LTC3832EGN [Linear]

High Power Step-Down Synchronous DC/DC Controllers for Low Voltage Operation; 高功率降压型同步DC / DC控制器,用于低电压操作
LTC3832EGN
型号: LTC3832EGN
厂家: Linear    Linear
描述:

High Power Step-Down Synchronous DC/DC Controllers for Low Voltage Operation
高功率降压型同步DC / DC控制器,用于低电压操作

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总24页 (文件大小:317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3832/LTC3832-1  
High Power Step-Down  
Synchronous DC/DC Controllers  
for Low Voltage Operation  
U
FEATURES  
DESCRIPTIO  
The LTC®3832/LTC3832-1 are high power, high effi-  
ciency switching regulator controllers optimized for  
3.3V-5V to 0.6V-3.xV step-down applications. A preci-  
sion internal reference and feedback system provide  
±1% output regulation over temperature, load current  
andlinevoltagevariations. TheLTC3832/LTC3832-1use  
a synchronous switching architecture with N-channel  
MOSFETs. Additionally, the chip senses output current  
through the drain-source resistance of the upper  
N-channelMOSFET, providinganadjustablecurrentlimit  
without a current sense resistor.  
VOUT as Low as 0.6V  
High Power Switching Regulator Controller  
for 3.3V-5V to 0.6V-3.xV Step-Down Applications  
No Current Sense Resistor Required  
Low Input Supply Voltage Range: 3V to 8V  
Maximum Duty Cycle >91% Over Temperature  
All N-Channel External MOSFETs  
Excellent Output Regulation: ±1% Over Line, Load  
and Temperature Variations  
High Efficiency: Over 95% Possible  
Adjustable or Fixed 2.5V Output (LTC3832)  
Programmable Fixed Frequency Operation: 100kHz to  
The LTC3832/LTC3832-1 operate with an input supply  
voltage as low as 3V and with a maximum duty cycle of  
>91% over temperature. They include a fixed frequency  
PWMoscillatorforlowoutputrippleoperation.The300kHz  
free-running clock frequency can be externally adjusted or  
synchronizedwithanexternalsignalfrom100kHzto500kHz.  
In shutdown mode, the LTC3832 supply current drops to  
<10µA.TheLTC3832-1istheSO-8versionwithoutcurrent  
limit, frequency adjustment and shutdown functions.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
500kHz  
External Clock Synchronization  
Soft-Start  
Low Shutdown Current: <10µA  
Overtemperature Protection  
Available in SO-8 and SSOP-16 Packages  
U
APPLICATIO S  
CPU Power Supplies  
Multiple Logic Supply Generator  
Distributed Power Applications  
High Efficiency Power Conversion  
U
TYPICAL APPLICATIO  
V
IN  
Efficiency  
4.7µF  
3V TO 7V  
5.1Ω  
100  
+
V
= 2.5V  
OUT  
MBR0520T1  
90  
0.1µF  
LTC3832-1  
SS  
V
/PV  
CC  
CC2  
0.01µF  
V
= 1V  
80  
70  
OUT  
Si9426DY  
Si9426DY  
COMP  
GND  
FB  
G1  
L1  
3.2µH  
0.1µF  
15k  
V
1V  
9A  
OUT  
PV  
CC1  
G2  
60  
50  
40  
6.49k  
+
C
OUT  
270µF  
2V  
3832 F01  
4.32k  
680pF  
V
= 3.3V  
IN  
L1: SUMIDA CDEP105-3R2MC-88  
: PANASONIC EEFUEOD271R  
0
1
2
3
4
5
6
7
8
9
10  
C
OUT  
LOAD CURRENT (A)  
3832 F01b  
Figure 1. High Efficiency 3.3V to 1V Power Converter  
sn3832 3832fs  
1
LTC3832/LTC3832-1  
W W  
U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Supply Voltage  
Junction Temperature........................................... 125°C  
Operating Temperature Range (Note 9) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
VCC ....................................................................... 9V  
PVCC1,2 ................................................................ 14V  
Input Voltage  
IFB, IMAX ............................................... 0.3V to 14V  
SENSE+, SENSE, FB,  
SHDN, FREQSET ....................... 0.3V to VCC + 0.3V  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
ORDER PART  
NUMBER  
NUMBER  
G1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
G2  
PV  
V
TOP VIEW  
PV  
CC1  
CC2  
LTC3832EGN  
LTC3832-1ES8  
G1  
1
2
3
4
8
7
6
5
G2  
PGND  
GND  
CC  
PV  
V /PV  
CC CC2  
CC1  
I
I
FB  
MAX  
GND  
FB  
COMP  
SS  
SENSE  
FB  
FREQSET  
COMP  
SS  
GN  
S8  
+
SENSE  
PART MARKING  
PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
SHDN  
3832  
38321  
TJMAX = 125°C, θJA = 130°C/ W  
GN PACKAGE  
16-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 130°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC, PVCC1, PVCC2 = 5V, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
3
TYP  
MAX  
8
UNITS  
V
Supply Voltage  
5
V
V
V
CC  
PV  
PV , PV Voltage  
CC1 CC2  
(Note 7)  
3
13.2  
2.9  
CC  
UVLO  
FB  
V
V
Undervoltage Lockout Voltage  
Feedback Voltage  
2.4  
V
V
= 1.25V  
= 1.25V  
0.595  
0.593  
0.6  
0.6  
0.605  
0.607  
V
V
COMP  
COMP  
V
Output Voltage  
2.462  
2.450  
2.5  
2.5  
2.538  
2.550  
V
V
OUT  
V  
Output Load Regulation  
Output Line Regulation  
I
V
= 0A to 10A (Note 6)  
= 4.75V to 5.25V  
2
0.1  
mV  
mV  
OUT  
OUT  
CC  
sn3832 3832fs  
2
LTC3832/LTC3832-1  
ELECTRICAL CHARACTERISTICS  
The denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VCC, PVCC1, PVCC2 = 5V, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
f
Supply Current  
Figure 2, V  
= V  
CC  
0.7  
1
1.6  
10  
mA  
µA  
VCC  
SHDN  
V
= 0V  
SHDN  
PV Supply Current  
CC  
Figure 2, V  
= 0V  
= V (Note 3)  
20  
0.1  
30  
10  
mA  
µA  
PVCC  
SHDN  
CC  
V
SHDN  
Internal Oscillator Frequency  
FREQSET Floating  
230  
300  
1.2  
2.2  
2.85  
10  
360  
kHz  
OSC  
V
V
V
V
V
at Minimum Duty Cycle  
at Maximum Duty Cycle  
V
SAWL  
COMP  
COMP  
V
V
SAWH  
Maximum V  
V
= 0V, PV  
= 8V  
COMPMAX  
COMP  
FB  
CC1  
f /I  
Frequency Adjustment  
kHz/µA  
dB  
OSC FREQSET  
A
Error Amplifier Open-Loop DC Gain  
Measured from FB to COMP,  
50  
65  
V
+
SENSE and SENSE Floating, (Note 4)  
g
Error Amplifier Transconductance  
Measured from FB to COMP,  
1600  
2000  
2400  
µmho  
m
+
SENSE and SENSE Floating, (Note 4)  
I
I
Error Amplifier Output Sink/Source Current  
100  
µA  
COMP  
MAX  
I
Sink Current  
V
= V  
CC  
8
4
12  
12  
16  
20  
µA  
µA  
MAX  
IMAX  
(Note 10)  
I
Sink Current Tempco  
V
= V (Note 6)  
3300  
ppm/°C  
MAX  
IMAX  
CC  
V
V
SHDN Input High Voltage  
SHDN Input Low Voltage  
SHDN Input Current  
2.4  
–8  
V
V
IH  
IL  
0.8  
1
I
I
I
V
V
= V  
CC  
0.1  
–12  
1.6  
µA  
µA  
mA  
IN  
SHDN  
Soft-Start Source Current  
= 0V, V  
= 0V, V = V  
CC  
–18  
SS  
SS  
IMAX  
IFB  
Maximum Soft-Start Sink Current  
In Current Limit  
V
V
= V , V = 0V,  
IMAX CC IFB  
SSIL  
= V (Note 8), PV = 8V  
SS  
CC  
CC1  
R
R
SENSE Input Resistance  
SENSE to FB Resistance  
Driver Rise/Fall Time  
23.7  
18  
kΩ  
kΩ  
ns  
ns  
%
SENSE  
SENSEFB  
t , t  
r
Figure 2, PV  
Figure 2, PV  
= PV  
= PV  
= 5V (Note 5)  
= 5V (Note 5)  
80  
250  
250  
f
CC1  
CC2  
CC2  
t
Driver Nonoverlap Time  
Maximum G1 Duty Cycle  
25  
91  
120  
95  
NOV  
CC1  
DC  
Figure 2, V = 0V (Note 5), PV  
= 8V  
MAX  
FB  
CC1  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
specified.  
Note 7: PV  
must be higher than V by at least 2.5V for G1 to operate  
CC1 CC  
at 95% maximum duty cycle and for the current limit protection circuit to  
be active.  
Note 8: The current limiting amplifier can sink but cannot source current.  
Under normal (not current limited) operation, the output current will be  
zero.  
Note 9: The LTC3832E/LTC3832-1E are guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 3: Supply current in normal operation is dominated by the current  
needed to charge and discharge the external FET gates. This will vary with  
the LTC3832 operating frequency, operating voltage and the external FETs  
used.  
+
Note 4: The open-loop DC gain and transconductance from the SENSE  
and SENSE pins to COMP pin will be (A )(0.6/2.5) and (g )(0.6/2.5)  
Note 10: The minimum and maximum limits for I  
over temperature  
V
m
MAX  
respectively.  
includes the intentional temperature coefficient of 3300ppm/°C. This  
induced temperature coefficient counteracts the typical temperature  
coefficient of the external power MOSFET on-resistance. This results in a  
relatively flat current limit over temperature for the application.  
Note 5: Rise and fall times are measured using 10% and 90% levels. Duty  
cycle and nonoverlap times are measured using 50% levels.  
Note 6: Guaranteed by design, not subject to test.  
sn3832 3832fs  
3
LTC3832/LTC3832-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Error Amplifier Transconductance  
vs Temperature  
Load Regulation  
Line Regulation  
0.605  
0.604  
0.603  
0.602  
0.601  
0.600  
0.599  
0.598  
0.597  
0.596  
0.595  
5
2400  
2.54  
2.53  
2.52  
2.51  
T
A
= 25°C  
T
= 25°C  
A
4
REFER TO FIGURE 12  
2300  
2200  
3
2
2100  
2000  
1900  
1800  
1700  
1
2.50  
2.49  
0
–1  
–2  
–3  
–4  
–5  
2.48  
2.47  
2.46  
1600  
–10  
–5  
5
4
6
25  
0
50  
75 100 125  
–15  
10  
15  
3
5
7
8
50  
25  
0
OUTPUT CURRENT (A)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
3832 G01  
3832 G02  
3832 G03  
Error Amplifier Sink/Source  
Current vs Temperature  
Error Amplifier Open-Loop Gain  
vs Temperature  
Output Voltage Temperature Drift  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
2.46  
2.45  
50  
70  
65  
60  
55  
200  
REFER TO FIGURE 12  
OUTPUT = NO LOAD  
40  
180  
160  
140  
120  
100  
80  
30  
20  
10  
0
–10  
–20  
–30  
–40  
–50  
60  
50  
40  
–50  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–25  
–25  
0
50  
75 100 125  
–50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3832 G04  
3832 G06  
3830 G05  
Oscillator Frequency  
vs Temperature  
Oscillator Frequency  
Oscillator (VSAWH – VSAWL  
)
vs FREQSET Input Current  
vs External Sync Frequency  
360  
350  
340  
330  
320  
310  
300  
290  
280  
270  
260  
250  
240  
700  
600  
500  
400  
300  
200  
100  
0
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
FREQSET FLOATING  
T
A
= 25°C  
T = 25°C  
A
–50  
0
25  
50  
75 100 125  
–25  
10  
FREQSET INPUT CURRENT (µA)  
30  
–30 –20  
–10  
0
20  
100  
200  
300  
400  
500  
TEMPERATURE (°C)  
EXTERNAL SYNC FREQUENCY (kHz)  
3832 G07  
3832 G08  
3832 G09  
sn3832 3832fs  
4
LTC3832/LTC3832-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum G1 Duty Cycle  
vs Temperature  
IMAX Sink Current  
vs Temperature  
Output Overcurrent Protection  
3.0  
100  
99  
98  
97  
96  
95  
94  
93  
92  
20  
18  
16  
14  
12  
10  
8
V
= 0V  
T = 25°C  
A
REFER TO FIGURE 12  
FB  
REFER TO FIGURE 3  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6
91  
4
0
2
4
6
8
10 12 14 16 18 20  
–50 –25  
0
25  
125  
50 25  
0
25  
50  
75 100 125  
50  
75 100  
OUTPUT CURRENT (A)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3832 G12  
3832 G10  
3832 G11  
Output Current Limit Threshold  
vs Temperature  
Soft-Start Source Current  
vs Temperature  
Soft-Start Sink Current  
vs (VIFB – VIMAX  
)
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
–8  
–9  
2.00  
1.75  
1.50  
1.25  
T
= 25°C  
REFER TO FIGURE 12 AND NOTE 10 OF  
THE ELECTRICAL CHARACTERISTICS  
A
–10  
–11  
–12  
–13  
–14  
–15  
–16  
1.00  
0.75  
0.50  
0.25  
0
–50  
0
25  
50  
75 100 125  
–25  
25  
0
50  
75 100 125  
–125 –100  
–50  
50  
25  
–150  
–25  
0
–75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
– V  
(mV)  
IMAX  
IFB  
3832 G13  
3830 G14  
3832 G15  
Undervoltage Lockout Threshold  
Voltage vs Temperature  
VCC Operating Supply Current  
vs Temperature  
PVCC Supply Current  
vs Oscillator Frequency  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
T
= 25°C  
FREQSET FLOATING  
A
G1 AND G2 LOADED  
WITH 6800pF,  
PV  
= 12V  
CC1,2  
G1 AND G2  
LOADED  
G1 AND G2  
LOADED  
WITH 6800pF,  
PV  
WITH 1000pF,  
= 5V  
CC1,2  
PV  
= 5V  
CC1,2  
0
–50  
0
25  
50  
75 100 125  
–25  
–50  
0
25  
50  
75 100 125  
0
400  
500  
–25  
100  
200  
300  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OSCILLATOR FREQUENCY (kHz)  
3832 G16  
3832 G17  
3832 G18  
sn3832 3832fs  
5
LTC3832/LTC3832-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
PVCC Supply Current  
vs Gate Capacitance  
G1 Rise/Fall Time  
vs Gate Capacitance  
Transient Response  
80  
70  
60  
50  
40  
30  
20  
10  
0
200  
180  
160  
140  
120  
100  
80  
T
= 25°C  
T
= 25°C  
A
A
VOUT  
50mV/DIV  
PV  
= 12V  
t AT PV  
f
= 5V  
CC1,2  
CC1,2  
ILOAD  
2AV/DIV  
t AT PV  
r
= 5V  
CC1,2  
PV  
6
= 5V  
CC1,2  
60  
40  
50µs/DIV  
3832 G21  
t AT PV  
f
= 12V  
CC1,2  
20  
t AT PV  
r
= 12V  
CC1,2  
0
0
1
2
3
4
5
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
GATE CAPACITANCE AT G1 AND G2 (nF)  
GATE CAPACITANCE AT G1 AND G2 (nF)  
3832 G19  
3832 G20  
U
U
U
PI FU CTIO S (LTC3832/LTC3832-1)  
G1 (Pin 1/Pin 1): Top Gate Driver Output. Connect this pin  
to the gate of the upper N-channel MOSFET, Q1. This  
output swings from PGND to PVCC1. It remains low if G2  
is high or during shutdown mode.  
dividertosettheoutputvoltage,floatSENSE+ andSENSE–  
andconnecttheexternalresistordividertoFB.Theinternal  
resistor divider is not included in the LTC3832-1.  
SHDN (Pin 8/NA): Shutdown. A TTL compatible low level  
at SHDN for longer than 100µs puts the LTC3832 into  
shutdown mode. In shutdown, G1 and G2 go low, all  
internal circuits are disabled and the quiescent current  
drops to 10µA max. A TTL compatible high level at SHDN  
allows the part to operate normally. This pin also doubles  
as an external clock input to synchronize the internal  
oscillator with an external clock. The shutdown function is  
disabled in the LTC3832-1.  
PVCC1 (Pin 2/Pin 2): Power Supply Input for G1. Connect  
this pin to a potential of at least VIN + VGS(ON)(Q1). This  
potential can be generated using an external supply or  
charge pump.  
PGND (Pin 3/Pin 3): Power Ground. Both drivers return to  
this pin. Connect this pin to a low impedance ground in  
close proximity to the source of Q2. Refer to the Layout  
Consideration section for more details on PCB layout  
techniques. The LTC3832-1 has PGND and GND tied  
together internally at Pin 3.  
SS(Pin9/Pin5):Soft-Start.Connectthispintoanexternal  
capacitor, CSS, to implement a soft-start function. If the  
LTC3832 goes into current limit, CSS is discharged to  
reduce the duty cycle. CSS must be selected such that  
during power-up, the current through Q1 will not exceed  
the current limit level.  
GND (Pin 4/Pin 3): Signal Ground. All low power internal  
circuitry returns to this pin. To minimize regulation errors  
due to ground currents, connect GND to PGND right at the  
LTC3832.  
COMP (Pin 10/Pin 6): External Compensation. This pin  
internally connects to the output of the error amplifier and  
inputofthePWMcomparator.UseaRC+Cnetworkatthis  
pin to compensate the feedback loop to provide optimum  
transient response.  
SENSE, FB, SENSE+ (Pins 5, 6, 7/Pin 4): These three  
pinsconnecttotheinternalresistordividerandinputofthe  
error amplifier. To use the internal divider to set the output  
voltage to 2.5V, connect SENSE+ to the positive terminal  
of the output capacitor and SENSEto the negative termi-  
nal. FB should be left floating. To use an external resistor  
sn3832 3832fs  
6
LTC3832/LTC3832-1  
U
U
U
PI FU CTIO S  
VCC (Pin 14/Pin 7): Power Supply Input. All low power  
internal circuits draw their supply from this pin. Connect  
this pin to a clean power supply, separate from the main  
VIN supply at the drain of Q1. This pin requires a 4.7µF  
bypass capacitor. The LTC3832-1has VCC and PVCC2 tied  
together at Pin 7 and requires a 10µF bypass capacitor to  
GND.  
FREQSET (Pin 11/NA): Frequency Set. Use this pin to  
adjustthefree-runningfrequencyoftheinternaloscillator.  
With the pin floating, the oscillator runs at about 300kHz.  
A resistor from FREQSET to ground speeds up the oscil-  
lator; a resistor to VCC slows it down.  
IMAX (Pin 12/NA): Current Limit Threshold Set. IMAX sets  
the threshold for the internal current limit comparator. If  
PVCC2 (Pin15/Pin7):PowerSupplyInputforG2. Connect  
this pin to the main high power supply.  
IFB drops below IMAX with G1 on, the LTC3832 goes into  
current limit. IMAX has an internal 12µA pull-down to GND.  
Connect this pin to the main VIN supply at the drain of Q1,  
through an external resistor to set the current limit thresh-  
old. Connect a 0.1µF decoupling capacitor across this  
resistor to filter switching noise.  
G2 (Pin 16/Pin 8): Bottom Gate Driver Output. Connect  
this pin to the gate of the lower N-channel MOSFET, Q2.  
This output swings from PGND to PVCC2. It remains low  
when G1 is high or during shutdown mode. To prevent  
output undershoot during a soft-start cycle, G2 is held low  
until G1 first goes high (FFBG in the Block Diagram).  
I
FB (Pin 13/NA): Current Limit Sense. Connect this pin to  
the switching node at the source of Q1 and the drain of Q2  
througha1kresistor.The1kresistorisrequiredtoprevent  
voltage transients from damaging IFB.This pin is used for  
sensing the voltage drop across the upper N-channel  
MOSFET, Q1.  
W
BLOCK DIAGRA  
(LTC3832)  
DISABLE GATE DRIVE  
LOGIC AND  
THERMAL SHUTDOWN  
SHDN  
100µs DELAY  
POWER DOWN  
INTERNAL  
OSCILLATOR  
PV  
G1  
PV  
G2  
CC1  
FREQSET  
COMP  
S
R
Q
Q
PWM  
CC2  
+
FFBG  
12µA  
S
R
Q
ENABLE  
G2  
PGND  
SS  
QSS  
POR  
V
CC  
MAX  
ERR  
GND  
+
+
FB  
18k  
+
V
REF  
+ 10%  
SENSE  
V
REF  
5.7k  
I
FB  
SENSE  
CC  
V
REF  
BG  
+
I
MAX  
V
REF  
+ 10%  
3832 BD  
12µA  
2.2V  
1.2V  
DISABLE  
LIM  
QC  
I
PV  
CC1  
+
V
V
CC  
+ 2.5V  
sn3832 3832fs  
7
LTC3832/LTC3832-1  
W
BLOCK DIAGRA  
(LTC3832-1)  
DISABLE GATE DRIVE  
THERMAL SHUTDOWN  
POWER DOWN  
INTERNAL  
OSCILLATOR  
PV  
G1  
V
CC1  
+
S
R
Q
Q
PWM  
/PV  
CC  
CC2  
COMP  
SS  
G2  
FFG2  
12µA  
S
Q
ENABLE  
G2  
PGND  
FB  
QSS  
MAX  
POR  
R
ERR  
+
+
V
REF  
2.2V  
1.2V  
V
+ 10%  
REF  
QC  
PV  
+
CC1  
V
V
REF  
BG  
V
CC  
+ 2.5V  
V
+ 10%  
REF  
3832 BD2  
TEST CIRCUITS  
5V  
PV  
CC  
V
V
V
+
SHDN  
CC  
CC  
0.1µF  
10µF  
SHDN  
PV  
PV  
I
I
FB  
V
PV  
PV  
CC1 CC2  
CC2  
CC1  
FB  
CC  
G1 RISE/FALL  
NC  
NC  
NC  
NC  
FB  
SS  
FREQSET  
COMP  
G1  
V
COMP  
G1  
G2  
COMP  
6800pF  
6800pF  
6800pF  
LTC3832  
LTC3832  
GND  
G2 RISE/FALL  
I
G2  
+
V
FB  
I
MAX  
FB  
PGND  
6800pF  
MAX  
GND  
PGND SENSE  
SENSE  
3832 F03  
3832 F02  
Figure 2  
Figure 3  
W U U  
U
APPLICATIO S I FOR ATIO  
OVERVIEW  
feedback and control circuitry to form a complete switch-  
ing regulator circuit. The PWM loop nominally runs at  
300kHz.  
The LTC3832/LTC3832-1 are voltage mode feedback,  
synchronous switching regulator controllers (see Block  
Diagram) designed for use in high power, low voltage  
step-down (buck) converters. They include an onboard  
PWM generator, a precision reference trimmed to ±0.8%,  
two high power MOSFET gate drivers and all necessary  
The LTC3832 includes a current limit sensing circuit that  
uses the topside external N-channel power MOSFET as a  
current sensing element, eliminating the need for an  
external sense resistor.  
sn3832 3832fs  
8
LTC3832/LTC3832-1  
W U U  
APPLICATIO S I FOR ATIO  
U
Also included in the LTC3832 is an internal soft-start  
feature that requires only a single external capacitor to  
operate. In addition, the LTC3832 features an adjustable  
oscillator that can free run or synchronize to external  
signalwithfrequenciesfrom100kHz to500kHz,allowing  
added flexibility in external component selection. The  
LTC3832-1 does not include current limit, frequency  
adjustability, external synchronization and the shutdown  
function.  
Thermal Shutdown  
The LTC3832/LTC3832-1 have a thermal protection cir-  
cuit that disables both gate drivers if activated. If the chip  
junction temperature reaches 150°C, both G1 and G2 are  
pulled low. G1 and G2 remain low until the junction  
temperature drops below 125°C, after which, the chip  
resumes normal operation.  
Soft-Start and Current Limit  
The LTC3832 includes a soft-start circuit that is used for  
start-up and current limit operation. The LTC3832-1 only  
has the soft-start function; the current limit function is  
disabled. The SS pin requires an external capacitor, CSS,  
to GND with the value determined by the required soft-  
start time. An internal 12µA current source is included to  
chargeCSS. Duringpower-up, theCOMPpinisclampedto  
a diode drop (B-E junction of QSS in the Block Diagram)  
above the voltage at the SS pin. This prevents the error  
amplifier from forcing the loop to maximum duty cycle.  
The LTC3832/LTC3832-1 operate at low duty cycle as the  
SS pin rises above 0.6V (VCOMP 1.2V). As SS continues  
to rise, QSS turns off and the error amplifier takes over to  
regulate the output.  
THEORY OF OPERATION  
Primary Feedback Loop  
The LTC3832/LTC3832-1 sense the output voltage of the  
circuit at the output capacitor and feeds this voltage back  
to the internal transconductance error amplifier, ERR,  
through a resistor divider network. The error amplifier  
compares the resistor-divided output voltage to the inter-  
nal 0.6V reference and outputs an error signal to the PWM  
comparator. This error signal is compared with a fixed  
frequency ramp waveform, from the internal oscillator, to  
generateapulsewidthmodulatedsignal.ThisPWMsignal  
drives the external MOSFETs through the G1 and G2 pins.  
TheresultingchoppedwaveformisfilteredbyLO andCOUT  
which closes the loop. Loop compensation is achieved  
with an external compensation network at the COMP pin,  
the output node of the error amplifier.  
The LTC3832 includes yet another feedback loop to con-  
trol operation in current limit. Just before every falling  
edge of G1, the current comparator, CC, samples and  
holds the voltage drop measured across the external  
upperMOSFET,Q1,attheIFB pin.CCcomparesthevoltage  
at IFB to the voltage at the IMAX pin. As the peak current  
rises,themeasuredvoltageacrossQ1increasesduetothe  
drop across the RDS(ON) of Q1. When the voltage at IFB  
drops below IMAX, indicating that Q1’s drain current has  
exceeded the maximum level, CC starts to pull current out  
of CSS, cutting the duty cycle and controlling the output  
current level. The CC comparator pulls current out of the  
SS pin in proportion to the voltage difference between IFB  
and IMAX. Under minor overload conditions, the SS pin  
falls gradually, creating a time delay before current limit  
takes effect. Very short, mild overloads may not affect the  
output voltage at all. More significant overload conditions  
allow the SS pin to reach a steady state, and the output  
MAX Feedback Loop  
An additional comparator in the feedback loop provides  
high speed output voltage correction in situations where  
the error amplifier may not respond quickly enough. MAX  
comparesthefeedbacksignaltoavoltage60mVabovethe  
internal reference. If the signal is above the comparator  
threshold, the MAX comparator overrides the error ampli-  
fier and forces the loop to minimum duty cycle, 0%. To  
prevent this comparator from triggering due to noise, the  
MAX comparator’s response time is deliberately delayed  
by two to three microseconds. This comparator helps  
prevent extreme output perturbations with fast output  
load current transients, while allowing the main feedback  
loop to be optimally compensated for stability.  
sn3832 3832fs  
9
LTC3832/LTC3832-1  
W U U  
U
APPLICATIO S I FOR ATIO  
remains at a reduced voltage until the overload is re-  
moved. Serious overloads generate a large overdrive at  
CC, allowing it to pull SS down quickly and preventing  
damage to the output components. By using the RDS(ON)  
of Q1 to measure the output current, the current limiting  
circuiteliminatesanexpensivediscretesenseresistorthat  
would otherwise be required. This helps minimize the  
number of components in the high current path.  
meant to prevent damage to the power supply circuitry  
during fault conditions. The exact current level where the  
limiting circuit begins to take effect will vary from unit to  
unit as the RDS(ON) of Q1 varies. Typically, RDS(ON) varies  
as much as ±40%, and with ±33% variation on the  
LTC3832’sIMAX current, thiscangivea±73%variationon  
the current limit threshold.  
The RDS(ON) is high if the VGS applied to the MOSFET is  
low. This occurs during power up when PVCC1 is ramping  
up.TopreventthehighRDS(ON) fromactivatingthecurrent  
limit, the LTC3832 will disable the current limit circuit if  
PVCC1 is less than 2.5V above VCC. To ensure proper  
operation of the current limit circuit, PVCC1 must be at  
least 2.5V above VCC when G1 is high. PVCC1 can go low  
when G1 is low, allowing the use of the external charge  
The current limit threshold can be set by connecting an  
external resistor RIMAX from the IMAX pin to the main VIN  
supply at the drain of Q1. The value of RIMAX is determined  
by:  
R
IMAX = (ILMAX)(RDS(ON)Q1)/IIMAX  
where:  
ILMAX = ILOAD + (IRIPPLE/2)  
pump to power PVCC1  
.
V
IN  
ILOAD = Maximum load current  
IRIPPLE = Inductor ripple current  
LTC3832  
+
+
R
0.1µF  
IMAX  
C
IN  
+
12  
V – V  
V
OUT  
(
OUT)(  
)
IN  
I
=
MAX  
12µA  
CC  
G1  
G2  
Q1  
f
L
V
( )(  
)
(
)
OSC  
O IN  
I
FB  
L
O
1k  
V
13  
OUT  
fOSC = LTC3832 oscillator frequency = 300kHz  
Q2  
C
OUT  
LO = Inductor value  
3832 F04  
RDS(ON)Q1 = On-resistance of Q1 at ILMAX  
IIMAX= Internal 12µA sink current at IMAX  
Figure 4. Current Limit Setting  
Oscillator Frequency  
The RDS(ON) of Q1 usually increases with temperature. To  
keep the current limit threshold constant, the internal  
12µA sink current at IMAX is designed with a positive  
temperature coefficient to provide first order correction  
The LTC3832 includes an onboard current controlled  
oscillator that typically free-runs at 300kHz. The oscillator  
frequencycanbeadjustedbyforcingcurrentintooroutof  
the FREQSET pin. With the pin floating, the oscillator runs  
at about 300kHz. Every additional 1µA of current into/out  
oftheFREQSETpindecreases/increasesthefrequencyby  
10kHz. The pin is internally servoed to 1.265V. The  
frequency can be estimated as:  
for the temperature coefficient of RDS(ON)Q1  
.
Inorderforthecurrentlimitcircuittooperateproperlyand  
toobtainareasonablyaccuratecurrentlimitthreshold,the  
IMAX and IFB pins must be Kelvin sensed at Q1’s drain and  
source pins. In addition, connect a 0.1µF decoupling  
capacitor across RIMAX to filter switching noise. Other-  
wise, noise spikes or ringing at Q1’s source can cause the  
actual maximum current to be greater than the desired  
I
1.265V – VEXT 10kHz  
f = 300kHz +  
RFSET  
1µA  
current limit set point. Due to switching noise and varia- where RFSET is a frequency programming resistor con-  
tion of RDS(ON), the actual current limit trip point is not nected between FREQSET and the external voltage source  
highly accurate. The current limiting circuitry is primarily VEXT  
.
sn3832 3832fs  
10  
LTC3832/LTC3832-1  
W U U  
APPLICATIO S I FOR ATIO  
U
Connecting a 82k resistor from FREQSET to ground  
forces 15µA out of the pin, causing the internal oscillator  
to run at approximately 450kHz. Forcing an external 20µA  
current into FREQSET cuts the internal frequency to  
100kHz. An internal clamp prevents the oscillator from  
running slower than about 50kHz. Tying FREQSET to VCC  
forces the chip to run at this minimum speed. The  
LTC3832-1 does not have this frequency adjustment  
function.  
Figure 5 describes the operation of the conventional  
synchronization function. A negative transition at the  
SHDN pin forces the internal ramp signal low to restart a  
newPWMcycle.Noticethattherampamplitudeislowered  
as the external clock frequency goes higher. The effect of  
this decrease in ramp amplitude increases the open-loop  
gain of the controller feedback loop. As a result, the loop  
crossover frequency increases and it may cause the feed-  
backlooptobeunstableifthephasemarginisinsufficient.  
To overcome this problem, the LTC3832 monitors the  
peak voltage of the ramp signal and adjusts the oscillator  
charging current to maintain a constant ramp peak.  
Shutdown  
The LTC3832 includes a low power shutdown mode,  
controlled by the logic at the SHDN pin. A high at SHDN  
allowstheparttooperatenormally.AlowlevelatSHDNfor  
more than 100µs forces the LTC3832 into shutdown  
mode.Inthismode,allinternalswitchingstops,theCOMP  
and SS pins pull to ground and Q1 and Q2 turn off. The  
LTC3832 supply current drops to <10µA, although off-  
state leakage in the external MOSFETs may cause the total  
VIN current to be some what higher, especially at elevated  
temperatures. If SHDN returns high, the LTC3832 reruns  
a soft-start cycle and resumes normal operation. The  
LTC3832-1 does not have this shutdown function.  
SHDN  
300kHz  
FREE RUNNING  
RAMP SIGNAL  
RAMP SIGNAL  
WITH EXT SYNC  
TRADITIONAL  
SYNC METHOD  
WITH EARLY  
RAMP  
TERMINATION  
External Clock Synchronization  
The LTC3832 SHDN pin doubles as an external clock  
input for applications that require a synchronized clock.  
An internal circuit forces the LTC3832 into external  
synchronizationmodeifanegativetransitionattheSHDN  
pin is detected. In this mode, every negative transition on  
the SHDN pin resets the internal oscillator and pulls the  
ramp signal low, this forces the LTC3832 internal oscil-  
latortolocktotheexternalclockfrequency.TheLTC3832-1  
does not have this external synchronization function.  
RAMP AMPLITUDE  
ADJUSTED  
LTC3832  
KEEPS RAMP  
AMPLITUDE  
CONSTANT  
UNDER SYNC  
3832 F05  
Figure 5. External Synchronization Operation  
TheLTC3832internaloscillatorcanbeexternallysynchro-  
nized from 100kHz to 500kHz. Frequencies above 300kHz  
can cause a decrease in the maximum obtainable duty  
cycle as rise/fall time and propagation delay take up a  
larger percentage of the switch cycle. Circuits using these  
frequencies should be checked carefully in applications  
where operation near dropout is important—like 3.3V to  
2.5V converters. The low period of this clock signal must  
not be >100µs, or else the LTC3832 enters shutdown  
mode.  
Input Supply Considerations/Charge Pump  
TheLTC3832requiresfoursupplyvoltagestooperate:VIN  
for the main power input, PVCC1 and PVCC2 for MOSFET  
gate drive and a clean, low ripple VCC for the LTC3832  
internal circuitry (Figure 6). The LTC3832-1 has the PVCC2  
and VCC pins tied together inside the package (Figure 7).  
This pin, brought out as VCC/PVCC2, has the same low  
ripplerequirementsastheLTC3832, butmustalsobeable  
to supply the gate drive current to Q2.  
sn3832 3832fs  
11  
LTC3832/LTC3832-1  
W U U  
U
APPLICATIO S I FOR ATIO  
V
CC  
PV  
CC2  
PV  
CC1  
V
IN  
Figure 8 shows a tripling charge pump circuit that can be  
used to provide 2VIN and 3VIN gate drive for the external  
top and bottom MOSFETs respectively. These should fully  
enhance MOSFETs with 5V logic level thresholds. This  
circuit provides 3VIN – 3VF to PVCC1 while Q1 is ON and  
2VIN – 2VF to PVCC2 where VF is the forward voltage of the  
Schottky diodes. The circuit requires the use of Schottky  
diodes to minimize forward drop across the diodes at  
start-up. The tripling charge pump circuit can rectify any  
ringing at the drain of Q2 and provide more than 3VIN at  
PVCC1; a 12V zener diode should be included from PVCC1  
to PGND to prevent transients from damaging the circuitry  
at PVCC1 or the gate of Q1.  
G1  
G2  
Q1  
L
O
INTERNAL  
CIRCUITRY  
V
OUT  
+
C
Q2  
OUT  
3832 F6  
LTC3832  
Figure 6. LTC3832 Power Supplies  
V
CC  
/PV  
PV  
CC1  
V
IN  
CC2  
The charge pump capacitors for PVCC1 refresh when the  
G2 pin goes high and the switch node is pulled low by Q2.  
The G2 on-time becomes narrow when LTC3832/  
LTC3832-1 operates at a maximum duty cycle (95%  
typical), which can occur if the input supply rises more  
slowly than the soft-start capacitor or if the input voltage  
droops during load transients. If the G2 on-time gets so  
narrow that the switch node fails to pull completely to  
ground, the charge pump voltage may collapse or fail to  
start, causing excessive dissipation in external MOSFET,  
Q1. This condition is most likely with low VCC voltages and  
high switching frequencies, coupled with large external  
MOSFETs which slow the G2 and switch node slew rates.  
G1  
G2  
Q1  
L
O
INTERNAL  
CIRCUITRY  
V
OUT  
+
C
Q2  
OUT  
3832 F7  
LTC3832-1  
Figure 7. LTC3832-1 Power Supplies  
In many applications, VCC can be powered from VIN  
through an RC filter. This supply can be as low as 3V. The  
low quiescent current (typically 800µA) allows the use of  
relatively large filter resistors and correspondingly small  
filter capacitors. 100and 4.7µF usually provide ad-  
equatefilteringforVCC. Forbestperformance, connectthe  
4.7µFbypasscapacitorasclosetotheLTC3832VCC pinas  
possible.  
TheLTC3832/LTC3832-1overcomethisproblembysens-  
ingthePVCC1 voltagewhenG1ishigh. IfPVCC1 islessthan  
2.5V above VCC, the maximum G1 duty cycle is reduced to  
70% by clamping the COMP pin at 1.8V (QC in the Block  
Gate drive for the top N-channel MOSFET Q1 is supplied  
from PVCC1. This supply must be above VIN (the main  
powersupplyinput)byatleastonepowerMOSFETVGS(ON)  
forefficientoperation.AninternallevelshifterallowsPVCC1  
to operate at voltages above VCC and VIN, up to 14V maxi-  
mum. This higher voltage can be supplied with a separate  
supply, or it can be generated using a charge pump.  
D
1N5817  
Z
V
IN  
12V  
1N5242  
1N5817  
1N5817  
0.1µF  
10µF  
PV  
CC2  
PV  
CC1  
0.1µF  
G1  
Q1  
L
O
V
OUT  
Gate drive for the bottom MOSFET Q2 is provided through  
PVCC2 for the LTC3832 or VCC/PVCC2 for the LTC3832-1.  
This supply only needs to be above the power MOSFET  
VGS(ON) for efficient operation. PVCC2 can also be driven  
fromthesamesupply/chargepumpforthePVCC1,oritcan  
be connected to a lower supply to improve efficiency.  
+
G2  
Q2  
C
OUT  
3832 F08  
LTC3832  
Figure 8. Tripling Charge Pump  
sn3832 3832fs  
12  
LTC3832/LTC3832-1  
W U U  
APPLICATIO S I FOR ATIO  
U
Diagram). This increases the G2 on-time and allows the  
enhance standard power MOSFETs. Under this condition,  
the effective MOSFET RDS(ON) may be quite high, raising  
the dissipation in the FETs and reducing efficiency. Logic  
level FETs are the recommended choice for 5V or lower  
voltage systems. Logic level FETs can be fully enhanced  
with a doubler/tripling charge pump and will operate at  
maximum efficiency.  
charge pump capacitors to be refreshed.  
For applications using an external supply to PVCC1, this  
supply must also be higher than VCC by at least 2.5V to  
ensure normal operation.  
For applications with a 5V or higher VIN supply, PVCC2 can  
be tied to VIN if a logic level MOSFET is used. PVCC1 can be  
supplied using a doubling charge pump as shown in  
Figure 9. This circuit provides 2VIN – VF to PVCC1 while Q1  
is ON.  
AftertheMOSFETthresholdvoltageisselected,choosethe  
R
DS(ON) based on the input voltage, the output voltage,  
allowablepowerdissipationandmaximumoutputcurrent.  
InatypicalLTC3832circuit,operatingincontinuousmode,  
the average inductor current is equal to the output load  
current.ThiscurrentflowsthrougheitherQ1orQ2withthe  
power dissipation split up according to the duty cycle:  
V
IN  
OPTIONAL  
USE FOR V 7V  
MBR0530T1  
IN  
D
Z
PV  
CC2  
PV  
CC1  
12V  
0.1µF  
1N5242  
VOUT  
V
IN  
G1  
DC(Q1) =  
Q1  
L
O
VOUT V – VOUT  
IN  
V
OUT  
DC(Q2) = 1–  
=
V
V
IN  
+
G2  
IN  
Q2  
C
OUT  
The RDS(ON) required for a given conduction loss can now  
be calculated by rearranging the relation P = I2R.  
3832 F09  
LTC3832  
Figure 9. Doubling Charge Pump  
PMAX(Q1)  
DC(Q1)(ILOAD  
PMAX(Q2)  
V PMAX(Q1)  
IN  
RDS(ON)Q1  
RDS(ON)Q2  
=
=
=
2
2
Power MOSFETs  
)
VOUT (ILOAD  
)
Two N-channel power MOSFETs are required for most  
LTC3832 circuits. These should be selected based  
primarilyonthresholdvoltageandon-resistanceconsid-  
erations. Thermal dissipation is often a secondary con-  
cern in high efficiency designs. The required MOSFET  
threshold should be determined based on the available  
power supply voltages and/or the complexity of the gate  
drive charge pump scheme. In 3.3V input designs where  
an auxiliary 12V supply is available to power PVCC1 and  
PVCC2, standard MOSFETs with RDS(ON) specified at VGS  
= 5V or 6V can be used with good results. The current  
drawn from this supply varies with the MOSFETs used  
and the LTC3832’s operating frequency, but is generally  
less than 50mA.  
V PMAX(Q2)  
IN  
=
2
2
DC(Q2)(ILOAD  
)
(V – VOUT)(ILOAD)  
IN  
PMAX should be calculated based primarily on required  
efficiency or allowable thermal dissipation. A typical high  
efficiency circuit designed for 3.3V input and 2.5V at 10A  
output might allow no more than 3% efficiency loss at full  
load for each MOSFET. Assuming roughly 90% efficiency  
at this current level, this gives a PMAX value of:  
(2.5V)(10A/0.9)(0.03) = 0.83W per FET  
and a required RDS(ON) of:  
(3.3V)(0.83W)  
RDS(ON)Q1  
RDS(ON)Q2  
=
=
= 0.011Ω  
(2.5V)(10A)2  
LTC3832 applications that use 5V or lower VIN voltage and  
a doubling/tripling charge pump to generate PVCC1 and  
PVCC2, do not provide enough gate drive voltage to fully  
(3.3V)(0.83W)  
(3.3V – 2.5V)(10A)2  
= 0.034Ω  
sn3832 3832fs  
13  
LTC3832/LTC3832-1  
W U U  
U
APPLICATIO S I FOR ATIO  
Note that the required RDS(ON) for Q2 is roughly three the LTC3832’s maximum duty cycle. In a typical 3.3V in-  
times that of Q1 in this example. Note also that while the put,2.5Voutputapplication,themaximumrisetimewillbe:  
required RDS(ON) values suggest large MOSFETs, the  
DCMAX (V – VOUT  
)
0.76 A  
LO µs  
IN  
power dissipation numbers are only 0.83W per device or  
less; large TO-220 packages and heat sinks are not neces-  
sarily required in high efficiency applications. Siliconix  
Si4410DY or International Rectifier IRF7413 (both in  
SO-8) or Siliconix SUD50N03-10 (TO-252) or ON Semi-  
conductor MTD20N03HDL (DPAK) are small footprint  
surface mount devices with RDS(ON) values below 0.03Ω  
at 5V of VGS that work well in LTC3832 circuits. Using a  
higher PMAX value in the RDS(ON) calculations generally  
decreases the MOSFET cost and the circuit efficiency and  
increases the MOSFET heat sink requirements.  
=
LO  
where LO is the inductor value in µH. With proper fre-  
quency compensation, the combination of the inductor  
andoutputcapacitorvaluesdeterminethetransientrecov-  
ery time. In general, a smaller value inductor improves  
transient response at the expense of ripple and inductor  
core saturation rating. A 1µH inductor has a 0.76A/µs rise  
time in this application, resulting in a 6.6µs delay in  
responding to a 5A load current step. During this 6.6µs,  
thedifferencebetweentheinductorcurrentandtheoutput  
current is made up by the output capacitor. This action  
causes a temporary voltage droop at the output. To  
minimize this effect, the inductor value should usually be  
in the 1µH to 5µH range for most 3.3V input LTC3832  
circuits. To optimize performance, different combinations  
of input and output voltages and expected loads may  
require different inductor values.  
Table 1 highlights a variety of power MOSFETs for use in  
LTC3832 applications.  
Inductor Selection  
TheinductorisoftenthelargestcomponentinanLTC3832  
design and must be chosen carefully. Choose the inductor  
valueandtypebasedonoutputslewraterequirements.The  
maximum rate of rise of inductor current is set by the  
inductor’svalue,theinput-to-outputvoltagedifferentialand  
Once the required value is known, the inductor core type  
can be chosen based on peak current and efficiency  
Table 1. Recommended MOSFETs for LTC3832 Applications  
TYPICAL INPUT  
CAPACITANCE  
R
DS(ON)  
PARTS  
AT 25°C (m)  
RATED CURRENT (A)  
C
(pF)  
θ
(°C/W)  
T
JMAX  
(°C)  
ISS  
JC  
Siliconix SUD50N03-10  
TO-252  
19  
15 at 25°C  
3200  
2700  
880  
1.8  
175  
10 at 100°C  
Siliconix Si4410DY  
SO-8  
20  
35  
8
10 at 25°C  
8 at 70°C  
150  
150  
150  
150  
150  
175  
175  
150  
ON Semiconductor MTD20N03HDL  
DPAK  
20 at 25°C  
16 at 100°C  
1.67  
25  
Fairchild FDS6670A  
S0-8  
13 at 25°C  
3200  
2070  
4025  
1600  
3300  
1750  
Fairchild FDS6680  
SO-8  
10  
9
11.5 at 25°C  
25  
ON Semiconductor MTB75N03HDL  
DD PAK  
75 at 25°C  
59 at 100°C  
1
IR IRL3103S  
DD PAK  
19  
28  
37  
64 at 25°C  
45 at 100°C  
1.4  
1
IR IRLZ44  
TO-220  
50 at 25°C  
36 at 100°C  
Fuji 2SK1388  
TO-220  
35 at 25°C  
2.08  
Note: Please refer to the manufacturer’s data sheet for testing conditions and detailed information.  
sn3832 3832fs  
14  
LTC3832/LTC3832-1  
W U U  
APPLICATIO S I FOR ATIO  
U
to IOUT/2. A low ESR input capacitor with an adequate  
ripple current rating must be used to ensure reliable  
operation. Note that capacitor manufacturers’ ripple cur-  
rentratingsareoftenbasedononly2000hours(3months)  
lifetime at rated temperature. Further derating of the input  
capacitor ripple current beyond the manufacturer’s speci-  
fication is recommended to extend the useful life of the  
circuit. Loweroperatingtemperaturehasthelargesteffect  
on capacitor longevity.  
requirements. Peak current in the inductor will be equal to  
the maximum output load current plus half of the peak-to-  
peak inductor ripple current. Ripple current is set by the  
inductor value, the input and output voltage and the  
operating frequency. The ripple current is approximately  
equal to:  
(V VOUT)(VOUT  
)
IN  
IRIPPLE  
=
fOSC LO • V  
IN  
fOSC = LTC3832 oscillator frequency = 300kHz  
LO = Inductor value  
The output capacitor in a buck converter under steady-  
state conditions sees much less ripple current than the  
input capacitor. Peak-to-peak current is equal to inductor  
ripple current, usually 10% to 40% of the total load  
current. Output capacitor duty places a premium not on  
power dissipation but on ESR. During an output load  
transient, the output capacitor must supply all of the  
additional load current demanded by the load until the  
LTC3832 adjusts the inductor current to the new value.  
ESR in the output capacitor results in a step in the output  
voltage equal to the ESR value multiplied by the change in  
load current. An 5A load step with a 0.05ESR output  
capacitor results in a 250mV output voltage shift; this is  
10% of the output voltage for a 2.5V supply! Because of  
the strong relationship between output capacitor ESR and  
output load transient response, choose the output capaci-  
tor for ESR, not for capacitance value. A capacitor with  
suitable ESR will usually have a larger capacitance value  
than is needed to control steady-state output ripple.  
Solving this equation with our typical 3.3V to 2.5V appli-  
cation with a 1µH inductor, we get:  
(3.3V – 2.5V)2.5V  
= 2AP-P  
300kHz 1µH • 3.3V  
Peak inductor current at 10A load:  
10A + (2A/2) = 11A  
The ripple current should generally be between 10% and  
40% of the output current. The inductor must be able to  
withstand this peak current without saturating, and the  
copper resistance in the winding should be kept as low as  
possible to minimize resistive power loss. Note that in  
circuits not employing the current limit function, the  
current in the inductor may rise above this maximum  
undershort-circuitorfaultconditions;theinductorshould  
be sized accordingly to withstand this additional current.  
Inductorswithgradualsaturationcharacteristicsareoften  
the best choice.  
Electrolytic capacitors rated for use in switching power  
supplies with specified ripple current ratings and ESR can  
be used effectively in LTC3832 applications. OS-CON  
electrolytic capacitors from Sanyo and other manufactur-  
ers give excellent performance and have a very high  
performance/size ratio for electrolytic capacitors. Surface  
mount applications can use either electrolytic or dry  
tantalum capacitors. Tantalum capacitors must be surge  
tested and specified for use in switching power supplies.  
Low cost, generic tantalums are known to have very short  
lives followed by explosive deaths in switching power  
supply applications. Other capacitors that can be used  
include the Sanyo POSCAP and MV-WX series.  
Input and Output Capacitors  
A typical LTC3832 design places significant demands on  
both the input and the output capacitors. During normal  
steady load operation, a buck converter like the LTC3832  
drawssquarewavesofcurrentfromtheinputsupplyatthe  
switchingfrequency. Thepeakcurrentvalueisequaltothe  
output load current plus 1/2 the peak-to-peak ripple cur-  
rent. Most of this current is supplied by the input bypass  
capacitor. The resulting RMS current flow in the input  
capacitor heats it and causes premature capacitor failure  
in extreme cases. Maximum RMS current occurs with  
50% PWM duty cycle, giving an RMS current value equal  
A common way to lower ESR and raise ripple current  
capability is to parallel several capacitors. A typical  
sn3832 3832fs  
15  
LTC3832/LTC3832-1  
W U U  
U
APPLICATIO S I FOR ATIO  
Loop stability is affected by the values of the inductor, the  
output capacitor, the output capacitor ESR, the error  
amplifier transconductance and the error amplifier com-  
pensation network. The inductor and the output capacitor  
create a double pole at the frequency:  
LTC3832 application might exhibit 5A input ripple cur-  
rent. Sanyo OS-CON capacitors, part number 10SA220M  
(220µF/10V), feature 2.3A allowable ripple current at  
85°C; three in parallel at the input (to withstand the input  
ripple current) meet the above requirements. Similarly,  
SanyoPOSCAP4TPB470M(470µF/4V)capacitorshavea  
maximum rated ESR of 0.04; three in parallel lower the  
net output capacitor ESR to 0.013.  
fLC = 1/ 2π (LO)(COUT  
)
[
]
The ESR of the output capacitor and the output capacitor  
value form a zero at the frequency:  
Feedback Loop Compensation  
TheLTC3832voltagefeedbackloopiscompensatedatthe  
COMP pin, which is the output node of the error amplifier.  
The feedback loop is generally compensated with an RC +  
C network from COMP to GND as shown in Figure 10a.  
fESR = 1/ 2π(ESR)(C  
)
[
]
OUT  
The compensation network used with the error amplifier  
must provide enough phase margin at the 0dB crossover  
frequency for the overall open-loop transfer function. The  
zero and pole from the compensation network are:  
fZ = 1/[2π(RC)(CC)] and  
+
SENSE  
7
C2  
fP = 1/[2π(RC)(C1)] respectively  
LTC3832  
R2  
V
FB  
+
Figure 10b shows the Bode plot of the overall transfer  
function.  
6
COMP  
10  
ERR  
R1  
SENSE  
5
When low ESR output capacitors (Sanyo OS-CON) are  
used, the ESR zero can be high enough in frequency that  
it provides little phase boost at the loop crossover fre-  
quency. As a result, the phase margin becomes  
inadequate and the load transient is not optimized. To  
resolve this problem, a small capacitor can be connected  
R
C
V
C1  
REF  
C
C
3832 F10a  
Figure 10a. Compensation Pin Hook-Up  
f
f
= LTC3832 SWITCHING  
FREQUENCY  
= CLOSED-LOOP CROSSOVER  
FREQUENCY  
f
f
= LTC3832 SWITCHING  
FREQUENCY  
= CLOSED-LOOP CROSSOVER  
FREQUENCY  
SW  
SW  
f
Z
CO  
CO  
f
Z
20dB/DECADE  
20dB/DECADE  
f
CO  
f
f
f
PC2  
P
P
FREQUENCY  
FREQUENCY  
f
f
f
f
ZC2  
LC  
ESR  
LC  
f
CO  
f
ESR  
3832 F10b  
3832 F10c  
Figure 10b. Bode Plot of the LTC3832 Overall Transfer Function  
Figure 10c. Bode Plot of the LTC3832 Overall  
Transfer Function Using a Low ESR Output Capacitor  
sn3832 3832fs  
16  
LTC3832/LTC3832-1  
W U U  
APPLICATIO S I FOR ATIO  
U
betweenthetopoftheresistordividernetworkandtheVFB  
pin to create a pole-zero pair in the loop compensation.  
The zero location is prior to the pole location and thus,  
phase lead can be added to boost the phase margin at the  
loopcrossoverfrequency. Thepoleandzerolocationsare  
located at:  
Table 3 shows the suggested compensation component  
valuesfor3.3Vto2.5Vapplicationsbasedon470µFSanyo  
POSCAP 4TPB470M output capacitors.  
Table 3. Recommended Compensation Network for 3.3V to 2.5V  
Applications Using Multiple Paralleled 470µF Sanyo POSCAP  
4TPB470M Output Capacitors  
L1 (µH)  
C
(µF)  
R (k)  
C (µF)  
C1 (pF)  
100  
56  
OUT  
C
C
fZC2 = 1/[2π(R2)(C2)] and  
fPC2 = 1/[2π(R1||R2)(C2)]  
1.2  
1410  
13  
27  
0.0047  
0.0018  
0.0015  
0.0033  
0.0022  
0.001  
1.2  
2820  
4700  
1410  
2820  
4700  
1410  
2820  
4700  
1.2  
51  
47  
whereR1||R2istheparallelcombinationresistanceofR1  
and R2. For low R2/R1 ratios there is not much separa-  
tion between fCZ2 and fPC2. In this case, use multiple  
capacitorswithahighESRcapacitanceproducttobring  
fESR close to fCO. Choose C2 so that the zero is located at  
a lower frequency compared to fCO and the pole location  
is high enough that the closed loop has enough phase  
marginforstability.Figure10cshowstheBodeplotusing  
phase lead compensation around the LTC3832 resistor  
divider network.  
2.4  
33  
56  
2.4  
62  
15  
2.4  
82  
39  
4.7  
62  
0.0022  
0.0015  
0.0015  
15  
4.7  
150  
220  
10  
4.7  
2
Table 4 shows the suggested compensation component  
values for 3.3V to 2.5V applications based on 1500µF  
Sanyo MV-WX output capacitors.  
Table 4. Recommended Compensation Network for 3.3V to 2.5V  
Applications Using Multiple Paralleled 1500µF Sanyo MV-WX  
Output Capacitors  
Although a mathematical approach to frequency compen-  
sationcanbeused, theaddedcomplicationofinputand/or  
output filters, unknown capacitor ESR, and gross operat-  
ing point changes with input voltage, load current varia-  
tions, all suggest a more practical empirical method. This  
can be done by injecting a transient current at the load and  
using an RC network box to iterate toward the final values,  
or by obtaining the optimum loop response using a  
network analyzer to find the actual loop poles and zeros.  
L1 (µH)  
C
(µF)  
R (k)  
C (µF)  
C1 (pF)  
180  
120  
100  
82  
OUT  
C
C
1.2  
4500  
39  
56  
0.0042  
0.0033  
0.0033  
0.0033  
0.0022  
0.0022  
0.0022  
0.0022  
0.0015  
1.2  
6000  
9000  
4500  
6000  
9000  
4500  
6000  
9000  
1.2  
82  
2.4  
82  
2.4  
100  
150  
120  
220  
220  
56  
2.4  
68  
4.7  
39  
Table 2 shows the suggested compensation component  
valuefor3.3Vto2.5VapplicationsbasedonSanyoOS-CON  
4SP820M low ESR output capacitors.  
4.7  
27  
4.7  
33  
Table 2. Recommended Compensation Network for 3.3V to 2.5V  
Applications Using Multiple Paralleled 820µF Sanyo OS-CON  
4SP820M Output Capacitors  
LAYOUT CONSIDERATIONS  
When laying out the printed circuit board, use the follow-  
ing checklist to ensure proper operation of the LTC3832.  
These items are also illustrated graphically in the layout  
diagram of Figure 11. The thicker lines show the high  
current paths. Note that at 10A current levels or above,  
current density in the PC board itself is a serious concern.  
Traces carrying high current should be as wide as pos-  
sible. For example, a PCB fabricated with 2oz copper  
requires a minimum trace width of 0.15" to carry 10A.  
L1 (µH)  
1.2  
C
(µF)  
R (k)  
C (nF)  
C1 (pF)  
560  
330  
270  
330  
220  
180  
120  
100  
100  
C2 (pF)  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
1500  
OUT  
C
C
1640  
9.1  
15  
24  
22  
33  
43  
33  
56  
91  
4.7  
4.7  
3.3  
4.7  
3.3  
2.2  
3.3  
2.2  
2.2  
1.2  
2460  
4100  
1640  
2460  
4100  
1640  
2460  
4100  
1.2  
2.4  
2.4  
2.4  
4.7  
4.7  
4.7  
sn3832 3832fs  
17  
LTC3832/LTC3832-1  
W U U  
U
APPLICATIO S I FOR ATIO  
1. In general, layout should begin with the location of the  
powerdevices.Besuretoorientthepowercircuitrysothat  
a clean power flow path is achieved. Conductor widths  
shouldbemaximizedandlengthsminimized.Afteryouare  
satisfied with the power path, the control circuitry should  
belaidout. Itismucheasiertofindroutesfortherelatively  
small traces in the control circuits than it is to find  
circuitous routes for high current paths.  
3. The small-signal resistors and capacitors for frequency  
compensation and soft-start should be located very close  
to their respective pins and the ground ends connected to  
the signal ground pin through a separate trace. Do not  
connect these parts to the ground plane!  
4.TheVCC,PVCC1 andPVCC2 decouplingcapacitorsshould  
be as close to the LTC3832 as possible. The 4.7µF and 1µF  
bypasscapacitorsshownatVCC,PVCC1 andPVCC2 willhelp  
provide optimum regulation performance.  
2. The GND and PGND pins should be shorted directly at  
the LTC3832. This helps to minimize internal ground dis-  
turbancesintheLTC3832andpreventdifferencesinground  
potential from disrupting internal circuit operation. This  
connectionshouldthentieintothegroundplaneatasingle  
point, preferablyatafairlyquietpointinthecircuitsuchas  
closetotheoutputcapacitors. Thisisnotalwayspractical,  
however, due to physical constraints. Another reasonably  
good point to make this connection is between the output  
capacitors and the source connection of the bottom  
MOSFETQ2.Donottiethissinglepointgroundinthetrace  
runbetweentheQ2sourceandtheinputcapacitorground,  
as this area of the ground plane will be very noisy.  
5. The (+) plate of CIN should be connected as close as  
possibletothedrainoftheupperMOSFET,Q1.Anadditional  
1µF ceramic capacitor between VIN and power ground is  
recommended.  
6.TheSENSEandVFB pinsareverysensitivetopickupfrom  
the switching node. Care should be taken to isolate SENSE  
and VFB from possible capacitive coupling to the inductor  
switchingsignal.ConnectingtheSENSE+andSENSEclose  
to the load can significantly improve load regulation.  
7. Kelvin sense IMAX and IFB at Q1’s drain and source pins.  
PV  
CC  
V
IN  
100Ω  
+
+
1µF  
C
IN  
4.7µF  
V
PV  
CC2  
CC  
0.1µF  
1µF  
PV  
PGND  
CC1  
Q1A  
Q1B  
G1  
LTC3832  
GND  
I
MAX  
L
O
1k  
FREQSET  
SHDN  
COMP  
SS  
I
V
OUT  
NC  
FB  
+
SENSE  
Q2  
G2  
NC  
FB  
C1  
R
+
C
SENSE  
OUT  
C
GND  
PGND  
PGND  
C
C
SS  
C
3832 F11  
GND  
Figure 11. Typical Schematic Showing Layout Considerations  
sn3832 3832fs  
18  
LTC3832/LTC3832-1  
W U U  
APPLICATIO S I FOR ATIO  
U
V
IN  
3.3V  
+
C
IN  
OPTIONAL  
330µF  
×2  
D
Z
12V  
1N5242  
1N5817  
1N5817  
1N5817  
+
10µF  
0.1µF  
5.6k  
100Ω  
Q1A, Q1B  
PV  
PV  
CC1  
CC2  
0.1µF  
2 IN PARALLEL  
V
G1  
+
CC  
1µF  
L
O
1.3µH  
4.7µF  
0.1µF  
SS  
I
MAX  
V
2.5V  
14A  
1k  
OUT  
0.01µF  
I
FB  
LTC3832  
+
C
OUT  
Q2  
D1  
NC  
FREQSET  
SHDN  
G2  
470µF  
×3  
SHDN  
PGND  
GND  
COMP  
C1  
180pF  
R
C
18k  
+
3832 F12a  
SENSE  
FB  
NC  
C
C
: SANYO 6TPB330M  
C
C
1500pF  
IN  
SENSE  
: SANYO 4TPB470M  
OUT  
D1: MBRS330T3  
L : SUMIDA CDEP105-1R3-MC-S  
O
Q1A, Q1B, Q2: FAIRCHILD FDS6670A  
Figure 12. Typical 3.3V to 2.5V, 14A Application  
Efficiency vs Load Current  
100  
90  
80  
70  
60  
50  
40  
30  
T
V
V
= 25°C  
A
20  
10  
0
= 3.3V  
IN  
OUT  
= 2.5V  
REFER TO FIGURE 12  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
LOAD CURRENT (A)  
3832 F12b  
sn3832 3832fs  
19  
LTC3832/LTC3832-1  
U
TYPICAL APPLICATIO S  
Typical 3.3V to 5V, 5A Synchronous Boost Converter  
V
IN  
3.3V  
+
C
5mΩ  
MBR0520  
MBR0520  
IN  
10µF  
330µF  
L
O
1.3µH  
10µF  
0.1µF  
10Ω  
5.6k  
PV  
PV  
CC2  
CC1  
V
0.1µF  
100Ω  
CC  
MBR330T3  
Q2  
2.2µF  
SS  
I
MAX  
V
5V  
5A  
OUT  
0.47µF  
NC  
I
LTC3832  
FB  
+
C
OUT  
Q1  
10µF  
FREQSET  
SHDN  
G1  
PGND  
GND  
G2  
330µF  
×2  
93.1k  
1%  
SHUTDOWN  
COMP  
C1  
68pF  
12.7k  
1%  
R
+
C
6.8k  
NC  
SENSE  
FB  
C
C
3832 TA03  
SENSE  
0.01µF  
C
, C : SANYO POSCAP 6TPB330M  
IN OUT  
L : SUMIDA CDEP105-1R3-MC-S  
O
Q1, Q2: SILICONIX Si4864DY  
NC  
sn3832 3832fs  
20  
LTC3832/LTC3832-1  
U
TYPICAL APPLICATIO S  
Typical 3.3V to 5V, 5A Positive-to-Negative Converter  
V
IN  
3.3V  
+
C
IN  
330µF  
MBR0520  
100Ω  
1µF  
1µF  
10µF  
3.5k  
PV  
PV  
CC1  
CC2  
Q1  
Q2  
0.1µF  
V
G1  
CC  
L
O
0.1µF  
SS  
I
MAX  
D
Z
1.3µH  
1k  
0.01µF  
NC  
8.2V  
I
LTC3832  
FB  
+
C
FREQSET  
SHDN  
G2  
OUT  
330µF  
10µF  
93.1k  
1%  
13V  
SHUTDOWN  
COMP  
FB  
PGND  
GND  
12.7k  
1%  
+
SENSE  
NC  
V
–5V  
5A  
R
C
OUT  
15k  
C1  
180pF  
3832 TA04  
SENSE  
C
C
C
, C : SANYO POSCAP 6TPB330M  
IN OUT  
1.5nF  
L : SUMIDA CDEP105-1R3-MC-S  
O
NC  
Q1, Q2: SILICONIX Si7440DP  
sn3832 3832fs  
21  
LTC3832/LTC3832-1  
U
PACKAGE DESCRIPTIO  
GN Package  
16-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.189 – .196*  
(4.801 – 4.978)  
.045 ±.005  
.009  
(0.229)  
REF  
16 15 14 13 12 11 10 9  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
5
6
7
8
.015 ± .004  
(0.38 ± 0.10)  
× 45°  
.053 – .068  
(1.351 – 1.727)  
.004 – .0098  
(0.102 – 0.249)  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.0250  
(0.635)  
BSC  
.008 – .012  
(0.203 – 0.305)  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
GN16 (SSOP) 0502  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
sn3832 3832fs  
22  
LTC3832/LTC3832-1  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
N
7
5
8
6
N
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
1
2
3
N/2  
N/2  
4
.030 ±.005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
1
3
2
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0502  
sn3832 3832fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection ofits circuits as described herein willnotinfringe on existing patentrights.  
23  
LTC3832/LTC3832-1  
U
TYPICAL APPLICATIO  
Typical 5V to 3.3V, 10A Application  
5V  
+
C
IN  
MBR0530T1  
20k  
330µF  
×2  
+
1001µF  
Q1A, Q1B  
2 IN PARALLEL  
PV  
PV  
CC1  
CC2  
0.1µF  
0.1µF  
V
G1  
+
CC  
0.1µF  
L
O
1.3µH  
4.7µF  
SS  
I
MAX  
1k  
0.01µF  
3.3V  
10A  
I
LTC3832  
FB  
+
C
OUT  
NC  
Q2  
FREQSET  
SHDN  
G2  
PGND  
GND  
45k  
1%  
470µF  
×3  
SHUTDOWN  
COMP  
C1  
180pF  
10k  
1%  
R
+
C
SENSE  
NC  
18k  
FB  
C
C
3830 TA02  
SENSE  
C
C
O
: SANYO 6TPB330M  
IN  
0.01µF  
: SANYO 4TPB470M  
OUT  
L : SUMIDA CDEP105-1R3-MC-S  
NC  
Q1A, Q1B, Q2: ON SEMICONDUCTOR MTD20N03HDL  
RELATED PARTS  
PART NUMBER  
LTC1530  
DESCRIPTION  
High Power Synchronous Switching Regulator Controller  
COMMENTS  
SO-8 with Current Limit. No R  
TM Required  
SENSE  
LTC1628  
Dual High Efficiency 2-Phase Synchronous Step-Down Controller Constant Frequency, Standby 5V and 3.3V LDOs,  
3.5V V 36V  
IN  
LTC1702  
LTC1705  
Dual High Efficiency 2-Phase Synchronous Step-Down Controller 550kHz, 25MHz GBW Voltage Mode, V 7V, No R  
IN SENSE  
Dual 550kHz Synchronous 2-Phase Switching Regulator  
Controller with 5-Bit VID Plus LDO  
Provides CPU Core, I/O and CLK Supplies for Portable Systems  
LTC1709  
LTC1736  
LTC1753  
2-Phase, 5-Bit Desktop VID Synchronous Step-Down Controller  
Current Mode, V to 36V, I Up to 42A  
IN  
OUT  
Synchronous Step-Down Controller with 5-Bit Mobile VID Control Fault Protection, Power Good, 3.5V to 36V Input, Current Mode  
5-Bit Desktop VID Programmable Synchronous  
Switching Regulator  
1.3V to 3.5V Programmable Output Using Internal 5-Bit DAC  
LTC1773  
Synchronous Step-Down Controller in MS10  
Up to 95% Efficiency, 550kHz, 2.65V V 8.5V,  
IN  
0.8V V  
V , Synchronizable to 750kHz  
OUT  
IN  
LTC1778  
LTC1873  
LTC1876  
Wide Operating Range/Step-Down Controller, No R  
V Up to 36V, Current Mode, Power Good  
IN  
SENSE  
Dual Synchronous Switching Regulator with 5-Bit Desktop VID  
1.3V to 3.5V Programmable Core Output Plus I/O Output  
2-Phase, Dual Step-Down Synchronous Controller with  
Integrated Step-Up DC/DC Regulator  
Step-Down DC/DC Conversion from 3V , Minimum C and  
IN  
IN  
C
, Uses Logic-Level N-Channel MOSFETs  
OUT  
LTC1929  
LTC3713  
LTC3831  
2-Phase, Synchronous High Efficiency Converter  
with Mobile VID  
Current Mode Ensures Accurate Current Sensing V Up to 36V,  
IN  
I
Up to 40A  
OUT  
Low Input Voltage, High Power, No R  
Synchronous Controller  
, Step-Down  
SENSE  
Minimum V : 1.5V, Uses Standard Logic-Level N-Channel  
IN  
MOSFETs  
High Power Synchronous Switching Regulator Controller for  
DDR Memory Termination  
V
Tracks 1/2 of V or External Reference  
OUT IN  
No R  
is a trademark of Linear Technology Corporation.  
SENSE  
sn3832 3832fs  
LT/TP 1002 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LTC3832EGN#PBF

LTC3832 - High Power Step-Down Synchronous DC/DC Controllers for Low Voltage Operation; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3832EGN#TR

LTC3832 - High Power Step-Down Synchronous DC/DC Controllers for Low Voltage Operation; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3832EGN#TRPBF

LTC3832 - High Power Step-Down Synchronous DC/DC Controllers for Low Voltage Operation; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3832_15

High Power Step-Down Synchronous DC/DC Controllers for Low Voltage Operation
Linear

LTC3833

Dual, 2-Phase Synchronous Step-Down DC/DC Controllers
Linear

LTC3833EFE#PBF

LTC3833 - Fast Accurate Step-Down DC/DC Controller with Differential Output Sensing; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3833EFE#TRPBF

LTC3833 - Fast Accurate Step-Down DC/DC Controller with Differential Output Sensing; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3833EUDC#PBF

LTC3833 - Fast Accurate Step-Down DC/DC Controller with Differential Output Sensing; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3833EUDC#TRPBF

LTC3833 - Fast Accurate Step-Down DC/DC Controller with Differential Output Sensing; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3833IFE#PBF

LTC3833 - Fast Accurate Step-Down DC/DC Controller with Differential Output Sensing; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3833IFE#TRPBF

LTC3833 - Fast Accurate Step-Down DC/DC Controller with Differential Output Sensing; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3833IUDC#PBF

LTC3833 - Fast Accurate Step-Down DC/DC Controller with Differential Output Sensing; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear