LTC3857-1 [Linear]

Low IQ, Dual, 2-Phase Synchronous Step-Down Controller; 低IQ ,双通道,两相同步降压型控制器
LTC3857-1
型号: LTC3857-1
厂家: Linear    Linear
描述:

Low IQ, Dual, 2-Phase Synchronous Step-Down Controller
低IQ ,双通道,两相同步降压型控制器

控制器
文件: 总38页 (文件大小:514K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3857-1  
Low I , Dual, 2-Phase  
Q
Synchronous Step-Down  
Controller  
FeaTures  
DescripTion  
TheꢀLTC®3857-1ꢀisꢀaꢀhighꢀperformanceꢀdualꢀstep-downꢀ  
switchingregulatorcontrollerthatdrivesallN-channelꢀ  
synchronouspowerMOSFETstages.Aconstantfrequencyꢀ  
currentmodearchitectureallowsaphase-lockablefre-  
quencyꢀofꢀupꢀtoꢀ850kHz.ꢀPowerꢀlossꢀandꢀnoiseꢀdueꢀtoꢀtheꢀ  
ESRoftheinputcapacitorESRareminimizedbyoperatingꢀ  
theꢀtwoꢀcontrollerꢀoutputꢀstagesꢀoutꢀofꢀphase.  
n
Low Operating I : 50µA (One Channel On)  
Q
n
n
n
n
Wide Output Voltage Range: 0.8V ≤ V  
≤ 24V  
OUT  
Wide V Range: 4V to 38V  
IN  
R  
or DCR Current Sensing  
SENSE  
ꢀ Out-of-PhaseꢀControllersꢀReduceꢀRequiredꢀInputꢀ  
CapacitanceꢀandꢀPowerꢀSupplyꢀInducedꢀNoise  
®
n
n
n
n
ꢀ OPTI-LOOP ꢀCompensationꢀMinimizesꢀC  
OUT  
ꢀ Phase-LockableꢀFrequencyꢀ(75kHz-850kHz)  
ꢀ ProgrammableꢀFixedꢀFrequencyꢀ(50kHz-900kHz)  
ꢀ SelectableꢀContinuous,ꢀPulse-SkippingꢀorꢀLowꢀRippleꢀ  
BurstꢀMode®ꢀOperationꢀatꢀLightꢀLoads  
Theꢀ50μAꢀno-loadꢀquiescentꢀcurrentꢀextendsꢀoperatingꢀlifeꢀ  
inbattery-poweredsystems.TheLTC3857-1ꢀfeaturesapre-  
cisionꢀ0.8Vꢀreferenceꢀandꢀaꢀpowerꢀgoodꢀoutputꢀindicator.ꢀAꢀ  
wide4Vto38Vinputsupplyrangeencompassesawiderangeꢀ  
ofꢀintermediateꢀbusꢀvoltagesꢀandꢀbatteryꢀchemistries.  
n
n
n
n
n
n
n
n
ꢀ VeryꢀLowꢀDropoutꢀOperation:ꢀ99%ꢀDutyꢀCycle  
ꢀ AdjustableꢀOutputꢀVoltageꢀSoft-StartꢀorꢀTracking  
ꢀ PowerꢀGoodꢀOutputꢀVoltageꢀMonitor  
IndependentꢀTRACK/SSꢀpinsꢀforꢀeachꢀcontrollerꢀrampꢀtheꢀ  
outputꢀvoltagesꢀduringꢀstart-up.ꢀCurrentꢀfoldbackꢀlimitsꢀ  
MOSFETꢀheatꢀdissipationꢀduringꢀshort-circuitꢀconditions.ꢀ  
TheꢀPLLIN/MODEꢀpinꢀselectsꢀamongꢀBurstꢀModeꢀopera-  
tion,pulse-skippingmode,orcontinuousinductorcurrentꢀ  
modeꢀatꢀlightꢀloads.  
ꢀ OutputꢀOvervoltageꢀProtection  
ꢀ LowꢀShutdownꢀI :ꢀ<8µA  
ꢀ InternalꢀLDOꢀPowersꢀGateꢀDriveꢀfromꢀV ꢀorꢀEXTV  
ꢀ NoꢀCurrentꢀFoldbackꢀDuringꢀStart-Up  
ꢀ NarrowꢀSSOPꢀPackage  
Q
IN  
CC  
Forꢀaꢀleadlessꢀ32-pinꢀQFNꢀpackageꢀwithꢀtheꢀadditionalꢀfea-  
turesꢀofꢀadjustableꢀcurrentꢀlimit,ꢀclockꢀout,ꢀphaseꢀmodula-  
tionandtwoPGOODoutputs,seetheLTC3857datasheet.  
L,ꢀLT,LTC,ꢀLTM,ꢀBurstꢀMode,ꢀOPTI-LOOP,ꢀµModule,ꢀLinearꢀTechnologyꢀandꢀtheꢀLinearꢀlogoꢀ  
applicaTions  
n
ꢀ AutomotiveꢀAlways-OnꢀSystems  
ꢀ BatteryꢀOperatedꢀDigitalꢀDevices  
n
areꢀregisteredꢀtrademarksꢀandꢀNoꢀR  
ꢀandꢀUltraFastꢀareꢀtrademarksꢀofꢀLinearꢀTechnologyꢀ  
SENSE  
n
ꢀ DistributedꢀDCꢀPowerꢀSystems  
Corporation.ꢀAllꢀotherꢀtrademarksꢀareꢀtheꢀpropertyꢀofꢀtheirꢀrespectiveꢀowners.ꢀProtectedꢀbyꢀ  
U.S.ꢀPatents,ꢀincludingꢀ5481178,ꢀ5929620,ꢀ6177787,ꢀ6144194,ꢀ5408150,ꢀ6580258,ꢀ5705919,ꢀ  
6100678.  
Typical applicaTion  
High Efficiency Dual 3.3V/8.5V Step-Down Converter  
V
Efficiency and Power Loss  
IN  
9V TO 38V  
22µF  
50V  
vs Output Current  
1µF  
100  
90  
10000  
1000  
100  
10  
V
INTV  
CC  
IN  
V
V
= 12V  
IN  
OUT  
TG1  
TG2  
= 3.3V  
0.1µF  
0.1µF  
FIGURE 13 CIRCUIT  
BOOST1  
SW1  
BOOST2  
SW2  
80  
3.3µH  
7.2µH  
70  
BG1  
BG2  
60  
50  
LTC3857-1  
PGND  
+
+
40  
30  
20  
10  
0
SENSE1  
SENSE2  
0.010Ω  
193k  
0.007Ω  
1
V
8.5V  
3.5A  
SENSE2  
OUT2  
SENSE1  
V
OUT1  
3.3V  
5A  
V
FB1  
V
FB2  
62.5k  
I
I
TH2  
TH1  
TRACK/SS1 SGND TRACK/SS2  
0.1µF  
0.1  
150µF  
680pF  
15k  
680pF  
150µF  
0.000010.0001 0.001 0.01  
0.1  
1
10  
20k  
OUTPUT CURRENT (A)  
20k  
15k  
0.1µF  
3857 TA01b  
38571 TA01  
38571fa  
                                  
RUN1,ꢀRUN2................................................ –0.3Vꢀtoꢀ8V  
               
SENSE2 ꢀVoltages  
                   
...................................... –0.3Vꢀtoꢀ28V  
EXTV ꢀ...................................................... –0.3Vꢀtoꢀ14V  
            
PGOOD1ꢀVoltageꢀ  
TRACK/SS1,ꢀTRACK/SS2ꢀVoltagesꢀ  
OperatingꢀJunctionꢀTemperatureꢀRangeꢀ  
(Noteꢀ2).................................................. –40°Cꢀtoꢀ125°C  
MaximumꢀJunctionꢀTemperatureꢀ(Noteꢀ3)ꢀ............ 125°C  
StorageꢀTemperatureꢀRange................... –65°Cꢀtoꢀ150°C  
                  
......................................... –0.3Vꢀtoꢀ6V  
                             
.............. –0.3Vꢀtoꢀ6V  
            
                         
ꢀ BOOST1,ꢀBOOST2ꢀ................................. –0.3Vꢀtoꢀ46V  
                     
LTC3857-1  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
InputꢀSupplyꢀVoltageꢀ(V )......................... –0.3Vꢀtoꢀ40V  
IN  
TopsideꢀDriverꢀVoltagesꢀ  
1
TRACK/SS1  
PGOOD1  
TG1  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
I
TH1  
2
3
V
FB1  
+
SENSE1  
SENSE1  
SwitchꢀVoltageꢀ(SW1,ꢀSW2)ꢀꢀ........................ –5Vꢀtoꢀ40V  
(BOOST1-SW1),ꢀ(BOOST2-SW2),ꢀINTV ꢀ... –0.3Vꢀtoꢀ6V  
4
SW1  
CC  
5
BOOST1  
BG1  
FREQ  
PLLIN/MODE  
SGND  
6
ꢀ MaximumꢀCurrentꢀSourcedꢀintoꢀPinꢀ  
7
V
IN  
ꢀ fromꢀSourceꢀ>8V...............................................100µA  
8
PGND  
RUN1  
+
+
SENSE1 ,ꢀSENSE2 ,ꢀSENSE1  
9
EXTV  
CC  
RUN2  
10  
11  
12  
13  
14  
INTV  
CC  
SENSE2  
PLLIN/MODE,ꢀFREQꢀVoltagesꢀꢀ.............. –0.3VꢀtoꢀINTV  
+
CC  
BG2  
SENSE2  
CC  
BOOST2  
SW2  
V
FB2  
TH2  
I
,ꢀI ,V ,ꢀV ꢀVoltagesꢀ...................... –0.3Vꢀtoꢀ6V  
TH1 TH2 FB1 FB2  
I
TG2  
TRACK/SS2  
GN PACKAGE  
28-LEAD PLASTIC SSOP  
T
ꢀ=ꢀ125°C,ꢀθ ꢀ=ꢀ90°C/W  
JA  
JMAX  
orDer inForMaTion  
LEAD FREE FINISH  
LTC3857EGN-1#PBF  
LTC3857IGN-1#PBF  
TAPE AND REEL  
PART MARKING*  
LTC3857GN-1  
LTC3857GN-1  
PACKAGE DESCRIPTION  
28-LeadꢀPlasticꢀSSOP  
28-LeadꢀPlasticꢀSSOP  
TEMPERATURE RANGE  
–40°Cꢀtoꢀ125°C  
LTC3857EGN-1#TRPBF  
LTC3857IGN-1#TRPBF  
–40°Cꢀtoꢀ125°C  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.ꢀꢀ*Theꢀtemperatureꢀgradeꢀisꢀidentifiedꢀbyꢀaꢀlabelꢀonꢀtheꢀshippingꢀcontainer.  
ConsultꢀLTCꢀMarketingꢀforꢀinformationꢀonꢀnon-standardꢀleadꢀbasedꢀfinishꢀparts.  
Forꢀmoreꢀinformationꢀonꢀleadꢀfreeꢀpartꢀmarking,ꢀgoꢀto:ꢀhttp://www.linear.com/leadfree/ꢀꢀ  
Forꢀmoreꢀinformationꢀonꢀtapeꢀandꢀreelꢀspecifications,ꢀgoꢀto:ꢀhttp://www.linear.com/tapeandreel/  
38571fa  
LTC3857-1  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VRUN1,2 = 5V, EXTVCC = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
InputꢀSupplyꢀOperatingꢀVoltageꢀRange  
RegulatedꢀFeedbackꢀVoltage  
4
38  
V
IN  
(Noteꢀ4)ꢀI  
ꢀVoltageꢀ=ꢀ1.2Vꢀ  
TH1,2  
FB1,2  
l
–40°Cꢀtoꢀ125°Cꢀ  
–40°Cꢀtoꢀ85°C  
0.788ꢀ  
0.792  
0.800ꢀ  
0.800  
0.812ꢀ  
0.808  
Vꢀ  
V
I
FeedbackꢀCurrent  
(Noteꢀ4)  
5
50  
nA  
FB1,2  
V
V
ReferenceꢀVoltageꢀLineꢀRegulation  
OutputꢀVoltageꢀLoadꢀRegulation  
(Noteꢀ4)ꢀV ꢀ=ꢀ4.5Vꢀtoꢀ38V  
0.002  
0.02  
%/V  
REFLNREG  
LOADREG  
IN  
(Note4)ꢀ  
%
l
l
MeasuredꢀinꢀServoꢀLoop,ꢀꢀ  
0.01  
0.1  
I ꢀVoltageꢀ=ꢀ1.2Vꢀtoꢀ0.7V  
TH  
(Note4)ꢀ  
%
MeasuredꢀinꢀServoꢀLoop,ꢀꢀ  
–0.01  
–0.1  
I ꢀVoltageꢀ=ꢀ1.2Vꢀtoꢀ2V  
TH  
g
TransconductanceꢀAmplifierꢀg  
InputꢀDCꢀSupplyꢀCurrent  
(Noteꢀ4)ꢀI  
ꢀ=ꢀ1.2V,ꢀSink/Sourceꢀ=ꢀ5µA  
TH1,2  
2
2
mmho  
mA  
m1,2  
m
I
Q
(Noteꢀ5)  
Pulse-SkippingꢀorꢀForcedꢀContinuousꢀ  
Modeꢀ(OneꢀChannelꢀOn)  
RUN1ꢀ=ꢀ5VꢀandꢀRUN2ꢀ=ꢀ0Vꢀorꢀꢀ  
RUN1ꢀ=ꢀ0VꢀandꢀRUN2ꢀ=ꢀ5V,ꢀꢀ  
V
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
FB1  
Pulse-SkippingꢀorꢀForcedꢀContinuousꢀ  
Modeꢀ(BothꢀChannelsꢀOn)  
RUN1,2ꢀ=ꢀ5V,ꢀV  
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
2
mA  
µA  
FB1,2  
SleepꢀModeꢀ(OneꢀChannelꢀOn)  
RUN1ꢀ=ꢀ5VꢀandꢀRUN2ꢀ=ꢀ0Vꢀorꢀꢀ  
RUN1ꢀ=ꢀ0VꢀandꢀRUN2ꢀ=ꢀ5V,ꢀꢀ  
50  
75  
V
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
FB1  
SleepꢀModeꢀ(BothꢀChannelsꢀOn)  
Shutdown  
RUN1,2ꢀ=ꢀ5V,ꢀV  
RUN1,2ꢀ=ꢀ0V  
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
FB1,2  
65  
8
120  
20  
µA  
µA  
l
l
UVLO  
UndervoltageꢀLockout  
INTV ꢀRampingꢀUpꢀ  
4.0ꢀ  
3.8  
4.2ꢀ  
4
Vꢀ  
V
CC  
INTV ꢀRampingꢀDown  
3.6  
CC  
V
FeedbackꢀOvervoltageꢀProtection  
MeasuredꢀatꢀV  
EachꢀChannel  
,ꢀRelativeꢀtoꢀRegulatedꢀV  
FB1,2  
7
10  
13  
1
%
OVL  
FB1,2  
+
+
I
I
SENSE ꢀPinꢀCurrent  
µA  
SENSE  
SENSE  
SENSE ꢀPinsꢀCurrent  
EachꢀChannelꢀ  
µAꢀ  
µA  
V
V
ꢀ<ꢀINTV ꢀ–ꢀ0.5Vꢀ  
1ꢀ  
SENSE  
SENSE  
CC  
CC  
ꢀ>ꢀINTV ꢀ+ꢀ0.5V  
550  
700  
DF  
MaximumꢀDutyꢀFactor  
Soft-StartꢀChargeꢀCurrent  
RUNꢀPinꢀOnꢀThreshold  
InꢀDropout,ꢀFREQꢀ=ꢀ0V  
ꢀ=ꢀ0V  
98  
0.7  
99.4  
1.0  
1.26  
50  
%
µA  
V
MAX  
I
V
1.4  
TRACK/SS1,2  
TRACK1,2  
l
l
V
V
V
ꢀOn  
V
,ꢀV ꢀRising  
RUN1 RUN2  
1.21  
1.31  
RUN1,2  
ꢀHyst RUNꢀPinꢀHysteresis  
mV  
mV  
RUN1,2  
MaximumꢀCurrentꢀSenseꢀThreshold  
V
ꢀ=ꢀ0.7V,ꢀV –, –ꢀ=ꢀ3.3V  
FB1,2 SENSE1 2  
43  
50  
57  
SENSE(MAX)  
Gate Driver  
TG1,2  
Pull-UpꢀOn-Resistanceꢀ  
Pull-DownꢀOn-Resistance  
2.5ꢀ  
1.5  
Ωꢀ  
Ω
BG1,2  
Pull-UpꢀOn-Resistanceꢀ  
Pull-DownꢀOn-Resistance  
2.4ꢀ  
1.1  
Ωꢀ  
Ω
TGꢀTransistionꢀTime:ꢀ  
ꢀRiseꢀTimeꢀ  
ꢀFallꢀTime  
(Noteꢀ6)ꢀ  
nsꢀ  
ns  
TG1,2ꢀt ꢀ  
C
C
ꢀ=ꢀ3300pFꢀ  
25ꢀ  
16  
r
LOAD  
LOAD  
TG1,2ꢀt  
ꢀ=ꢀ3300pF  
f
BGꢀTransistionꢀTime:ꢀ  
ꢀRiseꢀTimeꢀ  
ꢀFallꢀTime  
(Noteꢀ6)ꢀ  
LOAD  
LOAD  
nsꢀ  
ns  
BG1,2ꢀt ꢀ  
C
C
ꢀ=ꢀ3300pFꢀ  
ꢀ=ꢀ3300pF  
28ꢀ  
13  
r
BG1,2ꢀt  
f
38571fa  
LTC3857-1  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VRUN1,2 = 5V, EXTVCC = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TG/BGꢀt  
TopꢀGateꢀOffꢀtoꢀBottomꢀGateꢀOnꢀDelayꢀ  
SynchronousꢀSwitch-OnꢀDelayꢀTime  
C ꢀ=ꢀ3300pFꢀEachꢀDriver  
LOAD  
30  
ns  
1D  
BG/TGꢀt  
BottomꢀGateꢀOffꢀtoꢀTopꢀGateꢀOnꢀDelayꢀ  
TopꢀSwitch-OnꢀDelayꢀTime  
C
ꢀ=ꢀ3300pFꢀEachꢀDriver  
30  
95  
ns  
ns  
1D  
LOAD  
t
MinimumꢀOn-Time  
(Noteꢀ7)  
ON(MIN)  
INTV Linear Regulator  
CC  
V
V
V
V
V
V
InternalꢀV ꢀVoltage  
6Vꢀ<ꢀV ꢀ<ꢀ38V,ꢀV ꢀ=ꢀ0V  
EXTVCC  
4.85  
4.85  
4.5  
5.1  
0.7  
5.1  
0.6  
4.7  
250  
5.35  
1.1  
V
%
V
INTVCCVIN  
LDOVIN  
CC  
IN  
INTV ꢀLoadꢀRegulation  
I ꢀ=ꢀ0mAꢀtoꢀ50mA,ꢀV  
CC  
ꢀ=ꢀ0V  
CC  
EXTVCC  
InternalꢀV ꢀVoltage  
6Vꢀ<ꢀV ꢀ<ꢀ13V  
EXTVCC  
5.35  
1.1  
INTVCCEXT  
LDOEXT  
CC  
INTV ꢀLoadꢀRegulation  
I ꢀ=ꢀ0mAꢀtoꢀ50mA,ꢀV  
CC  
ꢀ=ꢀ8.5V  
%
V
CC  
EXTVCC  
EXTV ꢀSwitchoverꢀVoltage  
EXTV ꢀRampingꢀPositive  
4.9  
EXTVCC  
CC  
CC  
EXTV ꢀHysteresis  
mV  
LDOHYS  
CC  
Oscillator and Phase-Locked Loop  
f
f
f
f
f
f
ProgrammableꢀFrequency  
ProgrammableꢀFrequency  
ProgrammableꢀFrequency  
LowꢀFixedꢀFrequency  
R
R
R
ꢀ=ꢀ25k,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
ꢀ=ꢀ65k,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
ꢀ=ꢀ105k,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
ꢀ=ꢀ0V,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
105  
440  
835  
350  
535  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
25kΩ  
65kΩ  
105kΩ  
LOW  
FREQ  
FREQ  
FREQ  
FREQ  
FREQ  
375  
505  
V
V
320  
485  
75  
380  
585  
850  
HighꢀFixedꢀFrequency  
ꢀ=ꢀINTV ,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
CC  
HIGH  
SYNC  
l
SynchronizableꢀFrequency  
PLLIN/MODEꢀ=ꢀExternalꢀClock  
PGOOD1 Output  
V
PGOOD1ꢀVoltageꢀLow  
PGOOD1ꢀLeakageꢀCurrent  
PGOOD1ꢀTripꢀLevel  
I
ꢀ=ꢀ2mA  
PGOOD  
0.2  
0.4  
1
V
PGL  
I
V
V
ꢀ=ꢀ5V  
PGOOD  
µA  
PGOOD  
V
ꢀwithꢀRespectꢀtoꢀSetꢀRegulatedꢀVoltageꢀ  
FB  
FB  
PG  
ꢀV ꢀRampingꢀNegativeꢀ  
ꢀHysteresis  
–13  
–10ꢀ  
2.5  
–7  
%ꢀ  
%
V
ꢀwithꢀRespectꢀtoꢀSetꢀRegulatedꢀVoltageꢀ  
FB  
7
FB  
ꢀV ꢀRampingꢀPositiveꢀ  
10ꢀ  
2.5  
13  
%ꢀ  
%
ꢀHysteresis  
t
PG  
DelayꢀforꢀReportingꢀaꢀFault  
25  
µs  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingsꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀreliabilityꢀandꢀ  
lifetime.ꢀ  
Note 4:ꢀTheꢀLTC3857-1ꢀisꢀtestedꢀinꢀaꢀfeedbackꢀloopꢀthatꢀservosꢀV  
ꢀtoꢀ  
ITH1,2  
aꢀspecifiedꢀvoltageꢀandꢀmeasuresꢀtheꢀresultantꢀV .ꢀTheꢀspecificationꢀatꢀ  
FB1,2  
85°Cꢀisꢀnotꢀtestedꢀinꢀproduction.ꢀThisꢀspecificationꢀisꢀassuredꢀbyꢀdesign,ꢀ  
characterizationꢀandꢀcorrelationꢀtoꢀproductionꢀtestingꢀatꢀ125°C.  
Note 2:ꢀTheꢀLTC3857E-1ꢀisꢀguaranteedꢀtoꢀmeetꢀperformanceꢀspecificationsꢀ  
fromꢀ0°Cꢀtoꢀ85°C.ꢀSpecificationsꢀoverꢀtheꢀ–40°Cꢀtoꢀ125°Cꢀoperatingꢀ  
junctionꢀtemperatureꢀrangeꢀareꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀandꢀ  
correlationꢀwithꢀstatisticalꢀprocessꢀcontrols.ꢀTheꢀLTC3857I-1ꢀisꢀguaranteedꢀ  
overꢀtheꢀfullꢀ–40°Cꢀtoꢀ125°Cꢀoperatingꢀjunctionꢀtemperatureꢀrange.  
Note 5:ꢀDynamicꢀsupplyꢀcurrentꢀisꢀhigherꢀdueꢀtoꢀtheꢀgateꢀchargeꢀbeingꢀ  
deliveredꢀatꢀtheꢀswitchingꢀfrequency.ꢀSeeꢀApplicationsꢀinformation.  
Note 6:ꢀRiseꢀandꢀfallꢀtimesꢀareꢀmeasuredꢀusingꢀ10%ꢀandꢀ90%ꢀlevels.ꢀDelayꢀ  
timesꢀareꢀmeasuredꢀusingꢀ50%ꢀlevels.  
Note 7:ꢀTheꢀminimumꢀon-timeꢀconditionꢀisꢀspecifiedꢀforꢀanꢀinductorꢀ  
Note 3:ꢀT ꢀisꢀcalculatedꢀfromꢀtheꢀambientꢀtemperatureꢀT ꢀandꢀpowerꢀ  
J
A
peak-to-peakꢀrippleꢀcurrentꢀ≥40%ꢀofꢀI ꢀ(SeeꢀMinimumꢀOn-Timeꢀ  
MAX  
dissipationꢀP ꢀaccordingꢀtoꢀtheꢀfollowingꢀformula:  
D
ConsiderationsꢀinꢀtheꢀApplicationsꢀInformationꢀsection).  
T ꢀ=ꢀT ꢀ+ꢀ(P •ꢀ90°C/W)  
J A Dꢀ  
38571fa  
LTC3857-1  
Typical perForMance characTerisTics  
Efficiency and Power Loss  
Efficiency vs Output Current  
Efficiency vs Input Voltage  
vs Output Current  
100  
90  
10000  
1000  
100  
10  
100  
90  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
V
V
= 12V  
V
LOAD  
= 3.3V  
= 5A  
IN  
OUT  
OUT  
= 3.3V  
I
V
= 5V  
IN  
FIGURE 13 CIRCUIT  
80  
80  
70  
70  
V
IN  
= 12V  
60  
50  
60  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
1
V
= 3.3V  
OUT  
FIGURE 13 CIRCUIT  
0.1  
20 25  
10 15  
INPUT VOLTAGE (V)  
1
5
30 35 40  
0.000010.0001 0.001 0.01  
0.1  
1
10  
0.000010.0001 0.001 0.01  
0.1  
1
10  
38571 G01  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
38571 G02  
BURST EFFICIENCY  
PULSE-SKIPPING  
EFFICIENCY  
BURST LOSS  
38571 G03  
PULSE-SKIPPING  
LOSS  
CCM EFFICIENCY  
CCM LOSS  
Load Step  
(Forced Continuous Mode)  
Load Step  
(Pulse-Skipping Mode)  
Load Step (Burst Mode Operation)  
V
V
V
OUT  
OUT  
OUT  
100mV/DIV  
100mV/DIV  
100mV/DIV  
INDUCTOR  
CURRENT  
2A/DIV  
INDUCTOR  
CURRENT  
2A/DIV  
INDUCTOR  
CURRENT  
2A/DIV  
38571 G04  
38571 G05  
38571 G06  
V
V
= 12V  
20µs/DIV  
V
V
= 12V  
20µs/DIV  
V
V
= 12V  
20µs/DIV  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 3.3V  
= 3.3V  
= 3.3V  
FIGURE 13 CIRCUIT  
FIGURE 13 CIRCUIT  
FIGURE 13 CIRCUIT  
Inductor Current at Light Load  
Soft Start-Up  
Tracking Start-Up  
FORCED  
CONTINUOUS  
MODE  
V
OUT2  
2V/DIV  
V
OUT2  
2V/DIV  
Burst Mode  
OPERATION  
2A/DIV  
V
OUT1  
2V/DIV  
V
OUT1  
2V/DIV  
PULSE-  
SKIPPING MODE  
38571 G08  
38571 G07  
38571 G09  
20ms/DIV  
FIGURE 13 CIRCUIT  
V
V
LOAD  
= 12V  
5µs/DIV  
20ms/DIV  
FIGURE 13 CIRCUIT  
IN  
= 3.3V  
OUT  
I
= 200µA  
FIGURE 13 CIRCUIT  
38571fa  
LTC3857-1  
Typical perForMance characTerisTics  
Total Input Supply Current  
vs Input Voltage  
EXTVCC Switchover and INTVCC  
Voltages vs Temperature  
INTVCC Line Regulation  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
5.2  
5.1  
5.0  
4.9  
4.8  
V
= 3.3V  
OUT1  
RUN2 = 0V  
FIGURE 13 CIRCUIT  
INTV  
CC  
500µA  
EXTV RISING  
CC  
300µA  
EXTV FALLING  
CC  
NO LOAD  
0
5
15  
20  
25  
30  
35  
40  
–45  
5
30  
55  
80  
130  
20 25  
INPUT VOLTAGE (V)  
10  
–20  
105  
0
5
10 15  
30 35 40  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
38571 G10  
38571 G11  
38571 G12  
Maximum Current Sense Voltage  
vs ITH Voltage  
Maximum Current Sense  
Threshold vs Duty Cycle  
SENSEPin Input Bias Current  
80  
60  
40  
20  
0
–50  
80  
60  
40  
20  
0
5% DUTY CYCLE  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
–500  
–550  
–600  
PULSE-SKIPPING MODE  
Burst Mode  
OPERATION  
0
–20  
–40  
FORCED CONTINUOUS MODE  
0.8  
(V)  
1.2  
1.4  
0
10  
COMMON MODE VOLTAGE (V)  
15  
20  
25  
0
0.2  
0.4 0.6  
V
1.0  
5
0
10 20 30 40 50 60 70 80 90 100  
V
DUTY CYCLE (%)  
SENSE  
ITH  
38571 G13  
38571 G14  
38571 G15  
INTVCC and EXTVCC  
vs Load Current  
Foldback Current Limit  
Quiescent Current vs Temperature  
80  
5.20  
5.15  
5.10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
IN  
= 12V  
75  
70  
65  
60  
55  
50  
45  
EXTV = 0V  
CC  
5.05  
5.00  
4.95  
EXTV = 8.5V  
CC  
40  
0
–20  
5
55  
80 105 130  
0
20 40 60  
120 140 160 180 200  
–45  
30  
80 100  
0
0.1 0.2 0.3 0.4 0.5  
0.9  
0.6 0.7 0.8  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
FEEDBACK VOLTAGE (V)  
38571 G17  
38571 G18  
38571 G16  
38571fa  
LTC3857-1  
Typical perForMance characTerisTics  
Regulated Feedback Voltage  
vs Temperature  
TRACK/SS Pull-Up Current  
vs Temperature  
Shutdown (RUN) Threshold  
vs Temperature  
1.40  
1.35  
1.30  
1.25  
1.10  
1.05  
1.00  
0.95  
800  
806  
804  
RUN RISING  
802  
800  
798  
796  
794  
RUN FALLING  
1.20  
1.15  
1.10  
0.90  
792  
55  
TEMPERATURE (°C)  
105 130  
–45 –20  
5
30  
80  
–45 –20  
5
30  
55  
80 105 130  
–20  
5
55  
80 105 130  
–45  
30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
38571 G20  
38571 G19  
3857 G21  
SENSEPin Input Current  
vs Temperature  
Shutdown Current  
vs Input Voltage  
Oscillator Frequency  
vs Temperature  
50  
0
–50  
30  
25  
20  
15  
600  
550  
500  
450  
V
< INTV – 0.5V  
CC  
FREQ = INTV  
OUT  
CC  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
–500  
–550  
–600  
10  
5
400  
350  
300  
FREQ = GND  
V
5
> INTV – 0.5V  
CC  
OUT  
0
25  
INPUT VOLTAGE (V)  
35  
40  
5
10  
15  
20  
30  
55  
TEMPERATURE (°C)  
105 130  
–45 –20  
5
30  
80  
–45 –20  
30  
55  
80 105 130  
TEMPERATURE (°C)  
38571 G22  
38571 G23  
38571 G24  
Oscillator Frequency  
vs Input Voltage  
Undervoltage Lockout Threshold  
vs Temperature  
Shutdown Current vs Temperature  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
356  
354  
352  
350  
20  
FREQ = GND  
18  
16  
14  
12  
10  
8
348  
346  
344  
6
4
25  
INPUT VOLTAGE (V)  
35  
40  
–45  
5
30  
55  
80 105 130  
5
10  
15  
20  
30  
–20  
5
55  
TEMPERATURE (°C)  
80 105 130  
–20  
–45  
30  
TEMPERATURE (°C)  
38571 G25  
38571 G26  
38571 G27  
38571fa  
LTC3857-1  
pin FuncTions  
TH1 TH2  
SwitchingꢀRegulatorꢀCompensationꢀPoints.ꢀEachꢀassoci-  
atedchannel’scurrentcomparatortrippointincreasesꢀ  
withꢀthisꢀcontrolꢀvoltage.  
I
, I  
(Pin 1, Pin 13):ErrorAmplifierOutputsandꢀ  
operation.Tyingꢀthisꢀpinꢀtoꢀaꢀvoltageꢀgreaterꢀthanꢀ1.2Vꢀandꢀ  
lessꢀthanꢀINTV ꢀ–ꢀ1.3Vꢀselectsꢀpulse-skippingꢀoperation.ꢀ  
CC  
Thisꢀcanꢀbeꢀdoneꢀbyꢀaddingꢀaꢀ100kꢀresistorꢀbetweenꢀtheꢀ  
PLLIN/MODEꢀpinꢀandꢀINTV .  
CC  
V
, V (Pin 2, Pin 12):ꢀReceivesꢀtheꢀremotelyꢀsensedꢀ  
SGND (Pin 7):ꢀ Small-signalꢀ groundꢀ commonꢀ toꢀ bothꢀ  
controllers,mustberoutedseparatelyfromhighcur-  
rentgroundstothecommon(–)terminalsoftheCINꢀ  
capacitors.ꢀ  
FB1 FB2  
feedbackꢀ voltageꢀ forꢀ eachꢀ controllerꢀ fromꢀ anꢀ externalꢀ  
resistiveꢀdividerꢀacrossꢀtheꢀoutput.  
+
+
SENSE1 , SENSE2 (Pin 3, Pin 11):ꢀTheꢀ(+)ꢀinputꢀtoꢀtheꢀ  
differentialꢀcurrentꢀcomparatorsꢀareꢀnormallyꢀconnectedꢀ  
toDCRsensingnetworksorcurrentsensingresistors.ꢀ  
TheI ꢀpinvoltageandcontrolledoffsetsbetweentheꢀ  
SENSE ꢀandꢀSENSE ꢀpinsꢀinꢀconjunctionꢀwithꢀR  
theꢀcurrentꢀtripꢀthreshold.  
RUN1, RUN2 (Pin 8, Pin 9):ꢀDigitalꢀRunꢀControlꢀInputsꢀ  
forEachController.Forcingeitherofthesepinsbelowꢀ  
1.26Vꢀshutsꢀdownꢀthatꢀcontroller.ꢀForcingꢀbothꢀofꢀtheseꢀ  
pinsꢀbelowꢀ0.7VꢀshutsꢀdownꢀtheꢀentireꢀLTC3857-1,ꢀreduc-  
ingꢀquiescentꢀcurrentꢀtoꢀapproximatelyꢀ8µA.ꢀDoꢀnotꢀfloatꢀ  
theseꢀpins.  
TH  
+
setꢀ  
SENSEꢀ  
SENSE1 , SENSE2 (Pin 4, Pin 10):ꢀ Theꢀ (–)ꢀ Inputꢀ toꢀ  
theꢀDifferentialꢀCurrentꢀComparators.ꢀWhenꢀgreaterꢀthanꢀ  
INTV (Pin19):OutputoftheInternalLinearLowDropoutꢀ  
CC  
INTV 0.5V,theSENSE pinsuppliescurrenttotheꢀ  
Regulator.Thedriverandcontrolcircuitsarepoweredꢀ  
fromthisvoltagesource.Mustbedecoupledtopowerꢀ  
groundꢀwithꢀaꢀminimumꢀofꢀ4.7µFꢀceramicꢀorꢀotherꢀlowꢀ  
CC  
currentꢀcomparator.  
FREQ (Pin 5):ꢀTheꢀFrequencyꢀControlꢀPinꢀforꢀtheꢀInternalꢀ  
ESRꢀcapacitor.ꢀDoꢀnotꢀuseꢀtheꢀINTV ꢀpinꢀforꢀanyꢀotherꢀ  
CC  
VCO.ꢀConnectingꢀtheꢀpinꢀtoꢀGNDꢀforcesꢀtheꢀVCOꢀtoꢀaꢀfixedꢀ  
purpose.  
lowꢀfrequencyꢀofꢀ350kHz.ꢀConnectingꢀtheꢀpinꢀtoꢀINTV ꢀ  
CC  
forcesꢀ theꢀ VCOꢀ toꢀ aꢀ fixedꢀ highꢀ frequencyꢀ ofꢀ 535kHz.ꢀ  
Otherꢀ frequenciesꢀ betweenꢀ 50kHzꢀ andꢀ 900kHzꢀ canꢀ beꢀ  
programmedusingaresistorbetweenFREQandGND.ꢀ  
Anꢀinternalꢀ20µAꢀpull-upꢀcurrentꢀdevelopsꢀtheꢀvoltageꢀtoꢀ  
beꢀusedꢀbyꢀtheꢀVCOꢀtoꢀcontrolꢀtheꢀfrequencyꢀ  
EXTV (Pin 20):ꢀExternalꢀPowerꢀInputꢀtoꢀanꢀInternalꢀLDOꢀ  
CC  
ConnectedꢀtoꢀINTV .ꢀThisꢀLDOꢀsuppliesꢀINTV ꢀpower,ꢀ  
CC  
CC  
bypassingꢀtheꢀinternalꢀLDOꢀpoweredꢀfromꢀV ꢀwheneverꢀ  
IN  
EXTV ishigherthan4.7V.SeeEXTV Connectioninꢀ  
CC  
CC  
theꢀApplicationsꢀInformationꢀsection.ꢀDoꢀnotꢀexceedꢀ14Vꢀ  
onꢀthisꢀpin.  
PLLIN/MODE (Pin 6):ꢀExternalꢀSynchronizationꢀInputꢀtoꢀ  
PhaseDetectorandForcedContinuousModeInput.Whenꢀ  
anꢀexternalꢀclockꢀisꢀappliedꢀtoꢀthisꢀpin,ꢀtheꢀphase-lockedꢀ  
loopꢀwillꢀforceꢀtheꢀrisingꢀTG1ꢀsignalꢀtoꢀbeꢀsynchronizedꢀ  
withꢀtheꢀrisingꢀedgeꢀofꢀtheꢀexternalꢀclock.ꢀWhenꢀnotꢀsyn-  
chronizingꢀtoꢀanꢀexternalꢀclock,ꢀthisꢀinput,ꢀwhichꢀactsꢀonꢀ  
bothcontrollers,determineshowtheLTC3857-1operatesꢀ  
atlightloads.PullingthispintogroundselectsBurstꢀ  
Modeꢀoperation.ꢀAnꢀinternalꢀ100kꢀresistorꢀtoꢀgroundꢀalsoꢀ  
invokesBurstModeoperationwhenthepinisoated.ꢀ  
PGND (Pin 21):ꢀDriverꢀPowerꢀGround.ꢀConnectsꢀtoꢀtheꢀ  
sourcesofbottom(synchronous)N-channelMOSFETsꢀ  
andꢀtheꢀ(–)ꢀterminal(s)ꢀofꢀC .  
IN  
V (Pin 22):ꢀMainꢀSupplyꢀPin.ꢀAꢀbypassꢀcapacitorꢀshouldꢀ  
IN  
beꢀtiedꢀbetweenꢀthisꢀpinꢀandꢀtheꢀsignalꢀgroundꢀpin.  
BG1, BG2 (Pin 23, Pin 18):HighCurrentGateDrivesꢀ  
forꢀBottomꢀ(Synchronous)ꢀN-ChannelꢀMOSFETs.ꢀVoltageꢀ  
swingꢀatꢀtheseꢀpinsꢀisꢀfromꢀgroundꢀtoꢀINTV .  
CC  
TyingthispintoINTV forcescontinuousinductorcurrentꢀ  
CC  
38571fa  
LTC3857-1  
pin FuncTions  
BOOST1,BOOST2(Pin24,Pin17):BootstrappedSuppliesꢀ PGOOD1 (Pin 27):ꢀOpen-DrainꢀLogicꢀOutput.ꢀPGOOD1ꢀisꢀ  
toꢀtheꢀTopsideꢀFloatingꢀDrivers.ꢀCapacitorsꢀareꢀconnectedꢀ pulledꢀtoꢀgroundꢀwhenꢀtheꢀvoltageꢀonꢀtheꢀV ꢀpinꢀisꢀnotꢀ  
FB1  
betweentheBOOSTandSWpinsandSchottkydiodesareꢀ withinꢀ 10%ꢀofꢀitsꢀsetꢀpoint.  
tiedꢀbetweenꢀtheꢀBOOSTꢀandꢀINTVCCꢀpins.ꢀVoltageꢀswingꢀ  
TRACK/SS1, TRACK/SS2(Pin28, Pin14):ExternalTrack-  
atꢀtheꢀBOOSTꢀpinsꢀisꢀfromꢀINTVCCꢀtoꢀ(VINꢀ+ꢀINTVCC).  
ingandSoft-StartInput.TheLTC3857-1regulatestheꢀ  
SW1, SW2 (Pin 25, Pin 16):ꢀSwitchꢀNodeꢀConnectionsꢀ  
toꢀInductors.ꢀ  
V
FB1,2  
ꢀvoltageꢀtoꢀtheꢀsmallerꢀofꢀ0.8Vꢀorꢀtheꢀvoltageꢀonꢀtheꢀ  
TRACK/SS1,2ꢀpin.ꢀAnꢀinternalꢀ1µAꢀpull-upꢀcurrentꢀsourceꢀ  
isconnectedtothispin.Acapacitortogroundatthisꢀ  
pinꢀsetsꢀtheꢀrampꢀtimeꢀtoꢀfinalꢀregulatedꢀoutputꢀvoltage.ꢀ  
Alternatively,ꢀaꢀresistorꢀdividerꢀonꢀanotherꢀvoltageꢀsupplyꢀ  
connectedtothispinallowstheLTC3857-1outputtotrackꢀ  
theꢀotherꢀsupplyꢀduringꢀstart-up.  
TG1, TG2 (Pin 26, Pin 15):ꢀHighꢀCurrentꢀGateꢀDrivesꢀforꢀ  
TopꢀN-ChannelꢀMOSFETs.ꢀTheseꢀareꢀtheꢀoutputsꢀofꢀfloat-  
ingꢀdriversꢀwithꢀaꢀvoltageꢀswingꢀequalꢀtoꢀINTV ꢀ–ꢀ0.5Vꢀ  
CC  
superimposedꢀonꢀtheꢀswitchꢀnodeꢀvoltageꢀSW.  
38571fa  
LTC3857-1  
FuncTional DiagraM  
INTV  
V
IN  
CC  
DUPLICATE FOR SECOND  
CONTROLLER CHANNEL  
BOOST  
D
B
C
B
TG  
DROP  
OUT  
DET  
TOP  
BOT  
+
C
PGOOD1  
0.88V  
IN  
D
BOT  
SW  
TOP ON  
V
S
R
Q
FB1  
+
INTV  
CC  
Q
SWITCH  
LOGIC  
0.72V  
BG  
SHDN  
C
OUT  
PGND  
20µA  
FREQ  
V
OUT  
VCO  
CLK2  
CLK1  
+
R
SENSE  
0.425V  
SLEEP  
L
ICMP  
IR  
+
+
PFD  
C
LP  
+
+
+
3mV  
SENSE  
SENSE  
SYNC  
DET  
2.7V  
0.55V  
PLLIN/MODE  
100k  
SLOPE COMP  
V
FB  
R
B
+
V
IN  
0.80V  
TRACK/SS  
EA  
R
A
EXTV  
CC  
+
OV  
C
C
0.88V  
I
TH  
5.1V  
LDO  
EN  
5.1V  
LDO  
EN  
0.5µA  
11V  
C
C2  
R
C
SHDN  
RST  
FB  
1µA  
TRACK/SS  
+
FOLDBACK  
2(V  
)
4.7V  
C
SHDN  
SS  
SGND  
INTV  
RUN  
CC  
38571 FD  
38571fa  
ꢀ0  
LTC3857-1  
operaTion (Refer to the Functional Diagram)  
Main Control Loop  
toturnonthetopMOSFETcontinuously.Thedropoutꢀ  
detectorꢀdetectsꢀthisꢀandꢀforcesꢀtheꢀtopꢀMOSFETꢀoffꢀforꢀ  
aboutꢀone-twelfthꢀofꢀtheꢀclockꢀperiodꢀeveryꢀtenthꢀcycleꢀtoꢀ  
TheꢀLTC3857-1ꢀusesꢀaꢀconstantꢀfrequency,ꢀcurrentꢀmodeꢀ  
step-downꢀarchitectureꢀwithꢀtheꢀtwoꢀcontrollerꢀchannelsꢀ  
operatingꢀ 180ꢀ degreesꢀ outꢀ ofꢀ phase.ꢀ Duringꢀ normalꢀ  
operation,ꢀeachꢀexternalꢀtopꢀMOSFETꢀisꢀturnedꢀonꢀwhenꢀ  
theꢀclockꢀforꢀthatꢀchannelꢀsetsꢀtheꢀRSꢀlatch,ꢀandꢀisꢀturnedꢀ  
offꢀwhenꢀtheꢀmainꢀcurrentꢀcomparator,ꢀICMP,ꢀresetsꢀtheꢀ  
RSꢀlatch.ꢀTheꢀpeakꢀinductorꢀcurrentꢀatꢀwhichꢀICMPꢀtripsꢀ  
allowꢀC ꢀtoꢀrecharge.  
B
Shutdown and Start-Up (RUN1, RUN2 and  
TRACK/ SS1, TRACK/SS2 Pins)  
TheꢀtwoꢀchannelsꢀofꢀtheꢀLTC3857-1ꢀcanꢀbeꢀindependentlyꢀ  
shutdownusingtheRUN1andRUN2pins.Pullingeitherofꢀ  
theseꢀpinsꢀbelowꢀ1.26Vꢀshutsꢀdownꢀtheꢀmainꢀcontrolꢀloopꢀ  
forꢀthatꢀcontroller.ꢀPullingꢀbothꢀpinsꢀbelowꢀ0.7Vꢀdisablesꢀ  
bothꢀcontrollersꢀandꢀmostꢀinternalꢀcircuits,ꢀincludingꢀtheꢀ  
andꢀresetsꢀtheꢀlatchꢀisꢀcontrolledꢀbyꢀtheꢀvoltageꢀonꢀtheꢀI ꢀ  
TH  
pin,whichistheoutputoftheerroramplifier,EA.Theerrorꢀ  
amplifierꢀcomparesꢀtheꢀoutputꢀvoltageꢀfeedbackꢀsignalꢀatꢀ  
theꢀV ꢀpin,ꢀ(whichꢀisꢀgeneratedꢀwithꢀanꢀexternalꢀresistorꢀ  
FB  
INTV ꢀLDOs.ꢀInꢀthisꢀstate,ꢀtheꢀLTC3857-1ꢀdrawsꢀonlyꢀ8µAꢀ  
dividerꢀ connectedꢀ acrossꢀ theꢀ outputꢀ voltage,ꢀ V ,ꢀ toꢀ  
CC  
OUTꢀ  
ofꢀquiescentꢀcurrent.  
ground)totheinternal0.800Vreferencevoltage.Whentheꢀ  
loadꢀcurrentꢀincreases,ꢀitꢀcausesꢀaꢀslightꢀdecreaseꢀinꢀV ꢀ  
FB  
TheꢀRUNꢀpinꢀmayꢀbeꢀexternallyꢀpulledꢀupꢀorꢀdrivenꢀdirectlyꢀ  
byꢀlogic.ꢀWhenꢀdrivingꢀtheꢀRUNꢀpinꢀwithꢀaꢀlowꢀimpedanceꢀ  
source,ꢀdoꢀnotꢀexceedꢀtheꢀabsoluteꢀmaximumꢀratingꢀofꢀ  
8V.ꢀTheꢀRUNꢀpinꢀhasꢀanꢀinternalꢀ11Vꢀvoltageꢀclampꢀthatꢀ  
allowsꢀtheꢀRUNꢀpinꢀtoꢀbeꢀconnectedꢀthroughꢀaꢀresistorꢀtoꢀaꢀ  
relativeꢀtoꢀtheꢀreference,ꢀwhichꢀcausesꢀtheꢀEAꢀtoꢀincreaseꢀ  
theꢀI ꢀvoltageꢀuntilꢀtheꢀaverageꢀinductorꢀcurrentꢀmatchesꢀ  
TH  
theꢀnewꢀloadꢀcurrent.  
AfterꢀtheꢀtopꢀMOSFETꢀisꢀturnedꢀoffꢀeachꢀcycle,ꢀtheꢀbottomꢀ  
MOSFETisturnedonuntileithertheinductorcurrentstartsꢀ  
toꢀreverse,ꢀasꢀindicatedꢀbyꢀtheꢀcurrentꢀcomparatorꢀIR,ꢀorꢀ  
theꢀbeginningꢀofꢀtheꢀnextꢀclockꢀcycle.  
highervoltage(forexample,V ),solongasthemaximumꢀ  
IN  
currentꢀintoꢀtheꢀRUNꢀpinꢀdoesꢀnotꢀexceedꢀ100µA.  
Theꢀstart-upꢀofꢀeachꢀcontroller’sꢀoutputꢀvoltageꢀV ꢀisꢀ  
OUT  
controlledꢀbyꢀtheꢀvoltageꢀonꢀtheꢀTRACK/SSꢀpinꢀforꢀthatꢀ  
channel.ꢀWhenꢀtheꢀvoltageꢀonꢀtheꢀTRACK/SSꢀpinꢀisꢀlessꢀ  
thanꢀtheꢀ0.8Vꢀinternalꢀreference,ꢀtheꢀLTC3857-1ꢀregulatesꢀ  
INTV /EXTV Power  
CC  
CC  
PowerꢀforꢀtheꢀtopꢀandꢀbottomꢀMOSFETꢀdriversꢀandꢀmostꢀ  
otherinternalcircuitryisderivedfromtheINTV pin.Whenꢀ  
theꢀV ꢀvoltageꢀtoꢀtheꢀTRACK/SSꢀpinꢀvoltageꢀinsteadꢀofꢀtheꢀ  
CC  
FB  
theꢀEXTV ꢀpinꢀisꢀleftꢀopenꢀorꢀtiedꢀtoꢀaꢀvoltageꢀlessꢀthanꢀ  
0.8Vꢀreference.ꢀThisꢀallowsꢀtheꢀTRACK/SSꢀpinꢀtoꢀbeꢀusedꢀ  
toprogramasoft-startbyconnectinganexternalcapacitorꢀ  
fromꢀtheꢀTRACK/SSꢀpinꢀtoꢀSGND.ꢀAnꢀinternalꢀ1µAꢀpull-upꢀ  
currentꢀchargesꢀthisꢀcapacitorꢀcreatingꢀaꢀvoltageꢀrampꢀonꢀ  
theꢀTRACK/SSꢀpin.ꢀAsꢀtheꢀTRACK/SSꢀvoltageꢀrisesꢀlinearlyꢀ  
fromꢀ0Vꢀtoꢀ0.8Vꢀ(andꢀbeyondꢀupꢀtoꢀtheꢀabsoluteꢀmaximumꢀ  
CC  
4.7V,ꢀtheꢀV ꢀLDOꢀ(lowꢀdropoutꢀlinearꢀregulator)ꢀsuppliesꢀ  
IN  
5.1VꢀfromꢀV ꢀtoꢀINTV .ꢀIfꢀEXTV ꢀisꢀtakenꢀaboveꢀ4.7V,ꢀ  
IN  
CC  
CC  
theꢀV ꢀLDOꢀisꢀturnedꢀoffꢀandꢀanꢀEXTV ꢀLDOꢀisꢀturnedꢀon.ꢀ  
IN  
CC  
Onceenabled,theEXTV LDOsupplies5.1VfromEXTV ꢀ  
CC  
CC  
toꢀINTV .ꢀUsingꢀtheꢀEXTV ꢀpinꢀallowsꢀtheꢀINTV ꢀpowerꢀ  
CC  
CC  
CC  
toꢀbeꢀderivedꢀfromꢀaꢀhighꢀefficiencyꢀexternalꢀsourceꢀsuchꢀ  
ratingof6V),theoutputvoltageV ꢀrisessmoothlyfromꢀ  
OUT  
asꢀoneꢀofꢀtheꢀLTC3857-1ꢀswitchingꢀregulatorꢀoutputs.  
zeroꢀtoꢀitsꢀfinalꢀvalue.  
Eachꢀ topꢀ MOSFETꢀ driverꢀ isꢀ biasedꢀ fromꢀ theꢀ floatingꢀ  
AlternativelyꢀtheꢀTRACK/SSꢀpinꢀcanꢀbeꢀusedꢀtoꢀcauseꢀtheꢀ  
bootstrapꢀcapacitorꢀC ,ꢀwhichꢀnormallyꢀrechargesꢀduringꢀ  
start-upꢀofꢀV ꢀtoꢀtrackꢀꢀthatꢀofꢀanotherꢀsupply.ꢀTypically,ꢀ  
B
OUT  
eachcyclethroughanexternaldiodewhenthetopMOSFETꢀ  
thisꢀrequiresꢀconnectingꢀtoꢀtheꢀTRACK/SSꢀpinꢀanꢀexternalꢀ  
resistorꢀ dividerꢀ fromꢀ theꢀ otherꢀ supplyꢀ toꢀ groundꢀ (seeꢀ  
ApplicationsꢀInformationꢀsection).  
turnsꢀoff.ꢀIfꢀtheꢀinputꢀvoltage,ꢀV ,ꢀdecreasesꢀtoꢀaꢀvoltageꢀ  
IN  
closeꢀtoꢀV ,ꢀtheꢀloopꢀmayꢀenterꢀdropoutꢀandꢀattemptꢀ  
OUTꢀ  
38571fa  
ꢀꢀ  
LTC3857-1  
operaTion (Refer to the Functional Diagram)  
Light Load Current Operation (Burst Mode Operation,  
Pulse-Skipping or Forced Continuous Mode)  
(PLLIN/MODE Pin)  
Inꢀforcedꢀcontinuousꢀoperationꢀorꢀclockedꢀbyꢀanꢀexternalꢀ  
clockꢀsourceꢀtoꢀuseꢀtheꢀphase-lockedꢀloopꢀ(seeꢀFrequencyꢀ  
SelectionandPhase-LockedLoopsection),theinduc-  
torꢀcurrentꢀisꢀallowedꢀtoꢀreverseꢀatꢀlightꢀloadsꢀorꢀunderꢀ  
largeꢀtransientꢀconditions.ꢀTheꢀpeakꢀinductorꢀcurrentꢀisꢀ  
TheLTC3857-1canbeenabledtoenterhighefficiencyꢀ  
BurstModeoperation,constantfrequencypulse-skippingꢀ  
mode,ꢀorꢀforcedꢀcontinuousꢀconductionꢀmodeꢀatꢀlowꢀloadꢀ  
currents.ꢀToꢀselectꢀBurstꢀModeꢀoperation,ꢀtieꢀtheꢀPLLIN/ꢀ  
MODEꢀpinꢀtoꢀGND.ꢀToꢀselectꢀforcedꢀcontinuousꢀoperation,ꢀ  
determinedꢀbyꢀtheꢀvoltageꢀonꢀtheꢀI ꢀpin,ꢀjustꢀasꢀinꢀnormalꢀ  
TH  
operation.Inthismode,theefficiencyatlightloadsislowerꢀ  
thaninBurstModeoperation.However,continuousopera-  
tionꢀhasꢀtheꢀadvantageꢀofꢀlowerꢀoutputꢀvoltageꢀrippleꢀandꢀ  
lessꢀinterferenceꢀtoꢀaudioꢀcircuitry.ꢀInꢀforcedꢀcontinuousꢀ  
mode,ꢀtheꢀoutputꢀrippleꢀisꢀindependentꢀofꢀloadꢀcurrent.  
tiethePLLIN/MODEpintoINTV .Toselectpulse-skippingꢀ  
CC  
mode,ꢀtieꢀtheꢀPLLIN/MODEꢀpinꢀtoꢀaꢀDCꢀvoltageꢀgreaterꢀ  
thanꢀ1.2VꢀandꢀlessꢀthanꢀINTV ꢀ–ꢀ1.3V.  
CC  
WhenthePLLIN/MODEpinisconnectedforpulse-skippingꢀ  
mode,theLTC3857-1operatesinPWMpulse-skippingꢀ  
modeatlightloads.Inthismode,constantfrequencyꢀ  
operationismaintaineddowntoapproximately1%ofꢀ  
designedmaximumoutputcurrent.Atverylightloads,theꢀ  
currentꢀcomparator,ꢀICMP,ꢀmayꢀremainꢀtrippedꢀforꢀseveralꢀ  
cyclesꢀandꢀforceꢀtheꢀexternalꢀtopꢀMOSFETꢀtoꢀstayꢀoffꢀforꢀ  
thesamenumberofcycles(i.e.,skippingpulses).Theꢀ  
inductorꢀcurrentꢀisꢀnotꢀallowedꢀtoꢀreverseꢀ(discontinuousꢀ  
operation).ꢀThisꢀmode,ꢀlikeꢀforcedꢀcontinuousꢀoperation,ꢀ  
exhibitsꢀlowꢀoutputꢀrippleꢀasꢀwellꢀasꢀlowꢀaudioꢀnoiseꢀandꢀ  
reducedꢀ RFꢀ interferenceꢀ asꢀ comparedꢀ toꢀ Burstꢀ Modeꢀ  
operation.ꢀItꢀprovidesꢀhigherꢀlowꢀcurrentꢀefficiencyꢀthanꢀ  
forcedꢀcontinuousꢀmode,ꢀbutꢀnotꢀnearlyꢀasꢀhighꢀasꢀBurstꢀ  
Modeꢀoperation.  
WhenꢀaꢀcontrollerꢀisꢀenabledꢀforꢀBurstꢀModeꢀoperation,ꢀ  
theꢀminimumꢀpeakꢀcurrentꢀinꢀtheꢀinductorꢀisꢀsetꢀtoꢀap-  
proximately15%ofthemaximumsensevoltageevenꢀ  
thoughꢀtheꢀvoltageꢀonꢀtheꢀI ꢀpinꢀindicatesꢀaꢀlowerꢀvalue.ꢀ  
TH  
Iftheaverageinductorcurrentishigherthantheloadꢀ  
current,ꢀtheꢀerrorꢀamplifier,ꢀEA,ꢀwillꢀdecreaseꢀtheꢀvoltageꢀ  
onꢀtheꢀI ꢀpin.ꢀWhenꢀtheꢀI ꢀvoltageꢀdropsꢀbelowꢀ0.425V,ꢀ  
TH  
TH  
theꢀinternalꢀsleepꢀsignalꢀgoesꢀhighꢀ(enablingꢀsleepꢀmode)ꢀ  
andꢀbothꢀexternalꢀMOSFETsꢀareꢀturnedꢀoff.ꢀTheꢀI ꢀpinꢀisꢀ  
TH  
thenꢀdisconnectedꢀfromꢀtheꢀoutputꢀofꢀtheꢀEAꢀandꢀparkedꢀ  
atꢀ0.450V.  
Inꢀsleepꢀmode,ꢀmuchꢀofꢀtheꢀinternalꢀcircuitryꢀisꢀturnedꢀoff,ꢀ  
reducingꢀtheꢀquiescentꢀcurrentꢀthatꢀtheꢀLTC3857-1ꢀdraws.ꢀ  
Ifꢀoneꢀchannelꢀisꢀshutꢀdownꢀandꢀtheꢀotherꢀchannelꢀisꢀinꢀ  
sleepꢀmode,ꢀtheꢀLTC3857-1ꢀdrawsꢀonlyꢀ50µAꢀofꢀquiescentꢀ  
current.Ifbothchannelsareinsleepmode,theLTC3857-1ꢀ  
drawsonly80µAofquiescentcurrent.Insleepmode,ꢀ  
theꢀloadꢀcurrentꢀisꢀsuppliedꢀbyꢀtheꢀoutputꢀcapacitor.ꢀAsꢀ  
theꢀoutputꢀvoltageꢀdecreases,ꢀtheꢀEA’sꢀoutputꢀbeginsꢀtoꢀ  
Frequency Selection and Phase-Locked Loop  
(FREQ and PLLIN/MODE Pins)  
Theꢀselectionꢀofꢀswitchingꢀfrequencyꢀisꢀaꢀtradeoffꢀbetweenꢀ  
efficiencyꢀ andꢀ componentꢀ size.ꢀ Lowꢀ frequencyꢀ opera-  
tionꢀincreasesꢀefficiencyꢀbyꢀreducingꢀMOSFETꢀswitchingꢀ  
losses,ꢀbutꢀrequiresꢀlargerꢀinductanceꢀand/orꢀcapacitanceꢀ  
toꢀmaintainꢀlowꢀoutputꢀrippleꢀvoltage.  
rise.ꢀWhenꢀtheꢀoutputꢀvoltageꢀdropsꢀenough,ꢀtheꢀI ꢀpinꢀ  
TH  
isꢀreconnectedꢀtoꢀtheꢀoutputꢀofꢀtheꢀEA,ꢀtheꢀsleepꢀsignalꢀ  
goesꢀlow,ꢀandꢀtheꢀcontrollerꢀresumesꢀnormalꢀoperationꢀ  
byꢀturningꢀonꢀtheꢀtopꢀexternalꢀMOSFETꢀonꢀtheꢀnextꢀcycleꢀ  
ofꢀtheꢀinternalꢀoscillator.  
TheꢀswitchingꢀfrequencyꢀofꢀtheꢀLTC3857-1’sꢀcontrollersꢀ  
canꢀbeꢀselectedꢀusingꢀtheꢀFREQꢀpin.  
WhenacontrollerisenabledforBurstModeoperation,theꢀ  
inductorcurrentisnotallowedtoreverse.Thereversecur-  
rentcomparator,IR,turnsoffthebottomexternalMOSFETꢀ  
justꢀbeforeꢀtheꢀinductorꢀcurrentꢀreachesꢀzero,ꢀpreventingꢀ  
itꢀfromꢀreversingꢀandꢀgoingꢀnegative.ꢀThus,ꢀtheꢀcontrollerꢀ  
operatesꢀinꢀdiscontinuousꢀoperation.  
IfꢀtheꢀPLLIN/MODEꢀpinꢀisꢀnotꢀbeingꢀdrivenꢀbyꢀanꢀexternalꢀ  
clockꢀsource,ꢀtheꢀFREQꢀpinꢀcanꢀbeꢀtiedꢀtoꢀSGND,ꢀtiedꢀtoꢀ  
INTVCCorprogrammedthroughanexternalresistor.Tyingꢀ  
FREQtoSGNDselects350kHzwhiletyingFREQtoINTVCCꢀ  
selects535kHz.PlacingaresistorbetweenFREQandꢀ  
38571fa  
ꢀꢁ  
LTC3857-1  
operaTion (Refer to the Functional Diagram)  
SGNDꢀallowsꢀtheꢀfrequencyꢀtoꢀbeꢀprogrammedꢀbetweenꢀ Power Good (PGOOD1 Pin)  
50kHzꢀandꢀ900kHz.  
ThePGOOD1pinisconnectedtoanopendrainofaninternalꢀ  
Aꢀphase-lockedꢀloopꢀ(PLL)ꢀisꢀavailableꢀonꢀtheꢀLTC3857-1ꢀ N-channelꢀMOSFET.ꢀTheꢀMOSFETꢀturnsꢀonꢀandꢀpullsꢀtheꢀ  
toꢀsynchronizeꢀtheꢀinternalꢀoscillatorꢀtoꢀanꢀexternalꢀclockꢀ PGOOD1ꢀpinꢀlowꢀwhenꢀtheꢀcorrespondingꢀV ꢀpinꢀvolt-  
FB1  
sourcethatisconnectedtothePLLIN/MODEpin.Theꢀ ageꢀisꢀnotꢀwithinꢀ 10%ꢀofꢀtheꢀ0.8Vꢀreferenceꢀvoltage.ꢀTheꢀ  
phaseꢀdetectorꢀadjustsꢀtheꢀvoltageꢀ(throughꢀanꢀinternalꢀ PGOOD1ꢀpinꢀisꢀalsoꢀpulledꢀlowꢀwhenꢀtheꢀcorrespondingꢀ  
lowpasslter)oftheVCOinputtoaligntheturn-onofꢀ RUN1ꢀpinꢀisꢀlowꢀ(shutꢀdown).ꢀWhenꢀtheꢀV ꢀpinꢀvoltageꢀ  
FB1  
controllerꢀ1’sꢀexternalꢀtopꢀMOSFETꢀtoꢀtheꢀrisingꢀedgeꢀofꢀ isꢀwithinꢀtheꢀ 10%ꢀrequirement,ꢀtheꢀMOSFETꢀisꢀturnedꢀ  
theꢀsynchronizingꢀsignal.ꢀThus,ꢀtheꢀturn-onꢀofꢀcontrollerꢀ offꢀandꢀtheꢀpinꢀisꢀallowedꢀtoꢀbeꢀpulledꢀupꢀbyꢀanꢀexternalꢀ  
2’sꢀexternalꢀtopꢀMOSFETꢀisꢀ180ꢀdegreesꢀoutꢀofꢀphaseꢀtoꢀ resistorꢀtoꢀaꢀsourceꢀnoꢀgreaterꢀthanꢀ6V.  
theꢀrisingꢀedgeꢀofꢀtheꢀexternalꢀclockꢀsource.  
Foldback Current  
Theꢀ VCOꢀ inputꢀ voltageꢀ isꢀ prebiasedꢀ toꢀ theꢀ operatingꢀ  
Whentheoutputvoltagefallstolessthan70%ofitsꢀ  
nominalꢀlevel,ꢀfoldbackꢀcurrentꢀlimitingꢀisꢀactivated,ꢀpro-  
gressivelyꢀloweringꢀtheꢀpeakꢀcurrentꢀlimitꢀinꢀproportionꢀtoꢀ  
theꢀseverityꢀofꢀtheꢀovercurrentꢀorꢀshort-circuitꢀcondition.ꢀ  
Foldbackꢀcurrentꢀlimitingꢀisꢀdisabledꢀduringꢀtheꢀsoft-startꢀ  
frequencyꢀsetꢀbyꢀtheꢀFREQꢀpinꢀbeforeꢀtheꢀexternalꢀclockꢀ  
isꢀapplied.ꢀIfꢀprebiasedꢀnearꢀtheꢀexternalꢀclockꢀfrequeny,ꢀ  
theꢀPLLꢀloopꢀonlyꢀneedsꢀtoꢀmakeꢀslightꢀchangesꢀtoꢀtheꢀ  
VCOꢀinputꢀinꢀorderꢀtoꢀsynchronizeꢀtheꢀrisingꢀedgeꢀofꢀtheꢀ  
externalꢀclock’sꢀtoꢀtheꢀrisingꢀedgeꢀofꢀTG1.ꢀTheꢀabilityꢀtoꢀ  
prebiasthelooplterallowsthePLLtolock-inrapidlyꢀ  
withoutꢀdeviatingꢀfarꢀfromꢀtheꢀdesiredꢀfrequency.  
intervalꢀ(asꢀlongꢀasꢀtheꢀV ꢀvoltageꢀisꢀkeepingꢀupꢀwithꢀtheꢀ  
FB  
TRACK/SSꢀvoltage).  
Theꢀtypicalꢀcaptureꢀrangeꢀofꢀtheꢀphase-lockedꢀloopꢀisꢀfromꢀ  
approximatelyꢀ55kHzꢀtoꢀ1MHz,ꢀwithꢀaꢀguaranteeꢀoverꢀallꢀ  
manufacturingvariationstobebetween75kHzand850kHz.ꢀ  
Inꢀotherꢀwords,ꢀtheꢀLTC3857-1’sꢀPLLꢀisꢀguaranteedꢀtoꢀlockꢀ  
toꢀanꢀexternalꢀclockꢀsourceꢀwhoseꢀfrequencyꢀisꢀbetweenꢀ  
75kHzꢀandꢀ850kHz.  
Theory and Benefits of 2-Phase Operation  
Whyꢀtheꢀneedꢀforꢀ2-phaseꢀoperation?ꢀUpꢀuntilꢀtheꢀ2-phaseꢀ  
family,ꢀ constant-frequencyꢀ dualꢀ switchingꢀ regulatorsꢀ  
operatedꢀ bothꢀ channelsꢀ inꢀ phaseꢀ (i.e.,ꢀ singleꢀ phaseꢀ  
operation).ꢀThisꢀmeansꢀthatꢀbothꢀswitchesꢀturnedꢀonꢀatꢀ  
theꢀsameꢀtime,ꢀcausingꢀcurrentꢀpulsesꢀofꢀupꢀtoꢀtwiceꢀtheꢀ  
amplitudeꢀofꢀthoseꢀforꢀoneꢀregulatorꢀtoꢀbeꢀdrawnꢀfromꢀtheꢀ  
inputꢀcapacitorꢀandꢀbattery.ꢀTheseꢀlargeꢀamplitudeꢀcurrentꢀ  
pulsesꢀincreasedꢀtheꢀtotalꢀRMSꢀcurrentꢀflowingꢀfromꢀtheꢀ  
inputꢀcapacitor,ꢀrequiringꢀtheꢀuseꢀofꢀmoreꢀexpensiveꢀinputꢀ  
capacitorsandincreasingbothEMIandlossesintheinputꢀ  
ThetypicalinputclockthresholdsonthePLLIN/MODEꢀ  
pinꢀareꢀ1.6Vꢀ(rising)ꢀandꢀ1.1Vꢀ(falling).  
Output Overvoltage Protection  
Anovervoltagecomparatorguardsagainsttransientover-  
shootsꢀasꢀwellꢀasꢀotherꢀmoreꢀseriousꢀconditionsꢀthatꢀmayꢀ capacitorꢀandꢀbattery.  
overvoltageꢀtheꢀoutput.ꢀWhenꢀtheꢀV ꢀpinꢀrisesꢀbyꢀmoreꢀ  
FB  
Withꢀ 2-phaseꢀ operation,ꢀ theꢀ twoꢀ channelsꢀ ofꢀ theꢀ dualꢀ  
switchingregulatorareoperated180degreesoutofphase.ꢀ  
Thiseffectivelyinterleavesthecurrentpulsesdrawnbytheꢀ  
switches,greatlyreducingtheoverlaptimewheretheyaddꢀ  
than10%aboveitsregulationpointof0.800V,thetopꢀ  
MOSFETꢀisꢀturnedꢀoffꢀandꢀtheꢀbottomꢀMOSFETꢀisꢀturnedꢀ  
onꢀuntilꢀtheꢀovervoltageꢀconditionꢀisꢀcleared.  
38571fa  
ꢀꢂ  
LTC3857-1  
operaTion (Refer to the Functional Diagram)  
together.ꢀTheꢀresultꢀisꢀaꢀsignificantꢀreductionꢀinꢀtotalꢀRMSꢀ theꢀRMSꢀinputꢀcurrentꢀvariesꢀforꢀsingleꢀphaseꢀandꢀ2-phaseꢀ  
inputꢀcurrent,ꢀwhichꢀinꢀturnꢀallowsꢀlessꢀexpensiveꢀinputꢀ operationꢀforꢀ3.3Vꢀandꢀ5Vꢀregulatorsꢀoverꢀaꢀwideꢀinputꢀ  
capacitorsꢀtoꢀbeꢀused,ꢀreducesꢀshieldingꢀrequirementsꢀforꢀ voltageꢀrange.  
EMIꢀandꢀimprovesꢀrealꢀworldꢀoperatingꢀefficiency.  
Itꢀcanꢀreadilyꢀbeꢀseenꢀthatꢀtheꢀadvantagesꢀofꢀ2-phaseꢀop-  
Figure1comparestheinputwaveformsforasingle-phaseꢀ erationꢀareꢀnotꢀjustꢀlimitedꢀtoꢀaꢀnarrowꢀoperatingꢀrange,ꢀ  
dualꢀ switchingꢀ regulatorꢀ toꢀ aꢀ 2-phaseꢀ dualꢀ switchingꢀ formostapplicationsisthat2-phaseoperationwillreduceꢀ  
regulator.ꢀAnꢀactualꢀmeasurementꢀofꢀtheꢀRMSꢀinputꢀcur- theinputcapacitorrequirementtothatforjustonechannelꢀ  
rentundertheseconditionsshowsthat2-phaseoperationꢀ operatingꢀatꢀmaximumꢀcurrentꢀandꢀ50%ꢀdutyꢀcycle.  
droppedꢀtheꢀinputꢀcurrentꢀfromꢀ2.53A  
ꢀtoꢀ1.55A  
.ꢀ  
RMS  
RMS  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Whileꢀthisꢀisꢀanꢀimpressiveꢀreductionꢀinꢀitself,ꢀrememberꢀ  
2
SINGLE PHASE  
thatꢀtheꢀpowerꢀlossesꢀareꢀproportionalꢀtoꢀI  
,ꢀmeaningꢀ  
RMS  
DUAL CONTROLLER  
thattheactualpowerwastedisreducedbyafactorof2.66.ꢀ  
Theꢀreducedꢀinputꢀrippleꢀvoltageꢀalsoꢀmeansꢀlessꢀpowerꢀisꢀ  
lostꢀinꢀtheꢀinputꢀpowerꢀpath,ꢀwhichꢀcouldꢀincludeꢀbatter-  
ies,ꢀswitches,ꢀtrace/connectorꢀresistancesꢀandꢀprotectionꢀ  
circuitry.ꢀImprovementsꢀinꢀbothꢀconductedꢀandꢀradiatedꢀ  
EMIꢀalsoꢀdirectlyꢀaccrueꢀasꢀaꢀresultꢀofꢀtheꢀreducedꢀRMSꢀ  
inputꢀcurrentꢀandꢀvoltage.  
2-PHASE  
DUAL CONTROLLER  
V
O1  
V
O2  
= 5V/3A  
= 3.3V/3A  
Ofꢀcourse,ꢀtheꢀimprovementꢀaffordedꢀbyꢀ2-phaseꢀopera-  
tionꢀisꢀaꢀfunctionꢀofꢀtheꢀdualꢀswitchingꢀregulator’sꢀrelativeꢀ  
dutyꢀcyclesꢀwhich,ꢀinꢀturn,ꢀareꢀdependentꢀuponꢀtheꢀinputꢀ  
voltageꢀV ꢀ(DutyꢀCycleꢀ=ꢀV /V ).ꢀFigureꢀ2ꢀshowsꢀhowꢀ  
0
10  
20  
30  
40  
INPUT VOLTAGE (V)  
38571 F02  
Figure 2. RMS Input Current Comparison  
IN  
OUT IN  
5V SWITCH  
20V/DIV  
3.3V SWITCH  
20V/DIV  
INPUT CURRENT  
5A/DIV  
INPUT VOLTAGE  
500mV/DIV  
38571 F01  
I
= 2.53A  
I
= 1.55A  
IN(MEAS) RMS  
IN(MEAS)  
RMS  
Figure 1. Input Waveforms Comparing Single-Phase (a) and 2-Phase (b) Operation for Dual Switching Regulators  
Converting 12V to 5V and 3.3V at 3A Each. The Reduced Input Ripple with the 2-Phase Regulator Allows  
Less Expensive Input Capacitors, Reduces Shielding Requirements for EMI and Improves Efficiency  
38571fa  
ꢀꢃ  
LTC3857-1  
applicaTions inForMaTion  
Theꢀ Typicalꢀ Applicationꢀ onꢀ theꢀ firstꢀ pageꢀ isꢀ aꢀ basicꢀ  
LTC3857-1applicationcircuit.LTC3857-1canbeconfiguredꢀ  
touseeitherDCR(inductorresistance)ꢀsensingꢀorꢀlowꢀ  
valueresistorsensing.Thechoicebetweenthetwocurrentꢀ  
sensingschemesislargelyadesigntrade-offbetweenꢀ  
cost,powerconsumption,andaccuracy.DCRsensingꢀ  
isꢀbecomingꢀpopularꢀbecauseꢀitꢀsavesꢀexpensiveꢀcurrentꢀ  
sensingꢀresistorsꢀandꢀisꢀmoreꢀpowerꢀefficient,ꢀespeciallyꢀ  
inꢀ highꢀ currentꢀ applications.ꢀ However,ꢀ currentꢀ sensingꢀ  
resistorsꢀprovideꢀtheꢀmostꢀaccurateꢀcurrentꢀlimitsꢀforꢀtheꢀ  
controller.ꢀOtherꢀexternalꢀcomponentꢀselectionꢀisꢀdrivenꢀ  
byꢀtheꢀloadꢀrequirement,ꢀandꢀbeginsꢀwithꢀtheꢀselectionꢀofꢀ  
programmedꢀcurrentꢀlimitꢀunpredictable.ꢀIfꢀinductorꢀDCRꢀ  
sensingꢀisꢀusedꢀ(Figureꢀ4b),ꢀresistorꢀR1ꢀshouldꢀbeꢀplacedꢀ  
closetotheswitchingnode,topreventnoisefromcouplingꢀ  
intoꢀsensitiveꢀsmall-signalꢀnodes.  
TO SENSE FILTER,  
NEXT TO THE CONTROLLER  
C
OUT  
38571 F03  
INDUCTOR OR R  
SENSE  
Figure 3. Sense Lines Placement with Inductor or Sense Resistor  
R
ꢀ(ifꢀR  
ꢀisꢀused)ꢀandꢀinductorꢀvalue.ꢀNext,ꢀtheꢀ  
SENSE  
SENSE  
V
V
IN  
powerMOSFETsandSchottkydiodesareselected.Finally,ꢀ  
inputꢀandꢀoutputꢀcapacitorsꢀareꢀselected.  
IN  
INTV  
CC  
BOOST  
TG  
+
SENSE and SENSE Pins  
R
SENSE  
SW  
V
OUT  
+
TheSENSE andSENSE pinsaretheinputstothecurrentꢀ  
comparators.ꢀTheꢀcommonꢀmodeꢀvoltageꢀrangeꢀonꢀtheseꢀ  
pinsꢀisꢀ0Vꢀtoꢀ24Vꢀ(absꢀmax),ꢀenablingꢀtheꢀLTC3857-1ꢀtoꢀ  
regulateꢀoutputꢀvoltagesꢀupꢀtoꢀaꢀnominalꢀ24Vꢀ(allowingꢀ  
marginꢀforꢀtolerancesꢀandꢀtransients).ꢀ  
LTC3857-1  
BG  
+
SENSE  
PLACE CAPACITOR NEAR  
SENSE PINS  
SENSE  
SGND  
+
TheꢀSENSE ꢀpinꢀisꢀhighꢀimpedanceꢀoverꢀtheꢀfullꢀcommonꢀ  
38571 F04a  
modeꢀrange,ꢀdrawingꢀatꢀmostꢀ 1µA.ꢀThisꢀhighꢀimpedanceꢀ  
allowsthecurrentcomparatorstobeusedininductorꢀ  
DCRꢀsensing.  
(4a) Using a Resistor to Sense Current  
V
INTV  
V
IN  
IN  
TheꢀimpedanceꢀofꢀtheꢀSENSE ꢀpinꢀchangesꢀdependingꢀonꢀ  
CC  
thecommonmodevoltage.WhenSENSE islessthanꢀ  
INDUCTOR  
DCR  
BOOST  
TG  
INTV ꢀ–ꢀ0.5V,ꢀaꢀsmallꢀcurrentꢀofꢀlessꢀthanꢀ1µAꢀflowsꢀoutꢀ  
CC  
L
ofꢀtheꢀpin.ꢀWhenꢀSENSE ꢀisꢀaboveꢀINTV ꢀ+ꢀ0.5V,ꢀaꢀhigherꢀ  
SW  
V
OUT  
CC  
LTC3857-1  
current(~550µA)owsintothepin.BetweenINTV 0.5Vꢀ  
CC  
BG  
andINTV +0.5V,thecurrenttransitionsfromthesmallerꢀ  
CC  
R1  
C1* R2  
currentꢀtoꢀtheꢀhigherꢀcurrent.  
+
SENSE  
Filtercomponentsmutualtothesenselinesshouldbeꢀ  
placedꢀcloseꢀtoꢀtheꢀLTC3857-1,ꢀandꢀtheꢀsenseꢀlinesꢀshouldꢀ  
runꢀcloseꢀtogetherꢀtoꢀaꢀKelvinꢀconnectionꢀunderneathꢀtheꢀ  
currentꢀsenseꢀelementꢀ(shownꢀinꢀFigureꢀ3).ꢀSensingꢀcur-  
rentelsewherecaneffectivelyaddparasiticinductanceꢀ  
andꢀcapacitanceꢀtoꢀtheꢀcurrentꢀsenseꢀelement,ꢀdegradingꢀ  
theinformationatthesenseterminalsandmakingtheꢀ  
SENSE  
SGND  
38571 F04b  
R2  
R1 + R2  
L
DCR  
||  
(R1 R2) C1 =  
*PLACE C1 NEAR  
SENSE PINS  
R
= DCR  
SENSE(EQ)  
(4b) Using the Inductor DCR to Sense Current  
Figure 4. Current Sensing Methods  
38571fa  
ꢀꢄ  
LTC3857-1  
applicaTions inForMaTion  
Low Value Resistor Current Sensing  
acrossꢀtheꢀexternalꢀcapacitorꢀisꢀequalꢀtoꢀtheꢀdropꢀacrossꢀ  
theinductorDCRmultipliedbyR2/(R1+R2).R2scalestheꢀ  
voltageꢀacrossꢀtheꢀsenseꢀterminalsꢀforꢀapplicationsꢀwhereꢀ  
theꢀDCRꢀisꢀgreaterꢀthanꢀtheꢀtargetꢀsenseꢀresistorꢀvalue.ꢀ  
Toꢀproperlyꢀdimensionꢀtheꢀexternalꢀfilterꢀcomponents,ꢀtheꢀ  
DCRꢀofꢀtheꢀinductorꢀmustꢀbeꢀknown.ꢀItꢀcanꢀbeꢀmeasuredꢀ  
usingagoodRLCmeter,buttheDCRtoleranceisnotꢀ  
alwaysꢀtheꢀsameꢀandꢀvariesꢀwithꢀtemperature;ꢀconsultꢀtheꢀ  
manufacturers’ꢀdataꢀsheetsꢀforꢀdetailedꢀinformation.  
Aꢀtypicalꢀsensingꢀcircuitꢀusingꢀaꢀdiscreteꢀresistorꢀisꢀshownꢀ  
inꢀ Figureꢀ 4a.ꢀ R  
outputꢀcurrent.  
ꢀ isꢀ chosenꢀ basedꢀ onꢀ theꢀ requiredꢀ  
SENSE  
Theꢀ currentꢀ comparatorꢀ hasꢀ aꢀ maximumꢀ thresholdꢀ  
.ꢀTheꢀcurrentꢀcomparatorꢀthresholdꢀvoltageꢀ  
V
SENSE(MAX)  
setsꢀtheꢀpeakꢀofꢀtheꢀinductorꢀcurrent,ꢀyieldingꢀaꢀmaximumꢀ  
averageꢀoutputꢀcurrent,ꢀI  
,ꢀequalꢀtoꢀtheꢀpeakꢀvalueꢀlessꢀ  
MAX  
halfꢀtheꢀpeak-to-peakꢀrippleꢀcurrent,ꢀI .ꢀToꢀcalculateꢀtheꢀ  
L
UsingꢀtheꢀinductorꢀrippleꢀcurrentꢀvalueꢀfromꢀtheꢀInductorꢀ  
ValueꢀCalculationꢀsection,ꢀtheꢀtargetꢀsenseꢀresistorꢀvalueꢀ  
is:  
senseꢀresistorꢀvalue,ꢀuseꢀtheꢀequation:  
VSENSE(MAX)  
RSENSE  
=
IL  
VSENSE(MAX)  
IMAX  
+
RSENSE(EQUIV)  
=
2
IL  
IMAX  
+
Whenꢀusingꢀtheꢀcontrollerꢀinꢀveryꢀlowꢀdropoutꢀconditions,ꢀ  
themaximumoutputcurrentlevelwillbereducedduetotheꢀ  
internalꢀcompensationꢀrequiredꢀtoꢀmeetꢀstabilityꢀcriterionꢀ  
forꢀbuckꢀregulatorsꢀoperatingꢀatꢀgreaterꢀthanꢀ50%ꢀdutyꢀ  
factor.AcurveisprovidedintheTypicalPerformanceChar-  
acteristicssectiontoestimatethisreductioninpeakoutputꢀ  
currentꢀdependingꢀuponꢀtheꢀoperatingꢀdutyꢀfactor.  
2
Toꢀensureꢀthatꢀtheꢀapplicationꢀwillꢀdeliverꢀfullꢀloadꢀcurrentꢀ  
overꢀ theꢀ fullꢀ operatingꢀ temperatureꢀ range,ꢀ chooseꢀ theꢀ  
minimumꢀvalueꢀforꢀtheꢀmaximumꢀcurrentꢀsenseꢀthresholdꢀ  
voltageꢀ(V  
).  
SENSE(MAX)  
Next,ꢀdetermineꢀtheꢀDCRꢀofꢀtheꢀinductor.ꢀWhenꢀprovided,ꢀ  
useꢀtheꢀmanufacturer’sꢀmaximumꢀvalue,ꢀusuallyꢀgivenꢀatꢀ  
20°C.ꢀIncreaseꢀthisꢀvalueꢀtoꢀaccountꢀforꢀtheꢀtemperatureꢀ  
coefficientꢀofꢀcopperꢀresistance,ꢀwhichꢀisꢀapproximatelyꢀ  
Inductor DCR Sensing  
Forꢀapplicationsꢀrequiringꢀtheꢀhighestꢀpossibleꢀefficiencyꢀ  
atꢀhighꢀloadꢀcurrents,ꢀtheꢀLTC3857-1ꢀisꢀcapableꢀofꢀsensingꢀ  
theꢀvoltageꢀdropꢀacrossꢀtheꢀinductorꢀDCR,ꢀasꢀshownꢀinꢀ  
Figureꢀ4b.ꢀTheꢀDCRꢀofꢀtheꢀinductorꢀrepresentsꢀtheꢀsmallꢀ  
amountꢀofꢀDCꢀresistanceꢀofꢀtheꢀcopperꢀwire,ꢀwhichꢀcanꢀbeꢀ  
lessthan1fortoday’slowvalue,highcurrentinductors.ꢀ  
Inꢀaꢀhighꢀcurrentꢀapplicationꢀrequiringꢀsuchꢀanꢀinductor,ꢀ  
powerꢀlossꢀthroughꢀaꢀsenseꢀresistorꢀwouldꢀcostꢀseveralꢀ  
pointsꢀofꢀefficiencyꢀcomparedꢀtoꢀinductorꢀDCRꢀsensing.  
0.4%/°C.ꢀAꢀconservativeꢀvalueꢀforꢀT  
ꢀisꢀ100°C.  
L(MAX)  
ToꢀscaleꢀtheꢀmaximumꢀinductorꢀDCRꢀtoꢀtheꢀdesiredꢀsenseꢀ  
resistorꢀ(R )ꢀvalue,ꢀuseꢀtheꢀdividerꢀratio:  
D
RSENSE(EQUIV)  
RD =  
DCRMAX atT  
L(MAX)  
C1ꢀisꢀusuallyꢀselectedꢀtoꢀbeꢀinꢀtheꢀrangeꢀofꢀ0.1µFꢀtoꢀ0.47µF.ꢀ  
ThisforcesR1||R2toaround2k,reducingerrorthatmightꢀ  
IfꢀtheꢀexternalꢀR1||R2ꢀ•ꢀC1ꢀtimeꢀconstantꢀisꢀchosenꢀtoꢀbeꢀ  
exactlyꢀequalꢀtoꢀtheꢀL/DCRꢀtimeꢀconstant,ꢀtheꢀvoltageꢀdropꢀ  
+
haveꢀbeenꢀcausedꢀbyꢀtheꢀSENSE ꢀpin’sꢀ 1µAꢀcurrent.  
38571fa  
ꢀꢅ  
LTC3857-1  
applicaTions inForMaTion  
TheꢀequivalentꢀresistanceꢀR1||ꢀR2ꢀisꢀscaledꢀtoꢀtheꢀroomꢀ  
temperatureꢀinductanceꢀandꢀmaximumꢀDCR:  
AcceptingꢀlargerꢀvaluesꢀofꢀI ꢀallowsꢀtheꢀuseꢀofꢀlowꢀin-  
L
ductances,ꢀbutꢀresultsꢀinꢀhigherꢀoutputꢀvoltageꢀrippleꢀandꢀ  
greatercorelosses.Areasonablestartingpointforsettingꢀ  
L
R1||R2 =  
rippleꢀcurrentꢀisꢀI ꢀ=0.3(I  
).ꢀTheꢀmaximumꢀI ꢀoccursꢀ  
L
L
MAX  
DCR at 20°C C1  
(
)
atꢀtheꢀmaximumꢀinputꢀvoltage.  
Theꢀinductorꢀvalueꢀalsoꢀhasꢀsecondaryꢀeffects.ꢀTheꢀtran-  
sitionꢀtoꢀBurstꢀModeꢀoperationꢀbeginsꢀwhenꢀtheꢀaverageꢀ  
inductorꢀcurrentꢀrequiredꢀresultsꢀinꢀaꢀpeakꢀcurrentꢀbelowꢀ  
Theꢀsenseꢀresistorꢀvaluesꢀare:  
R1RD  
1RD  
R1||R2  
RD  
R1=  
; R2 =  
15%ofthecurrentlimitdeterminedbyR  
.Lowerꢀ  
SENSE  
inductorvalues(higherI )willcausethistooccuratꢀ  
L
TheꢀmaximumꢀpowerꢀlossꢀinꢀR1ꢀisꢀrelatedꢀtoꢀdutyꢀcycle,ꢀ  
andꢀwillꢀoccurꢀinꢀcontinuousꢀmodeꢀatꢀtheꢀmaximumꢀinputꢀ  
voltage:  
lowerꢀloadꢀcurrents,ꢀwhichꢀcanꢀcauseꢀaꢀdipꢀinꢀefficiencyꢀinꢀ  
theꢀupperꢀrangeꢀofꢀlowꢀcurrentꢀoperation.ꢀInꢀBurstꢀModeꢀ  
operation,ꢀlowerꢀinductanceꢀvaluesꢀwillꢀcauseꢀtheꢀburstꢀ  
frequencyꢀtoꢀdecrease.  
V
IN(MAX) VOUT • V  
(
)
OUT  
P
R1=  
LOSS  
Inductor Core Selection  
R1  
OnceꢀtheꢀvalueꢀforꢀLꢀisꢀknown,ꢀtheꢀtypeꢀofꢀinductorꢀmustꢀ  
beꢀselected.ꢀHighꢀefficiencyꢀconvertersꢀgenerallyꢀcannotꢀ  
affordthecorelossfoundinlowcostpowderedironcores,ꢀ  
forcingtheuseofmoreexpensiveferriteormolypermalloyꢀ  
cores.ꢀActualꢀcoreꢀlossꢀisꢀindependentꢀofꢀcoreꢀsizeꢀforꢀaꢀ  
fixedinductorvalue,butitisverydependentoninductanceꢀ  
valueꢀselected.ꢀAsꢀinductanceꢀincreases,ꢀcoreꢀlossesꢀgoꢀ  
down.ꢀUnfortunately,ꢀincreasedꢀinductanceꢀrequiresꢀmoreꢀ  
turnsꢀofꢀwireꢀandꢀthereforeꢀcopperꢀlossesꢀwillꢀincrease.  
EnsureꢀthatꢀR1ꢀhasꢀaꢀpowerꢀratingꢀhigherꢀthanꢀthisꢀvalue.ꢀ  
Ifꢀhighꢀefficiencyꢀisꢀnecessaryꢀatꢀlightꢀloads,ꢀconsiderꢀthisꢀ  
powerꢀlossꢀwhenꢀdecidingꢀwhetherꢀtoꢀuseꢀDCRꢀsensingꢀorꢀ  
senseꢀresistors.ꢀLightꢀloadꢀpowerꢀlossꢀcanꢀbeꢀmodestlyꢀ  
higherꢀwithꢀaꢀDCRꢀnetworkꢀthanꢀwithꢀaꢀsenseꢀresistor,ꢀdueꢀ  
totheextraswitchinglossesincurredthroughR1.However,ꢀ  
DCRꢀsensingꢀeliminatesꢀaꢀsenseꢀresistor,ꢀreducesꢀconduc-  
tionꢀlossesꢀandꢀprovidesꢀhigherꢀefficiencyꢀatꢀheavyꢀloads.ꢀ  
Peakꢀefficiencyꢀisꢀaboutꢀtheꢀsameꢀwithꢀeitherꢀmethod.  
Ferriteꢀdesignsꢀhaveꢀveryꢀlowꢀcoreꢀlossꢀandꢀareꢀpreferredꢀ  
forꢀ highꢀ switchingꢀ frequencies,ꢀ soꢀ designꢀ goalsꢀ canꢀ  
concentrateoncopperlossandpreventingsaturation.ꢀ  
Ferritecorematerialsaturateshard,whichmeansthatꢀ  
inductancecollapsesabruptlywhenthepeakdesigncurrentꢀ  
isꢀexceeded.ꢀThisꢀresultsꢀinꢀanꢀabruptꢀincreaseꢀinꢀinductorꢀ  
rippleꢀcurrentꢀandꢀconsequentꢀoutputꢀvoltageꢀripple.ꢀDoꢀ  
notꢀallowꢀtheꢀcoreꢀtoꢀsaturate!  
Inductor Value Calculation  
Theꢀoperatingꢀfrequencyꢀandꢀinductorꢀselectionꢀareꢀinter-  
relatedꢀinꢀthatꢀhigherꢀoperatingꢀfrequenciesꢀallowꢀtheꢀuseꢀ  
ofꢀsmallerꢀinductorꢀandꢀcapacitorꢀvalues.ꢀSoꢀwhyꢀwouldꢀ  
anyoneꢀeverꢀchooseꢀtoꢀoperateꢀatꢀlowerꢀfrequenciesꢀwithꢀ  
largercomponents?Theanswerisefficiency.Ahigherꢀ  
frequencygenerallyresultsinlowerefficiencybecauseꢀ  
ofꢀMOSFETꢀgateꢀchargeꢀlosses.ꢀInꢀadditionꢀtoꢀthisꢀbasicꢀ  
trade-off,ꢀtheꢀeffectꢀofꢀinductorꢀvalueꢀonꢀrippleꢀcurrentꢀandꢀ  
lowꢀcurrentꢀoperationꢀmustꢀalsoꢀbeꢀconsidered.  
Power MOSFET and Schottky Diode  
(Optional) Selection  
TwoꢀexternalꢀpowerꢀMOSFETsꢀmustꢀbeꢀselectedꢀforꢀeachꢀ  
controllerꢀinꢀtheꢀLTC3857-1:ꢀoneꢀN-channelꢀMOSFETꢀforꢀ  
theꢀtopꢀ(main)ꢀswitch,ꢀandꢀoneꢀN-channelꢀMOSFETꢀforꢀtheꢀ  
bottomꢀ(synchronous)ꢀswitch.  
Theꢀinductorꢀvalueꢀhasꢀaꢀdirectꢀeffectꢀonꢀrippleꢀcurrent.ꢀ  
Theinductorripplecurrent,I ,decreaseswithhigherꢀ  
L
inductanceꢀorꢀhigherꢀfrequencyꢀandꢀincreasesꢀwithꢀhigherꢀ  
V :  
IN  
VOUT  
1
IL =  
VOUT 1–  
V
f L  
( )( )  
IN  
38571fa  
ꢀꢆ  
LTC3857-1  
applicaTions inForMaTion  
Thepeak-to-peakdrivelevelsaresetbytheINTV voltage.ꢀ  
whereꢀδꢀisꢀtheꢀtemperatureꢀdependencyꢀofꢀR  
DR  
ꢀandꢀ  
CC  
DS(ON)  
Thisꢀvoltageꢀisꢀtypicallyꢀ5.1Vꢀduringꢀstart-upꢀ(seeꢀEXTV ꢀ  
R ꢀ(approximatelyꢀ2Ω)ꢀisꢀtheꢀeffectiveꢀdriverꢀresistanceꢀ  
CC  
Pinꢀ Connection).ꢀ Consequently,ꢀ logic-levelꢀ thresholdꢀ  
atꢀtheꢀMOSFET’sꢀMillerꢀthresholdꢀvoltage.ꢀV  
ꢀisꢀtheꢀ  
THMIN  
MOSFETsmustꢀbeꢀusedꢀinꢀmostꢀapplications.ꢀTheꢀonlyꢀ  
typicalꢀMOSFETꢀminimumꢀthresholdꢀvoltage.  
exceptionꢀisꢀifꢀlowꢀinputꢀvoltageꢀisꢀexpectedꢀ(V ꢀ<ꢀ4V);ꢀ  
IN  
GS(TH)  
2
BothMOSFETshaveI RlosseswhilethetopsideN-channelꢀ  
equationꢀincludesꢀanꢀadditionalꢀtermꢀforꢀtransitionꢀlosses,ꢀ  
then,ꢀsub-logicꢀlevelꢀthresholdꢀMOSFETsꢀ(V  
ꢀ<ꢀ3V)ꢀ  
shouldꢀbeꢀused.ꢀPayꢀcloseꢀattentionꢀtoꢀtheꢀBV ꢀspeci-  
DSS  
whichꢀareꢀhighestꢀatꢀhighꢀinputꢀvoltages.ꢀForꢀV ꢀ<ꢀ20Vꢀ  
IN  
ficationꢀforꢀtheꢀMOSFETsꢀasꢀwell;ꢀmanyꢀofꢀtheꢀlogic-levelꢀ  
theꢀhighꢀcurrentꢀefficiencyꢀgenerallyꢀimprovesꢀwithꢀlargerꢀ  
MOSFETsꢀareꢀlimitedꢀtoꢀ30Vꢀorꢀless.  
MOSFETs,ꢀwhileꢀforꢀV ꢀ>ꢀ20Vꢀtheꢀtransitionꢀlossesꢀrapidlyꢀ  
IN  
SelectionꢀcriteriaꢀforꢀtheꢀpowerꢀMOSFETsꢀincludeꢀtheꢀon-  
increasetothepointthattheuseofahigherR  
deviceꢀ  
DS(ON)  
resistance,ꢀ R ,ꢀ Millerꢀ capacitance,ꢀ C ,ꢀ inputꢀ  
DS(ON) MILLER  
withlowerC  
actuallyprovideshigherefficiency.Theꢀ  
MILLER  
voltageꢀandꢀmaximumꢀoutputꢀcurrent.ꢀMillerꢀcapacitance,ꢀ  
,ꢀcanꢀbeꢀapproximatedꢀfromꢀtheꢀgateꢀchargeꢀcurveꢀ  
synchronousꢀMOSFETꢀlossesꢀareꢀgreatestꢀatꢀhighꢀinputꢀ  
voltageꢀwhenꢀtheꢀtopꢀswitchꢀdutyꢀfactorꢀisꢀlowꢀorꢀduringꢀ  
aꢀshort-circuitꢀwhenꢀtheꢀsynchronousꢀswitchꢀisꢀonꢀcloseꢀ  
toꢀ100%ꢀofꢀtheꢀperiod.  
C
MILLER  
usuallyꢀ providedꢀ onꢀ theꢀ MOSFETꢀ manufacturers’ꢀ dataꢀ  
sheet.C ꢀisequaltotheincreaseingatechargeꢀ  
MILLER  
alongꢀtheꢀhorizontalꢀaxisꢀwhileꢀtheꢀcurveꢀisꢀapproximatelyꢀ  
Theꢀtermꢀ(1+ꢀδ)ꢀisꢀgenerallyꢀgivenꢀforꢀaꢀMOSFETꢀinꢀtheꢀ  
flatꢀdividedꢀbyꢀtheꢀspecifiedꢀchangeꢀinꢀV .ꢀThisꢀresultꢀisꢀ  
DS  
formꢀofꢀaꢀnormalizedꢀR  
ꢀvsꢀTemperatureꢀcurve,ꢀbutꢀ  
DS(ON)  
thenꢀmultipliedꢀbyꢀtheꢀratioꢀofꢀtheꢀapplicationꢀappliedꢀV ꢀ  
DS  
δ=0.005/°Ccanbeusedasanapproximationforlowꢀ  
toꢀtheꢀGateꢀchargeꢀcurveꢀspecifiedꢀV .ꢀWhenꢀtheꢀICꢀisꢀ  
DS  
voltageꢀMOSFETs.  
operatingꢀinꢀcontinuousꢀmodeꢀtheꢀdutyꢀcyclesꢀforꢀtheꢀtopꢀ  
Theꢀ optionalꢀ Schottkyꢀ diodesꢀ D1ꢀ andꢀ D2ꢀ shownꢀ inꢀ  
Figureꢀ11ꢀ conductꢀ duringꢀ theꢀ dead-timeꢀ betweenꢀ theꢀ  
conductionꢀofꢀtheꢀtwoꢀpowerꢀMOSFETs.ꢀThisꢀpreventsꢀ  
theꢀbodyꢀdiodeꢀofꢀtheꢀbottomꢀMOSFETꢀfromꢀturningꢀon,ꢀ  
storingꢀ chargeꢀ duringꢀ theꢀ dead-timeꢀ andꢀ requiringꢀ aꢀ  
reverseꢀrecoveryꢀperiodꢀthatꢀcouldꢀcostꢀasꢀmuchꢀasꢀ3%ꢀ  
andꢀbottomꢀMOSFETsꢀareꢀgivenꢀby:  
VOUT  
Main Switch Duty Cycle =  
V
IN  
V VOUT  
IN  
Synchronous Switch Duty Cycle =  
V
IN  
inꢀefficiencyꢀatꢀhighꢀV .ꢀAꢀ1Aꢀtoꢀ3AꢀSchottkyꢀisꢀgenerallyꢀ  
IN  
aꢀgoodꢀcompromiseꢀforꢀbothꢀregionsꢀofꢀoperationꢀdueꢀ  
totherelativelysmallaveragecurrent.Largerdiodesꢀ  
resultꢀinꢀadditionalꢀtransitionꢀlossesꢀdueꢀtoꢀtheirꢀlargerꢀ  
junctionꢀcapacitance.  
Theꢀ MOSFETꢀ powerꢀ dissipationsꢀ atꢀ maximumꢀ outputꢀ  
currentꢀareꢀgivenꢀby:  
VOUT  
2
PMAIN  
=
=
I
1+ δ R  
+
(
MAX) (  
)
DS(ON)  
V
IN  
C and C  
Selection  
IN  
OUT  
IMAX  
2
2   
V
R
C
(
)
(
DR )(  
)
IN  
MILLER  
TheꢀselectionꢀofꢀC ꢀisꢀsimplifiedꢀbyꢀtheꢀ2-phaseꢀarchitec-  
IN  
tureꢀandꢀitsꢀimpactꢀonꢀtheꢀworst-caseꢀRMSꢀcurrentꢀdrawnꢀ  
throughtheinputnetwork(battery/fuse/capacitor).Itcanbeꢀ  
shownꢀthatꢀtheꢀworst-caseꢀcapacitorꢀRMSꢀcurrentꢀoccursꢀ  
whenꢀonlyꢀoneꢀcontrollerꢀisꢀoperating.ꢀTheꢀcontrollerꢀwithꢀ  
1
1
+
f
( )  
VINTVCC – VTHMIN VTHMIN  
V – VOUT  
2
theꢀhighestꢀ(V )(I )ꢀproductꢀneedsꢀtoꢀbeꢀusedꢀinꢀtheꢀ  
IN  
OUT OUT  
PSYNC  
I
1+ δ R  
(
MAX) (  
)
DS(ON)  
formulaꢀshownꢀinꢀEquationꢀ1ꢀtoꢀdetermineꢀtheꢀmaximumꢀ  
V
IN  
38571fa  
ꢀꢇ  
LTC3857-1  
applicaTions inForMaTion  
RMSꢀcapacitorꢀcurrentꢀrequirement.ꢀIncreasingꢀtheꢀout-  
putꢀcurrentꢀdrawnꢀfromꢀtheꢀotherꢀcontrollerꢀwillꢀactuallyꢀ  
decreaseꢀtheꢀinputꢀRMSꢀrippleꢀcurrentꢀfromꢀitsꢀmaximumꢀ  
value.ꢀTheꢀout-of-phaseꢀtechniqueꢀtypicallyꢀreducesꢀtheꢀ  
inputꢀcapacitor’sꢀRMSꢀrippleꢀcurrentꢀbyꢀaꢀfactorꢀofꢀ30%ꢀ  
toꢀ70%ꢀwhenꢀcomparedꢀtoꢀaꢀsingleꢀphaseꢀpowerꢀsupplyꢀ  
solution.  
1cmofeachotherandshareacommonC (s).Separatingꢀ  
IN  
theꢀdrainsꢀandꢀC ꢀmayꢀproduceꢀundesirableꢀvoltageꢀandꢀ  
IN  
currentꢀresonancesꢀatꢀV .  
IN  
Aꢀsmallꢀ(0.1µFꢀtoꢀ1µF)ꢀbypassꢀcapacitorꢀbetweenꢀtheꢀchipꢀ  
V pinandground,placedclosetotheLTC3857-1,isꢀ  
IN  
alsoꢀsuggested.ꢀAꢀ10ΩꢀresistorꢀplacedꢀbetweenꢀC ꢀ(C1)ꢀ  
IN  
andtheV ꢀpinprovidesfurtherisolationbetweentheꢀ  
IN  
Incontinuousmode,thesourcecurrentofthetopMOSFETꢀ  
twoꢀchannels.  
isꢀaꢀsquareꢀwaveꢀofꢀdutyꢀcycleꢀ(V )/(V ).ꢀToꢀpreventꢀ  
OUT  
IN  
TheselectionofC ꢀisdrivenbytheeffectiveseriesꢀ  
OUT  
largeꢀvoltageꢀtransients,ꢀaꢀlowꢀESRꢀcapacitorꢀsizedꢀforꢀtheꢀ  
maximumꢀRMSꢀcurrentꢀofꢀoneꢀchannelꢀmustꢀbeꢀused.ꢀTheꢀ  
maximumꢀRMSꢀcapacitorꢀcurrentꢀisꢀgivenꢀby:  
resistance(ESR).Typically,oncetheESRrequirementꢀ  
isꢀsatisfied,ꢀtheꢀcapacitanceꢀisꢀadequateꢀforꢀfiltering.ꢀTheꢀ  
outputꢀrippleꢀ(V )ꢀisꢀapproximatedꢀby:  
OUT  
IMAX  
1/2  
(1)  
CIN Required IRMS  
V
OUT )(  
V – V  
(
)
1
IN  
OUT  
V
VOUT ≈ ∆IL ESR +  
IN  
8 • f C  
OUT   
ThisꢀformulaꢀhasꢀaꢀmaximumꢀatꢀV ꢀ=ꢀ2V ,ꢀwhereꢀI  
IN  
OUTꢀ  
RMS  
wherefistheoperatingfrequency,C ꢀistheoutputꢀ  
OUT  
=ꢀI /2.ꢀThisꢀsimpleꢀworst-caseꢀconditionꢀisꢀcommonlyꢀ  
OUT  
capacitanceꢀandꢀI ꢀisꢀtheꢀrippleꢀcurrentꢀinꢀtheꢀinductor.ꢀ  
L
usedfordesignbecauseevensignificantdeviationsdonotꢀ  
offermuchrelief.Notethatcapacitormanufacturers’rippleꢀ  
currentꢀratingsꢀareꢀoftenꢀbasedꢀonꢀonlyꢀ2000ꢀhoursꢀofꢀlife.ꢀ  
Thisꢀmakesꢀitꢀadvisableꢀtoꢀfurtherꢀderateꢀtheꢀcapacitor,ꢀorꢀ  
toꢀchooseꢀaꢀcapacitorꢀratedꢀatꢀaꢀhigherꢀtemperatureꢀthanꢀ  
required.Severalcapacitorsmaybeparalleledtomeetꢀ  
sizeꢀorꢀheightꢀrequirementsꢀinꢀtheꢀdesign.ꢀDueꢀtoꢀtheꢀhighꢀ  
operatingfrequencyoftheLTC3857-1,ceramiccapacitorsꢀ  
Theoutputrippleishighestatmaximuminputvoltageꢀ  
sinceꢀI ꢀincreasesꢀwithꢀinputꢀvoltage.  
L
Setting Output Voltage  
TheꢀLTC3857-1ꢀoutputꢀvoltagesꢀareꢀeachꢀsetꢀbyꢀanꢀexter-  
nalꢀfeedbackꢀresistorꢀdividerꢀcarefullyꢀplacedꢀacrossꢀtheꢀ  
output,asshowninFigure5.Theregulatedoutputvoltageꢀ  
isꢀdeterminedꢀby:  
canꢀalsoꢀbeꢀusedꢀforꢀC .ꢀAlwaysꢀconsultꢀtheꢀmanufacturerꢀ  
IN  
ifꢀthereꢀisꢀanyꢀquestion.  
RB  
R
VOUT = 0.8V 1+  
TheꢀbenefitꢀofꢀtheꢀLTC3857-1ꢀ2-phaseꢀoperationꢀcanꢀbeꢀ  
calculatedbyusingEquation1forthehigherpowercontrol-  
lerꢀandꢀthenꢀcalculatingꢀtheꢀlossꢀthatꢀwouldꢀhaveꢀresultedꢀ  
ifꢀbothꢀcontrollerꢀchannelsꢀswitchedꢀonꢀatꢀtheꢀsameꢀtime.ꢀ  
TheꢀtotalꢀRMSꢀpowerꢀlostꢀisꢀlowerꢀwhenꢀbothꢀcontrollersꢀ  
areꢀoperatingꢀdueꢀtoꢀtheꢀreducedꢀoverlapꢀofꢀcurrentꢀpulsesꢀ  
requiredꢀthroughꢀtheꢀinputꢀcapacitor’sꢀESR.ꢀThisꢀisꢀwhyꢀ  
theꢀinputꢀcapacitor’sꢀrequirementꢀcalculatedꢀaboveꢀforꢀtheꢀ  
worst-caseꢀcontrollerꢀisꢀadequateꢀforꢀtheꢀdualꢀcontrollerꢀ  
design.ꢀAlso,ꢀtheꢀinputꢀprotectionꢀfuseꢀresistance,ꢀbatteryꢀ  
resistance,ꢀandꢀPCꢀboardꢀtraceꢀresistanceꢀlossesꢀareꢀalsoꢀ  
reducedꢀdueꢀtoꢀtheꢀreducedꢀpeakꢀcurrentsꢀinꢀaꢀ2-phaseꢀ  
system.Theoverallbenefitofamultiphasedesignwillꢀ  
onlyꢀbeꢀfullyꢀrealizedꢀwhenꢀtheꢀsourceꢀimpedanceꢀofꢀtheꢀ  
powerꢀsupply/batteryꢀisꢀincludedꢀinꢀtheꢀefficiencyꢀtesting.ꢀ  
TheꢀdrainsꢀofꢀtheꢀtopꢀMOSFETsꢀshouldꢀbeꢀplacedꢀwithinꢀ  
A   
Toimprovethefrequencyresponse,afeedforwardca-  
pacitor,ꢀC ,ꢀmayꢀbeꢀused.ꢀGreatꢀcareꢀshouldꢀbeꢀtakenꢀtoꢀ  
FFꢀ  
routeꢀtheꢀV ꢀlineꢀawayꢀfromꢀnoiseꢀsources,ꢀsuchꢀasꢀtheꢀ  
FB  
inductorꢀorꢀtheꢀSWꢀline.  
V
OUT  
R
B
C
FF  
1/2 LTC3857-1  
V
FB  
R
A
38571 F05  
Figure 5. Setting Output Voltage  
38571fa  
ꢀꢈ  
LTC3857-1  
applicaTions inForMaTion  
Tracking and Soft-Start (TRACK/SS Pins)  
V
V
X(MASTER)  
Theꢀstart-upꢀofꢀeachꢀV ꢀisꢀcontrolledꢀbyꢀtheꢀvoltageꢀonꢀ  
OUT  
theꢀrespectiveꢀTRACK/SSꢀpin.ꢀWhenꢀtheꢀvoltageꢀonꢀtheꢀ  
TRACK/SSꢀpinꢀisꢀlessꢀthanꢀtheꢀinternalꢀ0.8Vꢀreference,ꢀtheꢀ  
OUT(SLAVE)  
LTC3857-1ꢀregulatesꢀtheꢀV ꢀpinꢀvoltageꢀtoꢀtheꢀvoltageꢀonꢀ  
FB  
theꢀTRACK/SSꢀpinꢀinsteadꢀofꢀ0.8V.ꢀTheꢀTRACK/SSꢀpinꢀcanꢀ  
beꢀusedꢀtoꢀprogramꢀanꢀexternalꢀsoft-startꢀfunctionꢀorꢀtoꢀ  
allowꢀV ꢀtoꢀtrackꢀanotherꢀsupplyꢀduringꢀstart-up.  
OUT  
38571 F07a  
TIME  
Soft-startisenabledbysimplyconnectingacapacitorꢀ  
fromꢀtheꢀTRACK/SSꢀpinꢀtoꢀground,ꢀasꢀshownꢀinꢀFigureꢀ6.ꢀ  
Anꢀ internalꢀ 1µAꢀ currentꢀ sourceꢀ chargesꢀ theꢀ capacitor,ꢀ  
providingꢀaꢀlinearꢀrampingꢀvoltageꢀatꢀtheꢀTRACK/SSꢀpin.ꢀ  
(7a) Coincident Tracking  
V
V
X(MASTER)  
OUT(SLAVE)  
TheꢀLTC3857-1ꢀwillꢀregulateꢀtheꢀV ꢀpinꢀ(andꢀhenceꢀV )ꢀ  
FB  
OUT  
accordingꢀtoꢀtheꢀvoltageꢀonꢀtheꢀTRACK/SSꢀpin,ꢀallowingꢀ  
V
ꢀtoꢀriseꢀsmoothlyꢀfromꢀ0Vꢀtoꢀitsꢀfinalꢀregulatedꢀvalue.ꢀ  
OUT  
Theꢀtotalꢀsoft-startꢀtimeꢀwillꢀbeꢀapproximately:  
0.8V  
1µA  
tSS = CSS  
38571 F07b  
TIME  
1/2 LTC3857-1  
TRACK/SS  
(7b) Ratiometric Tracking  
C
SS  
Figure 7. Two Different Modes of Output Voltage Tracking  
SGND  
38571 F06  
V
V
OUT  
x
Figure 6. Using the TRACK/SS Pin to Program Soft-Start  
1/2 LTC3857-1  
R
B
V
FB  
Alternatively,ꢀtheꢀTRACK/SSꢀpinꢀcanꢀbeꢀusedꢀtoꢀtrackꢀtwoꢀ  
(orꢀmore)ꢀsuppliesꢀduringꢀstart-up,ꢀasꢀshownꢀqualitativelyꢀ  
inꢀFiguresꢀ7aꢀandꢀ7b.ꢀToꢀdoꢀthis,ꢀaꢀresistorꢀdividerꢀshouldꢀ  
R
A
R
R
TRACKB  
TRACK/SS  
38571 F08  
beꢀconnectedꢀfromꢀtheꢀmasterꢀsupplyꢀ(V )ꢀtoꢀtheꢀTRACK/  
TRACKA  
X
SSꢀpinꢀofꢀtheꢀslaveꢀsupplyꢀ(V ),ꢀasꢀshownꢀinꢀFigureꢀ8.ꢀ  
OUT  
Duringꢀstart-upꢀV ꢀwillꢀtrackꢀV ꢀaccordingꢀtoꢀtheꢀratioꢀ  
OUT  
X
Figure 8. Using the TRACK/SS Pin for Tracking  
setꢀbyꢀtheꢀresistorꢀdivider:  
INTV Regulators  
RTRACKA +RTRACKB  
RA +RB  
VX  
RA  
CC  
=
VOUT RTRACKA  
TheꢀLTC3857-1ꢀfeaturesꢀtwoꢀseparateꢀinternalꢀP-channelꢀ  
lowdropoutlinearregulators(LDO)thatsupplypowerꢀ  
Forꢀcoincidentꢀtrackingꢀ(V ꢀ=ꢀV ꢀduringꢀstart-up):  
OUT  
X
atꢀtheꢀINTV ꢀpinꢀfromꢀeitherꢀtheꢀV ꢀsupplyꢀpinꢀorꢀtheꢀ  
CC  
IN  
EXTV ꢀpinꢀdependingꢀonꢀtheꢀconnectionꢀofꢀtheꢀEXTV ꢀ  
ꢀ R ꢀ=ꢀR  
CC  
CC  
A
TRACKA  
TRACKB  
pin.ꢀ INTV ꢀ powersꢀ theꢀ gateꢀ driversꢀ andꢀ muchꢀ ofꢀ theꢀ  
CC  
ꢀ R ꢀ=ꢀR  
B
LTC3857-1’sinternalcircuitry.TheV ꢀLDOandtheEXTV ꢀ  
IN  
CC  
38571fa  
ꢁ0  
2.ꢀ  
                                                
EXTV ꢀConnectedꢀdirectlyꢀtoꢀV .ꢀThisꢀisꢀtheꢀnormalꢀ  
CC OUTꢀ  
connectionꢀforꢀaꢀ5Vꢀtoꢀ14Vꢀregulatorꢀandꢀprovidesꢀtheꢀ  
highestꢀefficiency.  
4.ꢀ  
                                                
EXTV ConnectedtoanOutput-DerivedBoostNetwork.ꢀ  
1.ꢀ  
                                                
EXTV LeftOpen(orGrounded).ThiswillcauseINTV ꢀ  
CC CC  
LTC3857-1  
applicaTions inForMaTion  
LDOꢀregulateꢀINTV ꢀtoꢀ5.1V.ꢀEachꢀofꢀtheseꢀcanꢀsupplyꢀaꢀ  
switchingꢀregulatorꢀoutputsꢀ(4.7Vꢀ≤ꢀVOUTꢀ≤ꢀ14V)ꢀduringꢀ  
normalꢀoperationꢀandꢀfromꢀtheꢀVINꢀLDOꢀwhenꢀtheꢀout-  
putꢀisꢀoutꢀofꢀregulationꢀ(e.g.,ꢀstart-up,ꢀshort-circuit).ꢀIfꢀ  
moreꢀcurrentꢀisꢀrequiredꢀthroughꢀtheꢀEXTVCCꢀLDOꢀthanꢀ  
isspecified,anexternalSchottkydiodecanbeaddedꢀ  
betweenꢀtheꢀEXTVCCꢀandꢀINTVCCꢀpins.ꢀInꢀthisꢀcase,ꢀdoꢀ  
notꢀapplyꢀmoreꢀthanꢀ6VꢀtoꢀtheꢀEXTVCCꢀpinꢀandꢀmakeꢀsureꢀ  
thatꢀEXTVCCꢀ≤ꢀVIN.  
CC  
peakꢀcurrentꢀofꢀ50mAꢀandꢀmustꢀbeꢀbypassedꢀtoꢀgroundꢀ  
withaminimumof4.7µFceramiccapacitor.Nomatterꢀ  
whattypeofbulkcapacitorisused,anadditional1µFꢀ  
ceramicꢀcapacitorꢀplacedꢀdirectlyꢀadjacentꢀtoꢀtheꢀINTV ꢀ  
CC  
andꢀPGNDꢀpinsꢀisꢀhighlyꢀrecommended.ꢀGoodꢀbypassingꢀ  
isꢀneededꢀtoꢀsupplyꢀtheꢀhighꢀtransientꢀcurrentsꢀrequiredꢀ  
bytheMOSFETgatedriversandtopreventinteractionꢀ  
betweenꢀtheꢀchannels.  
Significantꢀefficiencyꢀandꢀthermalꢀgainsꢀcanꢀbeꢀrealizedꢀ  
HighꢀinputꢀvoltageꢀapplicationsꢀinꢀwhichꢀlargeꢀMOSFETsꢀ  
areꢀbeingꢀdrivenꢀatꢀhighꢀfrequenciesꢀmayꢀcauseꢀtheꢀmaxi-  
mumꢀjunctionꢀtemperatureꢀratingꢀforꢀtheꢀLTC3857-1ꢀtoꢀbeꢀ  
byꢀpoweringꢀINTV ꢀfromꢀtheꢀoutput,ꢀsinceꢀtheꢀV ꢀcur-  
CC  
IN  
rentꢀresultingꢀfromꢀtheꢀdriverꢀandꢀcontrolꢀcurrentsꢀwillꢀbeꢀ  
scaledꢀbyꢀaꢀfactorꢀofꢀ(DutyꢀCycle)/(SwitcherꢀEfficiency).ꢀ  
Forꢀ5Vꢀtoꢀ14Vꢀregulatorꢀoutputs,ꢀthisꢀmeansꢀconnectingꢀ  
theꢀEXTV ꢀpinꢀdirectlyꢀtoꢀV .ꢀTyingꢀtheꢀEXTV ꢀpinꢀtoꢀ  
exceeded.ꢀTheꢀINTV ꢀcurrent,ꢀwhichꢀisꢀdominatedꢀbyꢀtheꢀ  
CC  
gatechargecurrent,maybesuppliedbyeithertheV ꢀLDOꢀ  
IN  
CC  
OUTꢀ  
CC  
orꢀtheꢀEXTV ꢀLDO.ꢀWhenꢀtheꢀvoltageꢀonꢀtheꢀEXTV ꢀpinꢀ  
anꢀ8.5Vꢀsupplyꢀreducesꢀtheꢀjunctionꢀtemperatureꢀinꢀtheꢀ  
previousꢀexampleꢀfromꢀ125°Cꢀto:  
CC  
CC  
isꢀlessꢀthanꢀ4.7V,ꢀtheꢀV ꢀLDOꢀisꢀenabled.ꢀPowerꢀdissipa-  
IN  
tionꢀforꢀtheꢀICꢀinꢀthisꢀcaseꢀisꢀhighestꢀandꢀisꢀequalꢀtoꢀV ꢀ•ꢀ  
IN  
ꢀ T ꢀ=ꢀ70°Cꢀ+ꢀ(15mA)(8.5V)(90°C/W)ꢀ=ꢀ82°C  
J
I
.Thegatechargecurrentisdependentonoperatingꢀ  
INTVCC  
However,ꢀforꢀ3.3Vꢀandꢀotherꢀlowꢀvoltageꢀoutputs,ꢀaddi-  
frequencyꢀasꢀdiscussedꢀinꢀtheꢀEfficiencyꢀConsiderationsꢀ  
section.Thejunctiontemperaturecanbeestimatedbyusingꢀ  
theꢀequationsꢀgivenꢀinꢀNoteꢀ3ꢀofꢀtheꢀElectricalꢀCharacteris-  
tionalꢀcircuitryꢀisꢀrequiredꢀtoꢀderiveꢀINTV ꢀpowerꢀfromꢀ  
CC  
theꢀoutput.  
tics.Forexample,theLTC3857-1INTV ꢀcurrentꢀisꢀlimitedꢀ  
CC  
Theꢀfollowingꢀlistꢀsummarizesꢀtheꢀfourꢀpossibleꢀconnec-  
toꢀlessꢀthanꢀ15mAꢀfromꢀaꢀ40Vꢀsupplyꢀwhenꢀnotꢀusingꢀtheꢀ  
tionsꢀforꢀEXTV :  
CC  
EXTV ꢀsupplyꢀatꢀaꢀ70°Cꢀambientꢀtemperature:  
CC  
ꢀ T ꢀ=ꢀ70°Cꢀ+ꢀ(15mA)(40V)(90°C/W)ꢀ=ꢀ125°C  
J
toꢀbeꢀpoweredꢀfromꢀtheꢀinternalꢀ5.1Vꢀregulatorꢀresult-  
ingꢀinꢀanꢀefficiencyꢀpenaltyꢀofꢀupꢀtoꢀ10%ꢀatꢀhighꢀinputꢀ  
voltages.  
Toꢀpreventꢀtheꢀmaximumꢀjunctionꢀtemperatureꢀfromꢀbe-  
ingꢀexceeded,ꢀtheꢀinputꢀsupplyꢀcurrentꢀmustꢀbeꢀcheckedꢀ  
whileꢀoperatingꢀinꢀforcedꢀcontinuousꢀmodeꢀ(PLLIN/MODEꢀ  
=ꢀINTV )ꢀatꢀmaximumꢀV .  
CC  
IN  
WhenꢀtheꢀvoltageꢀappliedꢀtoꢀEXTV ꢀrisesꢀaboveꢀ4.7V,ꢀtheꢀ  
CC  
V ꢀLDOꢀisꢀturnedꢀoffꢀandꢀtheꢀEXTV ꢀLDOꢀisꢀenabled.ꢀTheꢀ  
IN  
CC  
3.ꢀEXTV ꢀConnectedtoanExternalsupply.Ifanexternalꢀ  
CC  
EXTV ꢀLDOꢀremainsꢀonꢀasꢀlongꢀasꢀtheꢀvoltageꢀappliedꢀtoꢀ  
CC  
supplyꢀisꢀavailableꢀinꢀtheꢀ5Vꢀtoꢀ14Vꢀrange,ꢀitꢀmayꢀbeꢀ  
EXTV ꢀremainsꢀaboveꢀ4.5V.ꢀTheꢀEXTV ꢀLDOꢀattemptsꢀ  
CC  
CC  
usedꢀtoꢀpowerꢀEXTV .ꢀEnsureꢀthatꢀEXTV ꢀ<ꢀV .  
CC  
CC  
IN  
toꢀregulateꢀtheꢀINTV ꢀvoltageꢀtoꢀ5.1V,ꢀsoꢀwhileꢀEXTV ꢀ  
CC  
CC  
CC  
isꢀlessꢀthanꢀ5.1V,ꢀtheꢀLDOꢀisꢀinꢀdropoutꢀandꢀtheꢀINTV ꢀ  
CC  
Forꢀ3.3Vꢀandꢀotherꢀlowꢀvoltageꢀregulators,ꢀefficiencyꢀ  
voltageꢀisꢀapproximatelyꢀequalꢀtoꢀEXTV .ꢀWhenꢀEXTV ꢀ  
CC  
CC  
gainsꢀcanꢀstillꢀbeꢀrealizedꢀbyꢀconnectingꢀEXTV ꢀtoꢀanꢀ  
CC  
isꢀgreaterꢀthanꢀ5.1V,ꢀupꢀtoꢀanꢀabsoluteꢀmaximumꢀofꢀ14V,ꢀ  
output-derivedvoltagethathasbeenboostedtogreaterꢀ  
INTV ꢀisꢀregulatedꢀtoꢀ5.1V.  
CC  
thanꢀ4.7V.ꢀThisꢀcanꢀbeꢀdoneꢀwithꢀtheꢀcapacitiveꢀchargeꢀ  
UsingtheEXTVCCLDOallowstheMOSFETdriverandꢀ  
controlꢀpowerꢀtoꢀbeꢀderivedꢀfromꢀoneꢀofꢀtheꢀLTC3857-1’sꢀ  
pumpꢀshownꢀinꢀFigureꢀ9.ꢀEnsureꢀthatꢀEXTV ꢀ<ꢀV .  
CC  
IN  
38571fa  
ꢁꢀ  
LTC3857-1  
applicaTions inForMaTion  
voltageꢀfallsꢀbelowꢀ70%ꢀofꢀitsꢀnominalꢀoutputꢀlevel,ꢀthenꢀ  
theꢀmaximumꢀsenseꢀvoltageꢀisꢀprogressivelyꢀloweredꢀtoꢀ  
aboutꢀhalfꢀofꢀitsꢀmaximumꢀselectedꢀvalue.ꢀUnderꢀshort-  
circuitconditionswithverylowdutycycles,theLTC3857-1ꢀ  
willꢀbeginꢀcycleꢀskippingꢀinꢀorderꢀtoꢀlimitꢀtheꢀshort-circuitꢀ  
current.ꢀInꢀthisꢀsituationꢀtheꢀbottomꢀMOSFETꢀwillꢀbeꢀdis-  
sipatingꢀmostꢀofꢀtheꢀpowerꢀbutꢀlessꢀthanꢀinꢀnormalꢀopera-  
tion.ꢀTheꢀshort-circuitꢀrippleꢀcurrentꢀisꢀdeterminedꢀbyꢀtheꢀ  
C
IN  
BAT85  
BAT85  
BAT85  
V
IN  
MTOP  
MBOT  
VN2222LL  
TG1  
1/2 LTC3857-1  
L
R
SENSE  
V
EXTV  
SW  
OUT  
CC  
minimumꢀon-time.ꢀt  
,ꢀofꢀtheꢀLTC3857-1ꢀ(≈90ns),ꢀ  
ON(MIN)  
C
OUT  
D
BG1  
theꢀinputꢀvoltageꢀandꢀinductorꢀvalue:  
38571 F09  
PGND  
IN  
V
IL(SC) = tON(MIN)  
L
Figure 9. Capacitive Charge Pump for EXTVCC  
Theꢀresultingꢀaverageꢀshort-circuitꢀcurrentꢀis:  
Topside MOSFET Driver Supply (C , D )  
B
B
1
ISC = 50% •ILIM(MAX) IL(SC)  
Externalbootstrapcapacitors,C ,connectedtotheBOOSTꢀ  
B
2
pinssupplythegatedrivevoltagesforthetopsideMOSFETs.ꢀ  
CapacitorꢀC ꢀinꢀtheꢀFunctionalꢀDiagramꢀisꢀchargedꢀthoughꢀ  
B
Fault Conditions: Overvoltage Protection (Crowbar)  
externalꢀdiodeꢀD ꢀfromꢀINTV ꢀwhenꢀtheꢀSWꢀpinꢀisꢀlow.ꢀ  
B
CC  
Theꢀovervoltageꢀcrowbarꢀisꢀdesignedꢀtoꢀblowꢀaꢀsystemꢀ  
inputꢀfuseꢀwhenꢀtheꢀoutputꢀvoltageꢀofꢀtheꢀregulatorꢀrisesꢀ  
muchhigherthannominallevels.Thecrowbarcauseshugeꢀ  
currentsꢀtoꢀflow,ꢀthatꢀblowꢀtheꢀfuseꢀtoꢀprotectꢀagainstꢀaꢀ  
shortedꢀtopꢀMOSFETꢀifꢀtheꢀshortꢀoccursꢀwhileꢀtheꢀcontrol-  
lerꢀisꢀoperating.  
WhenꢀoneꢀofꢀtheꢀtopsideꢀMOSFETsꢀisꢀtoꢀbeꢀturnedꢀon,ꢀtheꢀ  
driverꢀplacesꢀtheꢀC ꢀvoltageꢀacrossꢀtheꢀgate-sourceꢀofꢀtheꢀ  
B
desiredMOSFET.ThisenhancestheMOSFETandturnsonꢀ  
theꢀtopsideꢀswitch.ꢀTheꢀswitchꢀnodeꢀvoltage,ꢀSW,ꢀrisesꢀtoꢀ  
V ꢀandꢀtheꢀBOOSTꢀpinꢀfollows.ꢀWithꢀtheꢀtopsideꢀMOSFETꢀ  
IN  
on,ꢀtheꢀboostꢀvoltageꢀisꢀaboveꢀtheꢀinputꢀsupply:ꢀV  
ꢀ=ꢀ  
BOOST  
B
V ꢀ+ꢀV  
.ꢀTheꢀvalueꢀofꢀtheꢀboostꢀcapacitor,ꢀC ,ꢀneedsꢀ  
IN  
INTVCC  
Aꢀcomparatorꢀmonitorsꢀtheꢀoutputꢀforꢀovervoltageꢀcondi-  
tions.Thecomparatordetectsfaultsgreaterthan10%ꢀ  
aboveꢀtheꢀnominalꢀoutputꢀvoltage.ꢀWhenꢀthisꢀconditionꢀ  
isꢀsensed,ꢀtheꢀtopꢀMOSFETꢀisꢀturnedꢀoffꢀandꢀtheꢀbottomꢀ  
MOSFETꢀisꢀturnedꢀonꢀuntilꢀtheꢀovervoltageꢀconditionꢀisꢀ  
cleared.ThebottomMOSFETremainsoncontinuouslyꢀ  
forꢀasꢀlongꢀasꢀtheꢀovervoltageꢀconditionꢀpersists;ꢀifꢀV  
returnstoasafelevel,normaloperationautomaticallyꢀ  
resumes.ꢀ  
toꢀbeꢀ100ꢀtimesꢀthatꢀofꢀtheꢀtotalꢀinputꢀcapacitanceꢀofꢀtheꢀ  
topsideMOSFET(s).Thereversebreakdownoftheexternalꢀ  
SchottkyꢀdiodeꢀmustꢀbeꢀgreaterꢀthanꢀV  
.ꢀ  
IN(MAX)  
Whenꢀadjustingꢀtheꢀgateꢀdriveꢀlevel,ꢀtheꢀfinalꢀarbiterꢀisꢀtheꢀ  
totalꢀinputꢀcurrentꢀforꢀtheꢀregulator.ꢀIfꢀaꢀchangeꢀisꢀmadeꢀ  
andꢀtheꢀinputꢀcurrentꢀdecreases,ꢀthenꢀtheꢀefficiencyꢀhasꢀ  
improved.Ifthereisnochangeininputcurrent,thenthereꢀ  
isꢀnoꢀchangeꢀinꢀefficiency.  
OUT  
AshortedtopMOSFETwillresultinahighcurrentconditionꢀ  
whichꢀwillꢀopenꢀtheꢀsystemꢀfuse.ꢀTheꢀswitchingꢀregulatorꢀ  
Fault Conditions: Current Limit and Current Foldback  
TheLTC3857-1includescurrentfoldbacktohelplimitloadꢀ willꢀregulateꢀproperlyꢀwithꢀaꢀleakyꢀtopꢀMOSFETꢀbyꢀalteringꢀ  
currentwhentheoutputisshortedtoground.Iftheoutputꢀ theꢀdutyꢀcycleꢀtoꢀaccommodateꢀtheꢀleakage.  
38571fa  
ꢁꢁ  
LTC3857-1  
applicaTions inForMaTion  
Phase-Locked Loop and Frequency Synchronization  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
TheꢀLTC3857-1ꢀhasꢀanꢀinternalꢀphase-lockedꢀloopꢀ(PLL)ꢀ  
comprisedꢀofꢀaꢀphaseꢀfrequencyꢀdetector,ꢀaꢀlowpassꢀfilter,ꢀ  
andꢀaꢀvoltage-controlledꢀoscillatorꢀ(VCO).ꢀThisꢀallowsꢀtheꢀ  
turn-onꢀofꢀtheꢀtopꢀMOSFETꢀofꢀcontrollerꢀ1ꢀtoꢀbeꢀlockedꢀtoꢀ  
theꢀrisingꢀedgeꢀofꢀanꢀexternalꢀclockꢀsignalꢀappliedꢀtoꢀtheꢀ  
PLLIN/MODEpin.Theturn-onofcontroller2’stopMOSFETꢀ  
isꢀthusꢀ180ꢀdegreesꢀoutꢀofꢀphaseꢀwithꢀtheꢀexternalꢀclock.ꢀ  
Theꢀphaseꢀdetectorꢀisꢀanꢀedgeꢀsensitiveꢀdigitalꢀtypeꢀthatꢀ  
providesꢀzeroꢀdegreesꢀphaseꢀshiftꢀbetweenꢀtheꢀexternalꢀ  
andꢀinternalꢀoscillators.ꢀThisꢀtypeꢀofꢀphaseꢀdetectorꢀdoesꢀ  
notꢀexhibitꢀfalseꢀlockꢀtoꢀharmonicsꢀofꢀtheꢀexternalꢀclock.  
15 25 35 45 55 65 75 85 95 105 115 125  
FREQ PIN RESISTOR (kΩ)  
38571 F10  
Figure 10. Relationship Between Oscillator Frequency  
and Resistor Value at the FREQ Pin  
Ifꢀtheꢀexternalꢀclockꢀfrequencyꢀisꢀgreaterꢀthanꢀtheꢀinternalꢀ  
oscillator’sfrequency,f ,thencurrentissourcedcontinu-  
OSC  
ouslyꢀfromꢀtheꢀphaseꢀdetectorꢀoutput,ꢀpullingꢀupꢀtheꢀVCOꢀ  
input.WhentheexternalclockfrequencyislessthanfOSC,ꢀ  
currentꢀisꢀsunkꢀcontinuously,ꢀpullingꢀdownꢀtheꢀVCOꢀinput.ꢀ  
Ifꢀtheꢀexternalꢀandꢀinternalꢀfrequenciesꢀareꢀtheꢀsameꢀbutꢀ  
exhibitꢀaꢀphaseꢀdifference,ꢀtheꢀcurrentꢀsourcesꢀturnꢀonꢀforꢀ  
anꢀamountꢀofꢀtimeꢀcorrespondingꢀtoꢀtheꢀphaseꢀdifference.ꢀ  
TheꢀvoltageꢀatꢀtheꢀVCOꢀinputꢀisꢀadjustedꢀuntilꢀtheꢀphaseꢀ  
andꢀfrequencyꢀofꢀtheꢀinternalꢀandꢀexternalꢀoscillatorsꢀareꢀ  
identical.ꢀAtꢀtheꢀstableꢀoperatingꢀpoint,ꢀtheꢀphaseꢀdetectorꢀ  
outputꢀisꢀhighꢀimpedanceꢀandꢀtheꢀinternalꢀfilterꢀcapacitor,ꢀ  
CLP,ꢀholdsꢀtheꢀvoltageꢀatꢀtheꢀVCOꢀinput.  
prebiasedꢀatꢀaꢀfrequencyꢀcorrespondingꢀtoꢀtheꢀfrequencyꢀ  
setꢀbyꢀtheꢀFREQꢀpin.ꢀOnceꢀprebiased,ꢀtheꢀPLLꢀonlyꢀneedsꢀ  
toadjustthefrequencyslightlytoachievephaselockꢀ  
andꢀsynchronization.ꢀAlthoughꢀitꢀisꢀnotꢀrequiredꢀthatꢀtheꢀ  
free-runningꢀfrequencyꢀbeꢀnearꢀexternalꢀclockꢀfrequency,ꢀ  
doingsowillpreventtheoperatingfrequencyfrompassingꢀ  
throughꢀaꢀlargeꢀrangeꢀofꢀfrequenciesꢀasꢀtheꢀPLLꢀlocks.  
Tableꢀ2ꢀsummarizesꢀtheꢀdifferentꢀstatesꢀinꢀwhichꢀtheꢀFREQꢀ  
pinꢀcanꢀbeꢀused.  
Table 2  
NoteꢀthatꢀtheꢀLTC3857-1ꢀcanꢀonlyꢀbeꢀsynchronizedꢀtoꢀanꢀ  
externalꢀ clockꢀ whoseꢀ frequencyꢀ isꢀ withinꢀ rangeꢀ ofꢀ theꢀ  
LTC3857-1’sꢀ internalꢀ VCO,ꢀ whichꢀ isꢀ nominallyꢀ 55kHzꢀ  
to1MHz.Thisisguaranteedtobebetween75kHzandꢀ  
850kHz.ꢀ  
FREQ PIN  
PLLIN/MODE PIN  
DCꢀVoltage  
FREQUENCY  
350kHz  
0V  
INTV  
DCꢀVoltage  
535kHz  
CC  
Resistor  
DCꢀVoltage  
50kHz–900kHz  
AnyꢀofꢀtheꢀAbove  
ExternalꢀClock  
Phaseꢀ–Lockedꢀtoꢀ  
ExternalꢀClock  
Typically,ꢀ theꢀ externalꢀ clockꢀ (onꢀ theꢀ PLLIN/MODEꢀ pin)ꢀ  
inputꢀhighꢀthresholdꢀisꢀ1.6V,ꢀwhileꢀtheꢀinputꢀlowꢀthresholdꢀ  
isꢀ1.1V.  
Minimum On-Time Considerations  
Minimumon-time,t ,isthesmallesttimedura-  
RapidꢀphaseꢀlockingꢀcanꢀbeꢀachievedꢀbyꢀusingꢀtheꢀFREQꢀ  
pinꢀ toꢀ setꢀ aꢀ free-runningꢀ frequencyꢀ nearꢀ theꢀ desiredꢀ  
synchronizationfrequency.TheVCO’sinputvoltageisꢀ  
ON(MIN)  
tionꢀthatꢀtheꢀLTC3857-1ꢀisꢀcapableꢀofꢀturningꢀonꢀtheꢀtopꢀ  
MOSFET.Itisdeterminedbyinternaltimingdelaysandtheꢀ  
38571fa  
ꢁꢂ  
3.ꢀ  
                                                
I RꢀlossesꢀareꢀpredictedꢀfromꢀtheꢀDCꢀresistancesꢀofꢀtheꢀ  
1.ꢀ  
        
TheꢀV ꢀcurrentꢀisꢀtheꢀDCꢀinputꢀsupplyꢀcurrentꢀgivenꢀ  
gateꢀchargeꢀrequiredꢀtoꢀturnꢀonꢀtheꢀtopꢀMOSFET.ꢀLowꢀdutyꢀ 2.ꢀ  
cycleꢀapplicationsꢀmayꢀapproachꢀthisꢀminimumꢀon-timeꢀ  
limitꢀandꢀcareꢀshouldꢀbeꢀtakenꢀtoꢀensureꢀthat  
                                                
INTV ꢀcurrentꢀisꢀtheꢀsumꢀofꢀtheꢀMOSFETꢀdriverꢀandꢀ  
LTC3857-1  
applicaTions inForMaTion  
CC  
controlcurrents.TheMOSFETdrivercurrentresultsꢀ  
fromꢀ switchingꢀ theꢀ gateꢀ capacitanceꢀ ofꢀ theꢀ powerꢀ  
MOSFETs.ꢀEachꢀtimeꢀaꢀMOSFETꢀgateꢀisꢀswitchedꢀfromꢀ  
lowꢀtoꢀhighꢀtoꢀlowꢀagain,ꢀaꢀpacketꢀofꢀcharge,ꢀdQ,ꢀmovesꢀ  
VOUT  
tON(MIN)  
<
V
f
IN
( )  
fromꢀINTV ꢀtoꢀground.ꢀTheꢀresultingꢀdQ/dtꢀisꢀaꢀcurrentꢀ  
CC  
outofINTV thatistypicallymuchlargerthantheꢀ  
CC  
Ifꢀtheꢀdutyꢀcycleꢀfallsꢀbelowꢀwhatꢀcanꢀbeꢀaccommodatedꢀ  
byꢀtheꢀminimumꢀon-time,ꢀtheꢀcontrollerꢀwillꢀbeginꢀtoꢀskipꢀ  
cycles.ꢀTheꢀoutputꢀvoltageꢀwillꢀcontinueꢀtoꢀbeꢀregulated,ꢀ  
butꢀtheꢀrippleꢀvoltageꢀandꢀcurrentꢀwillꢀincrease.  
controlꢀcircuitꢀcurrent.ꢀInꢀcontinuousꢀmode,ꢀI  
GATECHG  
=ꢀf(Q ꢀ+ꢀQ ),ꢀwhereꢀQ ꢀandꢀQ ꢀareꢀtheꢀgateꢀchargesꢀofꢀ  
T
B
T
B
theꢀtopsideꢀandꢀbottomꢀsideꢀMOSFETs.  
ꢀ SupplyingINTV fromanoutput-derivedpowersourceꢀ  
CC  
Theminimumon-timefortheLTC3857-1isapproximatelyꢀ  
95ns.ꢀHowever,ꢀasꢀtheꢀpeakꢀsenseꢀvoltageꢀdecreasesꢀtheꢀ  
minimumꢀon-timeꢀgraduallyꢀincreasesꢀupꢀtoꢀaboutꢀ130ns.ꢀ  
Thisꢀisꢀofꢀparticularꢀconcernꢀinꢀforcedꢀcontinuousꢀapplica-  
tionswithlowripplecurrentatlightloads.Ifthedutycycleꢀ  
dropsꢀbelowꢀtheꢀminimumꢀon-timeꢀlimitꢀinꢀthisꢀsituation,ꢀ  
aꢀsignificantꢀamountꢀofꢀcycleꢀskippingꢀcanꢀoccurꢀwithꢀcor-  
respondinglyꢀlargerꢀcurrentꢀandꢀvoltageꢀripple.  
throughꢀ EXTV ꢀ willꢀ scaleꢀ theꢀ V ꢀ currentꢀ requiredꢀ  
CC  
IN  
forꢀtheꢀdriverꢀandꢀcontrolꢀcircuitsꢀbyꢀaꢀfactorꢀofꢀ(Dutyꢀ  
Cycle)/(Efficiency).Forexample,ina20Vto5Vapplica-  
tion,ꢀ10mAꢀofꢀINTV ꢀcurrentꢀresultsꢀinꢀapproximatelyꢀ  
CC  
2.5mAꢀofꢀV ꢀcurrent.ꢀThisꢀreducesꢀtheꢀmidcurrentꢀlossꢀ  
IN  
fromꢀ10%ꢀorꢀmoreꢀ(ifꢀtheꢀdriverꢀwasꢀpoweredꢀdirectlyꢀ  
fromꢀV )ꢀtoꢀonlyꢀaꢀfewꢀpercent.  
IN  
2
fuseꢀ(ifꢀused),ꢀMOSFET,ꢀinductor,ꢀcurrentꢀsenseꢀresis-  
tor,ꢀandꢀinputꢀandꢀoutputꢀcapacitorꢀESR.ꢀInꢀcontinuousꢀ  
modeꢀtheꢀaverageꢀoutputꢀcurrentꢀflowsꢀthroughꢀLꢀandꢀ  
Efficiency Considerations  
Theꢀpercentꢀefficiencyꢀofꢀaꢀswitchingꢀregulatorꢀisꢀequalꢀtoꢀ  
theꢀoutputꢀpowerꢀdividedꢀbyꢀtheꢀinputꢀpowerꢀtimesꢀ100%.ꢀ  
Itꢀisꢀoftenꢀusefulꢀtoꢀanalyzeꢀindividualꢀlossesꢀtoꢀdetermineꢀ  
whatꢀisꢀlimitingꢀtheꢀefficiencyꢀandꢀwhichꢀchangeꢀwouldꢀ  
producethemostimprovement.Percentefficiencycanꢀ  
beꢀexpressedꢀas:  
R
,ꢀbutꢀisꢀchoppedꢀbetweenꢀtheꢀtopsideꢀMOSFETꢀ  
SENSE  
andthesynchronousMOSFET.IfthetwoMOSFETshaveꢀ  
approximatelyꢀtheꢀsameꢀR  
,ꢀthenꢀtheꢀresistanceꢀ  
DS(ON)  
ofꢀoneꢀMOSFETꢀcanꢀsimplyꢀbeꢀsummedꢀwithꢀtheꢀresis-  
2
tancesꢀofꢀL,ꢀR  
ꢀandꢀESRꢀtoꢀobtainꢀI Rꢀlosses.ꢀForꢀ  
DS(ON)  
SENSE  
example,ꢀifꢀeachꢀR  
ꢀ=ꢀ30mΩ,ꢀR ꢀ=ꢀ50mΩ,ꢀR  
ꢀ %Efficiencyꢀ=ꢀ100%ꢀ–ꢀ(L1ꢀ+ꢀL2ꢀ+ꢀL3ꢀ+ꢀ...)  
L
SENSE  
=10mΩandR ꢀ=40mΩ(sumofbothinputandꢀ  
ESR  
whereꢀL1,ꢀL2,ꢀetc.ꢀareꢀtheꢀindividualꢀlossesꢀasꢀaꢀpercent-  
ageꢀofꢀinputꢀpower.  
outputcapacitancelosses),thenthetotalresistanceꢀ  
isꢀ130mΩ.ꢀThisꢀresultsꢀinꢀlossesꢀrangingꢀfromꢀ3%ꢀtoꢀ  
13%ꢀasꢀtheꢀoutputꢀcurrentꢀincreasesꢀfromꢀ1Aꢀtoꢀ5Aꢀforꢀ  
aꢀ5Vꢀoutput,ꢀorꢀaꢀ4%ꢀtoꢀ20%ꢀlossꢀforꢀaꢀ3.3Vꢀoutput.ꢀ  
Althoughꢀallꢀdissipativeꢀelementsꢀinꢀtheꢀcircuitꢀproduceꢀ  
losses,ꢀfourꢀmainꢀsourcesꢀusuallyꢀaccountꢀforꢀmostꢀofꢀtheꢀ  
lossesꢀinꢀLTC3857-1ꢀcircuits:ꢀ1)ꢀICꢀVINꢀcurrent,ꢀ2)ꢀINTVCCꢀ  
regulatorꢀ current,ꢀ 3)ꢀ I2Rꢀ losses,ꢀ 4)ꢀ topsideꢀ MOSFETꢀ  
EfficiencyꢀvariesꢀasꢀtheꢀinverseꢀsquareꢀofꢀV ꢀforꢀtheꢀ  
OUT  
sameexternalcomponentsandoutputpowerlevel.Theꢀ  
combinedꢀeffectsꢀofꢀincreasinglyꢀlowerꢀoutputꢀvoltagesꢀ  
andhighercurrentsrequiredbyhighperformancedigitalꢀ  
systemsisnotdoublingbutquadruplingtheimportanceꢀ  
ofꢀlossꢀtermsꢀinꢀtheꢀswitchingꢀregulatorꢀsystem!  
transitionꢀlosses  
.
IN  
inꢀtheꢀElectricalꢀCharacteristicsꢀtable,ꢀwhichꢀexcludesꢀ  
MOSFETꢀdriverꢀandꢀcontrolꢀcurrents.ꢀV ꢀcurrentꢀtypi-  
callyꢀresultsꢀinꢀaꢀsmallꢀ(<0.1%)ꢀloss.  
IN  
38571fa  
ꢁꢃ  
        
LTC3857-1  
applicaTions inForMaTion  
4.ꢀ  
TransitionꢀlossesꢀapplyꢀonlyꢀtoꢀtheꢀtopsideꢀMOSFET(s),ꢀ  
canꢀalsoꢀbeꢀestimatedꢀbyꢀexaminingꢀtheꢀriseꢀtimeꢀatꢀtheꢀ  
pin.TheITHexternalcomponentsshowninFigure13ꢀ  
circuitꢀwillꢀprovideꢀanꢀadequateꢀstartingꢀpointꢀforꢀmostꢀ  
applications.  
andbecomesignificantonlywhenoperatingathighꢀ  
inputꢀ voltagesꢀ (t  
ypicallyꢀ 15Vꢀ orꢀ greater).ꢀ Transitionꢀ  
lossesꢀcanꢀbeꢀestimatedꢀfrom:  
ꢀ ꢀ TransitionꢀLossꢀ=ꢀ(1.7)ꢀ•ꢀV ꢀ•ꢀ2ꢀ•ꢀI  
ꢀ•ꢀC ꢀ•ꢀf  
RSS  
TheI ꢀseriesR -C ltersetsthedominantpole-zeroꢀ  
IN  
O(MAX)  
TH  
C
C
loopꢀcompensation.ꢀTheꢀvaluesꢀcanꢀbeꢀmodifiedꢀslightlyꢀ  
(fromꢀ0.5ꢀtoꢀ2ꢀtimesꢀtheirꢀsuggestedꢀvalues)ꢀtoꢀoptimizeꢀ  
transientꢀresponseꢀonceꢀtheꢀfinalꢀPCꢀlayoutꢀisꢀdoneꢀandꢀ  
theꢀparticularꢀoutputꢀcapacitorꢀtypeꢀandꢀvalueꢀhaveꢀbeenꢀ  
determined.Theoutputcapacitorsneedtobeselectedꢀ  
becauseꢀtheꢀvariousꢀtypesꢀandꢀvaluesꢀdetermineꢀtheꢀloopꢀ  
gainꢀandꢀphase.ꢀAnꢀoutputꢀcurrentꢀpulseꢀofꢀ20%ꢀtoꢀ80%ꢀ  
ofꢀfull-loadꢀcurrentꢀhavingꢀaꢀriseꢀtimeꢀofꢀ1µsꢀtoꢀ10µsꢀwillꢀ  
ꢀ Otherꢀhiddenꢀlossesꢀsuchꢀasꢀcopperꢀtraceꢀandꢀinternalꢀ  
batteryꢀresistancesꢀcanꢀaccountꢀforꢀanꢀadditionalꢀ5%ꢀ  
toꢀ10%ꢀefficiencyꢀdegradationꢀinꢀportableꢀsystems.ꢀItꢀ  
isꢀveryꢀimportantꢀtoꢀincludeꢀtheseꢀsystemꢀlevelꢀlossesꢀ  
duringꢀtheꢀdesignꢀphase.ꢀTheꢀinternalꢀbatteryꢀandꢀfuseꢀ  
resistancelossescanbeminimizedbymakingsurethatꢀ  
C ꢀhasꢀadequateꢀchargeꢀstorageꢀandꢀveryꢀlowꢀESRꢀatꢀ  
IN  
theswitchingfrequency.A25Wsupplywilltypicallyꢀ  
requireꢀ aꢀ minimumꢀ ofꢀ 20µFꢀ toꢀ 40µFꢀ ofꢀ capacitanceꢀ  
havingamaximumof20mΩto50mΩofESR.Theꢀ  
LTC3857-12-phasearchitecturetypicallyhalvesthisꢀ  
inputcapacitancerequirementovercompetingsolu-  
tions.OtherlossesincludingSchottkyconductionlossesꢀ  
duringdead-timeandinductorcorelossesgenerallyꢀ  
accountꢀforꢀlessꢀthanꢀ2%ꢀtotalꢀadditionalꢀloss.  
produceꢀoutputꢀvoltageꢀandꢀI ꢀpinꢀwaveformsꢀthatꢀwillꢀ  
TH  
giveꢀaꢀsenseꢀofꢀtheꢀoverallꢀloopꢀstabilityꢀwithoutꢀbreakingꢀ  
theꢀfeedbackꢀloop.ꢀ  
Placingꢀ aꢀ resistiveꢀ loadꢀ andꢀ aꢀ powerꢀ MOSFETꢀ directlyꢀ  
acrossꢀtheꢀoutputꢀcapacitorꢀandꢀdrivingꢀtheꢀgateꢀwithꢀanꢀ  
appropriateꢀsignalꢀgeneratorꢀisꢀaꢀpracticalꢀwayꢀtoꢀproduceꢀ  
aꢀrealisticꢀloadꢀstepꢀcondition.ꢀTheꢀinitialꢀoutputꢀvoltageꢀ  
stepꢀresultingꢀfromꢀtheꢀstepꢀchangeꢀinꢀoutputꢀcurrentꢀmayꢀ  
notꢀbeꢀwithinꢀtheꢀbandwidthꢀofꢀtheꢀfeedbackꢀloop,ꢀsoꢀthisꢀ  
signalꢀcannotꢀbeꢀusedꢀtoꢀdetermineꢀphaseꢀmargin.ꢀThisꢀ  
Checking Transient Response  
Theꢀregulatorꢀloopꢀresponseꢀcanꢀbeꢀcheckedꢀbyꢀlookingꢀatꢀ  
theꢀloadꢀcurrentꢀtransientꢀresponse.ꢀSwitchingꢀregulatorsꢀ  
takeꢀseveralꢀcyclesꢀtoꢀrespondꢀtoꢀaꢀstepꢀinꢀDCꢀ(resistive)ꢀ  
loadcurrent.Whenaloadstepoccurs,VOUTshiftsbyꢀ  
anꢀamountꢀequalꢀtoꢀILOADꢀ(ESR),ꢀwhereꢀESRꢀisꢀtheꢀef-  
fectiveꢀseriesꢀresistanceꢀofꢀCOUT.ꢀILOADꢀalsoꢀbeginsꢀtoꢀ  
chargeꢀorꢀdischargeꢀCOUTꢀgeneratingꢀtheꢀfeedbackꢀerrorꢀ  
signalthatforcestheregulatortoadapttothecurrentꢀ  
changeꢀandꢀreturnꢀVOUTꢀtoꢀitsꢀsteady-stateꢀvalue.ꢀDuringꢀ  
thisꢀrecoveryꢀtimeꢀVOUTꢀcanꢀbeꢀmonitoredꢀforꢀexcessiveꢀ  
overshootorꢀ ringing,ꢀ whichꢀ wouldindicateꢀ aꢀ stabilityꢀ  
problem.ꢀOPTI-LOOPꢀcompensationꢀallowsꢀtheꢀtransientꢀ  
responsetobeoptimizedoverawiderangeofoutputꢀ  
capacitanceꢀandꢀESRꢀvalues.ꢀThe availability of the ITH pin  
not only allows optimization of control loop behavior, but  
it also provides a DC coupled and AC filtered closed-loop  
response test point. The DC step, rise time and settling  
at this test point truly reflects the closed-loop response.ꢀ  
Assumingꢀaꢀpredominantlyꢀsecondꢀorderꢀsystem,ꢀphaseꢀ  
marginand/ordampingfactorcanbeestimatedusingtheꢀ  
percentageꢀofꢀovershootꢀseenꢀatꢀthisꢀpin.ꢀTheꢀbandwidthꢀ  
isꢀwhyꢀitꢀisꢀbetterꢀtoꢀlookꢀatꢀtheꢀI ꢀpinꢀsignalꢀwhichꢀisꢀinꢀ  
TH  
thefeedbackloopandisthelteredandcompensatedꢀ  
controlꢀloopꢀresponse.ꢀ  
TheꢀgainꢀofꢀtheꢀloopꢀwillꢀbeꢀincreasedꢀbyꢀincreasingꢀR ꢀ  
C
andꢀtheꢀbandwidthꢀofꢀtheꢀloopꢀwillꢀbeꢀincreasedꢀbyꢀde-  
creasingꢀC .ꢀIfꢀR ꢀisꢀincreasedꢀbyꢀtheꢀsameꢀfactorꢀthatꢀC ꢀ  
C
C
C
isꢀdecreased,ꢀtheꢀzeroꢀfrequencyꢀwillꢀbeꢀkeptꢀtheꢀsame,ꢀ  
therebykeepingthephaseshiftthesameinthemostꢀ  
criticalꢀfrequencyꢀrangeꢀofꢀtheꢀfeedbackꢀloop.ꢀTheꢀoutputꢀ  
voltageꢀsettlingꢀbehaviorꢀisꢀrelatedꢀtoꢀtheꢀstabilityꢀofꢀtheꢀ  
closed-loopsystemandwilldemonstratetheactualoverallꢀ  
supplyꢀperformance.  
Aꢀsecond,ꢀmoreꢀsevereꢀtransientꢀisꢀcausedꢀbyꢀswitchingꢀ  
inꢀloadsꢀwithꢀlargeꢀ(>1µF)ꢀsupplyꢀbypassꢀcapacitors.ꢀTheꢀ  
dischargedbypasscapacitorsareeffectivelyputinparallelꢀ  
withꢀC ,ꢀcausingꢀaꢀrapidꢀdropꢀinꢀV .ꢀNoꢀregulatorꢀcanꢀ  
OUTꢀ  
OUTꢀ  
alterꢀitsꢀdeliveryꢀofꢀcurrentꢀquicklyꢀenoughꢀtoꢀpreventꢀthisꢀ  
suddenꢀstepꢀchangeꢀinꢀoutputꢀvoltageꢀifꢀtheꢀloadꢀswitchꢀ  
resistanceꢀisꢀlowꢀandꢀitꢀisꢀdrivenꢀquickly.ꢀIfꢀtheꢀratioꢀofꢀ  
38571fa  
ꢁꢄ  
LTC3857-1  
applicaTions inForMaTion  
C
ꢀtoꢀC ꢀisꢀgreaterꢀthanꢀ1:50,ꢀtheꢀswitchꢀriseꢀtimeꢀ  
ThepowerdissipationonthetopsideMOSFETcanbeeasilyꢀ  
estimated.ꢀChoosingꢀaꢀFairchildꢀFDS6982SꢀdualꢀMOSFETꢀ  
LOAD  
OUT  
shouldꢀbeꢀcontrolledꢀsoꢀthatꢀtheꢀloadꢀriseꢀtimeꢀisꢀlimitedꢀ  
toꢀapproximatelyꢀ25ꢀ•ꢀC .ꢀThusꢀaꢀ10µFꢀcapacitorꢀwouldꢀ  
resultsꢀin:ꢀR  
ꢀ=ꢀ0.035Ω/0.022Ω,ꢀC  
ꢀ=ꢀ215pF.ꢀAtꢀ  
LOAD  
DS(ON)  
MILLER  
requireꢀaꢀ250µsꢀriseꢀtime,ꢀlimitingꢀtheꢀchargingꢀcurrentꢀ  
toꢀaboutꢀ200mA.  
maximumꢀinputꢀvoltageꢀwithꢀT(estimated)ꢀ=ꢀ50°C:  
2   
3.3V  
22V  
PMAIN  
=
6A 1+ 0.005 50°C – 25°C  
(
)
(
)(  
)
Design Example  
2 6A  
Asꢀ aꢀ designꢀ exampleꢀ forꢀ oneꢀ channel,ꢀ assumeꢀ V ꢀ =ꢀ  
0.035Ω + 22V  
2.5215pF •  
IN  
(
) (  
)
1
(
)(  
)
2
12V(nominal),ꢀV ꢀ=ꢀ22Vꢀ(max),ꢀV ꢀ=ꢀ3.3V,ꢀI ꢀ=ꢀ6A,ꢀ  
IN  
OUT  
MAX  
1
V
ꢀ=ꢀ50mVꢀandꢀfꢀ=ꢀ350kHz.  
SENSE(MAX)  
+
350kHz = 433mW  
(
)
5V – 2.3V 2.3V  
Theinductancevalueischosenrstbasedona30%rippleꢀ  
currentꢀassumption.ꢀTheꢀhighestꢀvalueꢀofꢀrippleꢀcurrentꢀ  
occursꢀatꢀtheꢀmaximumꢀinputꢀvoltage.ꢀTieꢀtheꢀFREQꢀpinꢀ  
toꢀ GND,ꢀ generatingꢀ 350kHzꢀ operation.ꢀ Theꢀ minimumꢀ  
inductanceꢀforꢀ30%ꢀrippleꢀcurrentꢀis:  
Aꢀshort-circuitꢀtoꢀgroundꢀwillꢀresultꢀinꢀaꢀfoldedꢀbackꢀcur-  
rentꢀof:  
95ns 22V  
(
)
25mV  
0.0062  
1
ISC =  
= 3.9A  
3.9µH  
VOUT  
ƒ L  
VOUT  
IL(NOM)  
=
1–  
V
IN(NOM)  
withꢀaꢀtypicalꢀvalueꢀofꢀR  
ꢀandꢀδꢀ=ꢀ(0.005/°C)(25°C)ꢀ  
DS(ON)  
=0.125.Theresultingpowerdissipatedinthebottomꢀ  
A3.9µHinductorwillproduce29%ripplecurrent.Theꢀ  
peakꢀinductorꢀcurrentꢀwillꢀbeꢀtheꢀmaximumꢀDCꢀvalueꢀplusꢀ  
oneꢀhalfꢀtheꢀrippleꢀcurrent,ꢀorꢀ6.88A.ꢀIncreasingꢀtheꢀrippleꢀ  
currentꢀwillꢀalsoꢀhelpꢀensureꢀthatꢀtheꢀminimumꢀon-timeꢀ  
ofꢀ95nsꢀisꢀnotꢀviolated.ꢀTheꢀminimumꢀon-timeꢀoccursꢀatꢀ  
MOSFETꢀis:  
2
PSYNC = 3.9A 1.125 0.022Ω = 376mW  
(
) (  
)(  
)
whichꢀisꢀlessꢀthanꢀunderꢀfull-loadꢀconditions.  
maximumꢀV :  
IN  
C ꢀisꢀchosenꢀforꢀanꢀRMSꢀcurrentꢀratingꢀofꢀatꢀleastꢀ3Aꢀatꢀ  
IN  
VOUT  
IN(MAX)ƒ  
3.3V  
temperatureassumingonlythischannelison.C ꢀisꢀ  
OUT  
tON(MIN)  
=
=
= 429ns  
V
chosenꢀwithꢀanꢀESRꢀofꢀ0.02Ωꢀforꢀlowꢀoutputꢀripple.ꢀTheꢀ  
outputꢀrippleꢀinꢀcontinuousꢀmodeꢀwillꢀbeꢀhighestꢀatꢀtheꢀ  
maximumꢀinputꢀvoltage.ꢀTheꢀoutputꢀvoltageꢀrippleꢀdueꢀtoꢀ  
ESRꢀisꢀapproximately:  
22V 350kHz  
(
)
TheꢀequivalentꢀR  
ꢀresistorꢀvalueꢀcanꢀbeꢀcalculatedꢀbyꢀ  
SENSE  
usingꢀtheꢀminimumꢀvalueꢀforꢀtheꢀmaximumꢀcurrentꢀsenseꢀ  
thresholdꢀ(43mV):  
ꢀ V ꢀ=ꢀR ꢀ(I )ꢀ=ꢀ0.02Ω(1.75A)ꢀ=ꢀ35mV  
ORIPPLE ESR L P-P  
43mV  
6.88A  
RSENSE  
= 0.006Ω  
Choosingꢀ1%ꢀresistors:ꢀR ꢀ=ꢀ25kꢀandꢀR ꢀ=ꢀ80.6kꢀyieldsꢀ  
A
B
anꢀoutputꢀvoltageꢀofꢀ3.33V.  
38571fa  
ꢁꢅ  
1.ꢀ  
2.ꢀ  
        
AreꢀtheꢀtopꢀN-channelꢀMOSFETsꢀMTOP1ꢀandꢀMTOP2ꢀ  
locatedꢀwithinꢀ1cmꢀofꢀeachꢀotherꢀwithꢀaꢀcommonꢀdrainꢀ  
        
Areꢀtheꢀsignalꢀandꢀpowerꢀgroundsꢀkeptꢀseparate?ꢀTheꢀ  
combinedꢀICꢀsignalꢀgroundꢀpinꢀandꢀtheꢀgroundꢀreturnꢀ  
3.ꢀ  
        
DotheLTC3857-1V ꢀpins’resistivedividersconnecttoꢀ  
4.ꢀ  
5.ꢀ  
        
AretheSENSE andSENSE leadsroutedtogetherwithꢀ  
minimumPCtracespacing?Theltercapacitorbetweenꢀ  
        
IstheINTV decouplingcapacitorconnectedcloseꢀ  
CC  
6.ꢀ  
                                                
Keepꢀtheꢀswitchingꢀnodesꢀ(SW1,ꢀSW2),ꢀtopꢀgateꢀnodesꢀ  
(TG1,TG2),andboostnodes(BOOST1,BOOST2)awayꢀ  
fromꢀ sensitiveꢀ small-signalꢀ nodes,ꢀ especiallyꢀ fromꢀ  
theoppositeschannel’svoltageandcurrentsensingꢀ  
feedbackꢀpins.ꢀAllꢀofꢀtheseꢀnodesꢀhaveꢀveryꢀlargeꢀandꢀ  
fastꢀmovingꢀsignalsꢀandꢀthereforeꢀshouldꢀbeꢀkeptꢀonꢀ  
theꢀoutput sideꢀofꢀtheꢀLTC3857-1ꢀandꢀoccupyꢀminimumꢀ  
PCꢀtraceꢀarea.  
LTC3857-1  
applicaTions inForMaTion  
PC Board Layout Checklist  
Whenꢀlayingꢀoutꢀtheꢀprintedꢀcircuitꢀboard,ꢀtheꢀfollowingꢀ  
checklistꢀshouldꢀbeꢀusedꢀtoꢀensureꢀproperꢀoperationꢀofꢀ  
theꢀIC.ꢀTheseꢀitemsꢀareꢀalsoꢀillustratedꢀgraphicallyꢀinꢀtheꢀ  
layoutdiagramofFigure11.Figure12illustratesthecurrentꢀ  
waveformspresentinthevariousbranchesofthe2-phaseꢀ  
synchronousregulatorsoperatinginthecontinuousmode.ꢀ  
Checkꢀtheꢀfollowingꢀinꢀyourꢀlayout:  
7.Useamodifiedstargroundtechnique:alowimpedance,ꢀ  
largeꢀcopperꢀareaꢀcentralꢀgroundingꢀpointꢀonꢀtheꢀsameꢀ  
sideꢀofꢀtheꢀPCꢀboardꢀasꢀtheꢀinputꢀandꢀoutputꢀcapacitorsꢀ  
connectionatC ?Donotattempttosplittheinputꢀ  
IN  
withꢀtie-insꢀforꢀtheꢀbottomꢀofꢀtheꢀINTV ꢀdecouplingꢀ  
CC  
decouplingꢀforꢀtheꢀtwoꢀchannelsꢀasꢀitꢀcanꢀcauseꢀaꢀlargeꢀ  
resonantꢀloop.  
capacitor,ꢀtheꢀbottomꢀofꢀtheꢀvoltageꢀfeedbackꢀresistiveꢀ  
dividerꢀandꢀtheꢀSGNDꢀpinꢀofꢀtheꢀIC.  
PC Board Layout Debugging  
ofꢀC  
ꢀmustꢀreturnꢀtoꢀtheꢀcombinedꢀC ꢀ(–)ꢀter-  
INTVCC  
OUT  
Startꢀwithꢀoneꢀcontrollerꢀonꢀatꢀaꢀtime.ꢀItꢀisꢀhelpfulꢀtoꢀuseꢀ  
aꢀDC-50MHzꢀcurrentꢀprobeꢀtoꢀmonitorꢀtheꢀcurrentꢀinꢀtheꢀ  
inductorꢀ whileꢀ testingꢀ theꢀ circuit.ꢀ Monitorꢀ theꢀ outputꢀ  
switchingꢀnodeꢀ(SWꢀpin)ꢀtoꢀsynchronizeꢀtheꢀoscilloscopeꢀ  
totheinternaloscillatorandprobetheactualoutputvoltageꢀ  
asꢀwell.ꢀCheckꢀforꢀproperꢀperformanceꢀoverꢀtheꢀoperatingꢀ  
voltageꢀandꢀcurrentꢀrangeꢀexpectedꢀinꢀtheꢀapplication.ꢀTheꢀ  
frequencyofoperationshouldbemaintainedovertheinputꢀ  
voltageꢀrangeꢀdownꢀtoꢀdropoutꢀandꢀuntilꢀtheꢀoutputꢀloadꢀ  
dropsꢀbelowꢀtheꢀlowꢀcurrentꢀoperationꢀthreshold—typi-  
callyꢀ15%ꢀofꢀtheꢀmaximumꢀdesignedꢀcurrentꢀlevelꢀinꢀBurstꢀ  
Modeꢀoperation.  
minals.ꢀTheꢀpathꢀformedꢀbyꢀtheꢀtopꢀN-channelꢀMOSFET,ꢀ  
SchottkyꢀdiodeꢀandꢀtheꢀC ꢀcapacitorꢀshouldꢀhaveꢀshortꢀ  
IN  
leadsꢀandꢀPCꢀtraceꢀlengths.ꢀTheꢀoutputꢀcapacitorꢀ(–)ꢀ  
terminalsshouldbeconnectedascloseaspossibleꢀ  
toꢀtheꢀ(–)ꢀterminalsꢀofꢀtheꢀinputꢀcapacitorꢀbyꢀplacingꢀ  
theꢀcapacitorsꢀnextꢀtoꢀeachꢀotherꢀandꢀawayꢀfromꢀtheꢀ  
Schottkyꢀloopꢀdescribedꢀabove.  
FB  
theꢀ(+)ꢀterminalsꢀofꢀC ?ꢀTheꢀresistiveꢀdividerꢀmustꢀbeꢀ  
OUT  
connectedꢀbetweenꢀtheꢀ(+)ꢀterminalꢀofꢀC ꢀandꢀsignalꢀ  
OUT  
ground.ꢀTheꢀfeedbackꢀresistorꢀconnectionsꢀshouldꢀnotꢀ  
beꢀalongꢀtheꢀhighꢀcurrentꢀinputꢀfeedsꢀfromꢀtheꢀinputꢀ  
capacitor(s).  
Thedutycyclepercentageshouldbemaintainedfromcycleꢀ  
tocycleinawell-designed,lownoisePCBimplementation.ꢀ  
Variationꢀinꢀtheꢀdutyꢀcycleꢀatꢀaꢀsubharmonicꢀrateꢀcanꢀsug-  
gestꢀnoiseꢀpickupꢀatꢀtheꢀcurrentꢀorꢀvoltageꢀsensingꢀinputsꢀ  
orꢀinadequateꢀloopꢀcompensation.ꢀOvercompensationꢀofꢀ  
theꢀloopꢀcanꢀbeꢀusedꢀtoꢀtameꢀaꢀpoorꢀPCꢀlayoutꢀifꢀregula-  
torꢀ bandwidthꢀ optimizationꢀ isꢀ notꢀ required.ꢀ Onlyꢀ afterꢀ  
eachꢀcontrollerꢀisꢀcheckedꢀforꢀitsꢀindividualꢀperformanceꢀ  
shouldꢀbothꢀcontrollersꢀbeꢀturnedꢀonꢀatꢀtheꢀsameꢀtime.ꢀ  
Aparticularlydifficultregionofoperationiswhenoneꢀ  
controllerꢀchannelꢀisꢀnearingꢀitsꢀcurrentꢀcomparatorꢀtripꢀ  
pointwhentheotherchannelisturningonitstopMOSFET.ꢀ  
Thisꢀoccursꢀaroundꢀ50%ꢀdutyꢀcycleꢀonꢀeitherꢀchannelꢀdueꢀ  
toꢀtheꢀphasingꢀofꢀtheꢀinternalꢀclocksꢀandꢀmayꢀcauseꢀminorꢀ  
dutyꢀcycleꢀjitter.  
+
+
SENSE ꢀandꢀSENSE ꢀshouldꢀbeꢀasꢀcloseꢀasꢀpossibleꢀ  
toꢀtheꢀIC.ꢀEnsureꢀaccurateꢀcurrentꢀsensingꢀwithꢀKelvinꢀ  
connectionsꢀatꢀtheꢀSENSEꢀresistor.  
toꢀtheꢀIC,ꢀbetweenꢀtheꢀINTV ꢀandꢀtheꢀpowerꢀgroundꢀ  
CC  
pins?ꢀThisꢀcapacitorꢀcarriesꢀtheꢀMOSFETꢀdrivers’ꢀcur-  
rentꢀpeaks.ꢀAnꢀadditionalꢀ1µFꢀceramicꢀcapacitorꢀplacedꢀ  
immediatelynexttotheINTV andPGNDpinscanhelpꢀ  
CC  
improveꢀnoiseꢀperformanceꢀsubstantially.  
38571fa  
ꢁꢆ  
LTC3857-1  
applicaTions inForMaTion  
I
TRACK/SS1  
PGOOD1  
TG1  
R
PU1  
TH1  
V
PULL-UP  
V
PGOOD1  
FB1  
L1  
R
SENSE  
+
V
SENSE1  
OUT1  
SW1  
SENSE1  
LTC3857-1  
BOOST1  
C
B1  
M1  
M2  
D1  
BG1  
FREQ  
R
IN  
C
C
OUT1  
V
f
IN  
1µF  
IN  
PLLIN/MODE  
RUN1  
+
C
CERAMIC  
VIN  
PGND  
GND  
RUN2  
+
EXTV  
CC  
CC  
C
+
IN  
V
C
SGND  
IN  
INTVCC  
INTV  
SENSE2  
OUT2  
1µF  
CERAMIC  
+
BG2  
SENSE2  
M4  
L2  
M3  
D2  
BOOST2  
V
FB2  
TH2  
C
B2  
SW2  
TG2  
I
R
SENSE  
V
OUT2  
TRACK/SS2  
38571 F11  
Figure 11. Recommended Printed Circuit Layout Diagram  
Reduceꢀ V ꢀ fromꢀ itsꢀ nominalꢀ levelꢀ toꢀ verifyꢀ operationꢀ  
andpossiblyBGconnectionsandthesensitivevoltageꢀ  
andꢀcurrentꢀpins.ꢀTheꢀcapacitorꢀplacedꢀacrossꢀtheꢀcurrentꢀ  
sensingꢀpinsꢀneedsꢀtoꢀbeꢀplacedꢀimmediatelyꢀadjacentꢀtoꢀ  
theꢀpinsꢀofꢀtheꢀIC.ꢀThisꢀcapacitorꢀhelpsꢀtoꢀminimizeꢀtheꢀ  
effectsꢀofꢀdifferentialꢀnoiseꢀinjectionꢀdueꢀtoꢀhighꢀfrequencyꢀ  
capacitiveꢀ coupling.ꢀ Ifꢀ problemsꢀ areꢀ encounteredꢀ withꢀ  
highꢀcurrentꢀoutputꢀloadingꢀatꢀlowerꢀinputꢀvoltages,ꢀlookꢀ  
IN  
oftheregulatorindropout.Checktheoperationoftheꢀ  
undervoltageꢀlockoutꢀcircuitꢀbyꢀfurtherꢀloweringꢀV ꢀwhileꢀ  
IN  
monitoringꢀtheꢀoutputsꢀtoꢀverifyꢀoperation.  
Investigatewhetheranyproblemsexistonlyathigherout-  
putꢀcurrentsꢀorꢀonlyꢀatꢀhigherꢀinputꢀvoltages.ꢀIfꢀproblemsꢀ  
coincidewithhighinputvoltagesandlowoutputcurrents,ꢀ  
lookꢀforꢀcapacitiveꢀcouplingꢀbetweenꢀtheꢀBOOST,ꢀSW,ꢀTG,ꢀ  
forꢀinductiveꢀcouplingꢀbetweenꢀC ,ꢀSchottkyꢀandꢀtheꢀtopꢀ  
IN  
38571fa  
ꢁꢇ  
LTC3857-1  
applicaTions inForMaTion  
SW1  
L1  
R
SENSE1  
V
OUT1  
D1  
C
R
L1  
OUT1  
V
IN  
R
IN  
C
IN  
SW2  
L2  
R
SENSE2  
V
OUT2  
D2  
C
R
L2  
OUT2  
BOLD LINES INDICATE  
HIGH SWITCHING  
CURRENT. KEEP LINES  
TO A MINIMUM LENGTH.  
3857 F12  
Figure 12. Branch Current Waveforms  
Theꢀoutputꢀvoltageꢀunderꢀthisꢀimproperꢀhookupꢀwillꢀstillꢀ  
beꢀmaintainedꢀbutꢀtheꢀadvantagesꢀofꢀcurrentꢀmodeꢀcontrolꢀ  
willꢀnotꢀbeꢀrealized.ꢀCompensationꢀofꢀtheꢀvoltageꢀloopꢀwillꢀ  
beꢀ muchꢀ moreꢀ sensitiveꢀ toꢀ componentꢀ selection.ꢀ Thisꢀ  
behaviorꢀcanꢀbeꢀinvestigatedꢀbyꢀtemporarilyꢀshortingꢀoutꢀ  
theꢀcurrentꢀsensingꢀresistor—don’tꢀworry,ꢀtheꢀregulatorꢀ  
willꢀstillꢀmaintainꢀcontrolꢀofꢀtheꢀoutputꢀvoltage.  
MOSFETꢀcomponentsꢀtoꢀtheꢀsensitiveꢀcurrentꢀandꢀvoltageꢀ  
sensingꢀtraces.ꢀInꢀaddition,ꢀinvestigateꢀcommonꢀgroundꢀ  
pathꢀvoltageꢀpickupꢀbetweenꢀtheseꢀcomponentsꢀandꢀtheꢀ  
SGNDꢀpinꢀofꢀtheꢀIC.  
Anembarrassingproblem,whichcanbemissedinanꢀ  
otherwiseꢀproperlyꢀworkingꢀswitchingꢀregulator,ꢀresultsꢀ  
whenthecurrentsensingleadsarehookedupbackwards.ꢀ  
38571fa  
ꢁꢈ  
LTC3857-1  
Typical applicaTions  
R
B1  
215k  
LTC3857-1  
+
C
SENSE1  
F1  
INTV  
CC  
C1  
1nF  
15pF  
100k  
R
A1  
SENSE1  
PGOOD1  
BG1  
68.1k  
L1  
3.3µH  
MBOT1  
MTOP1  
V
FB1  
V
3.3V  
5A  
OUT1  
C
150pF  
ITH1A  
SW1  
R
C
C
SENSE1  
6mΩ  
OUT1  
B1  
BOOST1  
TG1  
150µF  
0.47µF  
R
15k  
SS1  
ITH1  
I
TH1  
D1  
D2  
C
820pF  
ITH1  
C
0.1µF  
V
IN  
V
IN  
9V TO 38V  
C
IN  
TRACK/SS1  
22µF  
INTV  
CC  
C
4.7µF  
INT  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
C
B2  
BOOST2  
0.47µF  
L2  
7.2µH  
R
SENSE2  
8mΩ  
C
0.1µF  
SS2  
V
8.5V  
3A  
OUT2  
SW2  
BG2  
TRACK/SS2  
C
C
680pF  
OUT2  
ITH2  
R
27k  
150µF  
ITH2  
I
TH2  
C
100pF  
C2  
ITH2A  
V
FB2  
R
A2  
+
SENSE2  
44.2k  
C
1nF  
F2  
39pF  
SENSE2  
R
B2  
422k  
38581 F12  
C
, C  
: SANYO 10TPD150M  
OUT1 OUT2  
D1, D2: CENTRAL SEMI CMDSH-4E  
L1: SUMIDA CDEP105-3R2M  
L2: SUMIDA CDEP105-7R2M  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
Figure 13. High Efficiency Dual 3.3V/8.5V Step-Down Converter  
38571fa  
ꢂ0  
LTC3857-1  
Typical applicaTions  
High Efficiency Dual 2.5V/3.3V Step-Down Converter  
R
B1  
144k  
LTC3857-1  
+
C
SENSE1  
INTV  
CC  
F1  
C1  
1nF  
22pF  
100k  
R
A1  
SENSE1  
PGOOD1  
BG1  
68.1k  
L1  
2.4µH  
MBOT1  
MTOP1  
V
FB1  
V
2.5V  
5A  
OUT1  
C
100pF  
ITH1A  
SW1  
R
C
C
SENSE1  
6mΩ  
OUT1  
B1  
BOOST1  
TG1  
150µF  
0.47µF  
R
22k  
ITH1  
I
TH1  
D1  
D2  
C
820pF  
ITH1  
C
SS1  
0.01µF  
V
IN  
V
IN  
4V TO 38V  
C
IN  
TRACK/SS1  
22µF  
INTV  
CC  
C
INT  
4.7µF  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
C
B2  
BOOST2  
0.47µF  
L2  
3.2µH  
R
SENSE2  
6mΩ  
C
0.01µF  
SS2  
V
3.3V  
5A  
OUT2  
SW2  
BG2  
TRACK/SS2  
C
C
820pF  
OUT2  
ITH2  
R
15k  
150µF  
ITH2  
I
TH2  
C
150pF  
C2  
ITH2A  
V
FB2  
R
A2  
+
SENSE2  
68.1k  
C
1nF  
F2  
15pF  
SENSE2  
R
B2  
215k  
38571 TA02  
C
, C  
: SANYO 4TPE150M  
OUT1 OUT2  
D1, D2: CENTRAL SEMI CMDSH-4E  
L1: SUMIDA CDEP105-2R5  
L2: SUMIDA CDEP105-3R2M  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
38571fa  
ꢂꢀ  
LTC3857-1  
Typical applicaTions  
High Efficiency Dual 12V/5V Step-Down Converter  
R
B1  
475k  
+
C
SENSE1  
INTV  
F1  
CC  
C1  
1nF  
33pF  
100k  
R
A1  
SENSE1  
PGOOD1  
BG1  
34k  
L1  
8.8µH  
MBOT1  
MTOP1  
V
FB1  
V
12V  
3A  
OUT1  
C
100pF  
ITH1A  
SW1  
R
C
C
SENSE1  
9mΩ  
OUT1  
B1  
BOOST1  
TG1  
47µF  
0.47µF  
R
ITH1  
10k  
I
TH1  
D1  
D2  
C
SS1  
0.01µF  
LTC3857-1  
C
680pF  
ITH1  
V
IN  
V
TRACK/SS1  
IN  
12.5V TO 38V  
C
IN  
INTV  
CC  
C
22µF  
INT  
4.7µF  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
60k  
0.47µF  
L2  
4.3µH  
R
SENSE2  
6mΩ  
C
0.01µF  
SS2  
V
OUT2  
5V  
SW2  
BG2  
TRACK/SS2  
5.5A  
C
C
680pF  
OUT2  
ITH2  
R
17k  
150µF  
ITH2  
I
TH2  
C
100pF  
C2  
ITH2A  
V
FB2  
C
: KEMET T525D476M016E035  
: SANYO 10TPD150M  
R
OUT1  
OUT2  
A2  
+
SENSE2  
C
75k  
L1: SUMIDA CDEP105-5R7M  
L2: SUMIDA CDEP105-4R3M  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
C
1nF  
F2  
15pF  
SENSE2  
R
B2  
392k  
38571 TA03  
38571fa  
ꢂꢁ  
LTC3857-1  
Typical applicaTions  
High Efficiency Dual 24V/5V Step-Down Converter  
R
B1  
487k  
+
C
SENSE1  
INTV  
F1  
CC  
C1  
1nF  
18pF  
100k  
R
A1  
SENSE1  
PGOOD1  
BG1  
16.9k  
L1  
22µH  
MBOT1  
MTOP1  
V
FB1  
V
24V  
1A  
OUT1  
C
100pF  
ITH1A  
SW1  
R
C
C
SENSE1  
OUT1  
B1  
BOOST1  
TG1  
25mΩ  
22µF  
25V  
s2  
0.47µF  
R
46k  
ITH1  
I
TH1  
D1  
D2  
C
0.01µF  
SS1  
CERAMIC  
LTC3857-1  
C
680pF  
ITH1  
V
IN  
V
TRACK/SS1  
IN  
28V TO 38V  
C
IN  
INTV  
CC  
C
4.7µF  
22µF  
INT  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
60k  
0.47µF  
L2  
4.3µH  
R
SENSE2  
6mΩ  
C
0.01µF  
SS2  
V
5V  
5A  
OUT2  
SW2  
BG2  
TRACK/SS2  
C
C
680pF  
OUT2  
ITH2  
R
17k  
150µF  
ITH2  
I
TH2  
C
100pF  
C2  
ITH2A  
V
FB2  
R
A2  
+
SENSE2  
75k  
C
: SANYO 10TPD150M  
OUT2  
L1: SUMIDA CDR7D43MN  
C
1nF  
F2  
15pF  
L2: SUMIDA CDEP105-4R3M  
SENSE2  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
R
B2  
392k  
38571 TA04  
38571fa  
ꢂꢂ  
LTC3857-1  
Typical applicaTions  
High Efficiency Dual 1V/1.2V Step-Down Converter  
R
B1  
28.7k  
+
C
SENSE1  
F1  
INTV  
CC  
C1  
1nF  
56pF  
100k  
R
A1  
SENSE1  
PGOOD1  
BG1  
115k  
L1  
0.47µH  
MBOT1  
MTOP1  
V
FB1  
V
OUT1  
C
220pF  
ITH1A  
1V  
SW1  
C
R
OUT1 8A  
C
SENSE1  
B1  
BOOST1  
TG1  
220µF  
3.5mΩ  
0.47µF  
R
ITH1  
3.93k  
s2  
I
TH1  
D1  
D2  
LTC3857-1  
C
1000pF  
ITH1  
C
SS1  
0.01µF  
V
IN  
V
IN  
12V  
C
IN  
TRACK/SS1  
22µF  
INTV  
CC  
C
INT  
4.7µF  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
60k  
0.47µF  
L2  
0.47µH  
R
SENSE2  
3.5mΩ  
C
0.01µF  
SS2  
V
OUT2  
1.2V  
SW2  
BG2  
TRACK/SS2  
C
OUT2 8A  
C
1000pF  
ITH2  
220µF  
R
3.43k  
ITH2  
s2  
I
TH2  
C
220pF  
C2  
ITH2A  
V
FB2  
R
C
, C  
: SANYO 2R5TPE220M  
A2  
OUT1 OUT2  
+
SENSE2  
115k  
L1: SUMIDA CDEP105-3R2M  
L2: SUMIDA CDEP105-7R2M  
MTOP1, MTOP2: RENESAS RJK0305  
MBOT1, MBOT2: RENESAS RJK0328  
C
1nF  
F2  
56pF  
SENSE2  
R
B2  
38571 TA05  
57.6k  
38571fa  
ꢂꢃ  
LTC3857-1  
Typical applicaTions  
High Efficiency Dual 1V/1.2V Step-Down Converter with Inductor DCR Current Sensing  
R
R
S1  
1.18k  
B1  
28.7k  
+
C
SENSE1  
F1  
INTV  
CC  
C1  
0.1µF  
56pF  
100k  
R
A1  
SENSE1  
PGOOD1  
115k  
L1  
0.47µH  
MBOT1  
MTOP1  
V
BG1  
SW1  
FB1  
V
OUT1  
C
200pF  
ITH1A  
1V  
C
OUT1 8A  
C
B1  
BOOST1  
TG1  
220µF  
0.47µF  
R
ITH1  
3.93k  
s2  
I
TH1  
D1  
D2  
LTC3857-1  
C
1000pF  
ITH1  
C
SS1  
0.01µF  
V
IN  
V
IN  
12V  
C
IN  
TRACK/SS1  
22µF  
INTV  
CC  
C
INT  
4.7µF  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
65k  
0.47µF  
L2  
0.47µH  
C
0.01µF  
SS2  
V
OUT2  
1.2V  
SW2  
BG2  
TRACK/SS2  
C
OUT2 8A  
C
1000pF  
ITH2  
220µF  
R
3.43k  
ITH2  
s2  
I
TH2  
C
220pF  
C2  
ITH2A  
V
FB2  
R
A2  
+
SENSE2  
115k  
C
, C  
: SANYO 2R5TPE220M  
OUT1 OUT2  
L1, L2: SUMIDA IHL ERR47M06  
MTOP1, MTOP2: RENESAS RJK0305  
MBOT1, MBOT2: RENESAS RJK0328  
C
0.1µF  
F2  
56pF  
SENSE2  
R
S2  
1.18k  
R
B2  
57.6k  
38571 TA06  
38571fa  
ꢂꢄ  
LTC3857-1  
package DescripTion  
GN Package  
28-Lead Plastic SSOP (Narrow .150 Inch)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1641)  
.386 – .393*  
(9.804 – 9.982)  
.045 p.005  
.033  
(0.838)  
REF  
28 27 26 25 24 23 22 21 20 19 18 17 1615  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 p.0015  
.0250 BSC  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
RECOMMENDED SOLDER PAD LAYOUT  
.015 p .004  
(0.38 p 0.10)  
.0532 – .0688  
(1.35 – 1.75)  
s 45o  
.004 – .0098  
(0.102 – 0.249)  
.0075 – .0098  
(0.19 – 0.25)  
0o – 8o TYP  
.016 – .050  
(0.406 – 1.270)  
.008 – .012  
.0250  
(0.635)  
BSC  
GN28 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
38571fa  
ꢂꢅ  
LTC3857-1  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
12/09 ChangeꢀtoꢀAbsoluteꢀMaximumꢀRatings  
ChangesꢀtoꢀElectricalꢀCharacteristics  
ChangeꢀtoꢀTypicalꢀPerformanceꢀCharacteristics  
ChangeꢀtoꢀPinꢀFunctions  
2
3,ꢀ4  
6
8,ꢀ9  
TextꢀChangesꢀtoꢀOperationꢀSection  
TextꢀChangesꢀtoꢀApplicationsꢀInformationꢀSection  
ChangeꢀtoꢀTableꢀ2  
11,ꢀ12,ꢀ13  
21,ꢀ22,ꢀ23,ꢀ26  
23  
28  
38  
ChangeꢀtoꢀFigureꢀ11  
ChangesꢀtoꢀRelatedꢀParts  
38571fa  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.ꢀ  
However,ꢀnoꢀresponsibilityꢀisꢀassumedꢀforꢀitsꢀuse.ꢀLinearꢀTechnologyꢀCorporationꢀmakesꢀnoꢀrepresenta-  
tionꢀthatꢀtheꢀinterconnectionꢀofꢀitsꢀcircuitsꢀasꢀdescribedꢀhereinꢀwillꢀnotꢀinfringeꢀonꢀexistingꢀpatentꢀrights.  
ꢂꢆ  
LTC3857-1  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC3858/LTC3858-1 LowꢀI ,ꢀDualꢀOutputꢀ2-PhaseꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ50kHzꢀtoꢀ900kHz,ꢀꢀ  
Q
DC/DCꢀControllerꢀwithꢀ99%ꢀDutyꢀCycle  
4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ24V,ꢀI ꢀ=ꢀ170µA,  
IN OUT Q  
LTC3868/LTC3868-1 LowꢀI ,ꢀDualꢀOutputꢀ2-PhaseꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ50kHzꢀtoꢀ900kHz,ꢀꢀ  
Q
DC/DCꢀControllerꢀwithꢀ99%ꢀDutyꢀCycle  
4Vꢀ≤ꢀV ꢀ≤ꢀ24V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ14V,ꢀI ꢀ=ꢀ170µA,  
IN OUT Q  
LTC3834/LTC3834-1 LowꢀI ,ꢀSynchronousꢀStep-DownꢀDC/DCꢀController  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ140kHzꢀtoꢀ650kHz,ꢀꢀ  
4Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ10V,ꢀI ꢀ=ꢀ30µA,  
Q
IN  
OUT  
Q
LTC3835/LTC3835-1 LowꢀI ,ꢀSynchronousꢀStep-DownꢀDC/DCꢀController  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ140kHzꢀtoꢀ650kHz,ꢀ  
4Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ10V,ꢀI ꢀ=ꢀ80µA,  
Q
IN  
OUT  
Q
LT3845  
LT3800  
LTC3824  
LowꢀI ,ꢀHighꢀVoltageꢀSynchronousꢀStep-Downꢀꢀ  
AdjustableꢀFixedꢀOperatingꢀFrequencyꢀ100kHzꢀtoꢀ500kHz,ꢀ  
4Vꢀ≤ꢀV ꢀ≤ꢀ60V,ꢀ1.23Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀI ꢀ=ꢀ120µA,ꢀTSSOP-16  
Q
DC/DCꢀController  
IN  
OUT  
Q
LowꢀI ,ꢀHighꢀVoltageꢀSynchronousꢀStep-Downꢀꢀ  
Fixedꢀ200kHzꢀOperatingꢀFrequency,ꢀ4Vꢀ≤ꢀV ꢀ≤ꢀ60V,ꢀ1.23Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀ  
IN OUT  
I ꢀ=ꢀ100µA,ꢀTSSOP-16  
Q
Q
DC/DCꢀController  
LowꢀI ,ꢀHighꢀVoltageꢀDC/DCꢀController,ꢀ100%ꢀDutyꢀCycle SelectableꢀFixedꢀ200kHzꢀtoꢀ600kHzꢀOperatingꢀFrequency,ꢀꢀ  
Q
4Vꢀ≤ꢀV ꢀ≤ꢀ60V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀV ,ꢀI ꢀ=ꢀ40µA,ꢀMSOP-10E  
IN  
OUT  
IN Q  
LTC3850/LTC3850-1ꢀ Dualꢀ2-Phase,ꢀHighꢀEfficiencyꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ780kHz,ꢀꢀ  
LTC3850-2  
DC/DCꢀControllers,ꢀR  
ꢀorꢀDCRꢀCurrentꢀSensingꢀandꢀ 4Vꢀ≤ꢀV ꢀ≤ꢀ30V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V  
SENSE IN OUT  
Tracking  
LTC3855  
Dual,ꢀMultiphase,ꢀSynchronousꢀDC/DCꢀStep-Downꢀ  
ControllerꢀwithꢀDiffampꢀandꢀDCRꢀTemperatureꢀ  
Compensation  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ770kHz,ꢀ  
4.5Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ12.5V  
IN  
OUT  
LTC3853  
TripleꢀOutput,ꢀMultiphaseꢀSynchronousꢀStep-Downꢀ  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ750kHz,ꢀ  
DC/DCꢀController,ꢀR  
Tracking  
ꢀorꢀDCRꢀCurrentꢀSensingꢀandꢀ 4Vꢀ≤ꢀV ꢀ≤ꢀ24V,ꢀV ꢀUpꢀtoꢀ13.5V  
IN OUT  
SENSE  
LTC3854  
LTC3775  
SmallꢀFootprintꢀWideꢀV ꢀRangeꢀSynchronousꢀꢀ  
Fixedꢀ400kHzꢀOperatingꢀFrequencyꢀ4.5Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ  
IN  
IN  
Step-DownꢀDC/DCꢀController  
0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V,ꢀ2mmꢀ×ꢀ3mmꢀQFN-12,ꢀMSOP-12  
OUT  
HighꢀFrequencyꢀSynchronousꢀVoltageꢀModeꢀStep-Downꢀ FastꢀTransientꢀResponse,ꢀt  
DC/DCꢀController  
ꢀ=ꢀ30ns,ꢀ4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ  
ON(MIN) IN  
0.6Vꢀ≤ꢀV ꢀ≤ꢀ0.8V ,ꢀMSOP-16E,ꢀ3mmꢀ×ꢀ3mmꢀQFN-16  
OUT IN  
LTC3851A/ꢀ  
LTC3851A-1  
NoꢀR ™ꢀWideꢀV ꢀRangeꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ750kHz,ꢀꢀ  
SENSE  
IN  
DC/DCꢀController  
4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V,ꢀMSOP-16E,ꢀ3mmꢀ×ꢀ3mmꢀQFN-16,ꢀ  
IN  
OUT  
SSOP-16  
LTC3878/LTC3879  
LTM4600HV  
NoꢀR  
ꢀConstantꢀOn-TimeꢀSynchronousꢀStep-Downꢀ VeryꢀFastꢀTransientꢀResponse,ꢀt  
ꢀ=ꢀ43ns,ꢀ4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ  
SENSE  
ON(MIN) IN  
DC/DCꢀController  
V
ꢀUpꢀ90%ꢀofꢀV ,ꢀMSOP-16E,ꢀ3mmꢀ×ꢀ3mmꢀQFN-16,ꢀSSOP-16  
OUT IN  
10AꢀDC/DCꢀµModule®ꢀCompleteꢀPowerꢀSupply  
HighꢀEfficiency,ꢀCompactꢀSize,ꢀUltraFast™ꢀTransientꢀResponse,ꢀꢀ  
4.5Vꢀ≤ꢀV ꢀ≤ꢀ28V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5V,ꢀ15mmꢀ×ꢀ15mmꢀ×ꢀ2.8mm  
IN  
OUT  
LTM4601AHV  
12AꢀDC/DCꢀµModuleꢀCompleteꢀPowerꢀSupply  
HighꢀEfficiency,ꢀCompactꢀSize,ꢀUltraFastꢀTransientꢀResponse,ꢀꢀ  
4.5Vꢀ≤ꢀV ꢀ≤ꢀ28V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5V,ꢀ15mmꢀ×ꢀ15mmꢀ×ꢀ2.8mm  
IN  
OUT  
38571fa  
LT 0110 REV A • PRINTED IN USA  
Linear Technology Corporation  
1630ꢀ McCarthyꢀ Blvd.,ꢀ Milpitas,ꢀ CAꢀ 95035-7417  
ꢂꢇ  
ꢀ  
LINEAR TECHNOLOGY CORPORATION 2009  
(408)ꢀ432-1900ꢀ FAX:(408)434-0507ꢀ www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY