  
V
BG  
V
BG  
5V/DIV  
20ns/DIV  
∆t = 24.6ns  
5V/DIV  
3816 G13  
3816 G14  
3816 G15  
V
V
OSC  
= 28V  
20µs/DIV  
= 0.5V (I = 0.5A)  
V
V
OSC  
= 12V  
100µs/DIV  
V
V
OSC  
= 12V  
5µs/DIV  
= 0.75V (I = 0.2A)  
IN  
CC(CORE)  
IN  
CC(CORE)  
IN  
CC(CORE)  
= 0.75V, NO LOAD  
LOAD  
LOAD  
f
= 400kHz  
f
= 400kHz  
f
= 400kHz  
FORCED CONTINUOUS MODE  
PULSE-SKIPPING MODE  
PULSE-SKIPPING MODE  
3816f  
LTC3816  
Typical perForMance characTerisTics  
Start-Up to VBOOT  
VBOOT to PWRGD Delay  
VRON Shutdown  
V
CC(CORE)  
V
V
CC(CORE)  
200mV/DIV  
CC(CORE)  
200mV/DIV  
200mV/DIV  
CLKEN#  
5V/DIV  
CLKEN#  
5V/DIV  
PWRGD  
5V/DIV  
CLKEN#  
5V/DIV  
PWRGD  
5V/DIV  
PWRGD  
5V/DIV  
VR  
ON  
5V/DIV  
VR  
VR  
ON  
ON  
5V/DIV  
5V/DIV  
3816 G16  
3816 G17  
3816 G18  
V
= 12V  
100µs/DIV  
IMVP6 CONFIGURATION  
= 470pF  
V
= 12V  
2ms/DIV  
IMVP6 CONFIGURATION  
C = 470pF  
SS  
V = 12V  
IN  
VID = 0.75V  
NO LOAD  
10µs/DIV  
IN  
IN  
C
SS  
VID = 0.75V  
NO LOAD  
VID = 0.75V  
NO LOAD  
Momentary Overcurrent,  
45µs IMAX Pulse  
Momentary Overcurrent,  
90µs IMAX Pulse  
2x Overcurrent  
V
V
V
CC(CORE)  
CC(CORE)  
CC(CORE)  
100mV/DIV  
100mV/DIV  
100mV/DIV  
60µs I  
LOAD  
20µs I  
20µs I  
LOAD  
20A/DIV  
LOAD  
10A/DIV  
10A/DIV  
I
I
I
L
L
L
10A/DIV  
10A/DIV  
20A/DIV  
V
V
V
RIMAX  
RIMAX  
RIMAX  
20mV/DIV  
20mV/DIV  
20mV/DIV  
3816 G19  
3816 G20  
3816 G21  
V
V
R
R
= 12V  
10µs/DIV  
V
V
R
R
= 12V  
20µs/DIV  
V
V
R
R
= 12V  
10µs/DIV  
IN  
CC(CORE)  
IN  
CC(CORE)  
IN  
CC(CORE)  
= 1V  
= 1.5k  
= 1mΩ  
= 1V  
= 1.5k  
= 1mΩ  
= 1V  
= 1.5k  
IMAX  
IMAX  
IMAX  
= 1mΩ  
SENSE  
SENSE  
SENSE  
FORCED CONTINUOUS MODE  
FORCED CONTINUOUS MODE  
FORCED CONTINUOUS MODE  
Current Comparator Offset  
vs Common Mode Range  
Current Comparator Offset  
vs Temperature  
Duty Cycle vs VCOMP with Line  
Feedforward  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.0  
2.0  
1.5  
1.0  
0.5  
V
V
= 12V  
– V  
V
V
V
= 12V  
IN  
IMAX  
IN  
ISENN  
= 20mV  
ISENN  
= 1V  
– V  
1.5  
1.0  
= 20mV  
IMAX  
ISENN  
0.5  
0
0
–0.5  
–0.5  
–1.0  
–1.5  
f
= 400kHz  
OSC  
LFF = FLOAT  
–1.0  
–1.5  
–2.0  
V
V
V
V
= 5V  
IN  
IN  
IN  
IN  
= 12V  
= 24V  
= 36V  
–2.0  
0.25  
0.5  
1
–25  
0
50  
75 100 125  
1.8  
(V)  
2.4  
0
1.25  
1.5  
–50  
25  
1.0  
1.4 1.6  
V
2.0  
0.75  
1.2  
2.2  
V
(V)  
TEMPERATURE (°C)  
COMP  
ISENN  
3816 G22  
3816 G23  
3816 G24  
3816f  
LTC3816  
Typical perForMance characTerisTics  
Duty Cycle vs VCOMP without Line  
Feedforward  
fOSC vs Temperature  
VRPTC vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
700  
600  
500  
400  
480  
475  
470  
465  
120  
115  
110  
105  
V
= 12V  
IN  
f
= 400kHz  
OSC  
LFF = 0V  
V
= 2.5V  
RFREQ  
V
POSITIVE THRESHOLD  
NEGATIVE THRESHOLD  
RPTC  
RFREQ FLOATS  
V
RPTC  
300  
200  
100  
460  
455  
450  
100  
95  
V
= 0V  
50  
RFREQ  
25  
90  
100 125  
50  
100 125  
–50 –25  
0
75  
–50 –25  
0
25  
75  
1.0  
1.4 1.6 1.8  
(V)  
2.0 2.2 2.4  
1.2  
V
TEMPERATURE (°C)  
TEMPERATURE (°C)  
COMP  
3816 G26  
3816 G27  
3816 G25  
IIMAX, IRFREQ and IRPTC  
vs Temperature  
VRON vs Temperature  
INTVCC UVLO vs Temperature  
11.50  
11.25  
11.00  
10.75  
10.50  
10.25  
10.00  
9.75  
105.0  
102.5  
100.0  
97.5  
95.0  
92.5  
90.0  
87.5  
85.0  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
4.1  
4.0  
V
= 0V  
EXTVCC  
VR RAMPS HIGH,  
ON  
REGULATOR ON THRESHOLD  
I
RPTC  
V
RAMPS HIGH  
IN  
VR RAMPS LOW,  
ON  
REGULATOR OFF THRESHOLD  
3.9  
3.8  
3.7  
3.6  
3.5  
VR RAMPS HIGH,  
ON  
POWER-UP THRESHOLD  
I
, I  
RFREQ IMAX  
V
RAMPS LOW  
IN  
VR RAMPS LOW,  
ON  
POWER-DOWN THRESHOLD  
9.50  
3.4  
0.5  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
–50 –25  
0
25  
125  
50  
75 100  
TEMPERATURE (°C)  
3816 G28  
3816 G30  
3816 G29  
INTVCC Line Regulation  
INTVCC Load Regulation  
INTVCC Dropout vs Temperature  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
5.4  
5.2  
0
–10  
–20  
–30  
–40  
0
V
= 0V  
V
= 0V  
V
OSC  
= 0V  
EXTVCC  
EXTVCC  
EXTVCC  
f
= 400kHz  
f
= 400kHz  
OSC  
LOAD CURRENT = 20mA  
∆INTV = –1%  
–300  
–600  
–900  
CC  
5.0  
4.8  
4.6  
4.4  
4.2  
V
= 12V  
IN  
V
= 5V  
IN  
4.0  
–1200  
50  
10 15 20 25  
40  
50  
TEMPERATURE (°C)  
125  
0
5
30 35  
0
10  
30  
40  
–50 –25  
0
25  
75 100  
20  
V
(V)  
I
(mA)  
LOAD  
IN  
3816 G31  
3816 G32  
3816 G33  
3816f  
LTC3816  
Typical perForMance characTerisTics  
EXTVCC Switchover Voltage  
vs Temperature  
EXTVCC Voltage Drop  
vs Temperature  
IVIN  
15  
14  
13  
12  
11  
10  
50  
40  
30  
20  
10  
0
120  
100  
80  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4.0  
V
OSC  
= 0V  
V
f
= 5V  
EXTVCC  
EXTVCC  
OSC  
f
= 400kHz  
= 400kHz  
I
= 50mA  
= 20mA  
LOAD  
LOAD  
EXTV RAMPS HIGH  
CC  
I
(SHUTDOWN)  
VIN  
60  
I
40  
20  
0
I
VIN  
EXTV RAMPS LOW  
CC  
NO LOAD  
3.9  
20  
(V)  
0
5
10 15  
25 30 35 40  
50  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
125  
50  
75 100  
V
TEMPERATURE (°C)  
TEMPERATURE (°C)  
IN  
3816 G36  
3816 G35  
3816 G34  
IVIN (Shutdown) vs Temperature  
I
VIN and IEXTVCC vs Temperature  
60  
50  
40  
30  
15  
14  
V
= VR = 0V  
ON  
EXTVCC  
V
OSC  
= 12V  
IN  
f
= 400kHz  
V
= 40V  
IN  
13  
12  
11  
10  
9
V
= 0V, I  
VIN  
EXTVCC  
V
= 12V  
= 5V  
IN  
V
= 5V, I  
EXTVCC  
EXTVCC  
V
20  
10  
0
IN  
8
50  
100 125  
–50 –25  
0
25  
75  
50  
100 125  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3816 G37  
3816 G38  
VCC(SEN) and ISENN Input Current  
vs Common Mode Range  
V
SS(SEN) Input Current  
20  
15  
10  
5
0
–10  
–20  
–30  
V
V
V
V
= 12V  
V
V
V
= 12V  
IN  
IN  
= V  
= V  
ISENN  
ITC  
CC(SEN)  
ITCFB  
= 0V  
ISENN  
ITC  
CC(SEN)  
ITCFB  
= V  
= V  
SS(SEN)  
V
= 0.3V  
CC(CORE)  
I
VCC(SEN)  
V
V
= 0.9V  
= 1.5V  
CC(CORE)  
CC(CORE)  
I
ISENN  
0
–40  
–50  
–5  
–10  
0
0.50 0.75 1.00  
(V)  
1.25 1.50  
0.25  
–0.3  
–0.1  
0
0.1  
0.2  
0.3  
–0.2  
V
CC(SEN)  
V
(V)  
SS(SEN)  
3816 G39  
3816 G40  
3816f  
ꢀ0  
LTC3816  
pin FuncTions (eTSSOP/QFN)  
I
(Pin 1/Pin 36): Current Sense Negative Input. Con-  
VR (Pin 7/Pin 4): Voltage Regulator Enable Input. The  
ON  
SENN  
nect this pin to the negative terminal of the current sense  
resistor or the negative terminal of the inductor DCR  
lowpass filter.  
VR pin power-up threshold is 1.2V. When forced below  
ON  
0.65V, a power-down sequence is initiated where the  
V
output is ramped down near 0V before the IC  
CC(CORE)  
is put into a low current shutdown mode. The VR pin  
ON  
I
(Pin 2/Pin 37): Inductor DCR Temperature Compen-  
TCFB  
has an internal 1µA pull-up current.  
sation Amplifer Feedback Input. To derive the temperature  
compensated voltage dropped across the inductor DCR,  
connect a resistor from the SW node to this pin. An NTC  
network, in parallel with a capacitor, forms the feedback  
path of this amplifier. For applications that use a discrete  
resistor for current sensing, replace the NTC network  
with a resistor.  
V
(Pin 8/Pin 5): Processor V  
Negative  
CC(CORE)  
SS(SEN)  
Terminal Voltage Sense. Negative input of the differential  
sense amplifier. Connect to the processor V pin.  
SS(SEN)  
V
(Pin 9/Pin 6): Processor V  
Positive  
CC(CORE)  
CC(SEN)  
Terminal Voltage Sense. Positive input of the differential  
sense amplifier. Connect to the processor V pin.  
CC(SEN)  
I
(Pin 3/Pin 38): Inductor DCR Temperature Compen-  
TC  
SERVO (Pin 10/Pin 7): Error Amplifier AC Input. The  
controller servos the switcher output voltage to the VID  
DAC voltage through the error amplifier.  
sation Amplifer Output. The I  
circuitry and the error  
MON  
amplifierobtainthetemperaturecompensatedDCRvoltage  
through this amplifier.  
V
FB  
(Pin 11/Pin 8): Error Amplifier Negative Input Pin.  
is servoed to 1.3V.  
FB  
PREI  
(Pin 4/Pin 1): I  
Current Output Setting.  
potential. A resistor from  
MON  
MON  
MON  
V
PREI  
is servoed to the I  
SENN  
COMP (Pin 12/Pin 9): Error Amplifier Output. The COMP  
pin is connected directly to the error amplifier output and  
theinputofthelinefeedforwardcircuit.UseanRCnetwork  
PRE  
toI setstheI  
outputcurrent.FortheIMVP-6  
IMON  
TC  
MON  
configuration, connect this pin to INTV .  
CC  
I
(Pin5/Pin2):IMVP-6/IMVP-6.5ConfigurationSelec-  
MON  
between the COMP pin and the V pin to compensate  
FB  
tionandOutputCurrentMonitor.ConnectthispintoINTV  
CC  
the feedback loop for stability and optimum transient  
toselecttheIMVP-6configuration.Atstart-up,theswitcher  
is ramped to 1.2V (V ). In deeper sleep mode,  
response.  
V
OUT  
BOOT  
SS (Pin 13/Pin 10): Soft-Start Input. The SS pin has an  
internal1µAcurrentsourcepull-up.Acapacitorconnected  
to this pin controls the output voltage start-up. SS is  
the controller enables the slow V  
slew rate. Connect a  
OUT  
resistor to V  
to select the IMVP-6.5 configuration.  
equals 1.1V, slow slew rate is disabled  
current source is proportional to the load. In  
SS(SEN)  
BOOT  
MON  
In this case, V  
forced low if VR or PWRGD is low, or if an overvoltage  
and the I  
ON  
or overcurrent fault occurs. If the potential at SS is less  
the IMVP-6.5 configuration, this pin is internally clamped  
to 1.1V with respect to the V pin.  
than 0.3V, the I  
sourcing current is reduced to 2.5µA  
MAX  
SS(SEN)  
and the current limit threshold is reduced to 25% of its  
nominal value.  
RPTC (Pin 6/Pin 3): Nonlinear PTC Thermistor Input.  
Connect to a nonlinear PTC thermistor for MOSFET or  
inductortemperaturesensing. Thispinispulledupbya  
100µA current source. If the potential at RPTCis higher  
than 0.47V, thermal flag VRTT# is pulled low. RPTC is  
sensitivetonoisepickup.Avoidcouplinghighfrequency  
switching signals to this pin. If required, bypass this  
pin with a capacitor to GND.  
DPRSLPVR (Pin 14/Pin 11): Deeper Sleep Mode. For the  
IMVP-6 configuration, 25µs after DPRSLPVR is asserted  
high, the controller enables the V  
slow slew rate tran-  
OUT  
sition. To disable slow slew rate mode, force DPRSLPVR  
low. Upon power-up, the DPRSLPVR input is ignored until  
PWRGD is asserted.  
3816f  
ꢀꢀ  
LTC3816  
pin FuncTions (eTSSOP/QFN)  
CSLEW (Pin 15/Pin 12): VID DAC Slew Rate Control.  
CSLEW is internally pulled up by a current source. Add a  
capacitor to program the VID DAC transition slew rate. If  
slow slew rate is selected, a 100pF capacitor connected  
to CSLEW results in a VID DAC slew rate of 1.25mV/µs.  
When slow slew rate is disabled, a 100pF capacitor results  
in a VID DAC slew rate of 5mV/µs. Avoid coupling high  
frequency switching signals to this pin. For the IMVP-6.5  
configuration, the slow slew rate function is disabled.  
BSOURCE(Pin25/Pin22):BottomMOSFETSource. Con-  
nect this pin to the source of the bottom power MOSFET.  
Do not short BSOURCE to the LTC3816 exposed pad  
directly.  
BG (Pin 26/Pin 23): Bottom Gate Drive. The BG pin drives  
the gate of the bottom N-channel synchronous switch  
MOSFET.  
INTV (Pin 27/Pin 24): Output of the Internal Linear  
CC  
Low Dropout Regulator. The driver and control circuits  
VID0-VID6 (Pins 16-22/Pins 13-19): VID DAC Voltage  
Control Logic Inputs. See Table 1.  
are powered from this voltage source. The INTV pin  
CC  
must be decoupled to GND with a minimum 4.7µF low  
RFREQ (Pin 23/Pin 20): Frequency Setting. The voltage  
on the RFREQ pin determines the free-running operating  
frequency. The RFREQ pin has an internal 10µA current  
source pull-up allowing the switching frequency to be  
programmed by a single external resistor to GND. Alter-  
natively, this pin can be driven with a DC voltage source  
to control the frequency of the internal oscillator. Floating  
ESR ceramic capacitor (X5R or better).  
EXTV (Pin 28/Pin 25): External Power Input to an Inter-  
CC  
nal Switch Connected to INTV . This switch closes and  
CC  
supplies the IC power, bypassing the internal low dropout  
regulator, whenever EXTV is higher than 4.5V. Do not  
CC  
exceed 6V on this pin.  
V (Pin 29/Pin 26): Main Supply Pin. A bypass capacitor  
this pin or shorting this pin to INTV allows the controller  
IN  
CC  
should be connected from this pin to the GND pin.  
to run at a fixed 400kHz frequency.  
BOOST(Pin30/Pin27):TopGateDriverSupply.TheBOOST  
pin should be decoupled to the SW node with a 0.1µF low  
ESR(X5Rorbetter)ceramiccapacitor.AnexternalSchottky  
MODE/SYNC (Pin 24/Pin 21): Mode Select/Synchroniza-  
tion Input. This pin is pulled up by an internal 1µA current  
source. Floating this pin or shorting it to INTV enables  
CC  
diode from INTV to BOOST creates a complete floating  
pulse-skipping mode. Shorting this pin to ground con-  
figures forced continuous mode. During frequency syn-  
chronization, the phase-locked loop forces the controller  
to operate in continuous mode with the falling top gate  
signal synchronized to the falling edge of the MODE/SYNC  
input pulse. During start-up, the controller is forced to run  
in pulse-skipping mode.  
CC  
charge-pumped supply from BOOST to SW.  
TG (Pin 31/Pin 28): Top Gate Drive. The TG pin drives  
the top N-channel MOSFET with a voltage swing equal to  
INTV superimposed on the switch node voltage.  
CC  
3816f  
ꢀꢁ  
LTC3816  
pin FuncTions (eTSSOP/QFN)  
SW (Pin 32/Pin 29): Switching Node. Connect SW to the  
source of the upper power MOSFET and to the negative  
terminal of the BOOST pin decoupling capacitor.  
LFF (Pin 36/Pin 33): Line Feedforward. This pin has a  
1µA pull-up current source to INTV . Floating this pin  
CC  
or connecting it to INTV enables the line feedforward  
CC  
compensation. Connect this pin to GND to disable the line  
PWRGD (Pin 33/Pin 30): Open-Drain Power Good Out-  
put/Power Bad Latchoff Input. PWRGD is an open-drain  
output pin and can be connected to other open-drain  
outputs to implement wire-ORing. PWRGD is externally  
pulledhigh10msaftertheoutputregulates. Afterstart-up,  
if a fault condition causes PWRGD to go low, or PWRGD  
is externally pulled low, the regulator output voltage is  
actively ramped to 0V and PWRGD remains latched low  
feedforward compensation.  
I
(Pin 37/Pin 34): Current Sense Positive Input. Con-  
SENP  
nect this pin to the positive terminal of the current sense  
resistor or to the output of the inductor DCR lowpass  
filter.  
I
(Pin 38/Pin 35): Current Comparator Threshold Set-  
MAX  
ting. The I  
pin has an internal 10µA pull-up current  
MAX  
until either the power is cycled or VR toggles. PWRGD  
ON  
source, allowing the current limit comparator threshold to  
be programmed by a single external resistor. The control-  
ler allows a momentary 45µs overcurrent event to occur  
within a period of 630µs. See Current Sense and Current  
Limit in Applications Information.  
has a 750µs de-glitch delay and is masked for 100µs after  
the VID code changes. In deeper sleep mode, the PWRGD  
comparators are disabled and not allowed to de-assert  
the PWRGD pin.  
CLKEN#(Pin34/Pin31):Open-DrainClockEnableIndica-  
GND (Exposed Pad Pin 39/Exposed Pad Pin 39): Ground.  
The soft-start and slew rate control capacitors as well as  
the frequency setting and thermal shutdown resistors  
should return to this exposed pad ground pin. This GND  
pin should also be connected to the negative terminals of  
the local voltage regulator output capacitors through vias  
to the PCB ground plane.  
tor.7safterV  
reachestheV  
voltage,CLKEN#  
CC(CORE)  
BOOT  
pulls low to enable the processor phase-locked loop.  
VRTT# (Pin 35/Pin 32): Open-Drain Output for Voltage  
Regulator Thermal Throttling. The VRTT# pin pulls low if  
the RPTC voltage exceeds 0.47V or if the control IC junc-  
tion temperature exceeds 150°C.  
3816f  
ꢀꢂ  
LTC3816  
FuncTional DiagraM  
3.3V  
3.3V  
1.1V  
C
INTVCC  
1.9k  
1.9k  
56Ω  
PWRGD  
CLKEN#  
EN CLK  
VRTT#  
DPRSLPVR  
LFF  
EXTV  
INTV  
CC  
CC  
V
IN  
V
IN  
+
+
C
IN  
LDO  
100µA  
PWRGD  
4.7V  
RPTC  
+
+
TSD  
VID0-VID6  
BANDGAP  
CHIP TSD  
INTV  
CC  
0.47V  
PTC  
0.5V/1.6V  
INTV  
CC  
D
B
10µA/40µA  
BOOST  
TG  
DAC  
1µA  
C
B
CSLEW  
Q
Q
T
C
SLEW  
L
SW  
INTV  
CC  
SAW  
V
OUT  
+
+
INTV  
CC  
LOGIC  
PWM  
C
D
B
OUT  
BG  
LFF  
NTC  
1µA  
V
IN  
MODE/SYNC  
RFREQ  
EN CLK  
BSOURCE  
10µA  
INTV  
DELAY  
AND  
LATCH  
CC  
POWER  
DOWN  
PWRGD  
OVP  
+
I
LIM  
+
+
OVF  
+
I
REV  
10µA  
R
FREQ  
R
IDCR  
I
SENP  
DAC  
+ 25mV  
1.65V/1.53V  
IMVP-6  
R
IMAX  
C
IDCR  
I
MAX  
I
SENN  
1µA  
R
VR  
ON  
AVPDCRN  
ON  
+
+
+
I
AITC  
TCFB  
+
V
AVP  
R
R
PAR  
SER  
+
+
NPG  
PPG  
1x  
1.2V  
INTV  
I
C
VDCR  
INTV  
TC  
2.4V  
CC  
CC  
R
PREIMON  
PREI  
I
MON  
DAC + 0.175V  
DAC – 0.270V  
1µA  
MON  
SS  
I
MON  
C
IMON  
DA OUT  
DAC – V  
OC FAULT  
OV FAULT  
R
IMON  
C
SS  
AVP  
V
1.3V  
+
SS(SEN)  
CC(SEN)  
+
+
EA  
V
DAMP  
GND  
V
COMP  
SERVO  
FB  
C
C
R
R1  
C
C
C1  
C
FF  
Figure 1. Functional Diagram  
3816f  
ꢀꢃ  
LTC3816  
operaTion (Refer to Funtional Diagram)  
Table 1. IMVP-6/IMVP-6.5 VID Output Voltage Programming  
VID6 VID5 VID4 VID3 VID2 VID1 VID0  
V
VID6 VID5 VID4 VID3 VID2 VID1 VID0  
V
CC(CORE)  
CC(CORE)  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1.5000  
1.4875  
1.4750  
1.4625  
1.4500  
1.4375  
1.4250  
1.4125  
1.4000  
1.3875  
1.3750  
1.3625  
1.3500  
1.3375  
1.3250  
1.3125  
1.3000  
1.2875  
1.2750  
1.2625  
1.2500  
1.2375  
1.2250  
1.2125  
1.2000  
1.1875  
1.1750  
1.1625  
1.1500  
1.1375  
1.1250  
1.1125  
1.1000  
1.0875  
1.0750  
1.0625  
1.0500  
1.0375  
1.0250  
1.0125  
1.0000  
0.9875  
0.9750  
0.9625  
0.9500  
0.9375  
0.9250  
0.9125  
0.9000  
0.8875  
0.8750  
0.8625  
0.8500  
0.8375  
0.8250  
0.8125  
0.8000  
0.7875  
0.7750  
0.7625  
0.7500  
0.7375  
0.7250  
0.7125  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0.7000  
0.6875  
0.6750  
0.6625  
0.6500  
0.6375  
0.6250  
0.6125  
0.6000  
0.5875  
0.5750  
0.5625  
0.5500  
0.5375  
0.5250  
0.5125  
0.5000  
0.4875  
0.4750  
0.4625  
0.4500  
0.4375  
0.4250  
0.4125  
0.4000  
0.3875  
0.3750  
0.3625  
0.3500  
0.3375  
0.3250  
0.3125  
0.3000  
0.2875  
0.2750  
0.2625  
0.2500  
0.2375  
0.2250  
0.2125  
0.2000  
0.1875  
0.1750  
0.1625  
0.1500  
0.1375  
0.1250  
0.1125  
0.1000  
0.0875  
0.0750  
0.0625  
0.0500  
0.0375  
0.0250  
0.0125  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
0.0000  
3816f  
ꢀꢄ  
LTC3816  
operaTion (Refer to Funtional Diagram)  
TheLTC3816isaconstantfrequency,voltagemodeDC/DC  
step-down controller that complies with the Intel IMVP-6/  
IMVP-6.5 specifications. The 7-bit VID code programs the  
switcher output voltage as specified in Table 1. Figure 2  
shows the timing diagram. Upon start-up, the switcher  
V
and V  
pins. The AITC amplifier monitors  
CC(SEN)  
SS(SEN)  
the inductor current and computes the load dependent  
output droop required to implement the active voltage  
positioning features in IMVP-6/IMVP-6.5. The IC servos  
the differential output voltage to the VID DAC voltage  
minus the small load dependent AVP droop.  
output soft-start ramps to the V  
voltage. 75µs after  
BOOT  
reaching the V  
power good threshold, which is about  
, the controller forces the CLKEN# pin  
BOOT  
The LTC3816 feedback loop is capable of dynamically  
changingtheregulatoroutputtodifferentVIDDACvoltages.  
Upon receiving a new VID code, the LTC3816 regulates to  
its new potential with a programmable slew rate which is  
selected to prevent the converter from generating audible  
noise. The switcher output load current can be monitored  
45mV below V  
BOOT  
lowandtheVIDcodeisloaded. Next, theoutputisservoed  
to its VID DAC potential. 10ms after regulation, PWRGD  
pulls high to indicate that the switcher is regulating and  
has completed its start-up phase.  
The LTC3816 uses two external synchronous N-channel  
MOSFETs. A floating topside driver and a simple external  
charge pump provide full gate drive to the upper MOSFET.  
The controller uses a leading edge modulation architec-  
ture to allow extremely low duty cycles and fast load  
step response. In a typical LTC3816 switching cycle, the  
PWM comparator turns on the top MOSFET to charge the  
output capacitor. An internal clock resets the top MOSFET  
and turns on the bottom MOSFET to reduce the output  
charging current. This switching cycle repeats itself at an  
internally fixed frequency, or in synchronization with an  
external oscillator.  
by measuring the I  
pin potential. The LTC3816 forces  
MON  
the I  
pin voltage to be proportional to the average  
MON  
load current with a gain configured by the R  
and  
PREIMON  
R
resistors.  
IMON  
The LTC3816 includes an onboard current limit circuit that  
senses the inductor current through an external sense  
resistor or the inductor DCR. The peak inductor current  
can be controlled by selecting the current limit R  
IMAX  
resistance. The LTC3816 current limit architecture allows  
momentary overcurrent events for a predefined duration  
(see the Current Sense and Current Limit sections). Upon  
current limit, the top gate is shut off, the SS external  
capacitor is discharged to limit the top gate duty cycle,  
and the switcher output voltage is reduced until the load  
fault is removed.  
The top gate duty cycle is controlled by the voltage feed-  
back loop which includes an internal differential amplifier  
that senses the differential output voltage between the  
VR  
ON  
VID  
DPRSLPVR  
INTV  
NORMAL  
SLEW RATE  
CC  
IMVP-6  
SLOW SLEW RATE  
45mV  
V
BOOT  
V
CC(CORE)  
t
CLKEN#  
CLKEN#  
t
PWRGD  
CLK(PWRGD)  
3816 F02  
Figure 2. LTC3816 Power-Up and Power-Down Timing Diagram  
3816f  
ꢀꢅ  
LTC3816  
applicaTions inForMaTion  
LDO, INTV /EXTV POWER SUPPLY  
advisable to short EXTV to V . In this case, the INTV  
CC  
CC  
CC  
IN  
CC  
output voltage becomes:  
The LTC3816 is designed to operate with a wide range of  
V input voltages. The IC includes a 5.2V LDO to power  
V
= V  
– I  
• R  
Q(TOT) EXTVCC  
IN  
INTVCC(EXTVCC)  
EXTVCC  
the driver and control circuits. The LDO output, INTV  
CC  
whereR  
istheinternalEXTV switchon-resistance.  
CC  
EXTVCC  
should be bypassed with a minimum 4.7µF low ESR  
ceramic capacitor. The INTV regulator can supply up to  
It has a typical value of 2Ω at 25°C and has a temperature  
coefficient of approximately 4000ppm/°C.  
CC  
50mA of total LTC3816 quiescent current, I  
consists of the static supply current, I , and the current  
required to charge the gate capacitance, Q  
top and bottom power MOSFETs.  
, which  
Q(TOT)  
Q
UNDERVOLTAGE LOCKOUT AND SHUTDOWN  
, of the  
G(TOT)  
A precision undervoltage lockout (UVLO) comparator  
monitors the INTV voltage and enables soft-start opera-  
CC  
I
= I + Q • f  
G(TOT) OSC  
Q(TOT)  
Q
tion once INTV is above 3.9V. For power supplies that  
CC  
P
DISS  
= V • (I + Q  
• f  
)
IN  
Q
G(TOT) OSC  
start-up slowly, the gate drivers could begin switching  
when V is well below its steady-state value. The high  
T = T + P  
θ  
JA  
IN  
J
A
DISS  
inrush current through the input power cable could cause  
The value of Q  
can be obtained from the MOSFET  
IN  
G(TOT)  
the V supply to dip below the UVLO threshold and result  
IN  
data sheets. For high V and high frequency operation,  
in hiccup operation at start-up. This problem can be eas-  
care must be taken to ensure that the maximum junction  
ily overcome by adding a V UVLO function as shown in  
IN  
temperature T  
of the IC is never exceeded.  
JMAX  
Figure 3. Connect an external resistive divider from V to  
IN  
When the EXTV pin is left open or tied to a voltage less  
VR . Set the resistive divider according to the following  
CC  
ON  
than 4.5V, the 5.2V LDO powers INTV . If EXTV is taken  
equation:  
CC  
CC  
above 4.5V, the LDO is turned off and an internal switch  
connects INTV to EXTV . Do not apply greater than 6V  
RON1  
VUVLO =1.2V = V  
CC  
CC  
IN(UVLO)  
R
+RON2  
ON1  
to the EXTV pin, and ensure that EXTV < V + 0.3V  
CC  
CC  
IN  
unless EXTV is shorted to the V supply. Using the  
CC  
IN  
where V  
is the desired V UVLO threshold. The  
IN  
IN(UVLO)  
EXTV pin allows INTV to be powered from an external  
CC  
CC  
resistances are normally chosen so that the error caused  
by the internal 1µA pull-up current has a negligible effect  
ontheUVLOthreshold.Becarefulnottoallowtheresistive  
divider output voltage to exceed the 6V maximum rating  
source reducing LDO losses and improving the regulator  
efficiency, especially at high V . When the EXTV pin is  
IN  
CC  
used, the chip power dissipation reduces to:  
P
DISS  
= V  
• (I + Q  
• f  
)
of the VR pin.  
EXTVCC  
Q
G(TOT) OSC  
ON  
If the V supply is low enough for the INTV LDO to enter  
If the external resistive divider is not used, upon power-  
IN  
CC  
dropout, the output voltage of the LDO becomes:  
up, the VR pin is pulled up by an internal 1µA pull-up  
ON  
current. The LTC3816 can be put into a low power shut-  
V
= V – V  
INTVCC(DROPOUT)  
IN  
DROPOUT  
V
IN  
The LDO dropout voltage is a function of the total quies-  
centcurrentI , V voltageandjunctiontemperature.  
LTC3816  
ON  
1µA  
+
Q(TOT) IN  
R
ON2  
VR  
ON  
The temperature coefficient of the LDO dropout voltage  
is approximately 6400ppm/°C. To enable proper opera-  
tion, make sure that the LDO output voltage meets the  
SHUTDOWN  
R
ON1  
1.2V  
3816 F03  
INTV undervoltage and minimum MOSFET gate driver  
CC  
Figure 3. VIN UVLO Circuit  
requirements. If V is connected to a fixed 5V supply, it is  
IN  
3816f  
ꢀꢆ  
LTC3816  
applicaTions inForMaTion  
down mode by pulling the VR pin below 0.65V. In the  
pin to GND. An internal 1µA current source charges this  
capacitor, creating a voltage ramp on the SS pin. As the  
SS pin voltage rises from 0V to 1.3V, the output voltage,  
ON  
shutdown mode, the internal circuitry and the INTV  
CC  
regulator are off and the supply current drops well below  
100µA. When the VR pin voltage is between 0.65V and  
V
, rises smoothly from 0V to its V  
value. Once  
ON  
OUT  
BOOT  
1.2V, the INTV regulator and internal circuitry power up  
the soft-start interval is over, the internal current source  
continues charging the SS capacitor until the SS poten-  
tial is internally clamped at about 2.7V. For the IMVP-6  
configuration, a 1000pF SS capacitor generates roughly  
a 1.6ms start-up time. With the IMVP-6.5 configuration,  
the start-up time is about 1.5ms.  
CC  
but the driver outputs remain low.  
TOPSIDE MOSFET DRIVER SUPPLY  
An external bootstrap capacitor, C , connected from the  
B
BOOST pin to the SW pin supplies the topside gate driver  
Duringsevereoverloadconditions,theLTC3816discharges  
theSScapacitortolowertheswitcheroutputvoltage.Ifthe  
potential at SS is forced below 0.3V, the controller reduces  
as shown in Figure 1. Capacitor C is charged though the  
B
external diode, D , from INTV when the SW pin is low.  
B
CC  
When the topside MOSFET is turned on, the top driver  
its I  
sourcing current from 10µA to 2.5µA and cuts the  
MAX  
places the C voltage across the gate source of the top  
B
short-circuit current to about 25% of its nominal value.  
MOSFET. This enhances the MOSFET and turns on the  
top switch. The switch node voltage, SW, rises to V and  
IN  
the BOOST pin follows. With the topside MOSFET on, the  
CURRENT SENSE AND CURRENT LIMIT  
boost voltage is above the input supply:  
The LTC3816 features an onboard cycle-by-cycle user-  
programmable current limit circuit that controls the peak  
V
= V + V  
IN INTVCC  
BOOST  
inductor current. The I  
pin has an internal 10µA pull-  
MAX  
The value of the boost capacitor, C , needs to be at least  
B
up current source, allowing the maximum load current  
to be programmed by a single external resistor  
100 times that of the total input capacitance of the topside  
I
LOAD(MAX)  
MOSFET. The reverse breakdown of the external Schottky  
R
IMAX  
connected between the I  
and I  
pins.  
MAX  
SENN  
diode, D , must be greater than V  
.
B
IN(MAX)  
I
IMAX RIMAX  
IL(PEAK)  
=
RSENSE  
IMVP-6/IMVP-6.5 SELECTION AND V  
VOLTAGE  
BOOT  
IL  
2
I
IMAX RIMAX IL  
The LTC3816 can be configured to meet either IMVP-6  
or IMVP-6.5 requirements. To select IMVP-6 operation,  
ILOAD(MAX) <ILIMIT =IL(PEAK)  
=
RSENSE  
2
shortbothI  
andPREI  
toINTV . Atstart-up, when  
MON  
MON CC  
whereI  
isthepeakinductorcurrent,I  
istheI  
L(PEAK)  
IMAX  
MAX  
VR is asserted, the switcher output ramps to V  
=
BOOT  
ON  
pin pull-up current, R  
is the current sense resistor  
SENSE  
1.2V regardless of the VID code. To configure IMVP-6.5  
value and I is the inductor ripple current.  
L
operation, connect a resistor from I  
to V  
and  
and  
MON  
SS(SEN)  
another resistor from PREI  
to I . The I  
MON  
MON  
TC  
MON  
MON  
VOUT  
1
IL =  
VOUT 1–  
PREI  
resistance set the I  
gain (see the I  
sec-  
MON  
f
OSC •L  
V
IN  
tion). The V  
voltage for IMVP-6.5 is 1.1V.  
BOOT  
Note that the output ripple current varies with the switch-  
ing frequency, inductor value and duty cycle. Hence, the  
current limit value should be checked on the application  
LOAD(MAX) LIMIT  
conditions and temperature variations.  
SOFT-START OPERATION  
The start-up of V is controlled by the LTC3816’s SS  
OUT  
boardtoensurethatI  
<I  
underalloperating  
pin. When the voltage at the SS pin is less than 1.3V, the  
LTC3816 regulates the V voltage to the SS pin voltage  
FB  
instead of 1.3V. This allows the user to program the soft-  
For current sensing using a low value sense resistor, the  
sense resistor parasitic inductance must be considered to  
start of the regulator output with a capacitor from the SS  
3816f  
ꢀꢇ  
LTC3816  
applicaTions inForMaTion  
achieve accurate current sensing. Figure 4 shows a real  
V
IN  
I
L
LTC3816  
TG  
current sensing resistor, R  
, which can be modeled  
SENSE  
Q
T
ESL  
R
SEN  
L
with an ideal resistance, R , in series with its parasitic  
SEN  
V
SW  
BG  
OUT  
SENSE RESISTOR  
ESL. As shown in Figure 4, the voltage across the sense  
resistor includes the voltage across the parasitic induc-  
tor which is a strong function of inductor ripple current  
and the switching frequency. This effectively reduces the  
current limit threshold, typically by more than 30%. The  
voltage across the sense resistor can be extracted from  
a lowpass filter placed close to the controller input sense  
pins as shown in Figure 4. The voltage across the sensing  
Q
D
+
B
C
OUT  
BSOURCE  
R
ISR  
I
SENP  
C
V
ISR  
ISR  
I
SENN  
R
IMAX  
I
MAX  
V
= V  
+ V  
ISR  
RSEN ESL  
capacitor, C , is:  
ISR  
V
ESL(ON)  
V
= I • R  
L SEN  
RSEN  
sESL  
RSEN  
1+sRISR C  
1+  
VCISR =IL •RSEN  
ISR   
V
ESL(OFF)  
3816 F04  
In the frequency domain, the second term in the above  
equation must be equal to 1 to ensure that the voltage  
across the filter capacitor is independent of operating  
frequency. To meet this requirement, the value of the RC  
filter should fulfill the following condition:  
Figure 4. Current Limit Sensing Using  
a Low Value Sense Resistor  
V
IN  
I
L
LTC3816  
TG  
Q
T
ESL  
L
DCR  
RISR CISR  
=
V
SW  
BG  
OUT  
RSEN  
INDUCTOR  
Q
B
D
+
C
OUT  
BSOURCE  
The ESL value can be obtained from the manufacturer’s  
data sheet or estimated with an oscilloscope, as shown in  
the Figure 4 waveform, using the following equation:  
R
IDCR  
I
SENP  
C
IDCR  
3916 F05  
I
SENN  
R
IMAX  
I
MAX  
VESL(ON) + VESL(OFF)  
ESL =  
1
1
OFF   
Figure 5. Current Limit Sensing Using Inductor DCR  
IL  
+
t
t
ON  
datasheet.Similartothesenseresistorapplicationcircuit,  
thevoltageacrosstheinductorDCRcanbeextractedfrom  
a lowpass filter and the current limit threshold is given by  
the following equation:  
where t is the TG on time and t is the TG off time.  
ON  
OFF  
Forhighefficiencyapplications,theinductorDCRprovides  
amethodofsensingtheinductorcurrentwithoutincurring  
additional power loss from a sense resistor. The DCR of  
the inductor represents the small amount of resistance  
in the copper winding, which can be less than 1mΩ for  
today’s low value, high current inductors. Figure 5 shows  
asimplifiedinductormodel,whichcanbemodeledwithan  
ideal inductor, L, in series with its parasitic DCR. The DCR  
value can be obtained from the inductor manufacturer’s  
I
IMAX RIMAX  
IL(PEAK)  
=
RDCR  
IL  
2
IIMAX RIMAX IL  
ILOAD(MAX) <ILIMIT =IL(PEAK)  
=
RDCR  
2
L
RDCR  
if RIDCR CIDCR  
=
3816f  
ꢀꢈ  
LTC3816  
applicaTions inForMaTion  
NotethatthevalueofR  
mustaccountforitstemperature  
anothercycle.After90µs,theI  
currentreturnsto10µA,  
MAX  
DCR  
coefficient, which is approximately 0.39%/°C.  
and the output load is limited to 1× for the next 630µs as  
shown in Figure 6c. Figure 6d shows the condition when  
a repetitive overload event triggers current limit.  
The current limit architecture of the LTC3816 allows short  
durations of instantaneous overload. Upon power-up, the  
current limit threshold is set to 1×, equal to I  
. The  
Figure 6e shows that at any instant, if the load current  
is above 1× for more than 90µs, or higher than 2×, the  
controllerenterscurrentlimit.Underthiscondition,theTG  
duty cycle is reduced and the SS capacitor is discharged  
LIMIT  
load is limited to I  
until the switcher output reaches  
LIMIT  
its V  
potential. Beyond this point, during the VID DAC  
slewing interval, the I  
BOOT  
sourcing current automatically  
MAX  
switchesfrom1Ato2Aandthecurrentlimitthreshold  
increases to 2× to enable the output capacitor voltage to  
track the DAC transition. If the controller detects that there  
is an overload condition when the DAC is not slewing, the  
current limit threshold increases to 2× for a duration of  
45µs. If the overload interval is shorter than 45µs, the IC  
allows another overcurrent event within the next 630µs,  
as shown in Figure 6a. However, if an overload occurs  
withinthe630µsfollowingthesecondevent,thecontroller  
current limits, as shown in Figure 6b.  
CURRENT LIMITED  
20µA  
I
IMAX  
10µA  
90µs  
45µs  
2s  
1s  
I
LOAD  
<45µs  
45µs < t < 90µs  
3816 F06c  
>630µs  
Figure 6c. Allowable Longer Overload Condition  
If the overload condition persists for more than 45µs,  
the LTC3816 allows the 2× current limit to continue for  
CURRENT LIMITED  
20µA  
CURRENT LIMITED  
20µA  
I
IMAX  
10µA  
I
IMAX  
90µs  
10µA  
2s  
1s  
45µs  
45µs  
45µs  
2s  
1s  
I
LOAD  
<45µs  
45µs < t < 90µs  
I
LOAD  
3816 F06d  
<630µs  
<45µs  
<45µs  
<45µs  
>630µs  
3816 F06a  
Figure 6d. Allowable Longer Overload Condition,  
<630µs  
Followed by Repeated Overload Triggers Current Limit  
Figure 6a. Permissible Overload  
CURRENT LIMITED  
20µA  
CURRENT LIMITED  
20µA  
I
IMAX  
I
10µA  
IMAX  
10µA  
90µs  
45µs  
45µs  
45µs  
2s  
1s  
2s  
1s  
I
LOAD  
I
LOAD  
>90µs  
>630µs  
<45µs  
<45µs  
<45µs  
<45µs  
3816 F06e  
3816 F06b  
<630µs  
<630µs  
Figure 6e. Long Overload or Excessive Loading  
Triggers Current Limit Condition  
Figure 6b. Repeated Overload Triggers Current Limit  
3816f  
ꢁ0  
LTC3816  
applicaTions inForMaTion  
1.03  
1.00  
0.97  
0.94  
3
to lower the regulator output voltage. This current limit  
condition persists until the fault condition disappears or  
the controller detects a low output voltage fault and forces  
the switcher output to latch off. Once the output voltage  
is lower than the power good threshold, the controller  
limits the maximum load to 1× to reduce the short-circuit  
current.  
0
PROGRAMMABLE  
AVP SLOPE  
–3  
–6  
–9  
0.91  
0.88  
ACTIVE VOLTAGE POSITIONING (AVP)  
–12  
30  
0
10  
15  
20  
25  
In a conventional buck converter, the feedback control  
regulates the output voltage to the same level for the  
entire load range as shown in Figure 7a. The peak-to-peak  
output voltage spikes resulting from the load step must  
be smaller than the voltage tolerance window.  
5
I
(A)  
LOAD  
3816 F07b  
Figure 7b. AVP DC Transfer Curve  
To reduce the regulator output voltage peak-to-peak  
perturbation resulting from a load transient, the LTC3816  
modulates the output voltage based on the output loading  
current. The built-in AVP circuit lowers the output voltage  
proportional to the load current as shown in Figure 7b.  
Figure 7c shows the transient response with the AVP  
function.TheAVPvoltagedroopreducesthepeak-to-peak  
output voltage perturbation. As a result, the AVP topology  
requiresfewercapacitorsattheregulatoroutputtoachieve  
the same voltage tolerance window.  
V
OUT  
50mV/DIV  
I
LOAD  
10A/DIV  
V
SW  
20V/DIV  
3816 F07c  
V
V
= 12V  
20µs/DIV  
IN  
= 1V  
OUT  
LOAD  
I
= 0A TO 20A  
The AVP circuit obtains the load current information from  
thesenseresistorortheinductorDCRasshowninFigure 8.  
The voltage drop across the sense resistor is extracted  
Figure 7c. Transient Waveform with AVP Slope = –3mV/A, Using  
The Same Inductor and Output Capacitor as Figure 7a. The  
Transient Peak-to-Peak Perturbation is Reduced to About 85mV  
by the AITC amplifier and summed with the differential  
amplifier output voltage. The resulting output is servoed  
to the VID DAC voltage. At higher load current, the volt-  
age drop across the sense resistor increases, resulting  
in a lower switcher output voltage. Typically, the system  
requirement defines the amount of AVP gain ensuring  
that the output voltage remains within the regulator sup-  
ply tolerance band over the full range of load conditions.  
Figure8includesthecomponentsrequiredtocompensate  
for the sense resistor parasitic inductance. The AVP DC  
transfer function is:  
V
OUT  
50mV/DIV  
I
LOAD  
10A/DIV  
V
SW  
20V/DIV  
3816 F07a  
20µs/DIV  
V
V
= 12V  
IN  
= 1V  
OUT  
LOAD  
I
= 0A TO 20A  
V
OUT  
= V  
– A  
• I = V  
L
– A  
• I • R  
G(SR) L SEN  
DAC  
AVP(SR)  
DAC  
Figure 7a. Transient Waveform Without AVP. The Transient  
Peak-to-Peak Spike ≈ 130mV. The AITC Amplifier is  
Configured as a Unity-Gain Amplifier  
3816f  
ꢁꢀ  
LTC3816  
applicaTions inForMaTion  
V
IN  
where A  
is the AVP gain with sense resistor con-  
G(SR)  
AVP(SR)  
figuration and A  
I
L
is the sense resistor gain:  
Q
TG  
SW  
BG  
T
L
ESL  
R
SEN  
V
RVSR  
RAVPSR  
OUT  
SENSE RESISTOR  
AAVP(SR) = AG(SR) •RSEN and AG(SR)  
=
t
Q
D
+
B
C
OUT  
LTC3816  
R
AVPSR  
BSOURCE  
ESL  
RSEN  
R
VSR CVSR =  
I
TCFB  
C
R
VSR  
VSR  
I
TC  
AITC  
+
I
SENN  
3916 F08  
Figure 9 shows the AVP configuration with current sense  
implementedusingtheinductorDCR.TheAVPDCtransfer  
function is:  
Figure 8. AVP Configuration with a Sense Resistor  
V
OUT  
=V  
–A  
•I =V  
L
–A  
•I •R  
G(DCR) L DCR  
DAC  
AVP(DCR)  
DAC  
where:  
V
IN  
I
L
RVDCR  
RAVPDCR  
Q
TG  
SW  
BG  
T
L
DCR  
AAVP(DCR) = AG(DCR) RDCR and AG(DCR)  
=
V
OUT  
INDUCTOR  
Q
B
D
+
L
C
OUT  
LTC3816  
R
R
AVPDCR  
RVDCR CVDCR  
=
BSOURCE  
RDCR  
I
TCFB  
C
VDCR  
VDCR  
I
TC  
AITC  
+
TEMPERATURE COMPENSATED ACTIVE VOLTAGE  
POSITIONING (AVP) WITH INDUCTOR DCR  
I
SENN  
3916 F09  
TheinductorDCRAVPconfigurationimprovestheregula-  
tor efficiency by eliminating the power losses associated  
withasenseresistor.However,withoutpropertemperature  
compensation, the positive temperature coefficient of the  
inductorDCR,0.39%/°C,maycompromisetheoutputvolt-  
age accuracy. As the temperature of the inductor rises, its  
DCRvalueincreases,resultinginagreaterVOUTdrooprate  
(higherAVPgain).TocompensatefortheDCRtemperature  
shift, replace the resistor RVDCR in Figure 9 with an NTC  
resistorplacedascloseaspossibletotheinductor.Ideally,  
theNTCresistorshouldhavethesametemperatureasthe  
inductor. As temperature increases, the NTC resistance  
drops,resultinginareductionintheAITCamplifiervoltage  
gain.ThiscompensatesfortheincreaseinDCRresistance  
and maintains the AVP gain. The NTC resistor, however, is  
highly nonlinear and must be linearized. Figure 10 shows  
Figure 9. AVP Configuration with Inductor DCR Current Sense  
V
IN  
I
L
Q
TG  
SW  
BG  
T
L
DCR  
V
OUT  
INDUCTOR  
NTC  
Q
B
D
+
R
R
C
OUT  
AVPDCRN  
LTC3816  
BSOURCE  
R
PAR  
I
TCFB  
C
VDCRN  
SER  
I
TC  
AITC  
+
I
SENN  
3916 F10  
Figure 10. AVP with Inductor DCR Current Sense  
and NTC Temperature Compensation  
3816f  
ꢁꢁ  
LTC3816  
applicaTions inForMaTion  
1.02  
1.01  
1.00  
0.99  
theNTCcompensationnetwork.Todeterminethecompo-  
nent values, first, select the NTC with room temperature  
resistance approximately equal to RVDCR that has the  
smallest temperature coefficient (β constant in the NTC  
data sheet. Using an NTC with a higher β constant gen-  
erates a less optimal temperature compensation). Next,  
calculatetheresistancesRPARandRSERfromthefollowing  
equationswheretheNTCresistancesatdifferenttempera-  
tures is obtained from the manufacturer’s data sheet.  
T
= 25°C  
A
IDEAL + 1.5%  
IDEAL  
0.98  
0.97  
IDEAL – 1.5%  
WITH NTC  
0.96  
0.95  
0.94  
WITHOUT NTC  
RPAR =RNTC at 25°C  
5
10  
20  
0
25  
30  
15  
I
(A)  
10  
3
LOAD  
RSER  
R
|| R  
at 0°C – R || R  
at 75°C  
(
)
(
)
(
) (  
)
3816 F11a  
PAR  
NTC  
PAR  
NTC  
Figure 11a. AVP Transfer Curve Using Vishay  
IHLP-5050CE-01 0.33µH (DCR = 1.3mΩ) Inductor  
DCR Current Sense with AG(DCRN) = 1 at TA = 25°C  
– R || R  
(
at 25°C  
(
)
)
PAR  
NTC  
Note that the above equations optimize temperature  
compensation at hot. At extreme cold temperature, the  
temperature compensation is less effective.  
1.02  
T
= 125°C  
A
1.01  
1.00  
0.99  
With the NTC resistor network, the temperature compen-  
sated AVP transfer function becomes:  
IDEAL + 1.5%  
IDEAL  
0.98  
0.97  
V
OUT  
=V  
–A  
•I =V  
–A •I •R  
G(DCRN) L DCR  
DAC  
AVP(DCRN)  
L
DAC  
IDEAL – 1.5%  
where A  
and A  
are the AVP and DCR gain  
AVP(DCRN)  
G(DCRN)  
0.96  
0.95  
0.94  
usingtheinductorDCRcurrentsensewithNTCtemperature  
compensation configuration.  
WITH NTC  
WITHOUT NTC  
5
10  
20  
0
25  
30  
15  
RNTCNET  
RAVPDCRN  
AAVP(DCRN) = AG(DCRN) RDCR and AG(DCRN)  
=
I
(A)  
LOAD  
3816 F11b  
L
Figure 11b. Same Setup as Figure 11a. Improvement  
in AVP Accuracy with NTC Temperature Compensation  
Network at TA = 125°C  
CVDCRN  
=
RNTCNET RDCR  
RNTCNET = RSER + RPAR ||RNTC  
(
)
V
IN  
I
L
Figure 11a shows the room temperature AVP DC transfer  
curvesobtainedusinginductorDCRcurrentsensewithand  
without NTC temperature compensation. There is only a  
slight difference in the transfer curve at heavy load. Figure  
11b shows the AVP transfer curve obtained at 125°C, it  
shows the improvement in AVP accuracy with the NTC  
resistor network.  
Q
TG  
SW  
BG  
T
L
DCR  
V
OUT  
INDUCTOR  
LPTC  
Q
B
D
+
C
OUT  
LTC3816  
BSOURCE  
I
TCFB  
C
R
VDCRP  
VDCRP  
I
TC  
AITC  
+
Figure 12 shows another easy way to compensate for the  
inductor DCR temperature coefficient. In this configura-  
tion, a linear PTC resistor is connected from the SW node  
I
SENN  
3916 F12  
LPTC: VISHAY TPFT1206 SERIES, 4110ppm/°C  
Figure 12. AVP Using Inductor DCR Current Sense  
with Linear PTC Temperature Compensation  
to the I  
pin. The PTC thermistor’s temperature coef-  
TCFB  
ficient of 0.411%/°C compensates for the change in DCR  
3816f  
ꢁꢂ  
LTC3816  
applicaTions inForMaTion  
resistance (0.39%/°C) and produces a near perfect AVP  
slope across temperature.  
the negative terminal of the resistor R  
should be  
IMON  
connected directly to the CPU V  
pin. Depending  
SS(SEN)  
on the output load requirements, the I  
voltage gain  
MON  
V
=V  
–A  
•I =V  
L
–A •I •R  
G(DCRP) L DCR  
OUT  
DAC  
AVP(DCRP)  
DAC  
can be programmed by changing the ratio of the R  
IMON  
where:  
and R  
resistances. A capacitor should be added  
PREIMON  
in parallel with the resistor R  
RVDCRP  
RLPTC  
to remove the switching  
IMON  
AAVP(DCRP) = AG(DCRP) RDCR and AG(DCRP)  
=
ripple. The value of the capacitor C  
the following equation:  
is determined by  
IMON  
L
CVDCRP  
=
tIMON  
RIMON  
RVDCRP RDCR  
CIMON  
=
I
MON  
where t  
is the I  
time constant and must be larger  
MON  
IMON  
than300µs.  
TofacilitateCPUmonitoringofloadcurrentinanIMVP-6.5  
application, the LTC3816 forces the I pin voltage to  
MON  
be proportional to the average load current. As shown in  
In the IMVP-6.5 configuration, the I  
internally clamped to 1.1V with respect to the V  
voltage. ForcingthePREI  
LTC3816 as an IMVP-6 regulator.  
pin potential is  
MON  
Figure 13, the AITC and the unity-gain amplifiers force  
pin  
SS(SEN)  
the voltage across the resistor R  
to be equal to  
pintoINTV configuresthe  
PREIMON  
MON  
CC  
the voltage drop across the sense resistor. A current is  
supplied to R that is three times greater than the cur-  
IMON  
rent in R  
. The voltage across the R  
PREIMON  
resistor  
IMON  
FEEDBACK CONTROL  
is equal to:  
= 3• I •R  
SEN  
The LTC3816 feedback loop consists of the line feed-  
forward circuit, the modulator, the external inductor, the  
output capacitor, the AITC and differential amplifier, and  
the feedback amplifier with its compensation network. All  
of these components affect loop behavior and need to be  
accounted for in the loop compensation.  
RVSR  
RIMON  
V
(
)
RAVPSR RPREIMON  
IMON  
L
To prevent the ground difference between the CPU and  
the regulator from affecting the I voltage accuracy,  
MON  
Line Feedforward and Modulator  
V
IN  
I
L
The modulator consists of the PWM generator, the output  
MOSFET drivers and the external MOSFETs themselves.  
The modulator gain varies linearly with the input voltage.  
Thelinefeedforwardcircuitcompensatesforthischangein  
gain and provides a constant gain from the error amplifier  
output to the SW node regardless of input voltage. From  
a feedback loop point of view, the combination of the line  
feedforward circuit and the modulator looks like a linear  
voltage transfer function from COMP to the SW node and  
has a gain roughly equal to:  
Q
TG  
SW  
BG  
T
ESL  
R
SEN  
L
V
OUT  
SENSE RESISTOR  
Q
B
D
+
LTC3816  
C
R
OUT  
AVPSR  
BSOURCE  
I
TCFB  
C
R
VSR  
VSR  
I
TC  
AITC  
+
I
INTV  
SENN  
CC  
3816 F13  
1X  
R
PREIMON  
PREI  
MON  
I
MON  
A
MOD  
≈ 25V/V ≈ 28dB  
I
MON  
C
R
IMON  
IMON  
It has a fairly benign AC behavior at typical loop compen-  
sation frequencies with significant phase shift appearing  
at half the switching frequency.  
V
SS(SEN)  
Figure 13. IMON Configuration  
3816f  
ꢁꢃ  
LTC3816  
applicaTions inForMaTion  
LC Filter  
where:  
The external inductor and output capacitor combination  
causes a second order LC roll-off at the output with 180°  
of phase shift. At higher frequencies, the reactance of the  
outputcapacitorapproachesitsESR,andtheroll-offdueto  
thecapacitorstops,leaving20dB/decadeand90°ofphase  
shift.BeyondtheESRzero,theceramiccapacitorcreatesa  
high frequency pole. The LC filter transfer function, poles  
and zero locations are given by the following equations:  
A
B
= R  
= A  
• C  
+ A  
• R  
• R  
• C  
(SR)  
(SR)  
ESR  
BULK  
G(SR)  
SEN  
OUT  
CER  
• R  
• C  
• C  
G(SR)  
SEN  
ESR  
BULK  
Similarly, for the DCR configuration with NTC compen-  
sation, the simplified low frequency transfer function is  
given by:  
1+sA(DCR) +s2B  
VSERVO  
(DCR)  
VOUT  
1+sRESR CBULK  
VOUT  
VSW  
1+sRESR CBULK  
s2LLCOUT +SRLCOUT +1  
ALC =  
where:  
(
)
A
B
= R  
= A  
• C  
+ A  
• R  
• C  
DCR OUT  
(DCR)  
ESR  
BULK  
G(DCR)  
1
C
BULK CCER  
• R  
• R  
• C  
• C  
BULK CER  
(DCR)  
G(DCRN)  
DCR  
ESR  
1+sRESR  
COUT  
Note that with either the sense resistor or the DCR current  
sense configuration, the AVP circuitry introduces a pole at  
the same location as the LC lowpass filter ESR zero. This  
cancels the increase in gain and phase caused by the ESR  
zero. Fortunately, the zero in the AVP transfer function is  
typically within the closed-loop bandwidth and provides a  
beneficial phase boost at the crossover frequency.  
1
2π LLCOUT  
fLC(DOUBLE_POLE)  
=
1
fESR(ZERO)  
=
=
2π RESR CBULK  
1
fCER(POLE)  
CBULK CCER  
2π RESR  
Error Amplifier  
COUT  
The error amplifier provides most of the low frequency  
loop gain and servos the switcher output voltage to the  
VID DAC potential minus the AVP droop. After selecting  
the inductor, the output capacitor and the AVP component  
values, the control loop is compensated by tailoring the  
frequencyresponseoftheerroramplifier.AtypicalLTC3816  
application uses Type 3 compensation to frequency com-  
pensate the feedback loop. Figure 14a and Figure 14b  
show the LTC3816 error amplifier Type 3 configuration.  
The transfer function of this amplifier is given by the fol-  
lowing equation:  
where:  
R includesDCR,senseresistance,PCBtraceresistance  
L
and the turn-on resistance of the power MOSFET.  
L includes the inductor inductance, PCB trace induc-  
L
tance and sense resistor ESL.  
C
= C  
+ C  
BULK CER  
OUT  
AITC and Differential Amplifiers  
With the sense resistor configuration, the AITC and the  
differential amplifiers add a double zero and a pole in the  
vicinity of the feedback loop crossover frequency, f , and  
multiple poles at higher frequencies. The simplified low  
frequencytransferfunctionfromtheregulatoroutputnode  
to the SERVO pin, as shown in Figure 14a, is given by the  
following equation:  
1+sR C 1+sR1C  
VCOMP  
VSERVO  
(
)
(
)
C
C
FF  
C
= –  
CC CC1  
sR1 C +C  
1+sR  
(
)
C CC +C  
C
C1  
C1  
The error amplifier component values can be obtained  
using the following guidelines.  
1+sA(SR) +s2B(SR)  
VSERVO  
VOUT  
1+sRESR CBULK  
3816f  
ꢁꢄ  
LTC3816  
applicaTions inForMaTion  
C
C
C
FF  
R
C
C
C1  
R1  
V
IN  
I
L
SERVO V  
COMP  
TG  
SW  
BG  
+
FB  
ESL  
R
SEN  
L
SW  
EA  
V
OUT  
1.3V  
SENSE RESISTOR  
R
ESR  
C
CER  
R
LTC3816  
+
AVPSR  
C
BULK  
BSOURCE  
+
DAMP  
I
TCFB  
AITC  
+
C
R
VSR  
VSR  
I
TC  
I
SENN  
SS(SEN)  
CC(SEN)  
V
V
3816 F14a  
Figure 14a. LTC3816 Frequency Compensation with Sense Resistor Configuration  
C
C
C
FF  
R
C
C
C1  
R1  
V
IN  
I
L
SERVO V  
COMP  
TG  
SW  
BG  
+
FB  
L
DCR  
SW  
EA  
V
OUT  
1.3V  
INDUCTOR  
NTC  
R
ESR  
C
R
CER  
AVPDCRN  
LTC3816  
+
C
BULK  
BSOURCE  
+
DAMP  
R
PAR  
I
TCFB  
AITC  
+
C
VDCRN  
R
SER  
I
TC  
I
SENN  
SS(SEN)  
CC(SEN)  
V
V
3816 F14b  
Figure 14b. LTC3816 Frequency Compensation with DCR Configuration  
3816f  
ꢁꢅ  
LTC3816  
applicaTions inForMaTion  
LINE FEEDFORWARD (LFF)  
fOSC  
N
1. Select f = feedback crossover frequency =  
C
The LTC3816 incorporates a line feedforward function to  
compensate for changes in the line voltage and to simplify  
the frequency compensation. On the other hand, with  
the line feedforward enabled, the feedback loop has high  
modulator gain and is more sensitive to noise pickup.  
If the input supply voltage is low (e.g., around 5V) and  
well regulated, it is better to disable the LFF function by  
shorting the LFF pin to GND. Without LFF, the modulator  
where N is between 5 and 10.  
2. At the feedback loop crossover frequency, f , the loop  
C
gain is unity, therefore the error amplifier gain is:  
VCOMP  
VSERVO  
1
=
VSERVO  
VOUT  
A
MOD • ALC •  
gain A  
is reduced and the control loop is less  
MOD(WOLFF)  
sensitive to noise injection.  
3. Place the error amplifier zero near the LC filter double-  
pole frequency:  
A
≈ 0.85 • V  
MOD(WOLFF)  
IN  
1
1
If line feedforward is disabled, the control loop needs to  
be recompensated in order to account for the reduction  
in modulator gain.  
fEA(ZERO)  
=
2π •RC CC  
2π LLCOUT  
4. The feedforward zero is positioned to give the required  
phase boost at the crossover frequency:  
DPRSLPVR AND VID DAC SLEW RATE CONTROL  
1
The LTC3816 allows the user to program the VID DAC  
voltage transition slew rate by adding a capacitor at the  
CSLEW pin. In the IMVP-6.5 mode, CSLEW is internally  
pulledupbya4Acurrentsource. Uponacodetransition  
command, CSLEW is ramped up by the internal current  
fFF(ZERO)  
=
2π R1CFF  
5. Place the error amplifier pole at 5f to suppress the  
C
switching noise.  
source. When the capacitor, C  
, potential reaches 1V,  
1
SLEW  
fEA(POLE)  
=
= 5fC  
the VID DAC output voltage jumps by 1 LSB (12.5mV) and  
the controller resets the C capacitor. This operation  
CC CC1  
C +C  
2π •RC  
SLEW  
C1  
C
repeats until the DAC reaches its target value. The DAC  
voltage slew rate is given by the following equation:  
Compensating the switching power supply voltage feed-  
backloopisacomplextask. Thefrequencycompensation  
equations shown in this data sheet were obtained using  
some approximations to simplify the calculations. The  
compensation values shown in this data sheet are typi-  
cal values, optimized for the power components shown  
in the circuit. Though similar power components should  
suffice, substantially changing even one major power  
component or circuit layout may degrade performance  
significantly. To verify the calculated component values,  
all new circuit designs should be prototyped and tested  
for stability.  
dVDAC  
dt  
ICSLEW  
CSLEW  
=12.5mV •  
where I  
= 40µA.  
CSLEW  
When the IMVP-6 configuration is selected, the LTC3816  
allows two different slew rates as shown in Figure 15.  
Toconfigurethenormalslewrate,shortthepinDPRSLPVR  
to ground. To configure for a slower slew rate, force the  
DPRSLPVRpinpotentialabove1.6V. 2safterthecontrol-  
ler detects a low-to-high transition at the DPRSLPVR pin,  
3816f  
ꢁꢆ  
LTC3816  
applicaTions inForMaTion  
drops, which further improves efficiency by minimizing  
gate charge losses.  
ForcingtheMODE/SYNCpinlowenablesforcedcontinuous  
mode operation. In forced continuous mode, the bottom  
MOSFETisalwaysonwhenthetopMOSFETisoff,allowing  
the inductor current to reverse at low currents. This mode  
is less efficient due to conduction and switching losses,  
but has the advantage of better transient response at low  
currents, constant frequency operation, and the ability to  
maintain regulation when sinking current.  
V
OUT  
100mV/DIV  
VID5  
1V/DIV  
DPRSLPVR  
5V/DIV  
3816 F15  
V
V
C
= 12V  
0.1ms/DIV  
IN  
= 0.75V TO 1.15V  
OUT  
SLEW  
= 47pF  
During soft-start, the LTC3816 forces the controller to  
operate in pulse-skipping mode until the switcher output  
IMVP-6 CONFIGURATION  
Figure 15. Programmable VID Slew Rate  
voltage reaches its V  
power good threshold. During  
BOOT  
VID code transitions, however, the controller always oper-  
ates in forced continuous mode to allow the switcher to  
sink current.  
thecontrollerreducestheI  
pull-upcurrentfrom40µA  
CSLEW  
to 10µA (deeper sleep mode). This effectively reduces the  
VID DAC slew rate to 1/4 of its original value. If IMVP-6.5  
is selected, the slow slew rate function is disabled.  
OPERATING FREQUENCY/FREQUENCY  
SYNCHRONIzATION  
PULSE-SKIPPING AND FORCED CONTINUOUS MODE  
OPERATION  
Theselectionofswitchingfrequencyisatrade-offbetween  
efficiency and component size. Low frequency operation  
increasesefficiencybyreducingMOSFETswitchinglosses,  
but requires a larger inductance and/or capacitance to  
maintain low output voltage ripple. For converters with  
The LTC3816 can operate in one of two modes select-  
able with the MODE/SYNC pin: pulse-skipping mode  
or forced continuous mode. Shorting the MODE/SYNC  
pin to INTV selects pulse-skipping mode. Pulse-skip-  
CC  
high step-down V -to-V  
ratios, another consideration  
IN  
OUT  
ping mode is selected when high efficiency at very light  
loads is desired. In this mode, when the inductor current  
reverses, the bottom MOSFET turns off to minimize the  
efficiency loss due to reverse current flow. This reduces  
the conduction loss and slightly improves the efficiency.  
As the load reduces, the top gate duty cycle shrinks to  
maintain regulation. The LTC3816 is capable of operating  
at extremely low duty cycles; hence, TG will continue to  
run at a constant switching frequency until the top gate  
on-timeislessthan40nsto50ns.Whentheloaddecreases  
beyond this point, the LTC3816 TG begins to skip cycles  
to maintain regulation. The driver switching frequency  
is the minimum on-time of the converter.  
VOUT  
IN(MAX) • fOSC  
tON(MIN)  
=
V
If the MODE/SYNC pin is not driven by an external clock,  
the RFREQ pin voltage configures the LTC3816 free-run-  
ning switching frequency. Floating or shorting the RFREQ  
pin to INTV allows the controller to run at the nominal  
CC  
400kHz frequency. Connecting the RFREQ pin to GND  
selects 210kHz. Tying RFREQ to a potential between 2.5V  
and 3.5V selects 580kHz. The RFREQ pin has an internal  
3816f  
ꢁꢇ  
LTC3816  
applicaTions inForMaTion  
10µA current source pull-up. Placing a resistor between  
RFREQ and GND creates a potential given by the follow-  
ing equation:  
CLKEN#, OVF AND PWRGD  
CLKEN# is an open-drain output used to enable the CPU’s  
PLL.Uponpower-up,thisopen-drainpull-downisdisabled,  
and CLKEN# is pulled high by an external resistor. During  
the soft-start ramp, when the switcher output is 45mV  
V
RFREQ  
= I  
• R  
RFREQ RFREQ  
whereI  
=1Aandallowstheoscillatorfree-running  
RFREQ  
from the V  
voltage, the controller completes its soft-  
BOOT  
frequency to be programmed between 210kHz to 580kHz  
as shown in Figure 16.  
start cycle and 75µs later, CLKEN# pulls low to enable the  
processor PLL as shown in Figure 2.  
An internal phase-locked loop (PLL) allows the LTC3816  
to synchronize the internal oscillator to an external clock.  
WhenthereisaclockingsignalattheMODE/SYNCpin, the  
LTC3816phasedetectoradjuststheinternalPLLVCOinput,  
synchronizingtheswitchingfrequencytotheexternalclock  
frequency, and aligning the TG falling edge to the external  
clock’s falling edge. During synchronization, the oscillator  
frequency range widens to 120kHz to 650kHz.  
At any instant, if the switcher output voltage rises above  
the OVF threshold, the PWRGD pulls low, the regulator  
output voltage is actively ramped to 0V and PWRGD  
remains latched low until either the power is cycled or  
VR toggles. In the IMVP-6 configuration, the maximum  
ON  
OVF threshold is 1.7V. In the IMVP-6.5 configuration, the  
maximum threshold reduces to 1.55V.  
The PWRGD pin is an open-drain output that indicates the  
regulator output voltage has stabilized. At start-up, once  
theswitcheroutputhassettledtoitsVIDpotentialformore  
than 10ms, this open-drain releases and is pulled high by  
theexternalpull-upresistor.Itpullslowagainiftheswitcher  
output voltage remains outside of the +175mV/–270mV  
window around its nominal VID set point for more than  
750µs. Once pulled low, the PWRGD state is latched and  
the control logic initiates a shutdown sequence. After the  
For rapid frequency lock-in, the VCO input voltage can be  
pre-biased to the desired operating frequency before the  
external clock is applied. A resistor connected between  
the RFREQ pin and GND can pre-bias the VCO’s input  
voltage to the desired potential. Once pre-biased, the PLL  
loop only needs to make slight changes to the VCO input  
voltage in order to synchronize. The ability to pre-bias the  
loop filter allows the PLL to lock-in rapidly.  
700  
600  
SYNCHRONIZATION  
500  
400  
300  
200  
100  
FREE  
RUNNING  
1.5 1.8  
(V)  
0
0.3 0.6 0.9 1.2  
2.1 2.4  
V
RFREQ  
3816 F16  
Figure 16. VCO Transfer Curve  
3816f  
ꢁꢈ  
LTC3816  
applicaTions inForMaTion  
output voltage is ramped down, the controller continues  
event. The controller continues its normal operation with  
no disruption to the output voltage. To reset this thermal  
comparator, the voltage at the RPTC pin must drop below  
0.1V. To accurately reflect the system temperature, the  
nonlinear PTC thermistor should be mounted as close as  
thermally possible to the hottest device, e.g., the inductor  
or the MOSFET. To prevent the switching noise from af-  
fecting the thermal sensing circuit, add a small capacitor  
near the RPTC pin.  
to hold the regulator output and PWRGD low until the  
VR pin toggles or the input supply resets.  
ON  
During a VID transition, the power good comparators  
are masked for 100µs. In deeper sleep mode (25µs after  
DPRSLPVR pin transitions high), the power good com-  
parators are disabled and PWRGD stays high unless the  
switcher output voltage rises above its overvoltage fault  
threshold OVF or the controller detects that the regulator  
output voltage is 370mV lower than its nominal value.  
Figure 17 shows the Murata PTC PRF18 series typical re-  
sistance-temperaturecharacteristics.Atroomtemperature,  
all parts have about 470Ω nominal resistance. At higher  
temperatures, the resistance increases exponentially. An  
overtemperature event is detected by the LTC3816 when  
thePTCthermistor’sresistanceexceeds4.7k.Byselecting  
the appropriate thermistor from the series, this thermal  
monitoring threshold can be set anywhere from 65°C to  
145°C with 10°C resolution.  
The LTC3816 PWRGD pin can be configured for wire-OR  
operation. Shorting PWRGD to ground externally triggers  
a latchoff function. The regulator forces the output to a  
zero voltage condition and stays in this state until either  
the VR pin or the input supply resets.  
ON  
VRTT# AND THERMAL SHUTDOWN  
The LTC3816 includes a thermal monitoring circuit that  
senses the potential at the RPTC pin. An internal 100µA  
pull-up current source connects to an external nonlinear  
PTC thermistor through this pin. At room temperature, the  
low resistance PTC creates a low voltage at the RPTC pin.  
At high temperatures, the PTC resistance increases expo-  
nentially.IftheresultingRPTCvoltageishigherthan0.47V,  
it trips the thermal monitor comparator, causing the open-  
drain pin VRTT# to pull low signaling an overtemperature  
TheLTC3816includesasecondthermalprotectionfeature.  
If the LTC3816 die temperature is higher than 150°C, the  
controller pulls down the VRTT# pin. Under this condition  
the CPU should initiate its thermal management opera-  
tion. To untrip the VRTT# flag, the die temperature must  
be dropped below 130°C. If the LTC3816 die temperature  
exceeds 165°C, the driver is disabled and the controller is  
latchedinathermalshutdownstateuntilthepowersupply  
is cycled or the VR input toggles.  
ON  
1000  
BG  
BF  
BE  
BD  
BC  
BB  
BA  
AR  
AS  
100  
10  
1
0
–20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
3816 F17  
Figure 17. Murata Nonlinear PTC PRF18 Series Typical  
Resistance-Temperature Characteristics. Extracted From  
Murata PTC PRF18**471QB1RB Data Sheet  
3816f  
ꢂ0  
LTC3816  
applicaTions inForMaTion  
POWER MOSFET AND SCHOTTKY DIODE SELECTION  
estimate the C  
term is to take the change in gate  
MILLER  
charge from points A and B on a manufacturers data sheet  
The LTC3816 requires two external N-channel power  
MOSFETs:Oneforthetop(main)switchandone(ormore)  
for the bottom (synchronous) switch.  
and divide by the stated V voltage specified. C  
is  
DS  
MILLER  
the most important selection criteria for determining the  
transition loss term in the top MOSFET but is not directly  
The peak-to-peak MOSFET gate drive levels are set by the  
specified on MOSFET data sheets. C  
and C  
are  
RSS  
OSS  
5.2VINTV supply,requiringtheuseoflogic-levelthresh-  
specified sometimes but definitions of these parameters  
are not included.  
CC  
old MOSFETs in most applications. Pay close attention to  
the BV  
specification for the MOSFETs as well; many  
DSS  
When the controller is operating in continuous mode the  
duty cycles for the top and bottom MOSFETs are given  
by:  
logic-level MOSFETs are limited to 30V or less.  
Selection criteria for the power MOSFETs includes the  
input capacitance, the on-resistance R  
, the input  
DS(ON)  
VOUT  
voltage and the maximum output current. MOSFET input  
capacitance is a combination of several components  
but can be derived from the typical gate-charge curve  
included on most data sheets as shown in Figure 18. The  
curve is generated by forcing a constant input current  
into the gate of a common source, current source loaded  
stage and then plotting the gate voltage versus time. The  
initial slope is the effect of the gate-to-source and the  
gate-to-drain capacitances. The flat portion of the curve  
is the result of the Miller multiplication effect of the drain-  
to-gate capacitance as the drain drops the voltage across  
the current source load. The upper sloping line is due to  
the drain-to-gate accumulation capacitance and the gate-  
to-source capacitance.  
Main Switch Duty Cycle =  
V
IN  
V – VOUT  
IN  
Synchronous Switch Duty Cycle =  
V
IN  
The power dissipation for the main and synchronous  
MOSFETs at maximum output current are given by:  
2
VOUT  
PMAIN  
=
I
1+δ R  
+
(
)
(
)
(
DS(ON)  
LOAD MAX  
(
)
V
IN  
2 ILOAD(MAX)  
V
R
DR )(  
C
(
)
)
IN  
MILLER  
2
1
1
+
f
(
)
OSC  
VINTVCC – VGS(MIL)  
V
GS(MIL)   
The Miller charge (the increase in coulombs on the hori-  
zontal axis from A to B while the curve is flat) is specified  
2
V – VOUT  
IN  
PSYNC  
=
I
(
1+δ R  
DS(ON)  
(
)
)
for a given V drain voltage, but can be adjusted for  
LOAD(MAX)  
DS  
V
IN  
different V voltages by multiplying the ratio of the ap-  
DS  
plication V to the curve specified V values. A way to  
DS  
DS  
where δ is the temperature dependency of R  
and  
DS(ON)  
R
is the effective top driver resistance (approximately  
DR  
2.6Ω). V  
V
IN  
is the MOSFET V at the Miller effect  
GS(MIL)  
GS  
MILLER EFFECT  
transition. C  
is the calculated capacitance using  
V
V
GS  
MILLER  
V
GS(MIL)  
the gate-charge curve from the MOSFET data sheet as  
A
B
+
described above. The term (1 + δ) is generally given for  
V
DS  
+
Q
V
IN  
a MOSFET in the form of a normalized R  
versus  
GS  
DS(ON)  
C
= (Q – Q )/V  
B A DS  
MILLER  
temperature curve, but δ = 0.005/°C can be used as an  
3816 F18  
approximation for low voltage MOSFETs.  
Figure 18. MOSFET Miller Capacitance  
3816f  
ꢂꢀ  
LTC3816  
applicaTions inForMaTion  
BothMOSFETshaveI RlosseswhilethetopsideN-channel  
2
ThisequationhasamaximumRMScurrentatV =2V  
,
OUT  
IN  
equation includes an additional term for transition losses,  
whicharehighestatthehighestinputvoltage.Thenumber,  
type and on-resistance of all MOSFETs selected take into  
account the voltage step-down ratio as well as the actual  
position (main or synchronous) in which the MOSFET is  
used. A much smaller, lower input capacitance MOSFET  
should be used for the top MOSFET in applications where  
where I  
= I  
/2. This simple worst-case  
RMS(MAX)  
LOAD(MAX)  
condition is commonly used for design because even  
significant deviations do not offer much relief. A typical  
LTC3816 application operates at low duty cycle, hence,  
the maximum input supply ripple current occurs at  
V = V  
, and typically I  
< I  
/2.5.  
LOAD(MAX)  
IN  
IN(MIN)  
RMS(MAX)  
Note that capacitor manufacturers’ ripple current ratings  
are often based on only 2000 hours of life. This makes  
it advisable to further derate the capacitor or to choose  
a capacitor rated at a higher temperature than required.  
Several capacitors may also be paralleled to meet size or  
height requirements in the design. Sanyo OS-CON SVP,  
SVPD series or aluminum electrolytic capacitors from  
Panasonic WA series in parallel with a couple of high  
performance ceramic capacitors should be used as the  
input supply bypass. Ceramic capacitors placed next to  
the top MOSFET drain helps to reduce the input supply  
voltage ripple.  
V >> V . The top MOSFET’s on-resistance is normally  
IN  
OUT  
less important for overall efficiency than its input capaci-  
tance at operating frequencies above 300kHz. MOSFET  
manufacturershavedesignedspecialpurposedevicesthat  
provide reasonably low on-resistance with significantly  
reducedinputcapacitanceforthemainswitchinswitching  
regulators. The synchronous MOSFET losses are greatest  
at high input voltages when the top switch duty cycle is  
low or during a short circuit when the synchronous switch  
is on close to 100% of the period.  
The Schottky diode, D, shown in Figure 1 conducts during  
the dead-time between the conduction of the two large  
power MOSFETs. This prevents the body diode of the bot-  
tom MOSFET from turning on, storing charge during the  
dead time and requiring a reverse-recovery period which  
could cost as much as several percent in efficiency. Due  
to the relatively small average current, a 2A to 8A Schottky  
is generally acceptable while offering a good compromise  
between series resistance and capacitance. Larger diodes  
result in additional transition loss due to their larger junc-  
tion capacitance.  
C
SELECTION  
OUT  
Theoutputcapacitorchoiceisprimarilydeterminedbythe  
voltage tolerance specifications due to large load current  
transients encountered in typical LTC3816 applications.  
The capacitance must be sufficient to absorb the change  
in inductor current when a high current to low current  
transition occurs. The opposite load current transition is  
generally determined by the control loop compensation  
components, so make sure not to overcompensate and  
slow down the response. The minimum capacitance to  
assure the inductor’s energy is adequately absorbed is:  
C SELECTION  
IN  
Incontinuousmode, thesourcecurrentofthetopN-chan-  
2
L I  
(
)
nel MOSFET is a square wave of duty cycle V /V . To  
LOAD  
OUT IN  
CBULK +CCER  
=
preventlargevoltagetransients, alowESRinputcapacitor  
sized for the maximum RMS current must be used. The  
maximum RMS capacitor current is given by:  
2VOUT V  
(
)
OUT(LOAD)  
where C  
is the amount of bulk capacitance and C  
BULK  
CER  
is the total amount of ceramic capacitance. To minimize  
the output voltage overshoot during a load step, set:  
VOUT V – V  
(
)
IN  
OUT  
IRMS(MAX) ILOAD(MAX)  
V
IN  
V  
= V  
OUT(AVP)  
OUT(LOAD)  
3816f  
ꢂꢁ  
LTC3816  
applicaTions inForMaTion  
The resistive component of the bulk capacitor ESR must  
be small enough that under a load release, ESR multiplied  
by the change in load current must meet the following  
criteria:  
The Sanyo OS-CON semiconductor electrolyte capacitor  
is one possible choice for high performance through-hole  
capacitors. In surface mount applications, multiple paral-  
lel capacitors are required to meet the ESR or transient  
current handling requirements. Aluminum electrolytic  
and dry tantalum capacitors are both available in surface  
mountconfigurations.Newspecialpolymersurfacemount  
capacitors offer very low ESR but have much lower ca-  
pacitive density per unit volume. In the case of tantalum,  
it is critical that the capacitors are surge tested for use in  
switchingpowersupplies.Severalexcellentoutputcapaci-  
tor choices are the Sanyo POSCAP TPF, TPL and TPLF, or  
the Panasonic SP series. Consult the manufacturer for  
other specific recommendations.  
V  
> I • R  
LOAD ESR  
OUT(LOAD)  
The ceramic capacitors at the regulator output help to  
absorb some of the change in the load current and reduce  
theESRvoltagesteppredictedbytheaboveequation.High  
performance ceramic capacitors also help to lower the  
regulator output voltage perturbation caused by the high  
slew rate change in the inductor current flowing through  
the bulk capacitor parasitic ESL.  
The total amount of output capacitance required is also  
restricted by the steady-state output voltage ripple. The  
output ripple, V , in continuous mode is determined  
INDUCTOR SELECTION  
OUT  
by:  
TheinductorinatypicalLTC3816circuitischosenprimarily  
for its saturation current and inductance value. The induc-  
tor DC rated current should be larger than the expected  
peak current which is equal to:  
1
VOUT ≈ ∆I R  
+
L   
ESR  
8• fOSC • CBULK +CCER  
(
)
IL(MAX)  
where f  
= operating frequency and I = ripple current  
L
OSC  
IL(PEAK) =ILOAD(MAX)  
+
in the inductor. The output ripple is highest at maximum  
2
input voltage since I increases with input voltage. The  
L
Inaddition,theselectedinductormustbeabletowithstand  
first term in the ripple voltage equation relates to the  
ripple current into the ESR of the output capacitor, which  
dominates the output ripple voltage. The second term  
guarantees that the output capacitance does not signifi-  
cantly discharge during the operating frequency period  
due to ripple current.  
2 × I  
for a short duration without saturation (see  
LOAD(MAX)  
the Current Limit section).  
The inductor value sets the ripple current, which is com-  
monly chosen at around 20% to 30% of the anticipated  
full load current. Higher inductance reduces ripple cur-  
rent, core losses in the inductor, ESR losses in the output  
capacitors and output voltage ripple. But, under rapid  
loading conditions, higher inductance results in higher  
peak-to-peak transient deviations. A lower value inductor  
reduces the number of output capacitors and requires a  
smaller PCB footprint for the LC filter. Highest efficiency  
operation is obtained at low frequency with small ripple  
current. However, achieving this requires a large induc-  
tor and higher output ripple under transient conditions.  
There is a trade-off between component size, efficiency  
Note that the IMVP-6 or IMVP-6.5 application specifies  
extremely low output voltage deviations. Therefore, the  
output capacitor selection should be carefully considered.  
The regulator should be located in close proximity to the  
CPU. The bulk capacitor needs to be as close as possible  
to the power supply pins of the processor to minimize the  
parasiticinductancebetweenthedecouplingcapacitorand  
the load. In addition, multiple high performance ceramic  
capacitors are normally placed in the processor socket  
cavity to compensate for the PCB parasitic resistance  
and inductance.  
3816f  
ꢂꢂ  
LTC3816  
applicaTions inForMaTion  
and operating frequency. Given a specified limit for ripple  
current, the inductor value can be obtained using the fol-  
lowing equation:  
V
V
BAT  
IN  
12V  
LTC3816  
TG  
Q
T
L
V
C
SW  
BG  
OUT  
VOUT  
fOSC I  
VOUT  
+
Q
B
D
L =  
1–  
OUT  
V
L(MAX)   
IN(MAX)   
BSOURCE  
3816 F19  
Once the value for L is known, the type of inductor must  
be selected. High efficiency converters generally cannot  
affordthecorelossfoundinlowcostpowderedironcores,  
forcing the use of more expensive ferrite cores. Ferrite  
designs have very low core loss and are thus preferred  
at high switching frequencies. Ferrite core materials  
saturate hard, which means that inductance collapses  
abruptly when the peak design current is exceeded. This  
results in an abrupt increase in inductor ripple current and  
consequent output voltage ripple. Do not allow the core to  
saturate! A variety of inductors designed for high current,  
low voltage applications are available from manufacturers  
such as Vishay, Sumida, Pulse, Wurth Elektronik, Vitec  
and Toko.  
Figure 19. Automotive Application Protection  
transient suppressor clamps the input voltage during  
load dump. Note that the transient suppressor should not  
conduct during double-battery operation, but must still  
clamptheinputvoltagebelowbreakdownoftheconverter.  
Although the IC has a maximum input voltage of 40V on  
the SW pins, most applications will be limited to 30V by  
the MOSFET BV  
.
DSS  
CHECKING TRANSIENT RESPONSE  
For all new LTC3816 PCB circuits, transient tests need to  
beperformedtoverifytheproperfeedbackloopoperation.  
The regulator loop response can be checked by looking at  
the load current transient response. Switching regulators  
take several cycles to respond to a step in DC (resistive)  
AUTOMOTIVE CONSIDERATIONS  
Before you connect an LTC3816 converter to an automo-  
tive cigarette lighter supply, be advised: you are plugging  
into the supply from hell. The main battery line in an  
automobile is the source of a number of nasty potential  
transients, including load dump, reverse battery and  
double battery.  
load current. When a load step occurs, V  
shifts by an  
OUT  
amount equal to V . I  
also begins to charge or  
AVP  
LOAD  
discharge C  
generating the feedback error signal that  
OUT  
forces the regulator to adapt to the current change and  
return V to its steady-state value. During this recovery  
OUT  
time V  
can be monitored for excessive overshoot or  
OUT  
ringing, which would indicate a stability problem.  
Load dump is the result of a loose battery cable. When the  
cable breaks connection, the field collapse in the alterna-  
tor can cause a positive spike as high as 60V which takes  
several hundred milliseconds to decay. Reverse battery is  
just what it says, while double battery is a consequence of  
tow truck operators finding that a 24V jump start cranks  
cold engines faster than 12V.  
Measuring transient response presents challenges in two  
respects:obtaininganaccuratemeasurementandgenerat-  
ing a suitable transient to use to test the circuit. Output  
measurementsshouldbetakenwithascopeprobedirectly  
acrosstheoutputcapacitor.Properhighfrequencyprobing  
techniques should be used. In particular, don’t use the 6"  
groundleadthatcomeswiththeprobe!Useanadapterthat  
fits on the tip of the probe and has a short ground clip to  
ensure that inductance in the ground path doesn’t cause  
a bigger spike than the transient signal being measured.  
ThenetworkshowninFigure19isthemoststraightforward  
approach to protect a DC/DC converter from the ravages  
of an automotive battery line. The series diode prevents  
current from flowing during reverse battery, while the  
3816f  
ꢂꢃ  
LTC3816  
applicaTions inForMaTion  
Conveniently, the typical probe tip ground clip is spaced  
just right to span the leads of a typical output capacitor. In  
general,itisbesttotakethismeasurementwiththe20MHz  
bandwidth limit on the oscilloscope turned on to limit high  
frequencynoise.Notethatmicroprocessormanufacturers  
typically specify ripple ≤20MHz, as energy above 20MHz  
is generally radiated and not conducted and will not affect  
the load even if it appears at the output capacitor.  
A DESIGN EXAMPLE  
As a design example, consider an IMVP-6.5 application  
with inductor DCR current sense (see the last page  
schematic) and the following requirements: assume V  
IN  
= 12V (nominal), V = 24V (maximum), V  
= 0.75V,  
LOAD(MAX) LOAD(MIN)  
IN  
OUT  
V
(minimum) = 0.725V, I  
= 1.5A, AVP = –3mV/A, f  
= 27A, I  
OUT  
= 400kHz, V  
= 1.0V.  
OSC  
IMON  
For the input and output conditions given above, the  
steady-state minimum on-time for this application at  
V = 24V is approximately:  
IN  
Now that we know how to measure the signal, we need to  
have something to measure. The ideal situation is to use  
the actual load for the test, and switch it on and off while  
watching the output. If this isn’t convenient, a current  
step generator is needed. This generator needs to be able  
to turn on and off in nanoseconds to simulate a typical  
switching logic load, so stray inductance and long clip  
leads between the LTC3816 and the transient generator  
must be minimized.  
VOUT(MIN)  
0.725V  
tON(MIN)  
=
=
= 75.5ns  
V
IN(MAX) • fOSC 24V 400kHz  
This is much longer than the LTC3816 minimum on-time.  
To program the 400kHz operation, float the RFREQ pin.  
Theinductancevalueischosenrstbasedona20%ripple  
current assumption. The highest value of ripple current  
occurs at the maximum input voltage:  
Figure 20 shows an example of a simple transient gen-  
erator. Be sure to use a noninductive resistor as the load  
element—many power resistors use an inductive spiral  
pattern and are not suitable for use here. A simple solution  
is to take ten 1/4W film resistors and wire them in parallel  
to get the desired value. This gives a noninductive resis-  
tive load which can dissipate 2.5W continuously or 50W  
if pulsed with a 5% duty cycle, enough for most LTC3816  
circuits. Solder the MOSFET and the resistor(s) as close  
to the output of the LTC3816 circuit as possible and set  
up the signal generator to pulse at a 100Hz rate with a 5%  
duty cycle. This pulses the LTC3816 with 500µs transients  
10ms apart, adequate for viewing the entire transient  
recovery time for both positive and negative transitions  
while keeping the load resistor cool.  
VOUT  
fOUT I  
VOUT  
L =  
1–  
V
L(MAX)   
IN(MAX)   
0.75V  
400kHz 0.227A  
0.75V  
24V  
=
1–  
= 0.33µH  
A commonly available 0.33µH inductor is chosen. This  
results in 5.5A of ripple current. The peak inductor cur-  
rent is the maximum DC load current plus one-half the  
ripple current, or:  
1
2
IL(PEAK) = 27A + 5.5A = 29.75A  
LTC3816  
V
OUT  
R
LOAD  
50Ω  
PULSE  
GENERATOR  
RENESAS RJK0305DPB  
OR EQUIVALENT  
10k  
0V TO 10V  
100Hz, 1% TO 5%  
3816 F20  
DUTY CYCLE  
LOCATE CLOSE TO THE OUTPUT  
Figure 20. Transient Load Generator PC Board  
3816f  
ꢂꢄ  
LTC3816  
applicaTions inForMaTion  
Forthisexample,aVishayIHLP-5050CE-010.33µHinduc-  
tor is chosen. According to the inductor data sheet, it has  
a maximum DC current rating of 36.5A and a saturation  
current of 62A. At room temperature, the typical DCR is  
1.3mΩ and the maximum DCR is 1.5mΩ. At 125°C, the  
DCR increases to approximately 2.085mΩ. The R  
resistor value can be calculated.  
ToderivethevoltagedropacrosstheinductorDCR(typically  
1.3mΩ), place a 0.1µF capacitor across the current sense  
inputpins,I  
andI  
.Thecurrentsenselterresistor  
SENP  
SENN  
value R  
can be calculated from the equation:  
IDCR  
L
0.33µH  
RIDCR  
=
=
= 2.538k  
IMAX  
RDCR CIDCR 1.3m0.1µF  
RDCR  
I
IMAX(MIN)  
Select R  
= 2.55k.  
I  
L   
2
IDCR  
RIMAX = I  
+
LIMIT  
For the AVP section (refer to Figure 10), first select a 10k  
NTC thermistor. In this example, the Murata NCP18XH103  
is chosen. Next, select:  
2.085mΩ  
= 29.75A •  
= 6.89k  
9µA  
R
= R  
at 25°C = 10k  
PAR  
NTC  
Choose 1% resistor R  
regulator can supply the maximum load current under  
the worst-case conditions.  
= 6.98k to ensure that the  
IMAX  
The R  
ing equation:  
resistor value can be obtained from the follow-  
SER  
10  
3
If this large DCR variation is a problem, replace this induc-  
tor with another inductor with a smaller DCR variation or  
useanNTCtemperaturecompensationcircuitasshownin  
Figure 21. Please refer to the Temperature Compensated  
Active Voltage Positioning with Inductor DCR section.  
Note that Figure 21 uses a resistive divider and requires  
different component values for optimal temperature  
compensation.  
RSER  
R
|| R  
at 0°C – R || R  
at 75°C  
(
)
(
)
(
) (  
)
PAR  
NTC  
PAR  
NTC  
– R || R  
(
at 25°C  
(
)
)
PAR  
NTC  
From the NTC data sheet:  
R
R
at 0°C = 27.2k  
NTC  
NTC  
at 75°C = 1.925k  
V
IN  
I
L
LTC3816  
TG  
Q
T
L
DCR  
V
SW  
BG  
OUT  
INDUCTOR  
NTC  
Q
B
D
+
C
OUT  
R
S
BSOURCE  
R
R
PAR  
SER  
3816 F21  
I
SENP  
SENN  
C
IDCR  
I
R
IMAX  
I
MAX  
Figure 21. Inductor DCR Current Sense Using  
NTC Temperature Compensation  
3816f  
ꢂꢅ  
LTC3816  
applicaTions inForMaTion  
Therefore R  
is calculated to be 13.99k and standard  
Select R  
= 21k. The value of C  
is selected to  
IMON  
SER  
IMON  
valueR =14kisused.Next,theresistorR  
value  
satisfy the desired I  
time constant:  
SER  
AVPDCRN  
MON  
is obtained from the AVP slope requirement:  
tIMON  
RIMON  
300µs  
21k  
CIMON  
=
=
=14.28nF  
RSER + RPAR ||RNTC  
(
)
A
AVP= = 3mV/A =  
RDCR  
RAVPDCRN  
Select C  
= 15nF.  
IMON  
14k + 10k||10k  
(
)
The power MOSFETs chosen for this application are the  
Renesas RJK0305DPB (top) and 2 × RJK0330DPB (bot-  
tom). The upper MOSFET, which is optimized for low  
RAVPDCRN  
=
1.3m= 8.233k  
3mV/A  
Selectthestandardvalue8.25k.ThecapacitorvalueC  
is given by the following equation:  
VDCRN  
switching losses, has a typical R  
of 10mΩ at V  
DS(ON)  
GS  
= 4.5V, a total gate charge of 8nC, and a minimum BV  
DSS  
of 30V. The bottom MOSFET which is optimized for low  
L
CVDCRN  
=
=
on-resistance, has a typical R  
of 2.8mΩ at V  
=
DS(ON)  
GS  
RSER + RPAR ||RNTC RDCR  
(
)
4.5V, a total gate charge of 27nC, and a minimum BV  
of 30V.  
DSS  
0.33µH  
14k + 10k||10k 1.3mΩ  
=13.36nF  
(
)
From the RJK0305DPB upper MOSFET data sheet, the  
Miller capacitance is calculated to be:  
Use the standard value C  
= 15nF.  
VDCRN  
QG  
VDS 12V  
2nC  
To program the I  
PREIMON  
to 20µA:  
voltage, first select the resistor  
PREIMON  
CMILLER  
=
=167pF  
MON  
such that I  
R
bias current is around 10µA  
Assuming a top MOSFET junction temperature of 75°C,  
δ = 0.25 and the power dissipation in this MOSFET is:  
I
LOAD(MAX) RDCR  
RNTCNET  
RAVPDCRN  
RPREIMON  
=
=
IPREIMON  
2
VOUT  
PMAIN  
=
=
I
(
1+δ RDS(ON) + t  
(
)
)
LOAD(MAX)  
V
14k + 10k||10k  
(
)
27A •1.3mΩ  
IN  
2 ILOAD(MAX)  
15µA  
8.25k  
V
R
(
C
(
)
DR )(  
)
IN  
MILLER  
= 5.389k  
2
1
1
SelectastandardvalueR  
PREIMON  
be obtained from the following equation:  
= 5.1k. Oncethe resistor  
IMON  
PREIMON  
value is chosen, the R  
+
f
(
)
OSC  
V
INTVCC – VGS(MIL)  
V
R
resistor value can  
GS(MIL)   
0.75V  
12V  
2
PMAIN  
27A 1+0.25 10m+  
) (  
(
)
V
IMON RPREIMON  
RAVPDCRN  
RNTCNET  
RIMON  
=
=
2 27A  
3• ILOAD(MAX) RDCR  
(
)
12V  
2.6167pF •  
(
)
(
)(  
)
2
1.0V 5.1k  
8.25k  
1
1
3• 27A •1.3mΩ  
+
400kHz  
14k + 10k||10k  
(
)
(
)
(
)
5.2V 3V 3V  
= 21.03k  
PMAIN = 0.57W+0.266W 0.836W  
3816f  
ꢂꢆ  
LTC3816  
applicaTions inForMaTion  
For the synchronous MOSFETs, assume that the two  
bottom MOSFETs share the inductor current equally. The  
power dissipation for one MOSFET is:  
Most regulator designs allow a slight transient overshoot  
for a short duration. If this is limited to 40mV, we have:  
VOUT(AVP) = AVP • ILOAD(MAX) ILOAD(MIN)  
(
)
2
V – VOUT  
IN  
PSYNC  
=
I
1+δ R  
DS(ON)  
(
)
mV  
A
(
)
LOAD(MAX)  
V
= 3  
• 27A 1.5A = 76.5mV  
(
)
IN  
12V 0.75V  
12V  
2
VOUT(LOAD) = ∆VOUT(AVP) + ∆VOVERSHOOT  
PSYNC  
=
13.5A 1+0.25 2.8mΩ  
(
) (  
)
= 76.5mV+ 40mV=116.5mV  
= 0.598W  
2
0.33µH 27A 1.5A  
2 0.75V 116.5mV  
( )(  
(
)
The total power dissipation of the bottom MOSFETs is  
2 × 0.598W = 1.196W.  
CBULK +CCER  
=
=1228µF  
)
For this application, the maximum input RMS current  
The ESR of the output capacitor is determined by the load  
transient requirement. If the output voltage jump due to  
happens when V = V  
and can be determined from  
IN  
IN(MIN)  
the formula:  
the capacitor ESR is limited to V  
:
OUT(AVP)  
VOUT(AVP)  
VOUT  
VIN(MIN) – VOUT  
75mV  
27A 1.5A  
(
)
RESR  
<
=
= 2.94mΩ  
IRMS(MAX) ILOAD(MAX)  
ILOAD  
(
)
V
IN(MIN)  
The above requirements are easily satisfied by three  
Sanyo POSCAP 2TPF330M6 330µF (ESR = 6mΩ) bulk  
capacitors in parallel, twenty 10µF and some 1µF high  
performance ceramic capacitors in the processor socket  
cavity. With three bulk capacitors in parallel, the effective  
ESR is 2mΩ, and the maximum steady-state output ripple  
voltage is given by:  
0.75V 5V 0.75V  
(
)
9.64A  
IRMS(MAX) 27A  
5V  
The minimum RMS current rating of the input capacitor  
mustexceed9.64A.Tomeetthisripplecurrentrequirement  
with V  
= 24V, select two Sanyo OS-CON 25SVP56  
IN(MAX)  
capacitors or higher voltage rating capacitor as the input  
supply bulk capacitance. In addition, place a couple of  
high performance ceramic capacitors in parallel with the  
bulk capacitors.  
1
VOUT ≈ ∆I R  
L   
+
ESR  
8• fOSC • CBULK +CCER  
(
)
The output capacitor value is determined by:  
1
= 5.5A 2m+  
2
8•400kHz • 3330µF +2010µF  
(
)
L I  
(
)
LOAD  
CBULK +CCER  
=
=11mV+1.44mV =12.44mV  
2VOUT V  
(
)
OUT(LOAD)  
3816f  
ꢂꢇ  
LTC3816  
applicaTions inForMaTion  
Ascanbeseenfromtheaboveequation,thebiggestportion  
of the output ripple comes from the ESR of the capacitor.  
This is why low ESR capacitors are so important in low  
voltage, high current applications.  
6. The AITC amplifier external components should be  
placed close to the LTC3816. Only the NTC or PTC  
thermistor should be placed near the inductor.  
7. Are the V  
and V  
, I  
and I  
leads  
CC(SEN)  
SS(SEN) SENP  
SENN  
routed together with minimum PC trace spacing? The  
filter capacitor between V and V and the  
PC BOARD LAYOUT CHECKLIST  
CC(SEN)  
SS(SEN)  
should be as  
filter capacitor between I  
and I  
SENP  
SENN  
When laying out the printed circuit board, start with the  
power devices. Be sure to orient the power circuitry so  
that a clean flow of the power path is achieved. Conductor  
widths should be maximized and lengths minimized. After  
you are satisfied with the power path, the control circuitry  
should be laid out. It is much easier to find routes for the  
relatively small traces in the control circuits than it is to  
find circuitous routes for high current paths. After the  
layout, the following checklist should be used to ensure  
proper operation of the LTC3816.  
close as possible to the LTC3816. Ensure accurate  
current sensing with Kelvin connections as shown in  
Figure 22.  
8. To prevent I  
current from affecting the output  
MON  
voltage kelvin sense accuracy, the I  
resistor and  
MON  
V
should be connected to the CPU V  
pin  
SS(SEN)  
SS(SEN)  
using separate PCB traces.  
9. Since the IC ground will normally return to the ground  
planes on the PCB through an array of vias, be sure  
to avoid having any high di/dt power path currents  
flowing under the IC.  
1. KeeptheGNDandBSOURCEtracesseparate.Thesignal  
ground consists of the LTC3816 GND pin and the (–)  
terminal of V . The power ground consists of the  
OUT  
10. Any external small-signal components that are con-  
nected to ground should be located as close as pos-  
sible to the IC, with local connections to GND or the  
ground plane using vias.  
BSOURCE pin, the Schottky diode anode, the source  
of the bottom side MOSFET, and the (–) terminal of the  
input capacitor. Also, try to connect the (–) terminal  
of the output capacitor as close as possible to the (–)  
terminalsoftheinputcapacitor.PlacetheLDOceramic  
INDUCTOR  
capacitor C  
next to the IC, between INTV and  
INTVCC  
CC  
GND. The negative terminals of C , C  
and C  
INTVCC  
IN OUT  
LTC3816  
RISR  
should be as close as possible to one another.  
I
SENP  
SENSE  
RESISTOR  
C
ISR  
I
2. The high di/dt loop formed by the top MOSFET, the  
SENN  
bottom MOSFET and the C capacitor should have  
IN  
short leads and PC trace lengths to minimize high  
frequency noise and voltage stress from inductive  
ringing.  
OUTPUT CAPACITOR  
SW  
3. ConnectthedrainofthetopsideMOSFETdirectlytothe  
(+) plate of C , and connect the source of the bottom  
LTC3816  
RISR  
IN  
I
SENP  
side MOSFET directly to the (–) terminal of C . This  
IN  
C
INDUCTOR  
ISR  
I
capacitor provides the AC current to the MOSFETs.  
SENN  
4. The charge pump capacitor, C , should also be next  
B
3816 F22  
OUTPUT CAPACITOR  
to the IC between BOOST and SW.  
5. Place the small-signal components away from high  
frequency switching nodes (BOOST, SW, TG and  
BG).  
Figure 22. Sense Resistor and Inductor DCR  
Kelvin Current Sensing  
3816f  
ꢂꢈ  
LTC3816  
Typical applicaTions  
An IMVP-6 Converter Using Current Sense Resistor with –5.7mV/A AVP Slope  
4.75k 3.32k  
33pF  
1000pF 124Ω  
1.1V  
2.37k  
I
3.3V  
INTV  
CC  
GND  
I
I
SGND I  
I
LFF  
56Ω 1.9k 1.9k  
TC  
TCFB  
SENN  
MAX SENP  
PREI  
VRTT#  
CLKEN#  
PWRGD  
VRTT#  
MON  
MON  
RPTC  
I
CLKEN#  
PTC  
4.5V TO 25V  
V
C
1000pF  
IN  
+
8
VR  
VR  
ON  
ON  
SW  
TG  
IN  
1
5
4
V
V
SS(SEN)  
CC(SEN)  
R
C
L
0.1µF  
SEN  
6, 7  
V
V
BOOST  
CC(CORE)  
+
C
BULK  
CER  
SERVO  
I
V
LOAD(MAX)  
LTC3816  
IN  
330µF  
10µF  
4A  
1µF  
D
22pF  
20k  
s2  
s6  
2, 3  
10k  
10pF  
EXTV  
CC  
B
SS(CORE)  
V
FB  
INTV  
CC  
4.7µF  
INTV  
CC  
Si4816BDY  
100Ω  
100Ω  
COMP  
BG  
BSOURCE  
MODE/SYNC  
RFREQ  
1500pF  
DPRSLPVR  
SS  
DPRSLPVR  
CSLEW  
f
SYNC  
C
: SANYO POSCAP 2TPF330M6  
BULK  
470pF  
22pF  
VID0 VID1 VID2 VID3 VID4 VID5 VID6  
VID0 VID1 VID2 VID3 VID4 VID5 VID6  
L: VISHAY IHLP2525CZ-06 (1µH, DCR = 8.44mΩ)  
PTC: MURATA PRF18BC471QB1RB  
R
: PANASONIC ERJM1WTF4M0U  
SEN  
3816 TA02  
Efficiency  
Transient Waveform  
100  
90  
V
OSC  
V
= 1V  
CC(CORE)  
f
= 400kHz  
= 0V  
EXTVCC  
80  
V
70  
CC(CORE)  
20mV/DIV  
60  
50  
V
= 5V  
IN  
V
IN  
= 12V  
40  
30  
20  
10  
0
I
LOAD  
2A/DIV  
CONTINUOUS MODE  
PULSE-SKIPPING MODE  
3816 TA02b  
0.01  
0.1  
LOAD CURRENT (A)  
1
20µs/DIV  
3816 TA02b  
3816f  
ꢃ0  
LTC3816  
Typical applicaTions  
3816f  
ꢃꢀ  
LTC3816  
package DescripTion  
FE Package  
38-Lead Plastic eTSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1772 Rev B)  
Exposed Pad Variation AA  
4.75 REF  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
REF  
38  
20  
6.60 0.10  
2.74 REF  
4.50 REF  
SEE NOTE 4  
6.40  
REF (.252)  
BSC  
2.74  
(.108)  
0.315 0.05  
1.05 0.10  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
1
19  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0o – 8o  
0.50  
(.0196)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.17 – 0.27  
FE38 (AA) eTSSOP REV B 0510  
(.0067 – .0106)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
MILLIMETERS  
(INCHES)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
3. DRAWING NOT TO SCALE  
3816f  
ꢃꢁ  
LTC3816  
package DescripTion  
UHF Package  
38-Lead Plastic QFN (5mm × 7mm)  
(Reference LTC DWG # 05-08-1701 Rev C)  
0.70 p 0.05  
5.50 p 0.05  
4.10 p 0.05  
3.00 REF  
5.15 0.05  
3.15 0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50 BSC  
5.5 REF  
6.10 p 0.05  
7.50 p 0.05  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 s 45o CHAMFER  
0.75 p 0.05  
3.00 REF  
5.00 p 0.10  
37  
38  
0.00 – 0.05  
0.40 p0.10  
PIN 1  
TOP MARK  
1
2
(SEE NOTE 6)  
5.15 0.10  
5.50 REF  
7.00 p 0.10  
3.15 0.10  
(UH) QFN REF C 1107  
0.200 REF 0.25 p 0.05  
R = 0.125  
TYP  
R = 0.10  
TYP  
0.50 BSC  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE  
OUTLINE M0-220 VARIATION WHKD  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
3816f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC3816  
Typical applicaTion  
An IMVP-6.5 Converter Using Temperature Compensated Inductor DCR Sensing with –3mV/A AVP Slope  
10k  
14k  
8.25k  
I
I
SENN  
15nF  
6.98k  
0.1µF  
I
I
I
MAX  
TCFB  
TC  
2.55k  
SENP  
LFF  
5.1k  
15nF  
21k  
PREI  
56Ω  
1.9k  
1.9k  
MON  
VRTT#  
VRTT#  
CLKEN#  
PWRGD  
1.1V  
I
I
MON  
MON  
LT3816  
CLKEN#  
PWRGD  
RPTC  
3.3V  
V
IN  
4.5V TO 24V  
1000pF  
VR  
VR  
ON  
ON  
V
+
SS(SEN)  
CC(SEN)  
NTC  
L
100Ω  
100Ω  
SW  
TG  
C
VIN  
V
Q
T
SERVO  
0.1µF  
10k  
BOOST  
V
FB  
+
12k  
D
B
10pF  
2.2nF  
V
V
IN  
Q
B
CC(CORE)  
C
CER  
C
COMP  
BULK  
I
= 27A  
LOAD(MAX)  
EXTV  
INTV  
5V  
CC  
PTC  
22pF  
CC  
SS  
BG  
BSOURCE  
MODE/SYNC  
RFREQ  
DPRSLPVR  
CSLEW  
470pF 22pF  
4.7µF  
C
: 3 s SANYO 2TPF330M6 (330µF)  
BULK  
C
C
: 20 s 10µF + 2 s 1µF  
CER  
IN  
: 2 s SANYO OS-CON 35SVPD47M + 2 s 10µF  
VID0  
VID1  
VID2  
VID3  
D : CMDSH-4E  
B
VID6  
L: IHLP-5050CE-01 (0.33µH, DCR = 1.3mΩ)  
NTC: MURATA NCP18XH103  
VID5  
VID0  
VID1  
VID2  
VID3  
VID4  
VID5  
VID6  
PTC: MURATA PRF18BC471QB1RB  
VID4  
GND  
Q : 2 s RENESAS RJK0330DPB  
B
Q : RENESAS RJK0305DPB  
T
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC3732  
LTC3733  
LTC3734  
3-Phase, 5-Bit VID, 600kHz Synchronous Buck Switching Regulator Controller  
3-Phase, 5-Bit VID, 600kHz Synchronous Buck Switching Regulator Controller  
Single-Phase, High Efficiency DC/DC Controller for Intel Mobile CPUs  
VRM9.0 and VRM9.1, VID = 1.1V to 1.85V  
AMD Opteron (VID = 0.8V to 1.55V)  
6-Bit IMVP-4 VID: 0.7V ≤ V  
≤ 1.708V, I  
≤ 25A,  
OUT  
LOAD  
Lossless Voltage Positioning  
6-Bit IMVP-IV, VID Code: V = 0.7V to 1.708V  
OUT  
LTC3735  
LTC3738  
LTC3819  
LTC3850  
2-Phase, High Efficiency DC/DC Controller for Intel Mobile CPUs  
3-Phase Buck Controller for Intel VRM9/VRM10 with Active Voltage Positioning VID = 1.1V to 1.85V  
2-Phase, High Efficiency, Step-Down Controller for AMD CPUs  
Dual 2-Phase Synchronous Controller  
4V ≤ V ≤ 36V, VID =1.025V to 1.4125V  
IN  
Dual 180° Phase Controllers, 4V ≤ V ≤ 28V,  
IN  
97% Duty Cycle  
LTC3851A  
LTC3853  
No R  
™ Wide Input Range Step-Down Controller  
4V ≤ V ≤ 38V, Very Low Dropout with Tracking  
SENSE  
IN  
Triple Output, Multiphase Synchronous Step-Down Controller  
Triple Phase Version of LTC3850 in a 40-Lead  
6mm × 6mm QFN Package  
3816f  
LT 0710 • PRINTED IN USA  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢀꢀ  
LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY