LTC3858IGN-1TRPBF [Linear]

Low IQ, Dual 2-Phase Synchronous Step-Down Controller; 低IQ ,双两相同步降压型控制器
LTC3858IGN-1TRPBF
型号: LTC3858IGN-1TRPBF
厂家: Linear    Linear
描述:

Low IQ, Dual 2-Phase Synchronous Step-Down Controller
低IQ ,双两相同步降压型控制器

控制器
文件: 总38页 (文件大小:585K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3858-1  
Low I , Dual  
Q
2-Phase Synchronous  
Step-Down Controller  
FeaTures  
DescripTion  
TheꢀLTC®3858-1ꢀisꢀaꢀhighꢀperformanceꢀdualꢀstep-downꢀ  
switchingregulatorcontrollerthatdrivesallN-channelꢀ  
synchronouspowerMOSFETstages.Aconstantfrequencyꢀ  
currentmodearchitectureallowsaphase-lockablefre-  
quencyꢀofꢀupꢀtoꢀ850kHz.ꢀPowerꢀlossꢀandꢀnoiseꢀdueꢀtoꢀtheꢀ  
inputꢀcapacitorꢀESRꢀareꢀminimizedꢀbyꢀoperatingꢀtheꢀtwoꢀ  
controllerꢀoutputsꢀoutꢀofꢀphase.  
n
Low Operating I : 170µA (One Channel On)  
Q
n
n
n
n
Wide Output Voltage Range: 0.8V ≤ V  
≤ 24V  
OUT  
Wide V Range: 4V to 38V  
IN  
R  
or DCR Current Sensing  
SENSE  
ꢀ Out-of-PhaseꢀControllersꢀReduceꢀRequiredꢀInputꢀ  
CapacitanceꢀandꢀPowerꢀSupplyꢀInducedꢀNoise  
®
n
n
n
n
ꢀ OPTI-LOOP ꢀCompensationꢀMinimizesꢀC  
OUT  
ꢀ Phase-LockableꢀFrequencyꢀ(75kHz-850kHz)  
ꢀ ProgrammableꢀFixedꢀFrequencyꢀ(50kHz-900kHz)  
ꢀ SelectableꢀContinuous,ꢀPulse-Skippingꢀorꢀ  
Theꢀ170μAꢀno-loadꢀquiescentꢀcurrentꢀextendsꢀoperatingꢀ  
lifeꢀinꢀbatteryꢀpoweredꢀsystems.ꢀOPTI-LOOPꢀcompensa-  
tionꢀallowsꢀtheꢀtransientꢀresponseꢀtoꢀbeꢀoptimizedꢀoverꢀ  
aꢀwideꢀrangeꢀofꢀoutputꢀcapacitanceꢀandꢀESRꢀvalues.ꢀTheꢀ  
LTC3858-1featuresaprecision0.8Vreferenceandapowerꢀ  
goodoutputindicator.Awide4Vto38Vinputsupplyrangeꢀ  
encompassesꢀaꢀwideꢀrangeꢀofꢀintermediateꢀbusꢀvoltagesꢀ  
andꢀbatteryꢀchemistries.  
ꢀ BurstꢀMode®ꢀOperationꢀatꢀLightꢀLoads  
n
ꢀ VeryꢀLowꢀDropoutꢀOperation:ꢀ99%ꢀDutyꢀCycle  
n
ꢀ AdjustableꢀOutputꢀVoltageꢀSoft-Start  
n
ꢀ PowerꢀGoodꢀOutputꢀVoltageꢀMonitor  
n
ꢀ OutputꢀOvervoltageꢀProtection  
n
ꢀ OutputꢀLatch-OffꢀProtectionꢀDuringꢀShortꢀCircuit  
Independentꢀsoft-startꢀpinsꢀforꢀeachꢀcontrollerꢀrampꢀtheꢀ  
outputvoltagesduringstart-up.Theoutputlatch-offfeatureꢀ  
protectsꢀtheꢀcircuitꢀinꢀshort-circuitꢀconditions.  
n
ꢀ LowꢀShutdownꢀI :ꢀ8µA  
Q
n
n
n
ꢀ InternalꢀLDOꢀPowersꢀGateꢀDriveꢀfromꢀV ꢀorꢀEXTV  
IN  
CC  
ꢀ NoꢀCurrentꢀFoldbackꢀDuringꢀStart-Up  
ꢀ Tinyꢀ4mmꢀ×ꢀ5mmꢀQFNꢀandꢀNarrowꢀSSOPꢀPackages  
Forꢀaꢀleadlessꢀ32-pinꢀQFNꢀpackageꢀwithꢀtheꢀadditionalꢀfea-  
turesꢀofꢀadjustableꢀcurrentꢀlimit,ꢀclockꢀout,ꢀphaseꢀmodula-  
tionandtwoPGOODoutputs,seetheLTC3858datasheet.  
L,LT,LTC,LTM,BurstMode,OPTI-LOOP,µModule,LinearTechnologyandtheLinearlogoꢀ  
applicaTions  
n
ꢀ AutomotiveꢀSystems  
areregisteredtrademarksandNoR ꢀandUltraFastaretrademarksofLinearTechnologyꢀ  
SENSE  
n
ꢀ BatteryꢀOperatedꢀDigitalꢀDevices  
Corporation.Allothertrademarksarethepropertyoftheirrespectiveowners.ProtectedbyU.S.ꢀ  
Patents,including5481178,5705919,5929620,6100678,6144194,6177787,6304066,6580258.  
n
ꢀ DistributedꢀDCꢀPowerꢀSystems  
Typical applicaTion  
High Efficiency Dual 8.5V/3.3V Step-Down Converter  
V
Efficiency and Power Loss  
IN  
9V TO 38V  
22µF  
50V  
vs Load Current  
4.7µF  
V
INTV  
CC  
100  
90  
10000  
1000  
100  
10  
IN  
TG1  
TG2  
0.1µF  
0.1µF  
BOOST1  
SW1  
BOOST2  
SW2  
3.3µH  
7.2µH  
80  
70  
EFFICIENCY  
BG1  
BG2  
60  
50  
LTC3858-1  
PGND  
POWER LOSS  
= 12V  
+
+
40  
30  
20  
10  
0
SENSE1  
SENSE1  
SENSE2  
0.01Ω  
193k  
0.007Ω  
1
V
8.5V  
3.5A  
SENSE2  
OUT2  
V
V
V
OUT1  
3.3V  
5A  
IN  
OUT  
V
V
= 3.3V  
FB1  
FB2  
I
TH2  
62.5k  
FIGURE 12 CIRCUIT  
0.1 10  
OUTPUT CURRENT (A)  
I
TH1  
SS1  
0.1  
150µF  
680pF  
15k  
680pF  
15k  
150µF  
SGND  
SS2  
0.0001 0.001  
0.01  
1
20k  
20k  
0.1µF  
0.1µF  
38581 TA01b  
38581 TA01  
38581fb  
PGOOD1ꢀVoltageꢀ......................................... –0.3Vꢀtoꢀ6V  
                                                          
ꢀ BOOST1,ꢀBOOST2ꢀ................................. –0.3Vꢀtoꢀ46V  
                     
                            
(Noteꢀ2).................................................. –40°Cꢀtoꢀ125°C  
                                                   
RUN1,ꢀRUN2ꢀ  
                
StorageꢀTemperatureꢀRange................... –65°Cꢀtoꢀ150°C  
                                                                
SENSE2 ꢀVoltages  
                   
...................................... –0.3Vꢀtoꢀ28V  
EXTV ꢀ...................................................... –0.3Vꢀtoꢀ14V  
                                                   
LTC3858-1  
absoluTe MaxiMuM raTings (Note 1)  
InputꢀSupplyꢀVoltageꢀ(V )......................... –0.3Vꢀtoꢀ40V  
CC  
IN  
I
,ꢀI ,V ,ꢀV ꢀVoltagesꢀ...................... –0.3Vꢀtoꢀ6V  
TH1 TH2 FB1 FB2  
TopsideꢀDriverꢀVoltagesꢀ  
SS1,ꢀSS2,ꢀINTV ꢀVoltagesꢀ......................... –0.3Vꢀtoꢀ6V  
SwitchꢀVoltageꢀ(SW1,ꢀSW2)ꢀꢀ........................ –5Vꢀtoꢀ40V  
(BOOST1-SW1),ꢀ(BOOST2-SW2)ꢀ................ –0.3Vꢀtoꢀ6V  
............................................... –0.3Vꢀtoꢀ8V  
CC  
OperatingꢀJunctionꢀTemperatureꢀRangeꢀ  
MaximumꢀJunctionꢀTemperatureꢀ(Noteꢀ3)ꢀ............ 125°C  
ꢀ MaximumꢀCurrentꢀSourcedꢀIntoꢀPinꢀ  
ꢀ fromꢀSourceꢀ>8V...............................................100µA  
+
+
LeadꢀTemperatureꢀ(Soldering,ꢀ10ꢀsec)  
SENSE1 ,ꢀSENSE2 ,ꢀSENSE1  
ꢀ SSOPꢀ................................................................ 300°C  
PLLIN/MODE,ꢀFREQꢀVoltagesꢀꢀ.............. –0.3VꢀtoꢀINTV  
CC  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
1
2
SS1  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
I
TH1  
PGOOD1  
TG1  
V
FB1  
+
3
SENSE1  
SENSE1  
28 27 26 25 24 23  
+
SENSE1  
SENSE1  
1
2
3
4
5
6
7
8
22  
21  
20  
19  
18  
17  
16  
15  
BOOST1  
BG1  
4
SW1  
5
BOOST1  
BG1  
FREQ  
PLLIN/MODE  
SGND  
FREQ  
PLLIN/MODE  
SGND  
V
IN  
6
PGND  
29  
SGND  
7
V
IN  
EXTV  
CC  
CC  
8
PGND  
RUN1  
RUN1  
INTV  
BG2  
9
EXTV  
CC  
RUN2  
RUN2  
10  
11  
12  
13  
14  
INTV  
CC  
SENSE2  
SENSE2  
BOOST2  
+
BG2  
SENSE2  
9
10 11 12 13 14  
UFD PACKAGE  
BOOST2  
SW2  
V
FB2  
TH2  
I
TG2  
SS2  
28-LEAD (4mm s 5mm) PLASTIC QFN  
GN PACKAGE  
28-LEAD PLASTIC SSOP  
T
ꢀ=ꢀ125°C,ꢀθ ꢀ=ꢀ43°C/Wꢀ  
JMAX  
JA  
EXPOSEDꢀPADꢀ(PINꢀ29)ꢀISꢀSGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
T
ꢀ=ꢀ125°C,ꢀθ ꢀ=ꢀ90°C/W  
JMAX JA  
orDer inForMaTion  
LEAD FREE FINISH  
LTC3858EUFD-1#PBF  
LTC3858IUFD-1#PBF  
LTC3858EGN-1#PBF  
LTC3858IGN-1#PBF  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°Cꢀtoꢀ125°C  
–40°Cꢀtoꢀ125°C  
–40°Cꢀtoꢀ125°C  
–40°Cꢀtoꢀ125°C  
LTC3858EUFD-1#TRPBF 38581  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
28-Leadꢀ(4mmꢀ×ꢀ5mm)ꢀPlasticꢀQFN  
28-LeadꢀPlasticꢀSSOP  
LTC3858IUFD-1#TRPBF  
LTC3858EGN-1#TRPBF  
LTC3858IGN-1#TRPBF  
38581  
LTC3858GN-1  
LTC3858GN-1  
28-LeadꢀPlasticꢀSSOP  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.ꢀꢀ*Theꢀtemperatureꢀgradeꢀisꢀidentifiedꢀbyꢀaꢀlabelꢀonꢀtheꢀshippingꢀcontainer.  
ConsultꢀLTCꢀMarketingꢀforꢀinformationꢀonꢀnon-standardꢀleadꢀbasedꢀfinishꢀparts.  
Forꢀmoreꢀinformationꢀonꢀleadꢀfreeꢀpartꢀmarking,ꢀgoꢀto:ꢀhttp://www.linear.com/leadfree/ꢀꢀ  
Forꢀmoreꢀinformationꢀonꢀtapeꢀandꢀreelꢀspecifications,ꢀgoꢀto:ꢀhttp://www.linear.com/tapeandreel/  
38581fb  
LTC3858-1  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VRUN1,2 = 5V, EXTVCC = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
InputꢀSupplyꢀOperatingꢀVoltageꢀRange  
RegulatedꢀFeedbackꢀVoltage  
4
38  
V
IN  
(Noteꢀ4)ꢀI  
ꢀ=ꢀ1.2Vꢀ  
TH1,2  
FB1,2  
l
ꢀꢀꢀ–40°Cꢀtoꢀ125°Cꢀ  
ꢀꢀꢀ–40°Cꢀtoꢀ85°C  
0.788ꢀ  
0.792  
0.800ꢀ  
0.800  
0.812ꢀ  
0.808  
Vꢀ  
V
I
FeedbackꢀCurrent  
(Noteꢀ4)  
5
50  
nA  
FB1,2  
V
V
ReferenceꢀVoltageꢀLineꢀRegulation  
OutputꢀVoltageꢀLoadꢀRegulation  
(Noteꢀ4)ꢀV ꢀ=ꢀ4.5Vꢀtoꢀ38V  
0.002  
0.02  
%/V  
REFLNREG  
LOADREG  
IN  
(Note4)ꢀ  
%
l
l
MeasuredꢀinꢀServoꢀLoop,ꢀꢀ  
0.01  
0.1  
I ꢀVoltageꢀ=ꢀ1.2Vꢀtoꢀ0.7V  
TH  
(Note4)ꢀ  
%
MeasuredꢀinꢀServoꢀLoop,ꢀꢀ  
–0.01  
–0.1  
I ꢀVoltageꢀ=ꢀ1.2Vꢀtoꢀ2V  
TH  
g
TransconductanceꢀAmplifierꢀg  
InputꢀDCꢀSupplyꢀCurrent  
(Noteꢀ4)ꢀI  
ꢀ=ꢀ1.2V,ꢀSink/Sourceꢀ=ꢀ5µA  
TH1,2  
2
mmho  
mA  
m1,2  
m
I
Q
(Noteꢀ5)  
PulseꢀSkipꢀorꢀForcedꢀContinuousꢀModeꢀ  
(OneꢀChannelꢀOn)  
RUN1ꢀ=ꢀ5VꢀandꢀRUN2ꢀ=ꢀ0Vꢀorꢀꢀ  
RUN1ꢀ=ꢀ0VꢀandꢀRUN2ꢀ=ꢀ5V,ꢀꢀ  
1.3  
V
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
FB1  
PulseꢀSkipꢀorꢀForcedꢀContinuousꢀModeꢀ  
(BothꢀChannelsꢀOn)  
RUN1,2ꢀ=ꢀ5V,ꢀV  
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
2
mA  
µA  
FB1,2  
SleepꢀModeꢀ(OneꢀChannelꢀOn)  
RUN1ꢀ=ꢀ5VꢀandꢀRUN2ꢀ=ꢀ0Vꢀorꢀꢀ  
RUN1ꢀ=ꢀ0VꢀandꢀRUN2ꢀ=ꢀ5V,ꢀꢀ  
170  
250  
V
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
FB1  
SleepꢀModeꢀ(BothꢀChannelsꢀOn)  
Shutdown  
RUN1,2ꢀ=ꢀ5V,ꢀV  
RUN1,2ꢀ=ꢀ0V  
ꢀ=ꢀ0.83Vꢀ(NoꢀLoad)  
FB1,2  
300  
8
450  
20  
µA  
µA  
l
l
UVLO  
UndervoltageꢀLockout  
INTV ꢀRampingꢀUpꢀ  
4.0ꢀ  
3.8  
4.2ꢀ  
4.0  
Vꢀ  
V
CC  
INTV ꢀRampingꢀDown  
3.6  
CC  
V
FeedbackꢀOvervoltageꢀProtection  
MeasuredꢀatꢀV  
EachꢀChannel  
EachꢀChannelꢀ  
,ꢀRelativeꢀtoꢀRegulatedꢀV  
FB1,2  
7
10  
13  
1
%
OVL  
FB1,2  
+
+
I
I
SENSE ꢀPinꢀCurrent  
µA  
SENSE  
SENSE  
SENSE ꢀPinsꢀCurrent  
µAꢀ  
µA  
V
V
ꢀ<ꢀINTV ꢀ–ꢀ0.5ꢀ  
1ꢀ  
OUT1,2  
OUT1,2  
CC  
ꢀ>ꢀINTVCCꢀ+ꢀ0.5  
540  
700  
DF  
MaximumꢀDutyꢀFactor  
InꢀDropout,ꢀFREQꢀ=ꢀ0V  
98  
0.7  
99.4  
1.0  
1.28  
50  
%
µA  
V
MAX  
I
Soft-StartꢀChargeꢀCurrent  
RUNꢀPinꢀOnꢀThresholdꢀVoltage  
V
V
ꢀ=ꢀ0V  
SS1,2  
1.4  
SS1,2  
l
V
V
V
ꢀOn  
,ꢀV ꢀRising  
RUN1 RUN2  
1.23  
1.33  
RUN1,2  
RUN1,2  
SS1,2  
ꢀHyst RUNꢀPinꢀHysteresisꢀVoltage  
mV  
V
ꢀLA  
SSꢀPinꢀLatch-OffꢀArmingꢀThresholdꢀ  
Voltage  
V
V
,ꢀV ꢀRisingꢀfromꢀ1V  
1.9  
2
2.1  
SS1 SS2  
V
LT  
SSꢀPinꢀLatch-OffꢀThresholdꢀVoltage  
SSꢀDischargeꢀCurrent  
,ꢀV ꢀRisingꢀfromꢀ2V  
SS1 SS2  
1.3  
7
1.5  
10  
1.7  
13  
V
SS1,2  
I
LT  
Short-CircuitꢀConditionꢀV  
ꢀ=ꢀ0.5Vꢀ  
FB1,2  
µA  
DSC1,2  
V
ꢀ=ꢀ4.5V  
SS1,2  
l
V
MaximumꢀCurrentꢀSenseꢀThresholdꢀ  
Voltage  
V
ꢀ=ꢀ0.7V,ꢀV  
FB1,2  
–, –ꢀ=ꢀ3.3V  
SENSE1 2  
43  
50  
57  
mV  
SENSE(MAX)  
Gate Driver  
TG1,2  
Pull-UpꢀOn-Resistanceꢀ  
Pull-DownꢀOn-Resistance  
2.5ꢀ  
1.5  
Ωꢀ  
Ω
BG1,2  
Pull-UpꢀOn-Resistanceꢀ  
Pull-DownꢀOn-Resistance  
2.4ꢀ  
1.1  
Ωꢀ  
Ω
38581fb  
LTC3858-1  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
junction temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, VRUN1,2 = 5V, EXTVCC = 0V unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TGꢀTransistionꢀTime:ꢀ  
ꢀRiseꢀTimeꢀ  
ꢀFallꢀTime  
(Noteꢀ6)ꢀ  
LOAD  
LOAD  
nsꢀ  
ns  
TG1,2ꢀt ꢀ  
C
C
ꢀ=ꢀ3300pFꢀ  
ꢀ=ꢀ3300pF  
25ꢀ  
16  
r
TG1,2ꢀt  
f
BGꢀTransistionꢀTime:ꢀ  
ꢀRiseꢀTimeꢀ  
ꢀFallꢀTime  
(Noteꢀ6)ꢀ  
LOAD  
LOAD  
nsꢀ  
ns  
BG1,2ꢀt ꢀ  
C
C
ꢀ=ꢀ3300pFꢀ  
ꢀ=ꢀ3300pF  
28ꢀ  
13  
r
BG1,2ꢀt  
f
TG/BGꢀt  
TopꢀGateꢀOffꢀtoꢀBottomꢀGateꢀOnꢀDelayꢀ  
SynchronousꢀSwitch-OnꢀDelayꢀTime  
C
ꢀ=ꢀ3300pFꢀEachꢀDriver  
30  
30  
95  
ns  
ns  
ns  
1D  
1D  
LOAD  
BG/TGꢀt  
BottomꢀGateꢀOffꢀtoꢀTopꢀGateꢀOnꢀDelayꢀ  
TopꢀSwitch-OnꢀDelayꢀTime  
C
LOAD  
ꢀ=ꢀ3300pFꢀEachꢀDriver  
t
MinimumꢀOn-Time  
(Noteꢀ7)  
6Vꢀ<ꢀV ꢀ<ꢀ38V,ꢀV ꢀ=ꢀ0V  
EXTVCC  
ON(MIN)  
INTV Linear Regulator  
CC  
V
V
V
V
V
V
InternalꢀV ꢀVoltage  
4.85  
4.85  
4.5  
5.1  
0.7  
5.1  
0.6  
4.7  
250  
5.35  
1.1  
V
%
V
INTVCCVIN  
LDOVIN  
CC  
IN  
INTV ꢀLoadꢀRegulation  
I
CC  
ꢀ=ꢀ0mAꢀtoꢀ50mA,ꢀV  
ꢀ=ꢀ0V  
CC  
EXTVCC  
InternalꢀV ꢀVoltage  
6Vꢀ<ꢀV ꢀ<ꢀ13V  
EXTVCC  
5.35  
1.1  
INTVCCEXT  
LDOEXT  
CC  
INTV ꢀLoadꢀRegulation  
I
CC  
ꢀ=ꢀ0mAꢀtoꢀ50mA,ꢀV  
ꢀ=ꢀ8.5V  
%
V
CC  
EXTVCC  
EXTV ꢀSwitchoverꢀVoltage  
EXTV ꢀRampingꢀPositive  
4.9  
EXTVCC  
CC  
CC  
EXTV ꢀHysteresisꢀVoltage  
mV  
LDOHYS  
CC  
Oscillator and Phase-Locked Loop  
f
f
f
f
f
f
ProgrammableꢀFrequency  
ProgrammableꢀFrequency  
ProgrammableꢀFrequency  
LowꢀFixedꢀFrequency  
R
R
R
ꢀ=ꢀ25k,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
ꢀ=ꢀ65k,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
ꢀ=ꢀ105k,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
ꢀ=ꢀ0V,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
105  
440  
835  
350  
535  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
25kΩ  
65kΩ  
105kΩ  
LOW  
FREQ  
FREQ  
FREQ  
FREQ  
FREQ  
375  
505  
V
V
320  
485  
75  
380  
585  
850  
HighꢀFixedꢀFrequency  
ꢀ=ꢀINTV ,ꢀPLLIN/MODEꢀ=ꢀDCꢀVoltage  
CC  
HIGH  
SYNC  
l
SynchronizableꢀFrequency  
PLLIN/MODEꢀ=ꢀExternalꢀClock  
PGOOD1 Output  
V
PGOOD1ꢀVoltageꢀLow  
PGOOD1ꢀLeakageꢀCurrent  
PGOOD1ꢀTripꢀLevel  
I
ꢀ=ꢀ2mA  
0.2  
0.4  
1
V
PGL  
PGOOD  
I
V
V
ꢀ=ꢀ5V  
PGOOD  
µA  
PGOOD  
V
ꢀwithꢀRespectꢀtoꢀSetꢀRegulatedꢀVoltageꢀ  
FB  
PG  
ꢀV ꢀRampingꢀNegativeꢀ  
ꢀHysteresis  
–13  
–10ꢀ  
2.5  
–7  
%ꢀ  
%
FB  
V
ꢀwithꢀRespectꢀtoꢀSetꢀRegulatedꢀVoltageꢀ  
FB  
7
FB  
ꢀV ꢀRampingꢀPositiveꢀ  
10ꢀ  
2.5  
13  
%ꢀ  
%
ꢀHysteresis  
t
PG  
DelayꢀforꢀReportingꢀaꢀFaultꢀ(PGOODꢀLow)  
25  
µs  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingsꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀreliabilityꢀandꢀ  
lifetime.ꢀ  
Note 4:ꢀTheꢀLTC3858-1ꢀisꢀtestedꢀinꢀaꢀfeedbackꢀloopꢀthatꢀservosꢀV  
ꢀtoꢀ  
ITH1,2  
aꢀspecifiedꢀvoltageꢀandꢀmeasuresꢀtheꢀresultantꢀV .ꢀTheꢀspecificationꢀatꢀ  
FB1,2  
85°Cꢀisꢀnotꢀtestedꢀinꢀproduction.ꢀThisꢀspecificationꢀisꢀassuredꢀbyꢀdesign,ꢀ  
characterizationꢀandꢀcorrelationꢀtoꢀproductionꢀtestingꢀatꢀ125°C.  
Note 2:ꢀTheꢀLTC3858E-1ꢀisꢀguaranteedꢀtoꢀmeetꢀperformanceꢀspecificationsꢀ  
fromꢀ0°Cꢀtoꢀ85°C.ꢀSpecificationsꢀoverꢀtheꢀ–40°Cꢀtoꢀ125°Cꢀoperatingꢀ  
junctionꢀtemperatureꢀrangeꢀareꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀandꢀ  
correlationꢀwithꢀstatisticalꢀprocessꢀcontrols.ꢀTheꢀLTC3858I-1ꢀisꢀguaranteedꢀ  
overꢀtheꢀfullꢀ–40°Cꢀtoꢀ125°Cꢀoperatingꢀjunctionꢀtemperatureꢀrange.  
Note 5:ꢀDynamicꢀsupplyꢀcurrentꢀisꢀhigherꢀdueꢀtoꢀtheꢀgateꢀchargeꢀbeingꢀ  
deliveredꢀatꢀtheꢀswitchingꢀfrequency.ꢀSeeꢀApplicationsꢀinformation.  
Note 6:ꢀRiseꢀandꢀfallꢀtimesꢀareꢀmeasuredꢀusingꢀ10%ꢀandꢀ90%ꢀlevels.ꢀDelayꢀ  
timesꢀareꢀmeasuredꢀusingꢀ50%ꢀlevels  
Note 7:ꢀTheꢀminimumꢀon-timeꢀconditionꢀisꢀspecifiedꢀforꢀanꢀinductorꢀpeak-  
Note 3:ꢀT ꢀisꢀcalculatedꢀfromꢀtheꢀambientꢀtemperatureꢀT ꢀandꢀpowerꢀ  
J
A
to-peakꢀrippleꢀcurrentꢀ≥ꢀofꢀI ꢀ(SeeꢀMinimumꢀOn-TimeꢀConsiderationsꢀinꢀ  
MAX  
dissipationꢀP ꢀaccordingꢀtoꢀtheꢀfollowingꢀformula:  
D
theꢀApplicationsꢀInformationꢀsection).  
T ꢀ=ꢀT ꢀ+ꢀ(P •ꢀθ )  
J A Dꢀ JA  
whereꢀθ ꢀ=ꢀ43°C/WꢀforꢀtheꢀQFNꢀpackageꢀandꢀθ ꢀ=ꢀ90°C/WꢀforꢀtheꢀSSOPꢀ  
JA  
JA  
package.  
38581fb  
LTC3858-1  
Typical perForMance characTerisTics  
Efficiency and Power Loss vs  
Output Current  
Efficiency vs Load Current  
100  
90  
100  
90  
10000  
1000  
100  
10  
FIGURE 12 CIRCUIT  
V
V
= 12V  
IN  
OUT  
V
= 5V  
IN  
= 3.3V  
80  
80  
70  
70  
V
= 12V  
IN  
60  
50  
60  
50  
Burst Mode  
OPERATION  
PULSE-  
SKIPPING  
MODE  
FORCED  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
1
V
= 3.3V  
CONTINUOUS  
MODE  
OUT  
FIGURE 12 CIRCUIT  
0.1  
0.0001 0.001  
0.01  
0.1 10  
1
0.0001 0.001  
0.01  
0.1  
1
10  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
3858 G02  
3858 G01  
Load Step  
(Forced Continuous Mode)  
Load Step (Burst Mode Operation)  
Efficiency vs Input Voltage  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
FIGURE 12 CIRCUIT  
V
I
= 3.3V  
= 4A  
OUT  
OUT  
V
V
OUT  
OUT  
100mV/DIV  
AC-  
100mV/DIV  
AC-  
COUPLED  
COUPLED  
I
L
I
L
2A/DIV  
2A/DIV  
3858 G04  
3858 G05  
20 25  
V
= 3.3V  
20µs/DIV  
V
= 3.3V  
20µs/DIV  
0
5
10 15  
30 35 40  
OUT  
OUT  
FIGURE 12 CIRCUIT  
FIGURE 12 CIRCUIT  
INPUT VOLTAGE (V)  
3858 G03  
Inductor Current at Light Load  
Load Step (Pulse-Skipping Mode)  
Soft-Start  
V
OUT  
FORCED  
CONTINUOUS  
MODE  
V
OUT2  
100mV/DIV  
AC-  
2V/DIV  
COUPLED  
Burst Mode  
OPERATION  
2A/DIV  
V
OUT1  
2V/DIV  
I
L
2A/DIV  
PULSE-  
SKIPPING  
MODE  
3858 G06  
3858 G07  
3858 G08  
V
= 3.3V  
20µs/DIV  
V
LOAD  
FIGURE 12 CIRCUIT  
= 3.3V  
2µs/DIV  
20ms/DIV  
FIGURE 12 CIRCUIT  
OUT  
OUT  
FIGURE 12 CIRCUIT  
I
= 200µA  
38581fb  
LTC3858-1  
Typical perForMance characTerisTics  
Total Input Supply Current  
vs Input Voltage  
EXTVCC Switchover and INTVCC  
Voltages vs Temperature  
INTVCC Line Regulation  
400  
5.6  
5.2  
5.2  
5.1  
5.1  
FIGURE 12 CIRCUIT  
= 3.3V  
V
OUT  
350  
300  
5.4  
5.2  
ONE CHANNEL ON  
INTV  
CC  
300µA LOAD  
250  
200  
150  
100  
50  
5.0  
4.8  
4.6  
4.4  
4.2  
EXTV RISING  
CC  
NO LOAD  
EXTV FALLING  
CC  
0
5.0  
4.0  
10  
15  
25  
30  
35  
40  
5
20  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
–20  
5
55  
80 105 130  
–45  
30  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
3858 G10  
3858 G12  
3858 G11  
Maximum Current Sense Voltage  
vs ITH Voltage  
Maximum Current Sense  
Threshold vs Duty Cycle  
SENSEPin Input Bias Current  
80  
60  
40  
20  
80  
60  
40  
20  
0
0
PULSE-SKIPPING MODE  
FORCED CONTINUOUS MODE  
Burst Mode OPERATION  
(FALLING)  
Burst Mode OPERATION  
(RISING)  
–50  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
–500  
–550  
–600  
0
–20  
–40  
5% DUTY CYCLE  
0.8  
PIN VOLTAGE  
1.2 1.4  
0
10  
15  
20  
25  
10 20  
50  
60 70 80 90 100  
0
0.2 0.4 0.6  
1.0  
5
0
30 40  
V
COMMON MODE VOLTAGE (V)  
I
DUTY CYCLE (%)  
SENSE  
TH  
3858 G14  
3858 G13  
3858 G15  
Shutdown Current vs Temperature  
Foldback Current Limit  
Quiescent Current vs Temperature  
230  
210  
190  
170  
150  
130  
110  
10  
9
90  
80  
70  
60  
50  
40  
30  
20  
10  
PLLIN/MODE = 0  
V
V
= 12V  
IN  
OUT  
= 3.3V  
ONE CHANNEL ON  
8
7
6
5
4
0
55  
TEMPERATURE (°C)  
105 130  
–45 –20  
5
30  
80  
–45 –20  
5
30  
55  
80 105 130  
0
0.1 0.2 0.3 0.4 0.5  
0.9  
0.6 0.7 0.8  
TEMPERATURE (°C)  
FEEDBACK VOLTAGE (V)  
3858 G17  
3858 G18  
3858 G16  
38581fb  
LTC3858-1  
Typical perForMance characTerisTics  
Regulated Feedback Voltage  
vs Temperature  
Soft-Start Pull-Up Current  
vs Temperature  
Shutdown (RUN) Threshold  
vs Temperature  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
1.20  
808  
1.15  
1.10  
806  
804  
1.05  
1.00  
0.95  
0.90  
0.85  
802  
800  
798  
796  
794  
0.80  
792  
–45  
5
30  
55  
80 105 130  
–20  
–20  
5
55  
80 105 130  
–45  
30  
–20  
5
55  
80 105 130  
–45  
30  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3858 G20  
3858 G19  
22554 G21  
SENSE– Pin Input Current  
vs Temperature  
Shutdown Input Current  
vs Input Voltage  
Oscillator Frequency  
vs Temperature  
50  
0
–50  
14  
12  
800  
700  
600  
V
= 3.3V  
OUT  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–450  
–500  
–550  
–600  
FREQ = INTV  
CC  
10  
8
500  
400  
300  
200  
100  
FREQ = GND  
6
4
2
V
= 28V  
55  
OUT  
0
0
25  
INPUT VOLTAGE (V)  
35  
40  
5
10  
15  
20  
30  
–45 –20  
5
30  
80 105 130  
–45  
–20  
5
30  
55  
80 105 130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3858 G22  
3858 G23  
3858 G24  
Oscillator Frequency  
vs Input Voltage  
Undervoltage Lockout Threshold  
vs Temperature  
4.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
356  
354  
352  
350  
FREQ = GND  
348  
346  
344  
25  
35  
40  
–45  
5
30  
55  
80  
130  
5
10  
15  
20  
30  
–20  
105  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3858 G28  
3858 G25  
38581fb  
LTC3858-1  
Typical perForMance characTerisTics  
Latch-Off Threshold Voltage  
vs Temperature  
INTVCC vs Load Current  
5.20  
5.15  
5.10  
2.3  
V
= 12V  
IN  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
ARMING THRESHOLD  
EXTV = 0V  
CC  
5.05  
5.00  
4.95  
LATCH-OFF THRESHOLD  
EXTV = 8V  
CC  
0
20 40 60 80 100 120 140 160 180 200  
–45  
5
30  
55  
80 105 130  
–20  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
3858 G26  
3858 G27  
pin FuncTions (QFN/SSOP)  
LTC3858-1ꢀ operatesꢀ atꢀ lightꢀ loads.ꢀ Pullingꢀ thisꢀ pinꢀ toꢀ  
groundꢀselectsꢀBurstꢀModeꢀoperation.ꢀAnꢀinternalꢀ100kꢀ  
resistorꢀ toꢀ groundꢀ alsoꢀ invokesꢀ Burstꢀ Modeꢀ operationꢀ  
SENSE1 , SENSE2 (Pin 2, Pin 4/Pin 8, Pin 10):ꢀTheꢀ(–)ꢀ  
InputtotheDifferentialCurrentComparators.Whengreaterꢀ  
thanꢀINTV ꢀ–ꢀ0.5V,ꢀtheꢀSENSE ꢀpinꢀsuppliesꢀcurrentꢀtoꢀ  
CC  
whenꢀtheꢀpinꢀisꢀfloated.ꢀTyingꢀthisꢀpinꢀtoꢀINTV ꢀforcesꢀ  
theꢀcurrentꢀcomparator.  
CC  
continuousꢀinductorꢀcurrentꢀoperation.ꢀTyingꢀthisꢀpinꢀtoꢀ  
FREQ (Pin 3/Pin 5):ꢀTheꢀFrequencyꢀControlꢀPinꢀforꢀtheꢀ  
InternalꢀVoltage-ContolledꢀOscillatorꢀ(VCO).ꢀConnectingꢀ  
thisꢀpinꢀtoꢀGNDꢀforcesꢀtheꢀVCOꢀtoꢀaꢀfixedꢀlowꢀfrequencyꢀ  
aꢀvoltageꢀgreaterꢀthanꢀ1.2VꢀandꢀlessꢀthanꢀINTV ꢀ–ꢀ1.3Vꢀ  
CC  
selectsꢀpulse-skippingꢀoperation.ꢀ  
SGND (Pin 5, Exposed Pad Pin 29/Pin 7):ꢀSmall-signalꢀ  
groundꢀ commonꢀ toꢀ bothꢀ controllers,ꢀ mustꢀ beꢀ routedꢀ  
separatelyꢀfromꢀhighꢀcurrentꢀgroundsꢀtoꢀtheꢀcommonꢀ(–)ꢀ  
ofꢀ350kHz.ꢀConnectingꢀthisꢀpinꢀtoꢀINTV ꢀforcesꢀtheꢀVCOꢀ  
CC  
toꢀaꢀfixedꢀhighꢀfrequencyꢀofꢀ535kHz.ꢀOtherꢀfrequenciesꢀ  
betweenꢀ50kHzꢀandꢀ900kHzꢀcanꢀbeꢀprogrammedꢀusingꢀaꢀ  
resistorꢀbetweenꢀFREQꢀandꢀGND.ꢀAnꢀinternalꢀ20µAꢀpull-  
upꢀcurrentꢀdevelopsꢀtheꢀvoltageꢀtoꢀbeꢀusedꢀbyꢀtheꢀVCOꢀtoꢀ  
controlꢀtheꢀfrequencyꢀ  
terminalsꢀofꢀtheꢀC ꢀcapacitors.ꢀTheꢀexposedꢀpadꢀ(QFNꢀ  
IN  
only)ꢀ mustꢀ beꢀ solderedꢀ toꢀ theꢀ PCBꢀ forꢀ ratedꢀ thermalꢀ  
performance.  
RUN1, RUN2 (Pin 6, Pin 8/Pin 7, Pin 9):DigitalRunꢀ  
ControlꢀInputsꢀforꢀEachꢀController.ꢀForcingꢀeitherꢀofꢀtheseꢀ  
pinsbelow1.2Vshutsdownthatcontroller.Forcingbothofꢀ  
theseꢀpinsꢀbelowꢀ0.7VꢀshutsꢀdownꢀtheꢀentireꢀLTC3858-1,ꢀ  
reducingquiescentcurrenttoapproximately8µA.DoNOTꢀ  
floatꢀtheseꢀpins.  
PLLIN/MODE (Pin 4/Pin 6):ꢀ Externalꢀ Synchronizationꢀ  
InputtoPhaseDetectorandForcedContinuousModeꢀ  
Input.ꢀWhenꢀanꢀexternalꢀclockꢀisꢀappliedꢀtoꢀthisꢀpin,ꢀtheꢀ  
phase-lockedꢀloopꢀwillꢀforceꢀtheꢀrisingꢀTG1ꢀsignalꢀtoꢀbeꢀ  
synchronizedꢀwithꢀtheꢀrisingꢀedgeꢀofꢀtheꢀexternalꢀclock.ꢀ  
Whenꢀnotꢀsynchronizingꢀtoꢀanꢀexternalꢀclock,ꢀthisꢀinput,ꢀ  
whichꢀ actsꢀ onꢀ bothꢀ controllers,ꢀ determinesꢀ howꢀ theꢀ  
38581fb  
LTC3858-1  
pin FuncTions (QFN/SSOP)  
INTV (Pin 17/Pin 19):ꢀOutputꢀofꢀtheꢀInternalꢀLinearꢀLowꢀ  
TG1, TG2 (Pin 24, Pin 26/Pin 13, Pin 15):ꢀHighꢀCurrentꢀ  
GateꢀDrivesꢀforꢀTopꢀN-ChannelꢀMOSFETs.ꢀTheseꢀareꢀtheꢀ  
outputsꢀofꢀfloatingꢀdriversꢀwithꢀaꢀvoltageꢀswingꢀequalꢀtoꢀ  
CC  
Dropoutꢀ Regulator.ꢀ Theꢀ driverꢀ andꢀ controlꢀ circuitsꢀ areꢀ  
poweredꢀfromꢀthisꢀvoltageꢀsource.ꢀMustꢀbeꢀdecoupledꢀtoꢀ  
powerꢀgroundꢀwithꢀaꢀminimumꢀofꢀ4.7µFꢀceramicꢀorꢀotherꢀ  
INTV ꢀ–ꢀ0.5Vꢀsuperimposedꢀonꢀtheꢀswitchꢀnodeꢀvoltageꢀ  
CC  
lowESRcapacitor.DonotusetheINTV pinforanyꢀ  
SW.  
CC  
otherꢀpurpose.  
PGOOD1 (Pin 25/Pin 27):ꢀ Open-Drainꢀ Logicꢀ Output.ꢀ  
EXTV (Pin 18/Pin 20):ꢀ Externalꢀ Powerꢀ Inputꢀ toꢀ anꢀ  
PGOOD1ꢀisꢀpulledꢀtoꢀgroundꢀwhenꢀtheꢀvoltageꢀonꢀtheꢀV  
pinꢀisꢀnotꢀwithinꢀ 10%ꢀofꢀitsꢀsetꢀpoint.  
CC  
FB1  
InternalLDOConnectedtoINTV .ThisLDOsuppliesꢀ  
CC  
INTV ꢀpower,ꢀbypassingꢀtheꢀinternalꢀLDOꢀpoweredꢀfromꢀ  
CC  
SS1, SS2 (Pin 26, Pin 28/Pin 12, Pin 14):ꢀExternalꢀSoft-  
StartꢀInput.ꢀTheꢀLTC3858-1ꢀregulatesꢀtheꢀV ꢀvoltageꢀ  
V wheneverEXTV ishigherthan4.7V.SeeEXTV ꢀ  
IN  
CC  
CC  
FB1,2  
ConnectionintheApplicationsInformationsection.Doꢀ  
toꢀtheꢀsmallerꢀofꢀ0.8VꢀorꢀtheꢀvoltageꢀonꢀtheꢀSS1,2ꢀpin.ꢀAnꢀ  
internalꢀ1µAꢀpull-upꢀcurrentꢀsourceꢀisꢀconnectedꢀtoꢀthisꢀ  
pin.ꢀAꢀcapacitorꢀtoꢀgroundꢀatꢀthisꢀpinꢀsetsꢀtheꢀrampꢀtimeꢀ  
toꢀfinalꢀregulatedꢀoutputꢀvoltage.ꢀThisꢀpinꢀisꢀalsoꢀusedꢀasꢀ  
theꢀshort-circuitꢀlatchoffꢀtimer.  
notꢀexceedꢀ14Vꢀonꢀthisꢀpin.  
PGND (Pin 19/Pin 21):ꢀDriverꢀPowerꢀGround.ꢀConnectsꢀtoꢀ  
thesourcesofbottom(synchronous)N-channelMOSFETsꢀ  
andꢀtheꢀ(–)ꢀterminal(s)ꢀofꢀC .  
IN  
V
(Pin 20/Pin 22):MainInputSupplyPin.Abypassꢀ  
I
, I  
(Pin 27, Pin 1/Pin 11, Pin 13):ꢀErrorꢀAmplifierꢀ  
IN  
TH1 TH2  
capacitorꢀshouldꢀbeꢀtiedꢀbetweenꢀthisꢀpinꢀandꢀtheꢀsignalꢀ  
OutputsꢀandꢀSwitchingꢀRegulatorꢀCompensationꢀPoints.ꢀ  
Eachꢀassociatedꢀchannel’sꢀcurrentꢀcomparatorꢀtripꢀpointꢀ  
increasesꢀwithꢀthisꢀcontrolꢀvoltage.  
groundꢀpin.  
BG1, BG2 (Pin 21, Pin 23/Pin 16, Pin 18):HighCur-  
rentGateDrivesforBottom(Synchronous)N-Channelꢀ  
MOSFETs.Voltageswingatthesepinsisfromgroundꢀ  
V
, V  
FB1 FB2  
(Pin 28, Pin 2/Pin 10, Pin 12):ꢀReceivesꢀtheꢀ  
remotelysensedfeedbackvoltageforeachcontrollerfromꢀ  
anꢀexternalꢀresistiveꢀdividerꢀacrossꢀtheꢀoutput.  
toꢀINTV .  
CC  
+
+
BOOST1, BOOST2 (Pin 22, Pin 24/Pin 15, Pin 17):ꢀBoot-  
strappedSuppliestotheTopsideꢀFloatingꢀDrivers.ꢀCapaci-  
torsꢀareꢀconnectedꢀbetweenꢀtheꢀBOOSTꢀandꢀSWꢀpinsꢀandꢀ  
SENSE1 , SENSE2 (Pin 1, Pin 3/Pin 9, Pin 11):Theꢀ  
(+)ꢀinputꢀtoꢀtheꢀdifferentialꢀcurrentꢀcomparatorsꢀthatꢀareꢀ  
normallyꢀconnectedꢀtoꢀinductorꢀDCRꢀsensingꢀnetworksꢀorꢀ  
SchottkyꢀdiodesꢀareꢀtiedꢀbetweenꢀtheꢀBOOSTꢀandꢀINTV ꢀ  
currentsensingresistors.TheI ꢀpinvoltageandcontrolledꢀ  
CC  
TH  
+
pins.ꢀVoltageꢀswingꢀatꢀtheꢀBOOSTꢀpinsꢀisꢀfromꢀINTV ꢀtoꢀ  
offsetsꢀbetweenꢀtheꢀSENSE ꢀandꢀSENSE ꢀpinsꢀinꢀconjunc-  
CC  
(V ꢀ+ꢀINTV ).  
tionꢀwithꢀR  
ꢀsetꢀtheꢀcurrentꢀtripꢀthreshold.  
IN  
CC  
SENSE  
SW1, SW2 (Pin 23, Pin 25/Pin 14, Pin 16):ꢀSwitchꢀNodeꢀ  
ConnectionsꢀtoꢀInductors.ꢀ  
38581fb  
LTC3858-1  
FuncTional DiagraM  
INTV  
V
IN  
CC  
DUPLICATE FOR SECOND  
CONTROLLER CHANNEL  
BOOST  
D
B
C
B
TG  
DROP  
OUT  
DET  
TOP  
BOT  
+
C
PGOOD1  
0.88V  
IN  
D
BOT  
SW  
TOP ON  
V
S
R
Q
FB1  
+
INTV  
CC  
Q
SWITCH  
LOGIC  
0.72V  
BG  
SHDN  
C
OUT  
PGND  
20µA  
FREQ  
V
OUT  
VCO  
CLK2  
CLK1  
+
R
SENSE  
0.425V  
SLEEP  
L
ICMP  
IR  
+
+
PFD  
+
+
+
3mV  
SENSE  
SENSE  
SYNC  
DET  
2(V  
)
FB  
0.45V  
PLLIN/MODE  
100k  
SLOPE COMP  
V
FB  
R
B
+
V
IN  
0.80V  
TRACK/SS  
EA  
R
A
EXTV  
CC  
+
OV  
C
C
0.88V  
I
TH  
5.1V  
LDO  
EN  
5.1V  
LDO  
EN  
0.5µA  
10V  
SHDN  
RST  
FB  
C
C2  
R
C
FOLDBACK  
+
2(V  
)
1µA  
4.7V  
SS  
SGND  
INTV  
RUN  
CC  
SHORT CKT  
LATCH-OFF  
C
SHDN  
10µA  
SS  
38581 FD  
operaTion  
Main Control Loop  
theꢀV ꢀpinꢀ(whichꢀisꢀgeneratedꢀwithꢀanꢀexternalꢀresistorꢀ  
FB  
dividerꢀ connectedꢀ acrossꢀ theꢀ outputꢀ voltage,ꢀ V ,ꢀ toꢀ  
OUTꢀ  
TheꢀLTC3858-1ꢀusesꢀaꢀconstantꢀfrequency,ꢀcurrentꢀmodeꢀ  
step-downꢀarchitectureꢀwithꢀtheꢀtwoꢀcontrollerꢀchannelsꢀ  
operatingꢀ180ꢀdegreesꢀoutꢀofꢀphase.ꢀDuringꢀnormalꢀop-  
eration,ꢀeachꢀexternalꢀtopꢀMOSFETꢀisꢀturnedꢀonꢀwhenꢀtheꢀ  
clockꢀforꢀthatꢀchannelꢀsetsꢀtheꢀRSꢀlatch,ꢀandꢀisꢀturnedꢀoffꢀ  
whenꢀtheꢀmainꢀcurrentꢀcomparator,ꢀICMP,ꢀresetsꢀtheꢀRSꢀ  
latch.ꢀTheꢀpeakꢀinductorꢀcurrentꢀatꢀwhichꢀICMPꢀtripsꢀandꢀ  
ground)totheinternal0.800Vreferencevoltage.Whentheꢀ  
loadꢀcurrentꢀincreases,ꢀitꢀcausesꢀaꢀslightꢀdecreaseꢀinꢀV ꢀ  
FB  
relativeꢀtoꢀtheꢀreference,ꢀwhichꢀcausesꢀtheꢀEAꢀtoꢀincreaseꢀ  
theꢀI ꢀvoltageꢀuntilꢀtheꢀaverageꢀinductorꢀcurrentꢀmatchesꢀ  
TH  
theꢀnewꢀloadꢀcurrent.  
AfterꢀtheꢀtopꢀMOSFETꢀisꢀturnedꢀoffꢀeachꢀcycle,ꢀtheꢀbottomꢀ  
MOSFETisturnedonuntileithertheinductorcurrentstartsꢀ  
toꢀreverse,ꢀasꢀindicatedꢀbyꢀtheꢀcurrentꢀcomparatorꢀIR,ꢀorꢀ  
theꢀbeginningꢀofꢀtheꢀnextꢀclockꢀcycle.  
resetsꢀtheꢀlatchꢀisꢀcontrolledꢀbyꢀtheꢀvoltageꢀonꢀtheꢀI ꢀpin,ꢀ  
TH  
whichꢀisꢀtheꢀoutputꢀofꢀtheꢀerrorꢀamplifier,ꢀEA.ꢀTheꢀerrorꢀ  
amplifierꢀcomparesꢀtheꢀoutputꢀvoltageꢀfeedbackꢀsignalꢀatꢀ  
38581fb  
ꢀ0  
LTC3858-1  
operaTion (Refer to the Functional Diagram)  
INTV /EXTV Power  
internalꢀreference,ꢀtheꢀLTC3858-1ꢀregulatesꢀtheꢀV ꢀvolt-  
CC  
CC  
FB  
ageꢀtoꢀtheꢀSSꢀpinꢀvoltageꢀinsteadꢀofꢀtheꢀ0.8Vꢀreference.ꢀ  
ThisꢀallowsꢀtheꢀSSꢀpinꢀtoꢀbeꢀusedꢀtoꢀprogramꢀaꢀsoft-startꢀ  
byꢀconnectingꢀanꢀexternalꢀcapacitorꢀfromꢀtheꢀSSꢀpinꢀtoꢀ  
SGND.ꢀAnꢀinternalꢀ1µAꢀpull-upꢀcurrentꢀchargesꢀthisꢀca-  
pacitorꢀcreatingꢀaꢀvoltageꢀrampꢀonꢀtheꢀSSꢀpin.ꢀAsꢀtheꢀSSꢀ  
voltageꢀrisesꢀlinearlyꢀfromꢀ0Vꢀtoꢀ0.8Vꢀ(andꢀbeyondꢀupꢀtoꢀ  
theꢀabsoluteꢀmaximumꢀratingꢀofꢀ6V),ꢀtheꢀoutputꢀvoltageꢀ  
PowerꢀforꢀtheꢀtopꢀandꢀbottomꢀMOSFETꢀdriversꢀandꢀmostꢀ  
otherinternalcircuitryisderivedfromtheINTV pin.Whenꢀ  
CC  
theꢀEXTV ꢀpinꢀisꢀleftꢀopenꢀorꢀtiedꢀtoꢀaꢀvoltageꢀlessꢀthanꢀ  
CC  
4.7V,ꢀtheꢀV ꢀLDOꢀ(lowꢀdropoutꢀlinearꢀregulator)ꢀsuppliesꢀ  
IN  
5.1VꢀfromꢀV ꢀtoꢀINTV .ꢀIfꢀEXTV ꢀisꢀtakenꢀaboveꢀ4.7V,ꢀ  
IN  
CC  
CC  
theV ꢀLDOisturnedoffandtheEXTV ꢀLDOꢀisꢀturnedꢀon.ꢀ  
IN  
CC  
Onceenabled,theEXTV LDOsupplies5.1VfromEXTV ꢀ  
CC  
CC  
V
ꢀrisesꢀsmoothlyꢀfromꢀzeroꢀtoꢀitsꢀfinalꢀvalue.  
OUT  
toꢀINTV .ꢀUsingꢀtheꢀEXTV ꢀpinꢀallowsꢀtheꢀINTV ꢀpowerꢀ  
CC  
CC  
CC  
toꢀbeꢀderivedꢀfromꢀaꢀhighꢀefficiencyꢀexternalꢀsourceꢀsuchꢀ  
Short-Circuit Latch-Off  
asꢀoneꢀofꢀtheꢀLTC3858-1ꢀswitchingꢀregulatorꢀoutputs.  
Afterꢀ theꢀ controllerꢀ hasꢀ beenꢀ startedꢀ andꢀ beenꢀ givenꢀ  
adequateꢀ timeꢀ toꢀ rampꢀ upꢀ theꢀ outputꢀ voltage,ꢀ theꢀ SSꢀ  
capacitorꢀisꢀusedꢀinꢀaꢀshort-circuitꢀtime-outꢀcircuit.ꢀSpe-  
cifically,ꢀonceꢀtheꢀvoltageꢀonꢀtheꢀSSꢀpinꢀrisesꢀaboveꢀ2Vꢀ  
(theꢀarmingꢀthreshold),ꢀtheꢀshort-circuitꢀtimeoutꢀcircuitꢀisꢀ  
enabledꢀ(seeꢀFigureꢀ1).ꢀIfꢀtheꢀoutputꢀvoltageꢀfallsꢀbelowꢀ  
70%ꢀofꢀitsꢀnominalꢀregulatedꢀvoltage,ꢀtheꢀSSꢀcapacitorꢀ  
beginsꢀdischargingꢀwithꢀaꢀnetꢀ9µAꢀpull-downꢀcurrentꢀonꢀ  
theꢀassumptionꢀthatꢀtheꢀoutputꢀisꢀinꢀanꢀovercurrentꢀand/orꢀ  
short-circuitꢀcondition.ꢀIfꢀtheꢀconditionꢀlastsꢀlongꢀenoughꢀ  
toꢀallowꢀtheꢀSSꢀpinꢀvoltageꢀtoꢀfallꢀbelowꢀ1.5Vꢀ(theꢀlatchoffꢀ  
threshold)ꢀ,ꢀtheꢀcontrollerꢀwillꢀshutꢀdownꢀ(latchꢀoff)ꢀuntilꢀ  
EachꢀtopꢀMOSFETꢀdriverꢀisꢀbiasedꢀfromꢀtheꢀfloatingꢀboot-  
strapcapacitor,C ,whichnormallyrechargesduringeachꢀ  
B
switchingꢀcycleꢀthroughꢀanꢀexternalꢀdiodeꢀwhenꢀtheꢀtopꢀ  
MOSFETꢀturnsꢀoff.ꢀIfꢀtheꢀinputꢀvoltageꢀV ꢀdecreasesꢀtoꢀ  
IN  
aꢀvoltageꢀcloseꢀtoꢀV ,ꢀtheꢀloopꢀmayꢀenterꢀdropoutꢀandꢀ  
OUTꢀ  
attempttoturnonthetopMOSFETcontinuously.Theꢀ  
dropoutꢀdetectorꢀdetectsꢀthisꢀandꢀforcesꢀtheꢀtopꢀMOSFETꢀ  
offꢀforꢀaboutꢀone-twelfthꢀofꢀtheꢀclockꢀperiodꢀeveryꢀtenthꢀ  
cycleꢀtoꢀallowꢀC ꢀtoꢀrecharge.  
B
Shutdown and Start-Up (RUN1, RUN2 and  
SS1, SS2 Pins)  
theꢀRUNꢀpinꢀvoltageꢀorꢀtheꢀV ꢀvoltageꢀisꢀrecycled.  
IN  
TheꢀtwoꢀchannelsꢀofꢀtheꢀLTC3858-1ꢀcanꢀbeꢀindependentlyꢀ  
shutdownusingtheRUN1andRUN2pins.Pullingeitherofꢀ  
theseꢀpinsꢀbelowꢀ1.26Vꢀshutsꢀdownꢀtheꢀmainꢀcontrolꢀloopꢀ  
forꢀthatꢀcontroller.ꢀPullingꢀbothꢀpinsꢀbelowꢀ0.7Vꢀdisablesꢀ  
bothꢀcontrollersꢀandꢀmostꢀinternalꢀcircuits,ꢀincludingꢀtheꢀ  
Thedelaytimefromwhenanshort-circuitoccursuntilꢀ  
theꢀcontrollerꢀlatchesꢀoffꢀcanꢀbeꢀcalculatedꢀusingꢀtheꢀfol-  
lowingꢀequation:  
VSS – 1.5V  
tLATCH CSS  
INTV ꢀLDOs.ꢀInꢀthisꢀstate,ꢀtheꢀLTC3858-1ꢀdrawsꢀonlyꢀ8µAꢀ  
CC  
9µA  
ofꢀquiescentꢀcurrent.  
whereꢀV ꢀisꢀtheꢀinitialꢀvoltageꢀ(mustꢀbeꢀgreaterꢀthanꢀ2V)ꢀ  
SS  
TheꢀRUNꢀpinꢀmayꢀbeꢀexternallyꢀpulledꢀupꢀorꢀdrivenꢀdirectlyꢀ  
byꢀlogic.ꢀWhenꢀdrivingꢀtheꢀRUNꢀpinꢀwithꢀaꢀlowꢀimpedanceꢀ  
source,ꢀdoꢀnotꢀexceedꢀtheꢀabsoluteꢀmaximumꢀratingꢀofꢀ  
8Vꢀonꢀthisꢀpin.ꢀTheꢀRUNꢀpinꢀhasꢀanꢀinternalꢀ11Vꢀvoltageꢀ  
clampꢀthatꢀallowsꢀtheꢀRUNꢀpinꢀtoꢀbeꢀconnectedꢀthroughꢀaꢀ  
ontheSSpinatthetimetheshort-circuitoccurs.Normallyꢀ  
theꢀSSꢀpinꢀvoltageꢀwillꢀhaveꢀbeenꢀpulledꢀupꢀtoꢀtheꢀINTV ꢀ  
CC  
voltageꢀ(5.1V)ꢀbyꢀtheꢀinternalꢀ1µAꢀpull-upꢀcurrent.  
NotethatthetwocontrollersontheLTC3858-1havesepa-  
rate,ꢀindependentꢀshort-circuitꢀlatchoffꢀcircuits.ꢀLatchoffꢀ  
canꢀbeꢀoverridden/defeatedꢀbyꢀconnectingꢀaꢀresistorꢀ150kꢀ  
resistorꢀtoꢀaꢀhigherꢀvoltageꢀ(forꢀexample,ꢀV ),ꢀsoꢀlongꢀasꢀ  
IN  
theꢀmaximumꢀcurrentꢀintoꢀtheꢀRUNꢀpinꢀdoesꢀnotꢀexceedꢀ  
100µA.  
orꢀlessꢀfromꢀtheꢀSSꢀpinꢀtoꢀINTV .ꢀThisꢀresistorꢀprovidesꢀ  
CC  
enoughꢀpull-upꢀcurrentꢀtoꢀovercomeꢀtheꢀ9µAꢀpull-downꢀ  
currentpresentduringashort-circuit.ꢀNoteꢀthatꢀthisꢀresis-  
torꢀalsoꢀshortensꢀtheꢀsoft-startꢀperiod.  
Theꢀstart-upꢀofꢀeachꢀcontroller’sꢀoutputꢀvoltageꢀV ꢀisꢀ  
OUT  
controlledꢀbyꢀtheꢀvoltageꢀonꢀtheꢀSSꢀpinꢀforꢀthatꢀchannel.ꢀ  
WhenthevoltageontheSSpinislessthanthe0.8Vꢀ  
38581fb  
ꢀꢀ  
LTC3858-1  
operaTion (Refer to the Functional Diagram)  
INTV  
CC  
WhenacontrollerisenabledforBurstModeoperation,theꢀ  
minimumꢀpeakꢀcurrentꢀinꢀtheꢀinductorꢀisꢀsetꢀtoꢀapproxi-  
matelyꢀ30%ꢀofꢀtheꢀmaximumꢀsenseꢀvoltageꢀevenꢀthoughꢀ  
SS VOLTAGE  
2V  
1.5V  
theꢀvoltageꢀonꢀtheꢀI ꢀpinꢀindicatesꢀaꢀlowerꢀvalue.ꢀIfꢀtheꢀ  
0.8V  
TH  
averageꢀinductorꢀcurrentꢀisꢀhigherꢀthanꢀtheꢀloadꢀcurrent,ꢀ  
LATCH-OFF  
COMMAND  
theꢀerrorꢀamplifier,ꢀEA,ꢀwillꢀdecreaseꢀtheꢀvoltageꢀonꢀtheꢀI ꢀ  
TH  
pin.ꢀWhenꢀtheꢀI ꢀvoltageꢀdropsꢀbelowꢀ0.425V,ꢀtheꢀinternalꢀ  
TH  
0V  
SS PIN  
CURRENT  
sleepꢀsignalꢀgoesꢀhighꢀ(enablingꢀ“sleep”ꢀmode)ꢀandꢀbothꢀ  
1µA  
1µA  
–9µA  
externalꢀMOSFETsꢀareꢀturnedꢀoff.ꢀ  
OUTPUT  
VOLTAGE  
Inꢀsleepꢀmode,ꢀmuchꢀofꢀtheꢀinternalꢀcircuitryꢀisꢀturnedꢀoff,ꢀ  
reducingthequiescentcurrent.Ifonechannelisshutdownꢀ  
andꢀtheꢀotherꢀchannelꢀisꢀinꢀsleepꢀmode,ꢀtheꢀLTC3858-1ꢀ  
drawsꢀonlyꢀ170µAꢀofꢀquiescentꢀcurrent.ꢀIfꢀbothꢀchannelsꢀ  
areinsleepmode,theLTC3858-1drawsonly300µAofqui-  
escentꢀcurrent.ꢀInꢀsleepꢀmode,ꢀtheꢀloadꢀcurrentꢀisꢀsuppliedꢀ  
byꢀtheꢀoutputꢀcapacitor.ꢀAsꢀtheꢀoutputꢀvoltageꢀdecreases,ꢀ  
theꢀEA’sꢀoutputꢀbeginsꢀtoꢀrise.ꢀWhenꢀtheꢀoutputꢀvoltageꢀ  
38581 F01  
LATCH-OFF  
ENABLE  
ARMING  
SOFT-START INTERVAL  
t
LATCH  
Figure 1. Latch-Off Timing Diagram  
Foldback Current  
dropsꢀenough,ꢀtheꢀI ꢀpinꢀisꢀreconnectedꢀtoꢀtheꢀoutputꢀ  
TH  
ofꢀtheꢀEA,ꢀtheꢀsleepꢀsignalꢀgoesꢀlow,ꢀandꢀtheꢀcontrollerꢀ  
resumesꢀnormalꢀoperationꢀbyꢀturningꢀonꢀtheꢀtopꢀexternalꢀ  
MOSFETꢀonꢀtheꢀnextꢀcycleꢀofꢀtheꢀinternalꢀoscillator.  
Onꢀtheꢀotherꢀhand,ꢀwhenꢀtheꢀoutputꢀvoltageꢀfallsꢀtoꢀlessꢀ  
thanꢀ70%ꢀofꢀitsꢀnominalꢀlevel,ꢀfoldbackꢀcurrentꢀlimitingꢀ  
isꢀalsoꢀactivated,ꢀprogressivelyꢀloweringꢀtheꢀpeakꢀcurrentꢀ  
limitinproportiontotheseverityoftheovercurrentorꢀ  
short-circuitꢀcondition.ꢀEvenꢀifꢀaꢀshort-circuitꢀisꢀpresentꢀ  
andtheshort-circuitlatch-offisnotyetenabled(whenꢀ  
SSꢀvoltageꢀhasꢀnotꢀyetꢀreachedꢀ2V),ꢀaꢀsafe,ꢀlowꢀoutputꢀ  
currentꢀisꢀprovidedꢀdueꢀtoꢀinternalꢀcurrentꢀfoldbackꢀandꢀ  
actualꢀpowerꢀwastedꢀisꢀlowꢀdueꢀtoꢀtheꢀefficientꢀnatureꢀofꢀ  
thecurrentmodeswitchingregulator.Foldbackcurrentꢀ  
limitingꢀisꢀdisabledꢀduringꢀtheꢀsoft-startꢀintervalꢀ(asꢀlongꢀ  
WhenꢀaꢀcontrollerꢀisꢀenabledꢀforꢀBurstꢀModeꢀoperation,ꢀ  
theꢀinductorꢀcurrentꢀisꢀnotꢀallowedꢀtoꢀreverse.ꢀTheꢀreverseꢀ  
currentꢀ comparator,ꢀ IR,ꢀ turnsꢀ offꢀ theꢀ bottomꢀ externalꢀ  
MOSFETjustbeforetheinductorcurrentreacheszero,ꢀ  
preventingitfromreversingandgoingnegative.Thus,ꢀ  
theꢀcontrollerꢀisꢀinꢀdiscontinuousꢀoperation.  
Inforcedcontinuousoperationorwhenclockedbyanꢀ  
externalꢀclockꢀsourceꢀtoꢀuseꢀtheꢀphase-lockedꢀloopꢀ(seeꢀ  
Frequencyꢀ Selectionꢀ andꢀ Phase-Lockedꢀ Loopꢀ section),ꢀ  
theꢀinductorꢀcurrentꢀisꢀallowedꢀtoꢀreverseꢀatꢀlightꢀloadsꢀ  
orunderlargetransientconditions.Thepeakinductorꢀ  
asꢀtheꢀV ꢀvoltageꢀisꢀkeepingꢀupꢀwithꢀtheꢀSSꢀvoltage).ꢀ  
FB  
Light Load Current Operation (Burst Mode Operation,  
Pulse-Skipping or Forced Continuous Conduction)  
(PLLIN/MODE Pin)  
currentꢀisꢀdeterminedꢀbyꢀtheꢀvoltageꢀonꢀtheꢀI ꢀpin,ꢀjustꢀ  
TH  
asꢀinꢀnormalꢀoperation.ꢀInꢀthisꢀmode,ꢀtheꢀefficiencyꢀatꢀlightꢀ  
loadsislowerthaninBurstModeoperation.However,ꢀ  
continuousꢀoperationꢀhasꢀtheꢀadvantagesꢀofꢀlowerꢀoutputꢀ  
voltageꢀrippleꢀandꢀlessꢀinterferenceꢀtoꢀaudioꢀcircuitry.ꢀInꢀ  
forcedꢀcontinuousꢀmode,ꢀtheꢀoutputꢀrippleꢀisꢀindependentꢀ  
ofꢀloadꢀcurrent.  
TheLTC3858-1canbeenabledtoenterhighefficiencyꢀ  
BurstModeoperation,constantfrequencypulse-skippingꢀ  
mode,ꢀorꢀforcedꢀcontinuousꢀconductionꢀmodeꢀatꢀlowꢀloadꢀ  
currents.ꢀToꢀselectꢀBurstꢀModeꢀoperation,ꢀtieꢀtheꢀPLLIN/ꢀ  
MODEꢀpinꢀtoꢀground.ꢀToꢀselectꢀforcedꢀcontinuousꢀopera-  
tion,ꢀtieꢀtheꢀPLLIN/MODEꢀpinꢀtoꢀINTV .ꢀToꢀselectꢀpulse-  
CC  
WhenthePLLIN/MODEpinisconnectedforpulse-skippingꢀ  
mode,theLTC3858-1operatesinPWMpulse-skippingꢀ  
modeatlightloads.Inthismode,constantfrequencyꢀ  
skippingꢀmode,ꢀtieꢀtheꢀPLLIN/MODEꢀpinꢀtoꢀaꢀDCꢀvoltageꢀ  
greaterꢀthanꢀ1.2VꢀandꢀlessꢀthanꢀINTV ꢀ–ꢀ1.3V.  
CC  
38581fb  
ꢀꢁ  
LTC3858-1  
operaTion (Refer to the Functional Diagram)  
operationismaintaineddowntoapproximately1%ofꢀ isꢀapplied.ꢀIfꢀprebiasedꢀnearꢀtheꢀexternalꢀclockꢀfrequency,ꢀ  
designedmaximumoutputcurrent.Atverylightloads,theꢀ theꢀPLLꢀloopꢀonlyꢀneedsꢀtoꢀmakeꢀslightꢀchangesꢀtoꢀtheꢀ  
currentꢀcomparator,ꢀICMP,ꢀmayꢀremainꢀtrippedꢀforꢀseveralꢀ VCOꢀinputꢀinꢀorderꢀtoꢀsynchronizeꢀtheꢀrisingꢀedgeꢀofꢀtheꢀ  
cyclesꢀandꢀforceꢀtheꢀexternalꢀtopꢀMOSFETꢀtoꢀstayꢀoffꢀforꢀ externalꢀclock’sꢀtoꢀtheꢀrisingꢀedgeꢀofꢀTG1.ꢀTheꢀabilityꢀtoꢀ  
thesamenumberofcycles(i.e.,skippingpulses).Theꢀ pre-biasꢀtheꢀloopꢀfilterꢀallowsꢀtheꢀPLLꢀtoꢀlock-inꢀrapidlyꢀ  
inductorꢀcurrentꢀisꢀnotꢀallowedꢀtoꢀreverseꢀ(discontinuousꢀ withoutꢀdeviatingꢀfarꢀfromꢀtheꢀdesiredꢀfrequency.  
operation).ꢀThisꢀmode,ꢀlikeꢀforcedꢀcontinuousꢀoperation,ꢀ  
Theꢀ typicalꢀ captureꢀ rangeꢀ ofꢀ theꢀ phase-lockedꢀ loopꢀ isꢀ  
exhibitsꢀlowꢀoutputꢀrippleꢀasꢀwellꢀasꢀlowꢀaudioꢀnoiseꢀandꢀ  
fromꢀ approximatelyꢀ 55kHzꢀ toꢀ 1MHz,ꢀ withꢀ aꢀ guaranteeꢀ  
reducedꢀRFꢀinterferenceꢀwhenꢀcomparedꢀtoꢀBurstꢀModeꢀ  
overallmanufacturingvariationstobebetween75kHzꢀ  
operation.ꢀ Itꢀ providesꢀ higherꢀ lightꢀ loadꢀ efficiencyꢀ thanꢀ  
andꢀ850kHz.ꢀ  
forcedꢀcontinuousꢀmode,ꢀbutꢀnotꢀnearlyꢀasꢀhighꢀasꢀBurstꢀ  
ThetypicalinputclockthresholdsonthePLLIN/MODEꢀ  
pinꢀareꢀ1.6Vꢀ(rising)ꢀandꢀ1.1Vꢀ(falling).  
Modeꢀoperation.  
Frequency Selection and Phase-Locked Loop  
(FREQ and PLLIN/MODE Pins)  
Output Overvoltage Protection  
Anovervoltagecomparatorguardsagainsttransientover-  
shootsꢀasꢀwellꢀasꢀotherꢀmoreꢀseriousꢀconditionsꢀthatꢀmayꢀ  
Theꢀselectionꢀofꢀswitchingꢀfrequencyꢀisꢀaꢀtradeoffꢀbetweenꢀ  
efficiencyꢀ andꢀ componentꢀ size.ꢀ Lowꢀ frequencyꢀ opera-  
tionꢀincreasesꢀefficiencyꢀbyꢀreducingꢀMOSFETꢀswitchingꢀ  
losses,ꢀbutꢀrequiresꢀlargerꢀinductanceꢀand/orꢀcapacitanceꢀ  
toꢀmaintainꢀlowꢀoutputꢀrippleꢀvoltage.  
overvoltageꢀtheꢀoutput.ꢀWhenꢀtheꢀV ꢀpinꢀrisesꢀbyꢀmoreꢀ  
FB  
than10%aboveitsregulationpointof0.800V,thetopꢀ  
MOSFETꢀisꢀturnedꢀoffꢀandꢀtheꢀbottomꢀMOSFETꢀisꢀturnedꢀ  
onꢀuntilꢀtheꢀovervoltageꢀconditionꢀisꢀcleared.  
TheꢀswitchingꢀfrequencyꢀofꢀtheꢀLTC3858-1’sꢀcontrollersꢀ  
canꢀbeꢀselectedꢀusingꢀtheꢀFREQꢀpin.  
Power Good (PGOOD) Pin  
IfꢀtheꢀPLLIN/MODEꢀpinꢀisꢀnotꢀbeingꢀdrivenꢀbyꢀanꢀexternalꢀ  
clockꢀsource,ꢀtheꢀFREQꢀpinꢀcanꢀbeꢀtiedꢀtoꢀSGND,ꢀtiedꢀtoꢀ  
ThePGOOD1pinisconnectedtoanopendrainofanꢀ  
internalꢀN-channelꢀMOSFET.ꢀTheꢀMOSFETꢀturnsꢀonꢀandꢀ  
INTV orprogrammedthroughanexternalresistor.Tyingꢀ  
CC  
pullsthePGOOD1pinlowwhenthecorrespondingV ꢀpinꢀ  
FB1  
FREQtoSGNDselects350kHzwhiletyingFREQtoINTV ꢀ  
CC  
voltageꢀisꢀnotꢀwithinꢀ 10%ꢀofꢀtheꢀ0.8Vꢀreferenceꢀvoltage.ꢀ  
selectsꢀ 535kHz.ꢀ Placingꢀ aꢀ resistorꢀ betweenꢀ FREQꢀ andꢀ  
SGNDꢀallowsꢀtheꢀfrequencyꢀtoꢀbeꢀprogrammedꢀbetweenꢀ  
50kHzꢀandꢀ900kHz.  
TheꢀPGOOD1ꢀpinꢀisꢀalsoꢀpulledꢀlowꢀwhenꢀtheꢀRUN1ꢀpinꢀ  
isꢀlowꢀ(shutꢀdown).ꢀWhenꢀtheꢀV ꢀpinꢀvoltageꢀisꢀwithinꢀ  
FB1  
theꢀ 10%ꢀrequirement,ꢀtheꢀMOSFETꢀisꢀturnedꢀoffꢀandꢀtheꢀ  
pinꢀisꢀallowedꢀtoꢀbeꢀpulledꢀupꢀbyꢀanꢀexternalꢀresistorꢀtoꢀaꢀ  
sourceꢀnoꢀgreaterꢀthanꢀ6V.  
Aꢀphase-lockedꢀloopꢀ(PLL)ꢀisꢀavailableꢀonꢀtheꢀLTC3858-1ꢀ  
toꢀsynchronizeꢀtheꢀinternalꢀoscillatorꢀtoꢀanꢀexternalꢀclockꢀ  
sourcethatisconnectedtothePLLIN/MODEpin.Theꢀ  
phaseꢀdetectorꢀadjustsꢀtheꢀvoltageꢀ(throughꢀanꢀinternalꢀ  
lowpasslter)oftheVCOinputtoaligntheturn-onofꢀ  
controllerꢀ1’sꢀexternalꢀtopꢀMOSFETꢀtoꢀtheꢀrisingꢀedgeꢀofꢀ  
theꢀsynchronizingꢀsignal.ꢀThus,ꢀtheꢀturn-onꢀofꢀcontrollerꢀ  
2’sꢀexternalꢀtopꢀMOSFETꢀisꢀ180ꢀdegreesꢀoutꢀofꢀphaseꢀtoꢀ  
theꢀrisingꢀedgeꢀofꢀtheꢀexternalꢀclockꢀsource.  
Theory and Benefits of 2-Phase Operation  
Whyꢀ theꢀ needꢀ forꢀ 2-phaseꢀ operation?ꢀ Upꢀ untilꢀ theꢀ  
2-phasefamily,constantfrequencydualswitchingregula-  
torsꢀoperatedꢀbothꢀchannelsꢀinꢀphaseꢀ(i.e.,ꢀsingleꢀphaseꢀ  
operation).ꢀThisꢀmeansꢀthatꢀbothꢀswitchesꢀturnedꢀonꢀatꢀ  
theꢀsameꢀtime,ꢀcausingꢀcurrentꢀpulsesꢀofꢀupꢀtoꢀtwiceꢀtheꢀ  
amplitudeꢀofꢀthoseꢀforꢀoneꢀregulatorꢀtoꢀbeꢀdrawnꢀfromꢀtheꢀ  
inputꢀcapacitorꢀandꢀbattery.ꢀTheseꢀlargeꢀamplitudeꢀcurrentꢀ  
Theꢀ VCOꢀ inputꢀ voltageꢀ isꢀ pre-biasedꢀ toꢀ theꢀ operatingꢀ  
frequencyꢀsetꢀbyꢀtheꢀFREQꢀpinꢀbeforeꢀtheꢀexternalꢀclockꢀ  
38581fb  
ꢀꢂ  
LTC3858-1  
operaTion (Refer to the Functional Diagram)  
pulsesꢀincreasedꢀtheꢀtotalꢀRMSꢀcurrentꢀflowingꢀfromꢀtheꢀ Ofꢀcourse,ꢀtheꢀimprovementꢀaffordedꢀbyꢀ2-phaseꢀopera-  
inputꢀcapacitor,ꢀrequiringꢀtheꢀuseꢀofꢀmoreꢀexpensiveꢀinputꢀ tionꢀisꢀaꢀfunctionꢀofꢀtheꢀdualꢀswitchingꢀregulator’sꢀrelativeꢀ  
capacitorsandincreasingbothEMIandlossesintheinputꢀ dutyꢀcyclesꢀwhich,ꢀinꢀturn,ꢀareꢀdependentꢀuponꢀtheꢀinputꢀ  
capacitorꢀandꢀbattery.  
voltageꢀV ꢀ(DutyꢀCycleꢀ=ꢀV /V ).ꢀFigureꢀ3ꢀshowsꢀhowꢀ  
IN OUT IN  
theRMSinputcurrentvariesforsingle-phaseand2-phaseꢀ  
operationꢀforꢀ3.3Vꢀandꢀ5Vꢀregulatorsꢀoverꢀaꢀwideꢀinputꢀ  
voltageꢀrange.  
Withꢀ 2-phaseꢀ operation,ꢀ theꢀ twoꢀ channelsꢀ ofꢀ theꢀ dualꢀ  
switchingregulatorareoperated180degreesoutofphase.ꢀ  
Thiseffectivelyinterleavesthecurrentpulsesdrawnbytheꢀ  
switches,greatlyreducingtheoverlaptimewheretheyaddꢀ Itꢀcanꢀreadilyꢀbeꢀseenꢀthatꢀtheꢀadvantagesꢀofꢀ2-phaseꢀop-  
together.ꢀTheꢀresultꢀisꢀaꢀsignificantꢀreductionꢀinꢀtotalꢀRMSꢀ erationꢀareꢀnotꢀjustꢀlimitedꢀtoꢀaꢀnarrowꢀoperatingꢀrange,ꢀ  
inputꢀcurrent,ꢀwhichꢀinꢀturnꢀallowsꢀlessꢀexpensiveꢀinputꢀ formostapplicationsisthat2-phaseoperationwillreduceꢀ  
capacitorsꢀtoꢀbeꢀused,ꢀreducesꢀshieldingꢀrequirementsꢀforꢀ theinputcapacitorrequirementtothatforjustonechannelꢀ  
EMIꢀandꢀimprovesꢀrealꢀworldꢀoperatingꢀefficiency.  
operatingꢀatꢀmaximumꢀcurrentꢀandꢀ50%ꢀdutyꢀcycle.  
Figure2comparestheinputwaveformsforarepresentativeꢀ  
singleꢀphaseꢀdualꢀswitchingꢀregulatorꢀtoꢀtheꢀLTC3858-1ꢀ  
2-phaseꢀ dualꢀ switchingꢀ regulator.ꢀ Anꢀ actualꢀ measure-  
mentoftheRMSinputcurrentundertheseconditionsꢀ  
showsꢀthatꢀ2-phaseꢀoperationꢀdroppedꢀtheꢀinputꢀcurrentꢀ  
3.0  
SINGLE PHASE  
DUAL CONTROLLER  
2.5  
2.0  
1.5  
1.0  
0.5  
0
fromꢀ2.53A  
ꢀtoꢀ1.55A  
.ꢀWhileꢀthisꢀisꢀanꢀimpressiveꢀ  
RMS  
RMS  
2-PHASE  
DUAL CONTROLLER  
reductionꢀinꢀitself,ꢀrememberꢀthatꢀtheꢀpowerꢀlossesꢀareꢀ  
2
proportionaltoI  
,meaningthattheactualpowerwastedꢀ  
RMS  
isꢀreducedꢀbyꢀaꢀfactorꢀofꢀ2.66.ꢀTheꢀreducedꢀinputꢀrippleꢀ  
voltageꢀalsoꢀmeansꢀlessꢀpowerꢀisꢀlostꢀinꢀtheꢀinputꢀpowerꢀ  
path,ꢀwhichꢀcouldꢀincludeꢀbatteries,ꢀswitches,ꢀtrace/con-  
nectorresistancesandprotectioncircuitry.Improvementsꢀ  
inbothconductedandradiatedEMIalsodirectlyaccrueasꢀ  
aꢀresultꢀofꢀtheꢀreducedꢀRMSꢀinputꢀcurrentꢀandꢀvoltage.  
V
O1  
V
O2  
= 5V/3A  
= 3.3V/3A  
0
10  
20  
30  
40  
INPUT VOLTAGE (V)  
3858 F03  
Figure 3. RMS Input Current Comparison  
5V SWITCH  
20V/DIV  
3.3V SWITCH  
20V/DIV  
INPUT CURRENT  
5A/DIV  
INPUT VOLTAGE  
500mV/DIV  
38581 F01  
I
= 2.53A  
I
= 1.55A  
IN(MEAS) RMS  
IN(MEAS)  
RMS  
Figure 2. Input Waveforms Comparing Single-Phase (a) and 2-Phase (b) Operation for Dual Switching Regulators  
Converting 12V to 5V and 3.3V at 3A Each. The Reduced Input Ripple with the 2-Phase Regulator Allows  
Less Expensive Input Capacitors, Reduces Shielding Requirements for EMI and Improves Efficiency  
38581fb  
ꢀꢃ  
LTC3858-1  
applicaTions inForMaTion  
Theꢀ Typicalꢀ Applicationꢀ onꢀ theꢀ firstꢀ pageꢀ isꢀ aꢀ basicꢀ  
LTC3858-1applicationcircuit.LTC3858-1canbeconfiguredꢀ  
touseeitherDCR(inductorresistance)ꢀsensingꢀorꢀlowꢀ  
valueꢀresistorꢀsensing.ꢀTheꢀchoiceꢀbetweenꢀtheꢀtwoꢀcur-  
rentꢀsensingꢀschemesꢀisꢀlargelyꢀaꢀdesignꢀtradeoffꢀbetweenꢀ  
cost,ꢀpowerꢀconsumptionꢀandꢀaccuracy.ꢀDCRꢀsensingꢀisꢀ  
becomingꢀ popularꢀ becauseꢀ itꢀ savesꢀ expensiveꢀ currentꢀ  
sensingꢀresistorsꢀandꢀisꢀmoreꢀpowerꢀefficient,ꢀespeciallyꢀ  
inꢀ highꢀ currentꢀ applications.ꢀ However,ꢀ currentꢀ sensingꢀ  
resistorsꢀprovideꢀtheꢀmostꢀaccurateꢀcurrentꢀlimitsꢀforꢀtheꢀ  
controller.ꢀOtherꢀexternalꢀcomponentꢀselectionꢀisꢀdrivenꢀ  
byꢀtheꢀloadꢀrequirement,ꢀandꢀbeginsꢀwithꢀtheꢀselectionꢀofꢀ  
programmedꢀcurrentꢀlimitꢀunpredictable.ꢀIfꢀinductorꢀDCRꢀ  
sensingꢀisꢀusedꢀ(Figureꢀ5b),ꢀresistorꢀR1ꢀshouldꢀbeꢀplacedꢀ  
closetotheswitchingnode,topreventnoisefromcouplingꢀ  
intoꢀsensitiveꢀsmall-signalꢀnodes.  
TO SENSE FILTER,  
NEXT TO THE CONTROLLER  
C
OUT  
38581 F04  
INDUCTOR OR R  
SENSE  
Figure 4. Sense Lines Placement with Inductor or Sense Resistor  
R
ꢀ(ifꢀR  
ꢀisꢀused)ꢀandꢀinductorꢀvalue.ꢀNext,ꢀtheꢀ  
SENSE  
SENSE  
V
V
IN  
IN  
powerMOSFETsandSchottkydiodesareselected.Finally,ꢀ  
inputꢀandꢀoutputꢀcapacitorsꢀareꢀselected.  
INTV  
CC  
BOOST  
TG  
+
SENSE and SENSE Pins  
SW  
V
OUT  
+
LTC3858-1  
TheSENSE andSENSE pinsaretheinputstothecurrentꢀ  
comparators.ꢀTheꢀcommonꢀmodeꢀvoltageꢀrangeꢀonꢀtheseꢀ  
pinsꢀisꢀ0Vꢀtoꢀ28Vꢀ(AbsꢀMax),ꢀenablingꢀtheꢀLTC3858-1ꢀtoꢀ  
regulateꢀoutputꢀvoltagesꢀupꢀtoꢀaꢀnominalꢀ24Vꢀ(allowingꢀ  
marginꢀforꢀtolerancesꢀandꢀtransients).ꢀ  
BG  
+
SENSE  
PLACE CAPACITOR NEAR  
SENSE PINS  
SENSE  
SGND  
+
38581 F05a  
TheꢀSENSE ꢀpinꢀisꢀhighꢀimpedanceꢀoverꢀtheꢀfullꢀcommonꢀ  
modeꢀrange,ꢀdrawingꢀatꢀmostꢀ 1µA.ꢀThisꢀhighꢀimpedanceꢀ  
allowsthecurrentcomparatorstobeusedininductorꢀ  
DCRꢀsensing.  
(5a) Using a Resistor to Sense Current  
V
INTV  
V
IN  
IN  
TheꢀimpedanceꢀofꢀtheꢀSENSE ꢀpinꢀchangesꢀdependingꢀonꢀ  
CC  
thecommonmodevoltage.WhenSENSE islessthanꢀ  
INDUCTOR  
DCR  
BOOST  
TG  
INTV ꢀ–ꢀ0.5V,ꢀaꢀsmallꢀcurrentꢀofꢀlessꢀthanꢀ1µAꢀflowsꢀoutꢀ  
CC  
L
ofꢀtheꢀpin.ꢀWhenꢀSENSE ꢀisꢀaboveꢀINTV ꢀ+ꢀ0.5V,ꢀaꢀhigherꢀ  
CC  
SW  
V
OUT  
LTC3858-1  
current(~550µA)owsintothepin.BetweenINTV 0.5Vꢀ  
CC  
BG  
andINTV +0.5V,thecurrenttransitionsfromthesmallerꢀ  
CC  
R1  
C1* R2  
currentꢀtoꢀtheꢀhigherꢀcurrent.  
+
SENSE  
Filtercomponentsmutualtothesenselinesshouldbeꢀ  
placedꢀcloseꢀtoꢀtheꢀLTC3858-1,ꢀandꢀtheꢀsenseꢀlinesꢀshouldꢀ  
runꢀcloseꢀtogetherꢀtoꢀaꢀKelvinꢀconnectionꢀunderneathꢀtheꢀ  
currentꢀsenseꢀelementꢀ(shownꢀinꢀFigureꢀ4).ꢀSensingꢀcur-  
rentelsewherecaneffectivelyaddparasiticinductanceꢀ  
andꢀcapacitanceꢀtoꢀtheꢀcurrentꢀsenseꢀelement,ꢀdegradingꢀ  
theinformationatthesenseterminalsandmakingtheꢀ  
SENSE  
SGND  
38581 F05b  
R2  
R1 + R2  
L
DCR  
||  
(R1 R2) C1 =  
*PLACE C1 NEAR  
SENSE PINS  
R
= DCR  
SENSE(EQ)  
(5b) Using the Inductor DCR to Sense Current  
Figure 5. Current Sensing Methods  
38581fb  
ꢀꢄ  
LTC3858-1  
applicaTions inForMaTion  
Low Value Resistors Current Sensing  
usingagoodRLCmeter,buttheDCRtoleranceisnotꢀ  
alwaysꢀtheꢀsameꢀandꢀvariesꢀwithꢀtemperature;ꢀconsultꢀtheꢀ  
manufacturers’ꢀdataꢀsheetsꢀforꢀdetailedꢀinformation.  
Aꢀtypicalꢀsensingꢀcircuitꢀusingꢀaꢀdiscreteꢀresistorꢀisꢀshownꢀ  
inꢀ Figureꢀ 5a.ꢀ R  
outputꢀcurrent.  
ꢀ isꢀ chosenꢀ basedꢀ onꢀ theꢀ requiredꢀ  
SENSE  
UsingꢀtheꢀinductorꢀrippleꢀcurrentꢀvalueꢀfromꢀtheꢀInductorꢀ  
ValueꢀCalculationꢀsection,ꢀtheꢀtargetꢀsenseꢀresistorꢀvalueꢀ  
is:  
Theꢀ currentꢀ comparatorꢀ hasꢀ aꢀ maximumꢀ thresholdꢀ  
of50mV(typ).Thecurrentcomparatorthresh-  
V
SENSE(MAX)  
oldꢀvoltageꢀsetsꢀtheꢀpeakꢀofꢀtheꢀinductorꢀcurrent,ꢀyieldingꢀ  
VSENSE(MAX)  
RSENSE(EQUIV)  
=
amaximumaverageoutputcurrent,I  
,equaltotheꢀ  
MAX  
IL  
peakꢀvalueꢀlessꢀhalfꢀtheꢀpeak-to-peakꢀrippleꢀcurrent,ꢀI .ꢀ  
IMAX +  
L
2
Toꢀcalculateꢀtheꢀsenseꢀresistorꢀvalue,ꢀuseꢀtheꢀequation:  
Toꢀensureꢀthatꢀtheꢀapplicationꢀwillꢀdeliverꢀfullꢀloadꢀcurrentꢀ  
overꢀ theꢀ fullꢀ operatingꢀ temperatureꢀ range,ꢀ chooseꢀ theꢀ  
minimumꢀvalueꢀforꢀtheꢀMaximumꢀCurrentꢀSenseꢀThresh-  
VSENSE(MAX)  
RSENSE  
=
IL  
2
IMAX  
+
oldꢀVoltageꢀ(V  
table.  
)ꢀinꢀtheꢀElectricalꢀCharacteristicsꢀ  
SENSE(MAX)  
Whenꢀusingꢀtheꢀcontrollerꢀinꢀveryꢀlowꢀdropoutꢀconditions,ꢀ  
themaximumoutputcurrentlevelwillbereducedduetotheꢀ  
internalꢀcompensationꢀrequiredꢀtoꢀmeetꢀstabilityꢀcriterionꢀ  
forꢀbuckꢀregulatorsꢀoperatingꢀatꢀgreaterꢀthanꢀ50%ꢀdutyꢀ  
factor.AcurveisprovidedintheTypicalPerformanceChar-  
acteristicssectiontoestimatethisreductioninpeakoutputꢀ  
currentꢀdependingꢀuponꢀtheꢀoperatingꢀdutyꢀfactor.  
Next,ꢀdetermineꢀtheꢀDCRꢀofꢀtheꢀinductor.ꢀWhenꢀprovided,ꢀ  
useꢀtheꢀmanufacturer’sꢀmaximumꢀvalue,ꢀusuallyꢀgivenꢀatꢀ  
20°C.ꢀIncreaseꢀthisꢀvalueꢀtoꢀaccountꢀforꢀtheꢀtemperatureꢀ  
coefficientꢀofꢀcopper,ꢀwhichꢀisꢀapproximatelyꢀ0.4%/°C.ꢀAꢀ  
conservativeꢀvalueꢀforꢀT  
ꢀisꢀ100°C.  
L(MAX)  
ToꢀscaleꢀtheꢀmaximumꢀinductorꢀDCRꢀtoꢀtheꢀdesiredꢀsenseꢀ  
resistorꢀvalue,ꢀuseꢀtheꢀdividerꢀratio:  
Inductor DCR Sensing  
RSENSE(EQUIV)  
Forꢀapplicationsꢀrequiringꢀtheꢀhighestꢀpossibleꢀefficiencyꢀ  
atꢀhighꢀloadꢀcurrents,ꢀtheꢀLTC3850ꢀisꢀcapableꢀofꢀsensingꢀ  
theꢀvoltageꢀdropꢀacrossꢀtheꢀinductorꢀDCR,ꢀasꢀshownꢀinꢀ  
Figureꢀ5b.ꢀTheꢀDCRꢀofꢀtheꢀinductorꢀrepresentsꢀtheꢀsmallꢀ  
amountꢀofꢀDCꢀresistanceꢀofꢀtheꢀcopperꢀwire,ꢀwhichꢀcanꢀbeꢀ  
lessthan1fortoday’slowvalue,highcurrentinductors.ꢀ  
Inꢀaꢀhighꢀcurrentꢀapplicationꢀrequiringꢀsuchꢀanꢀinductor,ꢀ  
powerꢀlossꢀthroughꢀaꢀsenseꢀresistorꢀwouldꢀcostꢀseveralꢀ  
pointsꢀofꢀefficiencyꢀcomparedꢀtoꢀinductorꢀDCRꢀsensing.  
RD =  
DCRMAX atT  
L(MAX)  
C1ꢀisꢀusuallyꢀselectedꢀtoꢀbeꢀinꢀtheꢀrangeꢀofꢀ0.1µFꢀtoꢀ0.47µF.ꢀ  
ThisforcesR1||R2toaround2k,reducingerrorthatmightꢀ  
haveꢀbeenꢀcausedꢀbyꢀtheꢀSENSE ꢀpin’sꢀ 1µAꢀcurrent.  
+
TheꢀequivalentꢀresistanceꢀR1||R2ꢀisꢀscaledꢀtoꢀtheꢀroomꢀ  
temperatureꢀinductanceꢀandꢀmaximumꢀDCR:  
L
R1||R2 =  
IfꢀtheꢀexternalꢀR1||R2ꢀ•ꢀC1ꢀtimeꢀconstantꢀisꢀchosenꢀtoꢀbeꢀ  
exactlyꢀequalꢀtoꢀtheꢀL/DCRꢀtimeꢀconstant,ꢀtheꢀvoltageꢀdropꢀ  
acrossꢀtheꢀexternalꢀcapacitorꢀisꢀequalꢀtoꢀtheꢀdropꢀacrossꢀ  
theinductorDCRmultipliedbyR2/(R1+R2).R2scalestheꢀ  
voltageꢀacrossꢀtheꢀsenseꢀterminalsꢀforꢀapplicationsꢀwhereꢀ  
theꢀDCRꢀisꢀgreaterꢀthanꢀtheꢀtargetꢀsenseꢀresistorꢀvalue.ꢀ  
Toꢀproperlyꢀdimensionꢀtheꢀexternalꢀfilterꢀcomponents,ꢀtheꢀ  
DCRꢀofꢀtheꢀinductorꢀmustꢀbeꢀknown.ꢀItꢀcanꢀbeꢀmeasuredꢀ  
DCR at 20°C C1  
(
)
Theꢀsenseꢀresistorꢀvaluesꢀare:  
R1RD  
1RD  
R1||R2  
RD  
R1=  
; R2 =  
38581fb  
ꢀꢅ  
LTC3858-1  
applicaTions inForMaTion  
TheꢀmaximumꢀpowerꢀlossꢀinꢀR1ꢀisꢀrelatedꢀtoꢀdutyꢀcycle,ꢀ 30%ofthecurrentlimitdeterminedbyR  
andꢀwillꢀoccurꢀinꢀcontinuousꢀmodeꢀatꢀtheꢀmaximumꢀinputꢀ inductorvalues(higherI )willcausethistooccuratꢀ  
voltage:  
.Lowerꢀ  
SENSE  
L
lowerꢀloadꢀcurrents,ꢀwhichꢀcanꢀcauseꢀaꢀdipꢀinꢀefficiencyꢀinꢀ  
theꢀupperꢀrangeꢀofꢀlowꢀcurrentꢀoperation.ꢀInꢀBurstꢀModeꢀ  
operation,ꢀlowerꢀinductanceꢀvaluesꢀwillꢀcauseꢀtheꢀburstꢀ  
frequencyꢀtoꢀdecrease.  
V
IN(MAX) VOUT • V  
(
)
OUT  
P
R1=  
LOSS  
R1  
EnsureꢀthatꢀR1ꢀhasꢀaꢀpowerꢀratingꢀhigherꢀthanꢀthisꢀvalue.ꢀ  
Ifꢀhighꢀefficiencyꢀisꢀnecessaryꢀatꢀlightꢀloads,ꢀconsiderꢀthisꢀ  
powerꢀlossꢀwhenꢀdecidingꢀtoꢀuseꢀinductorꢀDCRꢀsensingꢀ  
orꢀsenseꢀresistors.ꢀLightꢀloadꢀpowerꢀlossꢀcanꢀbeꢀmodestlyꢀ  
higherꢀwithꢀaꢀDCRꢀnetworkꢀthanꢀwithꢀaꢀsenseꢀresistor,ꢀdueꢀ  
totheextraswitchinglossesincurredthroughR1.However,ꢀ  
DCRꢀsensingꢀeliminatesꢀaꢀsenseꢀresistor,ꢀreducesꢀconduc-  
tionꢀlossesꢀandꢀprovidesꢀhigherꢀefficiencyꢀatꢀheavyꢀloads.ꢀ  
Peakꢀefficiencyꢀisꢀaboutꢀtheꢀsameꢀwithꢀeitherꢀmethod.  
Inductor Core Selection  
OnceꢀtheꢀvalueꢀforꢀLꢀisꢀknown,ꢀtheꢀtypeꢀofꢀinductorꢀmustꢀ  
beꢀselected.ꢀHighꢀefficiencyꢀconvertersꢀgenerallyꢀcannotꢀ  
affordthecorelossfoundinlowcostpowderedironcores,ꢀ  
forcingtheuseofmoreexpensiveferriteormolypermalloyꢀ  
cores.ꢀActualꢀcoreꢀlossꢀisꢀindependentꢀofꢀcoreꢀsizeꢀforꢀaꢀ  
fixedinductorvalue,butitisverydependentoninductanceꢀ  
valueꢀselected.ꢀAsꢀinductanceꢀincreases,ꢀcoreꢀlossesꢀgoꢀ  
down.ꢀUnfortunately,ꢀincreasedꢀinductanceꢀrequiresꢀmoreꢀ  
turnsꢀofꢀwireꢀandꢀthereforeꢀcopperꢀlossesꢀwillꢀincrease.  
Inductor Value Calculation  
Ferriteꢀdesignsꢀhaveꢀveryꢀlowꢀcoreꢀlossꢀandꢀareꢀpreferredꢀ  
forꢀhighꢀswitchingꢀfrequencies,ꢀsoꢀdesignꢀgoalsꢀcanꢀcon-  
centrateꢀonꢀcopperꢀlossꢀandꢀpreventingꢀsaturation.ꢀFerriteꢀ  
coreꢀmaterialꢀsaturatesꢀ“hard,”ꢀwhichꢀmeansꢀthatꢀinduc-  
tanceꢀcollapsesꢀabruptlyꢀwhenꢀtheꢀpeakꢀdesignꢀcurrentꢀisꢀ  
exceeded.ꢀThisꢀresultsꢀinꢀanꢀabruptꢀincreaseꢀinꢀinductorꢀ  
rippleꢀcurrentꢀandꢀconsequentꢀoutputꢀvoltageꢀripple.ꢀDoꢀ  
notꢀallowꢀtheꢀcoreꢀtoꢀsaturate!  
Theꢀoperatingꢀfrequencyꢀandꢀinductorꢀselectionꢀareꢀinter-  
relatedꢀinꢀthatꢀhigherꢀoperatingꢀfrequenciesꢀallowꢀtheꢀuseꢀ  
ofꢀsmallerꢀinductorꢀandꢀcapacitorꢀvalues.ꢀSoꢀwhyꢀwouldꢀ  
anyoneꢀeverꢀchooseꢀtoꢀoperateꢀatꢀlowerꢀfrequenciesꢀwithꢀ  
largercomponents?Theanswerisefficiency.Ahigherꢀ  
frequencygenerallyresultsinlowerefficiencybecauseꢀ  
ofꢀMOSFETꢀgateꢀchargeꢀlosses.ꢀInꢀadditionꢀtoꢀthisꢀbasicꢀ  
trade-off,ꢀtheꢀeffectꢀofꢀinductorꢀvalueꢀonꢀrippleꢀcurrentꢀandꢀ  
lowꢀcurrentꢀoperationꢀmustꢀalsoꢀbeꢀconsidered.  
Power MOSFET and Schottky Diode  
(Optional) Selection  
Theꢀinductorꢀvalueꢀhasꢀaꢀdirectꢀeffectꢀonꢀrippleꢀcurrent.ꢀ  
Theꢀ inductorꢀ rippleꢀ currentꢀ I ꢀ decreasesꢀ withꢀ higherꢀ  
L
TwoꢀexternalꢀpowerꢀMOSFETsꢀmustꢀbeꢀselectedꢀforꢀeachꢀ  
controllerꢀinꢀtheꢀLTC3858-1:ꢀoneꢀN-channelꢀMOSFETꢀforꢀ  
theꢀtopꢀ(main)ꢀswitch,ꢀandꢀoneꢀN-channelꢀMOSFETꢀforꢀtheꢀ  
bottomꢀ(synchronous)ꢀswitch.  
inductanceꢀorꢀhigherꢀfrequencyꢀandꢀincreasesꢀwithꢀhigherꢀ  
V :  
IN  
V
V
IN  
1
OUT   
1–  
OUT   
ΔIL =  
V
f L  
( )( )  
Thepeak-to-peakdrivelevelsaresetbytheINTV voltage.ꢀ  
CC  
Thisꢀvoltageꢀisꢀtypicallyꢀ5.1Vꢀduringꢀstart-upꢀ(seeꢀEXTV ꢀ  
CC  
Acceptingꢀ largerꢀ valuesꢀ ofꢀ I ꢀ allowsꢀ theꢀ useꢀ ofꢀ lowꢀ  
Pinꢀ Connection).ꢀ Consequently,ꢀ logic-levelꢀ thresholdꢀ  
L
inductances,ꢀbutꢀresultsꢀinꢀhigherꢀoutputꢀvoltageꢀrippleꢀ  
MOSFETsmustꢀbeꢀusedꢀinꢀmostꢀapplications.ꢀTheꢀonlyꢀ  
andꢀgreaterꢀcoreꢀlosses.ꢀAꢀreasonableꢀstartingꢀpointꢀforꢀ  
exceptionꢀisꢀifꢀlowꢀinputꢀvoltageꢀisꢀexpectedꢀ(V ꢀ<ꢀ4V);ꢀ  
IN  
GS(TH)  
settingꢀrippleꢀcurrentꢀisꢀI ꢀ=ꢀ0.3(I  
).ꢀTheꢀmaximumꢀ  
MAX  
then,ꢀsub-logicꢀlevelꢀthresholdꢀMOSFETsꢀ(V  
ꢀ<ꢀ3V)ꢀ  
L
I ꢀoccursꢀatꢀtheꢀmaximumꢀinputꢀvoltage.  
shouldꢀbeꢀused.ꢀPayꢀcloseꢀattentionꢀtoꢀtheꢀBV ꢀspeci-  
L
DSS  
ficationꢀforꢀtheꢀMOSFETsꢀasꢀwell;ꢀmanyꢀofꢀtheꢀlogic-levelꢀ  
Theꢀinductorꢀvalueꢀalsoꢀhasꢀsecondaryꢀeffects.ꢀTheꢀtran-  
sitionꢀtoꢀBurstꢀModeꢀoperationꢀbeginsꢀwhenꢀtheꢀaverageꢀ  
inductorꢀcurrentꢀrequiredꢀresultsꢀinꢀaꢀpeakꢀcurrentꢀbelowꢀ  
MOSFETsꢀareꢀlimitedꢀtoꢀ30Vꢀorꢀless.  
38581fb  
ꢀꢆ  
LTC3858-1  
applicaTions inForMaTion  
SelectionꢀcriteriaꢀforꢀtheꢀpowerꢀMOSFETsꢀincludeꢀtheꢀon-  
synchronousꢀMOSFETꢀlossesꢀareꢀgreatestꢀatꢀhighꢀinputꢀ  
resistance,ꢀ R ,ꢀ Millerꢀ capacitance,ꢀ C ,ꢀ inputꢀ voltageꢀwhenꢀtheꢀtopꢀswitchꢀdutyꢀfactorꢀisꢀlowꢀorꢀduringꢀ  
DS(ON) MILLER  
voltageꢀandꢀmaximumꢀoutputꢀcurrent.ꢀMillerꢀcapacitance,ꢀ aꢀshort-circuitꢀwhenꢀtheꢀsynchronousꢀswitchꢀisꢀonꢀcloseꢀ  
,ꢀcanꢀbeꢀapproximatedꢀfromꢀtheꢀgateꢀchargeꢀcurveꢀ toꢀ100%ꢀofꢀtheꢀperiod.  
C
MILLER  
usuallyꢀ providedꢀ onꢀ theꢀ MOSFETꢀ manufacturers’ꢀ dataꢀ  
sheet.C ꢀisequaltotheincreaseingatechargeꢀ  
Theꢀtermꢀ(1+ꢀδ)ꢀisꢀgenerallyꢀgivenꢀforꢀaꢀMOSFETꢀinꢀtheꢀ  
MILLER  
formꢀofꢀaꢀnormalizedꢀR  
ꢀvsꢀTemperatureꢀcurve,ꢀbutꢀ  
DS(ON)  
alongꢀtheꢀhorizontalꢀaxisꢀwhileꢀtheꢀcurveꢀisꢀapproximatelyꢀ  
δ=0.005/°Ccanbeusedasanapproximationforlowꢀ  
voltageꢀMOSFETs.  
flatꢀdividedꢀbyꢀtheꢀspecifiedꢀchangeꢀinꢀV .ꢀThisꢀresultꢀisꢀ  
DS  
thenꢀmultipliedꢀbyꢀtheꢀratioꢀofꢀtheꢀapplicationꢀappliedꢀV ꢀ  
DS  
TheoptionalSchottkydiodesD1andD2showninFigureꢀ10ꢀ  
conductꢀduringꢀtheꢀdead-timeꢀbetweenꢀtheꢀconductionꢀofꢀ  
theꢀtwoꢀpowerꢀMOSFETs.ꢀThisꢀpreventsꢀtheꢀbodyꢀdiodeꢀofꢀ  
thebottomMOSFETfromturningon,storingchargeduringꢀ  
thedead-timeandrequiringareverserecoveryperiodthatꢀ  
toꢀtheꢀgateꢀchargeꢀcurveꢀspecifiedꢀV .ꢀWhenꢀtheꢀICꢀisꢀ  
DS  
operatingꢀinꢀcontinuousꢀmodeꢀtheꢀdutyꢀcyclesꢀforꢀtheꢀtopꢀ  
andꢀbottomꢀMOSFETsꢀareꢀgivenꢀby:  
VOUT  
Main Switch Duty Cycle =  
V
couldꢀcostꢀasꢀmuchꢀasꢀ3%ꢀinꢀefficiencyꢀatꢀhighꢀV .ꢀAꢀ1Aꢀ  
IN  
IN  
toꢀ3AꢀSchottkyꢀisꢀgenerallyꢀaꢀgoodꢀcompromiseꢀforꢀbothꢀ  
regionsꢀofꢀoperationꢀdueꢀtoꢀtheꢀrelativelyꢀsmallꢀaverageꢀ  
current.Largerdiodesresultinadditionaltransitionlossesꢀ  
dueꢀtoꢀtheirꢀlargerꢀjunctionꢀcapacitance.  
V VOUT  
IN  
Synchronous Switch Duty Cycle =  
V
IN  
Theꢀ MOSFETꢀ powerꢀ dissipationsꢀ atꢀ maximumꢀ outputꢀ  
currentꢀareꢀgivenꢀby:  
C and C  
Selection  
IN  
OUT  
VOUT  
2
TheꢀselectionꢀofꢀC ꢀisꢀsimplifiedꢀbyꢀtheꢀ2-phaseꢀarchitec-  
PMAIN  
=
I
1+ δ R  
+
DS(ON)  
IN  
(
MAX) (  
)
V
IN  
tureꢀandꢀitsꢀimpactꢀonꢀtheꢀworst-caseꢀRMSꢀcurrentꢀdrawnꢀ  
throughtheinputnetwork(battery/fuse/capacitor).Itcanbeꢀ  
shownꢀthatꢀtheꢀworst-caseꢀcapacitorꢀRMSꢀcurrentꢀoccursꢀ  
whenꢀonlyꢀoneꢀcontrollerꢀisꢀoperating.ꢀTheꢀcontrollerꢀwithꢀ  
2   
IMAX  
2
V
R
C
f
(
)
(
DR)(  
)
IN  
MILLER  
1
1
theꢀhighestꢀ(V )(I )ꢀproductꢀneedsꢀtoꢀbeꢀusedꢀinꢀtheꢀ  
OUT OUT  
+
( )  
formulaꢀshownꢀinꢀEquationꢀ1ꢀtoꢀdetermineꢀtheꢀmaximumꢀ  
RMSꢀcapacitorꢀcurrentꢀrequirement.ꢀIncreasingꢀtheꢀout-  
putꢀcurrentꢀdrawnꢀfromꢀtheꢀotherꢀcontrollerꢀwillꢀactuallyꢀ  
decreaseꢀtheꢀinputꢀRMSꢀrippleꢀcurrentꢀfromꢀitsꢀmaximumꢀ  
value.ꢀTheꢀout-of-phaseꢀtechniqueꢀtypicallyꢀreducesꢀtheꢀ  
inputꢀcapacitor’sꢀRMSꢀrippleꢀcurrentꢀbyꢀaꢀfactorꢀofꢀ30%ꢀ  
toꢀ70%ꢀwhenꢀcomparedꢀtoꢀaꢀsingleꢀphaseꢀpowerꢀsupplyꢀ  
solution.  
V
INTVCC – VTHMIN VTHMIN  
V – VOUT  
2
IN  
PSYNC  
=
I
1+ δ R  
(
MAX) (  
)
DS(ON)  
V
IN  
whereꢀδꢀisꢀtheꢀtemperatureꢀdependencyꢀofꢀR  
ꢀandꢀ  
DS(ON)  
R ꢀ(approximatelyꢀ2Ω)ꢀisꢀtheꢀeffectiveꢀdriverꢀresistanceꢀ  
DR  
atꢀtheꢀMOSFET’sꢀMillerꢀthresholdꢀvoltage.ꢀV  
ꢀisꢀtheꢀ  
THMIN  
typicalꢀMOSFETꢀminimumꢀthresholdꢀvoltage.  
Incontinuousmode,thesourcecurrentofthetopMOSFETꢀ  
isꢀaꢀsquareꢀwaveꢀofꢀdutyꢀcycleꢀ(V )/(V ).ꢀToꢀpreventꢀ  
2
BothMOSFETshaveI RlosseswhilethetopsideN-channelꢀ  
equationꢀincludesꢀanꢀadditionalꢀtermꢀforꢀtransitionꢀlosses,ꢀ  
OUT  
IN  
largeꢀvoltageꢀtransients,ꢀaꢀlowꢀESRꢀcapacitorꢀsizedꢀforꢀtheꢀ  
maximumꢀRMSꢀcurrentꢀofꢀoneꢀchannelꢀmustꢀbeꢀused.ꢀTheꢀ  
maximumꢀRMSꢀcapacitorꢀcurrentꢀisꢀgivenꢀby:  
whichꢀareꢀhighestꢀatꢀhighꢀinputꢀvoltages.ꢀForꢀV ꢀ<ꢀ20Vꢀ  
IN  
theꢀhighꢀcurrentꢀefficiencyꢀgenerallyꢀimprovesꢀwithꢀlargerꢀ  
MOSFETs,ꢀwhileꢀforꢀV ꢀ>ꢀ20Vꢀtheꢀtransitionꢀlossesꢀrapidlyꢀ  
IN  
IMAX  
1/2  
CIN Required IRMS  
V
V – V  
IN OUT  
increasetothepointthattheuseofahigherR  
deviceꢀ  
(1)  
(
OUT )(  
)
DS(ON)  
V
IN  
withlowerC  
actuallyprovideshigherefficiency.Theꢀ  
MILLER  
38581fb  
ꢀꢇ  
LTC3858-1  
applicaTions inForMaTion  
Equationꢀ1ꢀhasꢀaꢀmaximumꢀatꢀV ꢀ=ꢀ2V ,ꢀwhereꢀI ꢀ  
wherefistheoperatingfrequency,C ꢀistheoutputꢀ  
IN  
OUTꢀ  
RMS  
OUT  
=ꢀI /2.ꢀThisꢀsimpleꢀworst-caseꢀconditionꢀisꢀcommonlyꢀ  
capacitanceꢀandꢀI ꢀisꢀtheꢀrippleꢀcurrentꢀinꢀtheꢀinductor.ꢀ  
OUT  
L
usedfordesignbecauseevensignificantdeviationsdonotꢀ  
offermuchrelief.Notethatcapacitormanufacturers’rippleꢀ  
currentꢀratingsꢀareꢀoftenꢀbasedꢀonꢀonlyꢀ2000ꢀhoursꢀofꢀlife.ꢀ  
Thisꢀmakesꢀitꢀadvisableꢀtoꢀfurtherꢀderateꢀtheꢀcapacitor,ꢀorꢀ  
toꢀchooseꢀaꢀcapacitorꢀratedꢀatꢀaꢀhigherꢀtemperatureꢀthanꢀ  
required.Severalcapacitorsmaybeparalleledtomeetꢀ  
sizeꢀorꢀheightꢀrequirementsꢀinꢀtheꢀdesign.ꢀDueꢀtoꢀtheꢀhighꢀ  
operatingfrequencyoftheLTC3858-1,ceramiccapacitorsꢀ  
Theoutputrippleishighestatmaximuminputvoltageꢀ  
sinceꢀI ꢀincreasesꢀwithꢀinputꢀvoltage.  
L
Setting Output Voltage  
TheꢀLTC3858-1ꢀoutputꢀvoltagesꢀareꢀeachꢀsetꢀbyꢀanꢀexter-  
nalꢀfeedbackꢀresistorꢀdividerꢀcarefullyꢀplacedꢀacrossꢀtheꢀ  
output,asshowninFigure6.Theregulatedoutputvoltageꢀ  
isꢀdeterminedꢀby:  
canꢀalsoꢀbeꢀusedꢀforꢀC .ꢀAlwaysꢀconsultꢀtheꢀmanufacturerꢀ  
IN  
R
RA  
ifꢀthereꢀisꢀanyꢀquestion.  
VOUT = 0.8V 1+  
B   
Thebenefitofthe2-phaseoperationcanbecalculatedꢀ  
byꢀusingꢀEquationꢀ1ꢀforꢀtheꢀhigherꢀpowerꢀcontrollerꢀandꢀ  
thenꢀcalculatingꢀtheꢀlossꢀthatꢀwouldꢀhaveꢀresultedꢀifꢀbothꢀ  
controllerchannelsswitchedonatthesametime.Theꢀ  
totalꢀRMSꢀpowerꢀlostꢀisꢀlowerꢀwhenꢀbothꢀcontrollersꢀareꢀ  
operatingduetothereducedoverlapofcurrentpulsesꢀ  
requiredꢀthroughꢀtheꢀinputꢀcapacitor’sꢀESR.ꢀThisꢀisꢀwhyꢀ  
theꢀinputꢀcapacitor’sꢀrequirementꢀcalculatedꢀaboveꢀforꢀtheꢀ  
worst-caseꢀcontrollerꢀisꢀadequateꢀforꢀtheꢀdualꢀcontrollerꢀ  
design.ꢀAlso,ꢀtheꢀinputꢀprotectionꢀfuseꢀresistance,ꢀbatteryꢀ  
resistance,ꢀandꢀPCꢀboardꢀtraceꢀresistanceꢀlossesꢀareꢀalsoꢀ  
reducedꢀdueꢀtoꢀtheꢀreducedꢀpeakꢀcurrentsꢀinꢀaꢀ2-phaseꢀ  
system.Theoverallbenefitofamultiphasedesignwillꢀ  
onlyꢀbeꢀfullyꢀrealizedꢀwhenꢀtheꢀsourceꢀimpedanceꢀofꢀtheꢀ  
powerꢀsupply/batteryꢀisꢀincludedꢀinꢀtheꢀefficiencyꢀtesting.ꢀ  
TheꢀsourcesꢀofꢀtheꢀtopꢀMOSFETsꢀshouldꢀbeꢀplacedꢀwithinꢀ  
Toimprovethefrequencyresponse,afeedforwardca-  
pacitor,ꢀC ,ꢀmayꢀbeꢀused.ꢀGreatꢀcareꢀshouldꢀbeꢀtakenꢀtoꢀ  
FFꢀ  
routeꢀtheꢀV ꢀlineꢀawayꢀfromꢀnoiseꢀsources,ꢀsuchꢀasꢀtheꢀ  
FB  
inductorꢀorꢀtheꢀSWꢀline.  
V
OUT  
R
B
C
FF  
1/2 LTC3858-1  
V
FB  
R
A
38581 F05  
Figure 6. Setting Output Voltage  
Soft-Start (SS Pins)  
Theꢀstart-upꢀofꢀeachꢀV ꢀisꢀcontrolledꢀbyꢀtheꢀvoltageꢀonꢀ  
1cmofeachotherandshareacommonC (s).Separatingꢀ  
OUT  
IN  
therespectiveSSpin.WhenthevoltageontheSSpinꢀ  
theꢀsourcesꢀandꢀC ꢀmayꢀproduceꢀundesirableꢀvoltageꢀandꢀ  
IN  
islessthantheinternal0.8Vreference,theLTC3858-1ꢀ  
currentꢀresonancesꢀatꢀV .  
IN  
regulatesꢀtheꢀV ꢀpinꢀvoltageꢀtoꢀtheꢀvoltageꢀonꢀtheꢀSSꢀpinꢀ  
FB  
Aꢀsmallꢀ(0.1µFꢀtoꢀ1µF)ꢀbypassꢀcapacitorꢀbetweenꢀtheꢀchipꢀ  
insteadꢀofꢀ0.8V.ꢀTheꢀSSꢀpinꢀcanꢀbeꢀusedꢀtoꢀprogramꢀanꢀ  
V pinandground,placedclosetotheLTC3858-1,isꢀ  
IN  
externalꢀsoft-startꢀfunction.  
alsoꢀsuggested.ꢀAꢀ10ΩꢀresistorꢀplacedꢀbetweenꢀC ꢀ(C1)ꢀ  
IN  
Soft-startisenabledbysimplyconnectingacapacitorfromꢀ  
theꢀSSꢀpinꢀtoꢀground,ꢀasꢀshownꢀinꢀFigureꢀ7.ꢀAnꢀinternalꢀ  
1µAꢀ currentꢀ sourceꢀ chargesꢀ theꢀ capacitor,ꢀ providingꢀ aꢀ  
andtheV ꢀpinprovidesfurtherisolationbetweentheꢀ  
IN  
twoꢀchannels.  
TheselectionofC ꢀisdrivenbytheeffectiveseriesꢀ  
OUT  
resistance(ESR).Typically,oncetheESRrequirementꢀ  
1/2 LTC3858-1  
SS  
isꢀsatisfied,ꢀtheꢀcapacitanceꢀisꢀadequateꢀforꢀfiltering.ꢀTheꢀ  
C
SS  
outputꢀrippleꢀ(V )ꢀisꢀapproximatedꢀby:  
OUT  
SGND  
38581 F06  
1
ΔVOUT ≈ ΔI ESR+  
L   
8 • f • COUT  
Figure 7. Using the SS Pin to Program Soft-Start  
38581fb  
ꢀꢈ  
LTC3858-1  
applicaTions inForMaTion  
linearꢀrampingꢀvoltageꢀatꢀtheꢀSSꢀpin.ꢀTheꢀLTC3858-1ꢀwillꢀ  
Toꢀpreventꢀtheꢀmaximumꢀjunctionꢀtemperatureꢀfromꢀbe-  
ingꢀexceeded,ꢀtheꢀinputꢀsupplyꢀcurrentꢀmustꢀbeꢀcheckedꢀ  
whileꢀoperatingꢀinꢀforcedꢀcontinuousꢀmodeꢀ(PLLIN/MODEꢀ  
regulateꢀtheꢀV ꢀpinꢀ(andꢀhenceꢀV )ꢀaccordingꢀtoꢀtheꢀ  
FB  
OUT  
voltageontheSSpin,allowingV ꢀtorisesmoothlyfromꢀ  
OUT  
0Vꢀtoꢀitsꢀfinalꢀregulatedꢀvalue.ꢀTheꢀtotalꢀsoft-startꢀtimeꢀwillꢀ  
=ꢀINTV )ꢀatꢀmaximumꢀV .  
CC  
IN  
beꢀapproximately:  
WhenꢀtheꢀvoltageꢀappliedꢀtoꢀEXTV ꢀrisesꢀaboveꢀ4.7V,ꢀtheꢀ  
CC  
0.8V  
1µA  
V ꢀLDOꢀisꢀturnedꢀoffꢀandꢀtheꢀEXTV ꢀLDOꢀisꢀenabled.ꢀTheꢀ  
IN  
CC  
tSS = CSS  
EXTV ꢀLDOꢀremainsꢀonꢀasꢀlongꢀasꢀtheꢀvoltageꢀappliedꢀtoꢀ  
CC  
EXTV ꢀremainsꢀaboveꢀ4.5V.ꢀTheꢀEXTV ꢀLDOꢀattemptsꢀ  
CC  
CC  
INTV Regulators  
toꢀregulateꢀtheꢀINTV ꢀvoltageꢀtoꢀ5.1V,ꢀsoꢀwhileꢀEXTV ꢀ  
CC  
CC  
CC  
isꢀlessꢀthanꢀ5.1V,ꢀtheꢀLDOꢀisꢀinꢀdropoutꢀandꢀtheꢀINTV ꢀ  
CC  
TheꢀLTC3858-1ꢀfeaturesꢀtwoꢀseparateꢀinternalꢀP-channelꢀ  
lowꢀdropoutꢀlinearꢀregulatorsꢀ(LDO)ꢀthatꢀsupplyꢀpowerꢀatꢀ  
voltageꢀisꢀapproximatelyꢀequalꢀtoꢀEXTV .ꢀWhenꢀEXTV ꢀ  
CC  
CC  
isꢀgreaterꢀthanꢀ5.1V,ꢀupꢀtoꢀanꢀabsoluteꢀmaximumꢀofꢀ14V,ꢀ  
theꢀINTV ꢀpinꢀfromꢀeitherꢀtheꢀV ꢀsupplyꢀpinꢀorꢀtheꢀEXT-  
CC  
IN  
INTV ꢀisꢀregulatedꢀtoꢀ5.1V.  
CC  
V ꢀpinꢀdependingꢀonꢀtheꢀconnectionꢀofꢀtheꢀEXTV ꢀpin.ꢀ  
CC  
CC  
INTV ꢀpowersꢀtheꢀgateꢀdriversꢀandꢀmuchꢀofꢀtheꢀinternalꢀ  
UsingtheEXTVCCLDOallowstheMOSFETdriverandꢀ  
controlꢀpowerꢀtoꢀbeꢀderivedꢀfromꢀoneꢀofꢀtheꢀswitchingꢀ  
regulatoroutputs(4.7VVOUT14V)duringnormalꢀ  
operationꢀandꢀfromꢀtheꢀVINꢀLDOꢀwhenꢀtheꢀoutputꢀisꢀoutꢀ  
ofregulation(e.g.,start-up,short-circuit).Ifmorecurrentꢀ  
isꢀrequiredꢀthroughꢀtheꢀEXTVCCꢀLDOꢀthanꢀisꢀspecified,ꢀanꢀ  
externalSchottkydiodecanbeaddedbetweentheEXTVCCꢀ  
andꢀINTVCCꢀpins.ꢀInꢀthisꢀcase,ꢀdoꢀnotꢀapplyꢀmoreꢀthanꢀ6Vꢀ  
toꢀtheꢀEXTVCCꢀpinꢀandꢀmakeꢀsureꢀthatꢀEXTVCCꢀ≤ꢀVIN.  
CC  
circuitry.ꢀTheꢀV ꢀLDOꢀandꢀtheꢀEXTV ꢀLDOꢀregulateꢀIN-  
IN  
CC  
TV ꢀtoꢀ5.1V.ꢀEachꢀofꢀtheseꢀcanꢀsupplyꢀaꢀpeakꢀcurrentꢀofꢀ  
CC  
50mAꢀandꢀmustꢀbeꢀbypassedꢀtoꢀgroundꢀwithꢀaꢀminimumꢀ  
ofꢀ4.7µFꢀlowꢀESRꢀcapacitor.ꢀRegardlessꢀofꢀwhatꢀtypeꢀofꢀ  
bulkcapacitorisused,anadditional1µFꢀceramicꢀcapacitorꢀ  
placeddirectlyadjacenttotheINTV ꢀandꢀPGNDꢀICꢀpinsꢀisꢀ  
CC  
highlyrecommended.Goodbypassingisneededtosupplyꢀ  
theꢀhighꢀtransientꢀcurrentsꢀrequiredꢀbyꢀtheꢀMOSFETꢀgateꢀ  
driversꢀandꢀtoꢀpreventꢀinteractionꢀbetweenꢀtheꢀchannels.  
Significantꢀefficiencyꢀandꢀthermalꢀgainsꢀcanꢀbeꢀrealizedꢀ  
HighꢀinputꢀvoltageꢀapplicationsꢀinꢀwhichꢀlargeꢀMOSFETsꢀ  
areꢀbeingꢀdrivenꢀatꢀhighꢀfrequenciesꢀmayꢀcauseꢀtheꢀmaxi-  
mumꢀjunctionꢀtemperatureꢀratingꢀforꢀtheꢀLTC3858-1ꢀtoꢀbeꢀ  
byꢀpoweringꢀINTV ꢀfromꢀtheꢀoutput,ꢀsinceꢀtheꢀV ꢀcur-  
CC  
IN  
rentꢀresultingꢀfromꢀtheꢀdriverꢀandꢀcontrolꢀcurrentsꢀwillꢀbeꢀ  
scaledꢀbyꢀaꢀfactorꢀofꢀ(DutyꢀCycle)/(SwitcherꢀEfficiency).ꢀ  
Forꢀ5Vꢀtoꢀ14Vꢀregulatorꢀoutputs,ꢀthisꢀmeansꢀconnectingꢀ  
theꢀEXTV ꢀpinꢀdirectlyꢀtoꢀV .ꢀTyingꢀtheꢀEXTV ꢀpinꢀtoꢀ  
exceeded.ꢀTheꢀINTV ꢀcurrent,ꢀwhichꢀisꢀdominatedꢀbyꢀtheꢀ  
CC  
gatechargecurrent,maybesuppliedbyeithertheV ꢀLDOꢀ  
IN  
CC  
OUTꢀ  
CC  
orꢀtheꢀEXTV ꢀLDO.ꢀWhenꢀtheꢀvoltageꢀonꢀtheꢀEXTV ꢀpinꢀ  
a8.5Vsupplyreducesthejunctiontemperatureintheꢀ  
previousꢀexampleꢀfromꢀ125°Cꢀto:  
CC  
CC  
isꢀlessꢀthanꢀ4.7V,ꢀtheꢀV ꢀLDOꢀisꢀenabled.ꢀPowerꢀdissipa-  
IN  
tionꢀforꢀtheꢀICꢀinꢀthisꢀcaseꢀisꢀhighestꢀandꢀisꢀequalꢀtoꢀV ꢀ•ꢀ  
IN  
ꢀ T ꢀ=ꢀ70°Cꢀ+ꢀ(15mA)(8.5V)(90°C/W)ꢀ=ꢀ82°C  
J
I
.Thegatechargecurrentisdependentonoperatingꢀ  
INTVCC  
However,ꢀforꢀ3.3Vꢀandꢀotherꢀlowꢀvoltageꢀoutputs,ꢀaddi-  
frequencyꢀasꢀdiscussedꢀinꢀtheꢀEfficiencyꢀConsiderationsꢀ  
section.Thejunctiontemperaturecanbeestimatedbyꢀ  
usingꢀtheꢀequationsꢀgivenꢀinꢀNoteꢀ2ꢀofꢀtheꢀElectricalꢀChar-  
tionalꢀcircuitryꢀisꢀrequiredꢀtoꢀderiveꢀINTV ꢀpowerꢀfromꢀ  
CC  
theꢀoutput.  
acteristics.ꢀForꢀexample,ꢀtheꢀLTC3858-1ꢀINTV ꢀcurrentꢀ  
CC  
Theꢀfollowingꢀlistꢀsummarizesꢀtheꢀfourꢀpossibleꢀconnec-  
isꢀlimitedꢀtoꢀlessꢀthanꢀ15mAꢀfromꢀaꢀ40Vꢀsupplyꢀwhenꢀnotꢀ  
tionsꢀforꢀEXTV :  
CC  
usingꢀtheꢀEXTV ꢀsupplyꢀatꢀ70°Cꢀambientꢀtemperatureꢀinꢀ  
CC  
theꢀSSOPꢀpackage:  
ꢀ T ꢀ=ꢀ70°Cꢀ+ꢀ(15mA)(40V)(90°C/W)ꢀ=ꢀ125°C  
J
38581fb  
ꢁ0  
2.ꢀ  
3.ꢀ  
4.ꢀ  
        
EXTV ꢀConnectedꢀDirectlyꢀtoꢀV .ꢀThisꢀisꢀtheꢀnormalꢀ  
CC OUTꢀ  
connectionꢀforꢀaꢀ5Vꢀtoꢀ14Vꢀregulatorꢀandꢀprovidesꢀtheꢀ  
highestꢀefficiency.  
        
EXTVCCꢀConnectedꢀtoꢀanꢀExternalꢀSupply.ꢀIfꢀanꢀexternalꢀ  
supplyꢀisꢀavailableꢀinꢀtheꢀ5Vꢀtoꢀ14Vꢀrange,ꢀitꢀmayꢀbeꢀ  
usedꢀtoꢀpowerꢀEXTVCC.ꢀEnsureꢀthatꢀEXTVCCꢀ<ꢀVIN.  
        
EXTV ConnectedtoanOutput-DerivedBoostNetwork.ꢀ  
1.ꢀ  
        
EXTV LeftOpen(orGrounded).ThiswillcauseINTV ꢀ  
LTC3858-1  
applicaTions inForMaTion  
on,ꢀtheꢀboostꢀvoltageꢀisꢀaboveꢀtheꢀinputꢀsupply:ꢀV  
ꢀ=ꢀ  
CC CC  
BOOST  
toꢀbeꢀpoweredꢀfromꢀtheꢀinternalꢀ5.1Vꢀregulatorꢀresult-  
ingꢀinꢀanꢀefficiencyꢀpenaltyꢀofꢀupꢀtoꢀ10%ꢀatꢀhighꢀinputꢀ  
voltages.  
V ꢀ+ꢀV  
.ꢀTheꢀvalueꢀofꢀtheꢀboostꢀcapacitor,ꢀC ,ꢀneedsꢀ  
IN  
INTVCC  
B
toꢀbeꢀ100ꢀtimesꢀthatꢀofꢀtheꢀtotalꢀinputꢀcapacitanceꢀofꢀtheꢀ  
topsideMOSFET(s).Thereversebreakdownoftheexternalꢀ  
SchottkyꢀdiodeꢀmustꢀbeꢀgreaterꢀthanꢀV  
.ꢀ  
IN(MAX)  
Whenꢀadjustingꢀtheꢀgateꢀdriveꢀlevel,ꢀtheꢀfinalꢀarbiterꢀisꢀtheꢀ  
totalꢀinputꢀcurrentꢀforꢀtheꢀregulator.ꢀIfꢀaꢀchangeꢀisꢀmadeꢀ  
andꢀtheꢀinputꢀcurrentꢀdecreases,ꢀthenꢀtheꢀefficiencyꢀhasꢀ  
improved.Ifthereisnochangeininputcurrent,thenthereꢀ  
isꢀnoꢀchangeꢀinꢀefficiency.  
Fault Conditions: Current Limit and Current Foldback  
CC  
Forꢀ3.3Vꢀandꢀotherꢀlowꢀvoltageꢀregulators,ꢀefficiencyꢀ  
Whenꢀtheꢀoutputꢀcurrentꢀhitsꢀtheꢀcurrentꢀlimit,ꢀtheꢀoutputꢀ  
voltageꢀbeginsꢀtoꢀdrop.ꢀIfꢀtheꢀoutputꢀfallsꢀbelowꢀ70%ꢀofꢀitsꢀ  
nominalꢀoutputꢀlevel,ꢀthenꢀtheꢀmaximumꢀsenseꢀvoltageꢀisꢀ  
progressivelyꢀloweredꢀtoꢀaboutꢀone-halfꢀofꢀitsꢀmaximumꢀ  
selectedꢀvalue.ꢀUnderꢀshort-circuitꢀconditionsꢀwithꢀveryꢀ  
lowꢀdutyꢀcycles,ꢀtheꢀLTC3858-1ꢀwillꢀbeginꢀcycleꢀskippingꢀ  
inꢀorderꢀtoꢀlimitꢀtheꢀshort-circuitꢀcurrent.ꢀInꢀthisꢀsituationꢀ  
theꢀbottomꢀMOSFETꢀwillꢀbeꢀdissipatingꢀmostꢀofꢀtheꢀpowerꢀ  
butꢀlessꢀthanꢀinꢀnormalꢀoperation.ꢀTheꢀshort-circuitꢀrippleꢀ  
gainsꢀcanꢀstillꢀbeꢀrealizedꢀbyꢀconnectingꢀEXTV ꢀtoꢀanꢀ  
CC  
output-derivedvoltagethathasbeenboostedtogreaterꢀ  
thanꢀ4.7V.ꢀThisꢀcanꢀbeꢀdoneꢀwithꢀtheꢀcapacitiveꢀchargeꢀ  
pumpꢀshownꢀinꢀFigureꢀ8.ꢀEnsureꢀthatꢀEXTV ꢀ<ꢀV .  
CC  
IN  
V
IN  
C
IN  
BAT85  
BAT85  
BAT85  
V
IN  
currentꢀisꢀdeterminedꢀbyꢀtheꢀminimumꢀon-time,ꢀt  
,ꢀ  
ON(MIN)  
MTOP  
MBOT  
ofꢀtheꢀLTC3858-1ꢀ(≈90ns),ꢀtheꢀinputꢀvoltageꢀandꢀinductorꢀ  
value:  
VN2222LL  
TG1  
1/2 LTC3858-1  
L
R
SENSE  
V
EXTV  
SW  
OUT  
CC  
V
L
ON(MIN) IN   
ΔIL(SC) = t  
C
D
BG1  
OUT  
Theꢀresultingꢀaverageꢀshort-circuitꢀcurrentꢀis:  
38581 F08  
PGND  
50% •I  
1
2
ISC =  
LIM(MAX) IL(SC)  
Figure 8. Capacitive Charge Pump for EXTVCC  
RSENSE  
Fault Conditions: Overvoltage Protection (Crowbar)  
Topside MOSFET Driver Supply (C , D )  
B
B
Theꢀovervoltageꢀcrowbarꢀisꢀdesignedꢀtoꢀblowꢀaꢀsystemꢀ  
inputꢀfuseꢀwhenꢀtheꢀoutputꢀvoltageꢀofꢀtheꢀregulatorꢀrisesꢀ  
muchhigherthannominallevels.Thecrowbarcauseshugeꢀ  
currentsꢀtoꢀflow,ꢀthatꢀblowꢀtheꢀfuseꢀtoꢀprotectꢀagainstꢀaꢀ  
shortedꢀtopꢀMOSFETꢀifꢀtheꢀshortꢀoccursꢀwhileꢀtheꢀcontrol-  
lerꢀisꢀoperating.  
Externalbootstrapcapacitors,C ,connectedtotheBOOSTꢀ  
B
pinssupplythegatedrivevoltagesforthetopsideMOSFETs.ꢀ  
CapacitorꢀC ꢀinꢀtheꢀFunctionalꢀDiagramꢀisꢀchargedꢀthoughꢀ  
B
externalꢀdiodeꢀD ꢀfromꢀINTV ꢀwhenꢀtheꢀSWꢀpinꢀisꢀlow.ꢀ  
B
CC  
WhenꢀoneꢀofꢀtheꢀtopsideꢀMOSFETsꢀisꢀtoꢀbeꢀturnedꢀon,ꢀtheꢀ  
driverꢀplacesꢀtheꢀC ꢀvoltageꢀacrossꢀtheꢀgate-sourceꢀofꢀtheꢀ  
B
desiredMOSFET.ThisenhancestheMOSFETandturnsonꢀ  
Aꢀcomparatorꢀmonitorsꢀtheꢀoutputꢀforꢀovervoltageꢀcondi-  
tions.Thecomparatordetectsfaultsgreaterthan10%ꢀ  
theꢀtopsideꢀswitch.ꢀTheꢀswitchꢀnodeꢀvoltage,ꢀSW,ꢀrisesꢀtoꢀ  
V ꢀandꢀtheꢀBOOSTꢀpinꢀfollows.ꢀWithꢀtheꢀtopsideꢀMOSFETꢀ  
aboveꢀtheꢀnominalꢀoutputꢀvoltage.ꢀWhenꢀthisꢀconditionꢀ  
IN  
38581fb  
ꢁꢀ  
LTC3858-1  
applicaTions inForMaTion  
isꢀsensed,ꢀtheꢀtopꢀMOSFETꢀisꢀturnedꢀoffꢀandꢀtheꢀbottomꢀ  
MOSFETꢀisꢀturnedꢀonꢀuntilꢀtheꢀovervoltageꢀconditionꢀisꢀ  
cleared.ThebottomMOSFETremainsoncontinuouslyꢀ  
forꢀasꢀlongꢀasꢀtheꢀovervoltageꢀconditionꢀpersists;ꢀifꢀV  
returnstoasafelevel,normaloperationautomaticallyꢀ  
resumes.ꢀ  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
OUT  
AshortedtopMOSFETwillresultinahighcurrentconditionꢀ  
whichꢀwillꢀopenꢀtheꢀsystemꢀfuse.ꢀTheꢀswitchingꢀregulatorꢀ  
willꢀregulateꢀproperlyꢀwithꢀaꢀleakyꢀtopꢀMOSFETꢀbyꢀalteringꢀ  
theꢀdutyꢀcycleꢀtoꢀaccommodateꢀtheꢀleakage.  
15 25 35 45 55 65 75 85 95 105 115 125  
FREQ PIN RESISTOR (kΩ)  
38581 F09  
Phase-Locked Loop and Frequency Synchronization  
Figure 9. Relationship Between Oscillator Frequency  
and Resistor Value at the FREQ Pin  
TheꢀLTC3858-1ꢀhasꢀanꢀinternalꢀphase-lockedꢀloopꢀ(PLL)ꢀ  
comprisedꢀofꢀaꢀphaseꢀfrequencyꢀdetector,ꢀaꢀlowpassꢀfilter,ꢀ  
andꢀaꢀvoltage-controlledꢀoscillatorꢀ(VCO).ꢀThisꢀallowsꢀtheꢀ  
turn-onꢀofꢀtheꢀtopꢀMOSFETꢀofꢀcontrollerꢀ1ꢀtoꢀbeꢀlockedꢀtoꢀ  
theꢀrisingꢀedgeꢀofꢀanꢀexternalꢀclockꢀsignalꢀappliedꢀtoꢀtheꢀ  
PLLIN/MODEpin.Theturn-onofcontroller2’stopMOSFETꢀ  
isꢀthusꢀ180ꢀdegreesꢀoutꢀofꢀphaseꢀwithꢀtheꢀexternalꢀclock.ꢀ  
Theꢀphaseꢀdetectorꢀisꢀanꢀedgeꢀsensitiveꢀdigitalꢀtypeꢀthatꢀ  
providesꢀzeroꢀdegreesꢀphaseꢀshiftꢀbetweenꢀtheꢀexternalꢀ  
andꢀinternalꢀoscillators.ꢀThisꢀtypeꢀofꢀphaseꢀdetectorꢀdoesꢀ  
notꢀexhibitꢀfalseꢀlockꢀtoꢀharmonicsꢀofꢀtheꢀexternalꢀclock.  
Typically,ꢀ theꢀ externalꢀ clockꢀ (onꢀ theꢀ PLLIN/MODEꢀ pin)ꢀ  
inputꢀhighꢀthresholdꢀisꢀ1.6V,ꢀwhileꢀtheꢀinputꢀlowꢀthresholdꢀ  
isꢀ1.1V.  
RapidꢀphaseꢀlockingꢀcanꢀbeꢀachievedꢀbyꢀusingꢀtheꢀFREQꢀ  
pinꢀ toꢀ setꢀ aꢀ free-runningꢀ frequencyꢀ nearꢀ theꢀ desiredꢀ  
synchronizationfrequency.TheVCO’sinputvoltageisꢀ  
prebiasedꢀatꢀaꢀfrequencyꢀcorrespondingꢀtoꢀtheꢀfrequencyꢀ  
setꢀbyꢀtheꢀFREQꢀpin.ꢀOnceꢀprebiased,ꢀtheꢀPLLꢀonlyꢀneedsꢀ  
toadjustthefrequencyslightlytoachievephaselockꢀ  
andꢀsynchronization.ꢀAlthoughꢀitꢀisꢀnotꢀrequiredꢀthatꢀtheꢀ  
free-runningꢀfrequencyꢀbeꢀnearꢀexternalꢀclockꢀfrequency,ꢀ  
doingsowillpreventtheoperatingfrequencyfrompassingꢀ  
throughꢀaꢀlargeꢀrangeꢀofꢀfrequenciesꢀasꢀtheꢀPLLꢀlocks.  
Ifꢀtheꢀexternalꢀclockꢀfrequencyꢀisꢀgreaterꢀthanꢀtheꢀinternalꢀ  
oscillator’sfrequency,f ,thencurrentissourcedcontinu-  
OSC  
ouslyꢀfromꢀtheꢀphaseꢀdetectorꢀoutput,ꢀpullingꢀupꢀtheꢀVCOꢀ  
input.ꢀWhenꢀtheꢀexternalꢀclockꢀfrequencyꢀisꢀlessꢀthanꢀf ,ꢀ  
OSC  
currentꢀisꢀsunkꢀcontinuously,ꢀpullingꢀdownꢀtheꢀVCOꢀinput.ꢀ  
Ifꢀtheꢀexternalꢀandꢀinternalꢀfrequenciesꢀareꢀtheꢀsameꢀbutꢀ  
exhibitꢀaꢀphaseꢀdifference,ꢀtheꢀcurrentꢀsourcesꢀturnꢀonꢀforꢀ  
anꢀamountꢀofꢀtimeꢀcorrespondingꢀtoꢀtheꢀphaseꢀdifference.ꢀ  
TheꢀvoltageꢀatꢀtheꢀVCOꢀinputꢀisꢀadjustedꢀuntilꢀtheꢀphaseꢀ  
andꢀfrequencyꢀofꢀtheꢀinternalꢀandꢀexternalꢀoscillatorsꢀareꢀ  
identical.ꢀAtꢀtheꢀstableꢀoperatingꢀpoint,ꢀtheꢀphaseꢀdetectorꢀ  
outputꢀisꢀhighꢀimpedanceꢀandꢀtheꢀinternalꢀfilterꢀcapacitor,ꢀ  
Tableꢀ2ꢀsummarizesꢀtheꢀdifferentꢀstatesꢀinꢀwhichꢀtheꢀFREQꢀ  
pinꢀcanꢀbeꢀused.  
Table 2  
FREQ PIN  
PLLIN/MODE PIN  
DCꢀVoltage  
FREQUENCY  
350kHz  
0V  
INTV  
DCꢀVoltage  
535kHz  
CC  
Resistor  
DCꢀVoltage  
50kHz–900kHz  
C ,ꢀholdsꢀtheꢀvoltageꢀatꢀtheꢀVCOꢀinput.  
LPꢀ  
AnyꢀofꢀtheꢀAbove  
ExternalꢀClock  
Phase–Lockedꢀtoꢀ  
ExternalꢀClock  
NoteꢀthatꢀtheꢀLTC3858-1ꢀcanꢀonlyꢀbeꢀsynchronizedꢀtoꢀanꢀ  
externalꢀ clockꢀ whoseꢀ frequencyꢀ isꢀ withinꢀ rangeꢀ ofꢀ theꢀ  
LTC3858-1’sꢀ internalꢀ VCO,ꢀ whichꢀ isꢀ nominallyꢀ 55kHzꢀ  
to1MHz.Thisisguaranteedtobebetween75kHzandꢀ  
850kHz.ꢀ  
38581fb  
ꢁꢁ  
                                                
INTV ꢀcurrentꢀisꢀtheꢀsumꢀofꢀtheꢀMOSFETꢀdriverꢀandꢀ  
3.ꢀ  
                                                
I RꢀlossesꢀareꢀpredictedꢀfromꢀtheꢀDCꢀresistancesꢀofꢀtheꢀ  
1.ꢀ  
2.ꢀ  
                                                
TheꢀV ꢀcurrentꢀisꢀtheꢀDCꢀinputꢀsupplyꢀcurrentꢀgivenꢀ  
LTC3858-1  
applicaTions inForMaTion  
Minimum On-Time Considerations  
IN  
inꢀtheꢀElectricalꢀCharacteristicsꢀtable,ꢀwhichꢀexcludesꢀ  
Minimumon-time,t  
,isthesmallesttimedura-  
ON(MIN)  
MOSFETꢀdriverꢀandꢀcontrolꢀcurrents.ꢀV ꢀcurrentꢀtypi-  
IN  
tionꢀthatꢀtheꢀLTC3858-1ꢀisꢀcapableꢀofꢀturningꢀonꢀtheꢀtopꢀ  
MOSFET.Itisdeterminedbyinternaltimingdelaysandtheꢀ  
gateꢀchargeꢀrequiredꢀtoꢀturnꢀonꢀtheꢀtopꢀMOSFET.ꢀLowꢀdutyꢀ  
cycleꢀapplicationsꢀmayꢀapproachꢀthisꢀminimumꢀon-timeꢀ  
limitꢀandꢀcareꢀshouldꢀbeꢀtakenꢀtoꢀensureꢀthat:  
callyꢀresultsꢀinꢀaꢀsmallꢀ(<0.1%)ꢀloss.  
CC  
controlcurrents.TheMOSFETdrivercurrentresultsꢀ  
fromꢀ switchingꢀ theꢀ gateꢀ capacitanceꢀ ofꢀ theꢀ powerꢀ  
MOSFETs.ꢀEachꢀtimeꢀaꢀMOSFETꢀgateꢀisꢀswitchedꢀfromꢀ  
lowꢀtoꢀhighꢀtoꢀlowꢀagain,ꢀaꢀpacketꢀofꢀcharge,ꢀdQ,ꢀmovesꢀ  
VOUT  
tON(MIN)  
<
V
f
IN
( )  
fromꢀINTV ꢀtoꢀground.ꢀTheꢀresultingꢀdQ/dtꢀisꢀaꢀcurrentꢀ  
CC  
outofINTV thatistypicallymuchlargerthantheꢀ  
CC  
Ifꢀtheꢀdutyꢀcycleꢀfallsꢀbelowꢀwhatꢀcanꢀbeꢀaccommodatedꢀ  
byꢀtheꢀminimumꢀon-time,ꢀtheꢀcontrollerꢀwillꢀbeginꢀtoꢀskipꢀ  
cycles.ꢀTheꢀoutputꢀvoltageꢀwillꢀcontinueꢀtoꢀbeꢀregulated,ꢀ  
butꢀtheꢀrippleꢀvoltageꢀandꢀcurrentꢀwillꢀincrease.  
controlꢀcircuitꢀcurrent.ꢀInꢀcontinuousꢀmode,ꢀI  
GATECHG  
=ꢀf(Q ꢀ+ꢀQ ),ꢀwhereꢀQ ꢀandꢀQ ꢀareꢀtheꢀgateꢀchargesꢀofꢀ  
T
B
T
B
theꢀtopsideꢀandꢀbottomꢀsideꢀMOSFETs.  
ꢀ SupplyingINTV fromanoutput-derivedpowersourceꢀ  
CC  
Theminimumon-timefortheLTC3858-1isapproximatelyꢀ  
95ns.ꢀHowever,ꢀasꢀtheꢀpeakꢀsenseꢀvoltageꢀdecreasesꢀtheꢀ  
minimumꢀon-timeꢀgraduallyꢀincreasesꢀupꢀtoꢀaboutꢀ130ns.ꢀ  
Thisꢀisꢀofꢀparticularꢀconcernꢀinꢀforcedꢀcontinuousꢀapplica-  
tionswithlowripplecurrentatlightloads.Ifthedutycycleꢀ  
dropsꢀbelowꢀtheꢀminimumꢀon-timeꢀlimitꢀinꢀthisꢀsituation,ꢀ  
aꢀsignificantꢀamountꢀofꢀcycleꢀskippingꢀcanꢀoccurꢀwithꢀcor-  
respondinglyꢀlargerꢀcurrentꢀandꢀvoltageꢀripple.  
throughꢀ EXTV ꢀ willꢀ scaleꢀ theꢀ V ꢀ currentꢀ requiredꢀ  
CC  
IN  
forꢀtheꢀdriverꢀandꢀcontrolꢀcircuitsꢀbyꢀaꢀfactorꢀofꢀ(Dutyꢀ  
Cycle)/(Efficiency).Forexample,ina20Vto5Vapplica-  
tion,ꢀ10mAꢀofꢀINTV ꢀcurrentꢀresultsꢀinꢀapproximatelyꢀ  
CC  
2.5mAꢀofꢀV ꢀcurrent.ꢀThisꢀreducesꢀtheꢀmidcurrentꢀlossꢀ  
IN  
fromꢀ10%ꢀorꢀmoreꢀ(ifꢀtheꢀdriverꢀwasꢀpoweredꢀdirectlyꢀ  
fromꢀV )ꢀtoꢀonlyꢀaꢀfewꢀpercent.  
IN  
2
fuseꢀ(ifꢀused),ꢀMOSFET,ꢀinductor,ꢀcurrentꢀsenseꢀresis-  
tor,ꢀandꢀinputꢀandꢀoutputꢀcapacitorꢀESR.ꢀInꢀcontinuousꢀ  
modeꢀtheꢀaverageꢀoutputꢀcurrentꢀflowsꢀthroughꢀLꢀandꢀ  
Efficiency Considerations  
Theꢀpercentꢀefficiencyꢀofꢀaꢀswitchingꢀregulatorꢀisꢀequalꢀtoꢀ  
theꢀoutputꢀpowerꢀdividedꢀbyꢀtheꢀinputꢀpowerꢀtimesꢀ100%.ꢀ  
Itꢀisꢀoftenꢀusefulꢀtoꢀanalyzeꢀindividualꢀlossesꢀtoꢀdetermineꢀ  
whatꢀisꢀlimitingꢀtheꢀefficiencyꢀandꢀwhichꢀchangeꢀwouldꢀ  
producethemostimprovement.Percentefficiencycanꢀ  
beꢀexpressedꢀas:  
R
,ꢀbutꢀisꢀ“chopped”ꢀbetweenꢀtheꢀtopsideꢀMOSFETꢀ  
SENSE  
andthesynchronousMOSFET.IfthetwoMOSFETshaveꢀ  
approximatelyꢀtheꢀsameꢀR  
,ꢀthenꢀtheꢀresistanceꢀ  
DS(ON)  
ofꢀoneꢀMOSFETꢀcanꢀsimplyꢀbeꢀsummedꢀwithꢀtheꢀresis-  
2
tancesꢀofꢀL,ꢀR  
ꢀandꢀESRꢀtoꢀobtainꢀI Rꢀlosses.ꢀForꢀ  
DS(ON)  
SENSE  
example,ꢀifꢀeachꢀR  
ꢀ=ꢀ30mΩ,ꢀR ꢀ=ꢀ50mΩ,ꢀR  
ꢀ %Efficiencyꢀ=ꢀ100%ꢀ–ꢀ(L1ꢀ+ꢀL2ꢀ+ꢀL3ꢀ+ꢀ...)  
L
SENSE  
=10mΩandR ꢀ=40mΩ(sumofbothinputandꢀ  
ESR  
whereꢀL1,ꢀL2,ꢀetc.ꢀareꢀtheꢀindividualꢀlossesꢀasꢀaꢀpercent-  
ageꢀofꢀinputꢀpower.  
outputcapacitancelosses),thenthetotalresistanceꢀ  
isꢀ130mΩ.ꢀThisꢀresultsꢀinꢀlossesꢀrangingꢀfromꢀ3%ꢀtoꢀ  
13%ꢀasꢀtheꢀoutputꢀcurrentꢀincreasesꢀfromꢀ1Aꢀtoꢀ5Aꢀforꢀ  
aꢀ5Vꢀoutput,ꢀorꢀaꢀ4%ꢀtoꢀ20%ꢀlossꢀforꢀaꢀ3.3Vꢀoutput.ꢀ  
Althoughꢀallꢀdissipativeꢀelementsꢀinꢀtheꢀcircuitꢀproduceꢀ  
losses,fourmainsourcesusuallyaccountformostofꢀ  
theꢀlossesꢀinꢀLTC3858-1ꢀcircuits:ꢀ1)ꢀICꢀV ꢀcurrent,ꢀ2)ꢀIN-  
EfficiencyꢀvariesꢀasꢀtheꢀinverseꢀsquareꢀofꢀV ꢀforꢀtheꢀ  
IN  
OUT  
2
TV ꢀregulatorꢀcurrent,ꢀ3)ꢀI Rꢀlosses,ꢀ4)ꢀtopsideꢀMOSFETꢀ  
sameexternalcomponentsandoutputpowerlevel.Theꢀ  
combinedꢀeffectsꢀofꢀincreasinglyꢀlowerꢀoutputꢀvoltagesꢀ  
andhighercurrentsrequiredbyhighperformancedigitalꢀ  
systemsisnotdoublingbutquadruplingtheimportanceꢀ  
ofꢀlossꢀtermsꢀinꢀtheꢀswitchingꢀregulatorꢀsystem!  
CC  
transitionꢀlosses.  
38581fb  
ꢁꢂ  
LTC3858-1  
applicaTions inForMaTion  
4.ꢀTransitionꢀlossesꢀapplyꢀonlyꢀtoꢀtheꢀtopsideꢀMOSFET(s),ꢀ canꢀalsoꢀbeꢀestimatedꢀbyꢀexaminingꢀtheꢀriseꢀtimeꢀatꢀtheꢀ  
andbecomesignificantonlywhenoperatingathighꢀ pin.TheITHexternalcomponentsshowninFigure12ꢀ  
inputꢀ voltagesꢀ (t  
y
picallyꢀ 15Vꢀ orꢀ greater).ꢀ Transitionꢀ circuitꢀwillꢀprovideꢀanꢀadequateꢀstartingꢀpointꢀforꢀmostꢀ  
applications.  
lossesꢀcanꢀbeꢀestimatedꢀfrom:  
ꢀ ꢀ TransitionꢀLossꢀ=ꢀ(1.7) •ꢀV •ꢀ2 •ꢀI  
•ꢀC  
•ꢀf  
TheI ꢀseriesR -C ltersetsthedominantpole-zeroꢀ  
TH C C  
INꢀ  
O(MAX)ꢀ RSSꢀ  
loopꢀcompensation.ꢀTheꢀvaluesꢀcanꢀbeꢀmodifiedꢀslightlyꢀ  
(fromꢀ0.5ꢀtoꢀ2ꢀtimesꢀtheirꢀsuggestedꢀvalues)ꢀtoꢀoptimizeꢀ  
transientꢀresponseꢀonceꢀtheꢀfinalꢀPCꢀlayoutꢀisꢀdoneꢀandꢀ  
theꢀparticularꢀoutputꢀcapacitorꢀtypeꢀandꢀvalueꢀhaveꢀbeenꢀ  
determined.Theoutputcapacitorsneedtobeselectedꢀ  
becauseꢀtheꢀvariousꢀtypesꢀandꢀvaluesꢀdetermineꢀtheꢀloopꢀ  
gainꢀandꢀphase.ꢀAnꢀoutputꢀcurrentꢀpulseꢀofꢀ20%ꢀtoꢀ80%ꢀ  
ofꢀfull-loadꢀcurrentꢀhavingꢀaꢀriseꢀtimeꢀofꢀ1µsꢀtoꢀ10µsꢀwillꢀ  
ꢀ Otherhidden”lossessuchascoppertraceandinternalꢀ  
batteryꢀresistancesꢀcanꢀaccountꢀforꢀanꢀadditionalꢀ5%ꢀtoꢀ  
10%ꢀefficiencyꢀdegradationꢀinꢀportableꢀsystems.ꢀItꢀisꢀ  
veryꢀimportantꢀtoꢀincludeꢀtheseꢀ“system”ꢀlevelꢀlossesꢀ  
duringꢀtheꢀdesignꢀphase.ꢀTheꢀinternalꢀbatteryꢀandꢀfuseꢀ  
resistancelossescanbeminimizedbymakingsurethatꢀ  
C ꢀhasꢀadequateꢀchargeꢀstorageꢀandꢀveryꢀlowꢀESRꢀatꢀ  
IN  
theswitchingfrequency.A25Wsupplywilltypicallyꢀ  
requireꢀ aꢀ minimumꢀ ofꢀ 20µFꢀ toꢀ 40µFꢀ ofꢀ capacitanceꢀ  
havingamaximumof20mΩto50mΩofESR.Theꢀ  
LTC3858-12-phasearchitecturetypicallyhalvesthisꢀ  
inputcapacitancerequirementovercompetingsolu-  
produceꢀoutputꢀvoltageꢀandꢀI ꢀpinꢀwaveformsꢀthatꢀwillꢀ  
TH  
giveꢀaꢀsenseꢀofꢀtheꢀoverallꢀloopꢀstabilityꢀwithoutꢀbreakingꢀ  
theꢀfeedbackꢀloop.ꢀ  
Placingꢀ aꢀ resistiveꢀ loadꢀ andꢀ aꢀ powerꢀ MOSFETꢀ directlyꢀ  
tions.OtherlossesincludingSchottkyconductionlossesꢀ acrossꢀtheꢀoutputꢀcapacitorꢀandꢀdrivingꢀtheꢀgateꢀwithꢀanꢀ  
duringdead-timeandinductorcorelossesgenerallyꢀ appropriateꢀsignalꢀgeneratorꢀisꢀaꢀpracticalꢀwayꢀtoꢀproduceꢀ  
accountꢀforꢀlessꢀthanꢀ2%ꢀtotalꢀadditionalꢀloss.  
aꢀrealisticꢀloadꢀstepꢀcondition.ꢀTheꢀinitialꢀoutputꢀvoltageꢀ  
stepꢀresultingꢀfromꢀtheꢀstepꢀchangeꢀinꢀoutputꢀcurrentꢀmayꢀ  
notꢀbeꢀwithinꢀtheꢀbandwidthꢀofꢀtheꢀfeedbackꢀloop,ꢀsoꢀthisꢀ  
signalꢀcannotꢀbeꢀusedꢀtoꢀdetermineꢀphaseꢀmargin.ꢀThisꢀ  
Checking Transient Response  
Theꢀregulatorꢀloopꢀresponseꢀcanꢀbeꢀcheckedꢀbyꢀlookingꢀatꢀ  
theꢀloadꢀcurrentꢀtransientꢀresponse.ꢀSwitchingꢀregulatorsꢀ  
takeꢀseveralꢀcyclesꢀtoꢀrespondꢀtoꢀaꢀstepꢀinꢀDCꢀ(resistive)ꢀ  
loadcurrent.Whenaloadstepoccurs,VOUTshiftsbyꢀ  
anꢀamountꢀequalꢀtoꢀILOADꢀ(ESR),ꢀwhereꢀESRꢀisꢀtheꢀef-  
fectiveꢀseriesꢀresistanceꢀofꢀCOUT.ꢀILOADꢀalsoꢀbeginsꢀtoꢀ  
chargeꢀorꢀdischargeꢀCOUTꢀgeneratingꢀtheꢀfeedbackꢀerrorꢀ  
signalthatforcestheregulatortoadapttothecurrentꢀ  
changeꢀandꢀreturnꢀVOUTꢀtoꢀitsꢀsteady-stateꢀvalue.ꢀDuringꢀ  
thisꢀrecoveryꢀtimeꢀVOUTꢀcanꢀbeꢀmonitoredꢀforꢀexcessiveꢀ  
overshootorꢀ ringing,ꢀ whichꢀ wouldindicateꢀ aꢀ stabilityꢀ  
problem.ꢀOPTI-LOOPꢀcompensationꢀallowsꢀtheꢀtransientꢀ  
responsetobeoptimizedoverawiderangeofoutputꢀ  
capacitanceꢀandꢀESRꢀvalues.ꢀThe availability of the ITH pin  
not only allows optimization of control loop behavior, but  
it also provides a DC coupled and AC filtered closed-loop  
response test point. The DC step, rise time and settling  
at this test point truly reflects the closed-loop response.ꢀ  
Assumingꢀaꢀpredominantlyꢀsecondꢀorderꢀsystem,ꢀphaseꢀ  
marginand/ordampingfactorcanbeestimatedusingtheꢀ  
percentageꢀofꢀovershootꢀseenꢀatꢀthisꢀpin.ꢀTheꢀbandwidthꢀ  
isꢀwhyꢀitꢀisꢀbetterꢀtoꢀlookꢀatꢀtheꢀI ꢀpinꢀsignalꢀwhichꢀisꢀinꢀ  
TH  
thefeedbackloopandisthelteredandcompensatedꢀ  
controlꢀloopꢀresponse.ꢀ  
TheꢀgainꢀofꢀtheꢀloopꢀwillꢀbeꢀincreasedꢀbyꢀincreasingꢀR ꢀ  
C
andꢀtheꢀbandwidthꢀofꢀtheꢀloopꢀwillꢀbeꢀincreasedꢀbyꢀde-  
creasingꢀC .ꢀIfꢀR ꢀisꢀincreasedꢀbyꢀtheꢀsameꢀfactorꢀthatꢀC ꢀ  
C
C
C
isꢀdecreased,ꢀtheꢀzeroꢀfrequencyꢀwillꢀbeꢀkeptꢀtheꢀsame,ꢀ  
therebykeepingthephaseshiftthesameinthemostꢀ  
criticalꢀfrequencyꢀrangeꢀofꢀtheꢀfeedbackꢀloop.ꢀTheꢀoutputꢀ  
voltageꢀsettlingꢀbehaviorꢀisꢀrelatedꢀtoꢀtheꢀstabilityꢀofꢀtheꢀ  
closed-loopsystemandwilldemonstratetheactualoverallꢀ  
supplyꢀperformance.  
Aꢀsecond,ꢀmoreꢀsevereꢀtransientꢀisꢀcausedꢀbyꢀswitchingꢀ  
inꢀloadsꢀwithꢀlargeꢀ(>1µF)ꢀsupplyꢀbypassꢀcapacitors.ꢀTheꢀ  
dischargedbypasscapacitorsareeffectivelyputinparallelꢀ  
withꢀC ,ꢀcausingꢀaꢀrapidꢀdropꢀinꢀV .ꢀNoꢀregulatorꢀcanꢀ  
OUTꢀ  
OUTꢀ  
alterꢀitsꢀdeliveryꢀofꢀcurrentꢀquicklyꢀenoughꢀtoꢀpreventꢀthisꢀ  
suddenꢀstepꢀchangeꢀinꢀoutputꢀvoltageꢀifꢀtheꢀloadꢀswitchꢀ  
resistanceꢀisꢀlowꢀandꢀitꢀisꢀdrivenꢀquickly.ꢀIfꢀtheꢀratioꢀofꢀ  
38581fb  
ꢁꢃ  
LTC3858-1  
applicaTions inForMaTion  
C
ꢀtoꢀC ꢀisꢀgreaterꢀthanꢀ1:50,ꢀtheꢀswitchꢀriseꢀtimeꢀ ThepowerdissipationonthetopsideMOSFETcanbeeasilyꢀ  
LOAD  
OUT  
shouldꢀbeꢀcontrolledꢀsoꢀthatꢀtheꢀloadꢀriseꢀtimeꢀisꢀlimitedꢀ estimated.ꢀChoosingꢀaꢀFairchildꢀFDS6982SꢀdualꢀMOSFETꢀ  
toꢀapproximatelyꢀ25ꢀ•ꢀC .ꢀThusꢀaꢀ10µFꢀcapacitorꢀwouldꢀ resultsꢀin:ꢀR ꢀ=ꢀ0.035Ω/0.022Ω,ꢀC ꢀ=ꢀ215pF.ꢀAtꢀ  
LOAD  
DS(ON)  
MILLER  
requireꢀaꢀ250µsꢀriseꢀtime,ꢀlimitingꢀtheꢀchargingꢀcurrentꢀ maximumꢀinputꢀvoltageꢀwithꢀT(estimated)ꢀ=ꢀ50°C:  
toꢀaboutꢀ200mA.  
2   
3.3V  
22V  
PMAIN  
=
6A 1+ 0.005 50°C – 25°C  
(
)
(
)(  
)
Design Example  
2 6A  
Asꢀ aꢀ designꢀ exampleꢀ forꢀ oneꢀ channel,ꢀ assumeꢀ V ꢀ =ꢀ  
0.035Ω + 22V  
2.5215pF •  
(
) (  
)
1
(
)(  
)
IN  
2
12V(nominal),ꢀV ꢀ=ꢀ22Vꢀ(max),ꢀV ꢀ=ꢀ3.3V,ꢀI ꢀ=ꢀ6A,ꢀ  
IN  
OUT  
MAX  
1
V
ꢀ=ꢀ50mVꢀandꢀfꢀ=ꢀ350kHz.  
SENSE(MAX)  
+
350kHz = 433mW  
(
)
5V – 2.3V 2.3V  
Theinductancevalueischosenrstbasedona30%rippleꢀ  
currentꢀassumption.ꢀTheꢀhighestꢀvalueꢀofꢀrippleꢀcurrentꢀ  
occursꢀatꢀtheꢀmaximumꢀinputꢀvoltage.ꢀTieꢀtheꢀFREQꢀpinꢀ  
toꢀ GND,ꢀ generatingꢀ 350kHzꢀ operation.ꢀ Theꢀ minimumꢀ  
inductanceꢀforꢀ30%ꢀrippleꢀcurrentꢀis:  
Aꢀshort-circuitꢀtoꢀgroundꢀwillꢀresultꢀinꢀaꢀfoldedꢀbackꢀcur-  
rentꢀof:  
95ns 22V  
(
)
25mV  
0.0062  
1
ISC =  
= 3.9A  
3.9µH  
VOUT  
f L  
( )( )  
V
V
IN  
OUT   
1–  
ΔIL =  
withꢀaꢀtypicalꢀvalueꢀofꢀR  
=0.125.Theresultingpowerdissipatedinthebottomꢀ  
ꢀandꢀδꢀ=ꢀ(0.005/°C)(25°C)ꢀ  
DS(ON)  
A3.9µHinductorwillproduce29%ripplecurrent.Theꢀ  
peakꢀinductorꢀcurrentꢀwillꢀbeꢀtheꢀmaximumꢀDCꢀvalueꢀplusꢀ  
oneꢀhalfꢀtheꢀrippleꢀcurrent,ꢀorꢀ6.88A.ꢀIncreasingꢀtheꢀrippleꢀ  
currentꢀwillꢀalsoꢀhelpꢀensureꢀthatꢀtheꢀminimumꢀon-timeꢀ  
ofꢀ95nsꢀisꢀnotꢀviolated.ꢀTheꢀminimumꢀon-timeꢀoccursꢀatꢀ  
MOSFETꢀis:  
2
) (  
P
= 3.9A 1.125 0.022Ω = 376mW  
(
whichꢀisꢀlessꢀthanꢀfull-loadꢀconditions.  
)(  
)
SYNC  
maximumꢀV :  
IN  
C ꢀisꢀchosenꢀforꢀanꢀRMSꢀcurrentꢀratingꢀofꢀatꢀleastꢀ3Aꢀatꢀ  
temperatureassumingonlythischannelison.C ꢀisꢀ  
chosenꢀwithꢀanꢀESRꢀofꢀ0.02Ωꢀforꢀlowꢀoutputꢀrippleꢀvolt-  
age.ꢀTheꢀoutputꢀrippleꢀinꢀcontinuousꢀmodeꢀwillꢀbeꢀhighestꢀ  
atꢀtheꢀmaximumꢀinputꢀvoltage.ꢀTheꢀoutputꢀvoltageꢀrippleꢀ  
dueꢀtoꢀESRꢀisꢀapproximately:  
IN  
VOUT  
V
IN
( )  
3.3V  
OUT  
tON(MIN)  
=
=
= 429ns  
f
22V 350kHz  
(
)
TheꢀequivalentꢀR  
ꢀresistorꢀvalueꢀcanꢀbeꢀcalculatedꢀbyꢀ  
SENSE  
usingꢀtheꢀminimumꢀvalueꢀforꢀtheꢀmaximumꢀcurrentꢀsenseꢀ  
thresholdꢀ(43mV):  
ꢀ V  
ꢀ=ꢀR (I )ꢀ=ꢀ0.02Ω(1.75A)ꢀ=ꢀ35mV  
ESR L P-P  
ORIPPLE  
43mV  
6.88A  
RSENSE  
= 0.006Ω  
Choosing0.5%resistors:R ꢀ=24.9kandR ꢀ=77.7kyieldsꢀ  
A
B
anꢀoutputꢀvoltageꢀofꢀ3.296V.  
38581fb  
ꢁꢄ  
1.ꢀ  
2.ꢀ  
        
AreꢀtheꢀtopꢀN-channelꢀMOSFETsꢀMTOP1ꢀandꢀMTOP2ꢀ  
locatedꢀwithinꢀ1cmꢀofꢀeachꢀotherꢀwithꢀaꢀcommonꢀdrainꢀ  
        
Areꢀtheꢀsignalꢀandꢀpowerꢀgroundsꢀkeptꢀseparate?ꢀTheꢀ  
PC Board Layout Checklist  
6.ꢀ  
                                                
Keepꢀtheꢀswitchingꢀnodesꢀ(SW1,ꢀSW2),ꢀtopꢀgateꢀnodesꢀ  
(TG1,TG2),andboostnodes(BOOST1,BOOST2)awayꢀ  
fromꢀsensitiveꢀsmall-signalꢀnodes,ꢀespeciallyꢀfromꢀtheꢀ  
oppositesꢀchannel’sꢀvoltageꢀandꢀcurrentꢀsensingꢀfeed-  
backꢀpins.ꢀAllꢀofꢀtheseꢀnodesꢀhaveꢀveryꢀlargeꢀandꢀfastꢀ  
movingsignalsandthereforeshouldbekeptontheꢀ  
“outputꢀside”ꢀofꢀtheꢀLTC3858-1ꢀandꢀoccupyꢀminimumꢀ  
PCꢀtraceꢀarea.  
LTC3858-1  
applicaTions inForMaTion  
Whenꢀlayingꢀoutꢀtheꢀprintedꢀcircuitꢀboard,ꢀtheꢀfollowingꢀ  
checklistꢀshouldꢀbeꢀusedꢀtoꢀensureꢀproperꢀoperationꢀofꢀ  
theꢀIC.ꢀTheseꢀitemsꢀareꢀalsoꢀillustratedꢀgraphicallyꢀinꢀtheꢀ  
layoutdiagramofFigure10.Figure11illustratesthecurrentꢀ  
waveformspresentinthevariousbranchesofthe2-phaseꢀ  
synchronousregulatorsoperatinginthecontinuousmode.ꢀ  
Checkꢀtheꢀfollowingꢀinꢀyourꢀlayout:  
7.ꢀUseꢀaꢀmodifiedꢀ“starꢀground”ꢀtechnique:ꢀaꢀlowꢀimped-  
ance,ꢀ largeꢀ copperꢀ areaꢀ centralꢀ groundingꢀ pointꢀ onꢀ  
theꢀsameꢀsideꢀofꢀtheꢀPCꢀboardꢀasꢀtheꢀinputꢀandꢀoutputꢀ  
connectionatC ?Donotattempttosplittheinputꢀ  
IN  
capacitorswithtie-insforthebottomoftheINTV ꢀ  
CC  
decouplingꢀforꢀtheꢀtwoꢀchannelsꢀasꢀitꢀcanꢀcauseꢀaꢀlargeꢀ  
resonantꢀloop.  
decouplingcapacitor,thebottomofthevoltagefeedbackꢀ  
resistiveꢀdividerꢀandꢀtheꢀSGNDꢀpinꢀofꢀtheꢀIC.  
combinedꢀICꢀsignalꢀgroundꢀpinꢀandꢀtheꢀgroundꢀreturnꢀ PC Board Layout Debugging  
ofꢀC  
ꢀmustꢀreturnꢀtoꢀtheꢀcombinedꢀC ꢀ(–)ꢀter-  
INTVCC  
OUT  
Startꢀwithꢀoneꢀcontrollerꢀonꢀatꢀaꢀtime.ꢀItꢀisꢀhelpfulꢀtoꢀuseꢀ  
aꢀDC-50MHzꢀcurrentꢀprobeꢀtoꢀmonitorꢀtheꢀcurrentꢀinꢀtheꢀ  
inductorꢀ whileꢀ testingꢀ theꢀ circuit.ꢀ Monitorꢀ theꢀ outputꢀ  
switchingꢀnodeꢀ(SWꢀpin)ꢀtoꢀsynchronizeꢀtheꢀoscilloscopeꢀ  
totheinternaloscillatorandprobetheactualoutputvoltageꢀ  
asꢀwell.ꢀCheckꢀforꢀproperꢀperformanceꢀoverꢀtheꢀoperatingꢀ  
voltageꢀandꢀcurrentꢀrangeꢀexpectedꢀinꢀtheꢀapplication.ꢀTheꢀ  
frequencyofoperationshouldbemaintainedovertheinputꢀ  
minals.ꢀTheꢀpathꢀformedꢀbyꢀtheꢀtopꢀN-channelꢀMOSFET,ꢀ  
SchottkyꢀdiodeꢀandꢀtheꢀC ꢀcapacitorꢀshouldꢀhaveꢀshortꢀ  
IN  
leadsꢀandꢀPCꢀtraceꢀlengths.ꢀTheꢀoutputꢀcapacitorꢀ(–)ꢀ  
terminalsshouldbeconnectedascloseaspossibleꢀ  
toꢀtheꢀ(–)ꢀterminalsꢀofꢀtheꢀinputꢀcapacitorꢀbyꢀplacingꢀ  
theꢀcapacitorsꢀnextꢀtoꢀeachꢀotherꢀandꢀawayꢀfromꢀtheꢀ  
Schottkyꢀloopꢀdescribedꢀabove.  
3.ꢀDoꢀtheꢀLTC3858-1ꢀV ꢀpins’ꢀresistiveꢀdividersꢀconnectꢀ voltageꢀrangeꢀdownꢀtoꢀdropoutꢀandꢀuntilꢀtheꢀoutputꢀloadꢀ  
FB  
toꢀ theꢀ (+)ꢀ terminalsꢀ ofꢀ C ?ꢀ Theꢀ resistiveꢀ dividerꢀ dropsꢀbelowꢀtheꢀlowꢀcurrentꢀoperationꢀthreshold—typi-  
OUT  
mustꢀbeꢀconnectedꢀbetweenꢀtheꢀ(+)ꢀterminalꢀofꢀC  
callyꢀ10%ꢀofꢀtheꢀmaximumꢀdesignedꢀcurrentꢀlevelꢀinꢀBurstꢀ  
OUT  
andꢀsignalꢀground.ꢀTheꢀfeedbackꢀresistorꢀconnectionsꢀ Modeꢀoperation.  
shouldꢀnotꢀbeꢀalongꢀtheꢀhighꢀcurrentꢀinputꢀfeedsꢀfromꢀ  
Thedutycyclepercentageshouldbemaintainedfromcycleꢀ  
theꢀinputꢀcapacitor(s).  
tocycleinawell-designed,lownoisePCBimplementation.ꢀ  
+
4.ꢀAreꢀtheꢀSENSE ꢀandꢀSENSE ꢀleadsꢀroutedꢀtogetherꢀwithꢀ Variationꢀinꢀtheꢀdutyꢀcycleꢀatꢀaꢀsubharmonicꢀrateꢀcanꢀsug-  
minimumPCtracespacing?Theltercapacitorbetweenꢀ gestꢀnoiseꢀpickupꢀatꢀtheꢀcurrentꢀorꢀvoltageꢀsensingꢀinputsꢀ  
+
SENSE ꢀandꢀSENSE ꢀshouldꢀbeꢀasꢀcloseꢀasꢀpossibleꢀ orꢀinadequateꢀloopꢀcompensation.ꢀOvercompensationꢀofꢀ  
toꢀtheꢀIC.ꢀEnsureꢀaccurateꢀcurrentꢀsensingꢀwithꢀKelvinꢀ theꢀloopꢀcanꢀbeꢀusedꢀtoꢀtameꢀaꢀpoorꢀPCꢀlayoutꢀifꢀregula-  
connectionsꢀatꢀtheꢀSENSEꢀresistor.  
torꢀ bandwidthꢀ optimizationꢀ isꢀ notꢀ required.ꢀ Onlyꢀ afterꢀ  
eachꢀcontrollerꢀisꢀcheckedꢀforꢀitsꢀindividualꢀperformanceꢀ  
shouldꢀbothꢀcontrollersꢀbeꢀturnedꢀonꢀatꢀtheꢀsameꢀtime.ꢀ  
Aparticularlydifficultregionofoperationiswhenoneꢀ  
controllerꢀchannelꢀisꢀnearingꢀitsꢀcurrentꢀcomparatorꢀtripꢀ  
pointwhentheotherchannelisturningonitstopMOSFET.ꢀ  
Thisꢀoccursꢀaroundꢀ50%ꢀdutyꢀcycleꢀonꢀeitherꢀchannelꢀdueꢀ  
5.IstheINTV decouplingcapacitorconnectedcloseꢀ  
CC  
toꢀtheꢀIC,ꢀbetweenꢀtheꢀINTV ꢀandꢀtheꢀpowerꢀgroundꢀ  
CC  
pins?ꢀThisꢀcapacitorꢀcarriesꢀtheꢀMOSFETꢀdrivers’ꢀcur-  
rentꢀpeaks.ꢀAnꢀadditionalꢀ1µFꢀceramicꢀcapacitorꢀplacedꢀ  
immediatelynexttotheINTV andPGNDpinscanhelpꢀ  
CC  
improveꢀnoiseꢀperformanceꢀsubstantially.  
38581fb  
ꢁꢅ  
LTC3858-1  
applicaTions inForMaTion  
SS1  
LTC3858-1  
I
R
TH1  
PU1  
V
PULL-UP  
(<6V)  
V
PGOOD1  
TG1  
PGOOD1  
FB1  
L1  
R
SENSE  
+
V
SENSE1  
SENSE1  
FREQ  
OUT1  
SW1  
C
B1  
M1  
M2  
D1  
BOOST1  
BG1  
C
C
OUT1  
V
f
IN  
1µF  
IN  
PLLIN/MODE  
RUN1  
R
C
IN  
VIN  
CERAMIC  
PGND  
GND  
RUN2  
EXTV  
CC  
V
OUT1  
C
IN  
C
SGND  
INTVCC  
V
IN  
INTV  
CC  
SENSE2  
OUT2  
D2  
1µF  
CERAMIC  
+
BG2  
SENSE2  
M4  
M3  
BOOST2  
V
FB2  
TH2  
C
B2  
SW2  
TG2  
I
R
SENSE  
V
OUT2  
SS2  
L2  
38581 F10  
Figure 10. Recommended Printed Circuit Layout Diagram  
toꢀtheꢀphasingꢀofꢀtheꢀinternalꢀclocksꢀandꢀmayꢀcauseꢀminorꢀ coincideꢀwithꢀhighꢀinputꢀvoltagesꢀandꢀlowꢀoutputꢀcurrents,ꢀ  
dutyꢀcycleꢀjitter.  
lookꢀforꢀcapacitiveꢀcouplingꢀbetweenꢀtheꢀBOOST,ꢀSW,ꢀTG,ꢀ  
andpossiblyBGconnectionsandthesensitivevoltageꢀ  
andꢀcurrentꢀpins.ꢀTheꢀcapacitorꢀplacedꢀacrossꢀtheꢀcurrentꢀ  
sensingꢀpinsꢀneedsꢀtoꢀbeꢀplacedꢀimmediatelyꢀadjacentꢀtoꢀ  
theꢀpinsꢀofꢀtheꢀIC.ꢀThisꢀcapacitorꢀhelpsꢀtoꢀminimizeꢀtheꢀ  
effectsꢀofꢀdifferentialꢀnoiseꢀinjectionꢀdueꢀtoꢀhighꢀfrequencyꢀ  
capacitiveꢀ coupling.ꢀ Ifꢀ problemsꢀ areꢀ encounteredꢀ withꢀ  
highꢀcurrentꢀoutputꢀloadingꢀatꢀlowerꢀinputꢀvoltages,ꢀlookꢀ  
Reduceꢀ V ꢀ fromꢀ itsꢀ nominalꢀ levelꢀ toꢀ verifyꢀ operationꢀ  
IN  
oftheregulatorindropout.Checktheoperationoftheꢀ  
undervoltageꢀlockoutꢀcircuitꢀbyꢀfurtherꢀloweringꢀV ꢀwhileꢀ  
IN  
monitoringꢀtheꢀoutputsꢀtoꢀverifyꢀoperation.  
Investigatewhetheranyproblemsexistonlyathigherout-  
putꢀcurrentsꢀorꢀonlyꢀatꢀhigherꢀinputꢀvoltages.ꢀIfꢀproblemsꢀ  
38581fb  
ꢁꢆ  
LTC3858-1  
applicaTions inForMaTion  
SW1  
L1  
R
SENSE1  
V
OUT1  
D1  
C
R
L1  
OUT1  
V
IN  
R
IN  
C
IN  
SW2  
L2  
R
SENSE2  
V
OUT2  
D2  
C
R
L2  
OUT2  
BOLD LINES INDICATE  
HIGH SWITCHING  
CURRENT. KEEP LINES  
TO A MINIMUM LENGTH.  
38581 F11  
Figure 11. Branch Current Waveforms  
forꢀinductiveꢀcouplingꢀbetweenꢀC ,ꢀSchottkyꢀandꢀtheꢀtopꢀ Theꢀoutputꢀvoltageꢀunderꢀthisꢀimproperꢀhookupꢀwillꢀstillꢀ  
IN  
MOSFETꢀcomponentsꢀtoꢀtheꢀsensitiveꢀcurrentꢀandꢀvoltageꢀ beꢀmaintainedꢀbutꢀtheꢀadvantagesꢀofꢀcurrentꢀmodeꢀcontrolꢀ  
sensingꢀtraces.ꢀInꢀaddition,ꢀinvestigateꢀcommonꢀgroundꢀ willꢀnotꢀbeꢀrealized.ꢀCompensationꢀofꢀtheꢀvoltageꢀloopꢀwillꢀ  
pathꢀvoltageꢀpickupꢀbetweenꢀtheseꢀcomponentsꢀandꢀtheꢀ beꢀ muchꢀ moreꢀ sensitiveꢀ toꢀ componentꢀ selection.ꢀ Thisꢀ  
SGNDꢀpinꢀofꢀtheꢀIC.  
behaviorꢀcanꢀbeꢀinvestigatedꢀbyꢀtemporarilyꢀshortingꢀoutꢀ  
theꢀcurrentꢀsensingꢀresistor—don’tꢀworry,ꢀtheꢀregulatorꢀ  
willꢀstillꢀmaintainꢀcontrolꢀofꢀtheꢀoutputꢀvoltage.  
Anembarrassingproblem,whichcanbemissedinanꢀ  
otherwiseꢀproperlyꢀworkingꢀswitchingꢀregulator,ꢀresultsꢀ  
whenthecurrentsensingleadsarehookedupbackwards.ꢀ  
38581fb  
ꢁꢇ  
LTC3858-1  
Typical applicaTions  
R
B1  
215k  
LTC3858-1  
+
C
SENSE1  
F1  
INTV  
CC  
C1  
1nF  
15pF  
100k  
R
A1  
68.1k  
SENSE1  
PGOOD1  
BG1  
L1  
MBOT1  
MTOP1  
V
FB1  
3.3µH  
V
3.3V  
5A  
OUT1  
C
150pF  
ITH1A  
SW1  
R
C
C
SENSE1  
7mΩ  
OUT1  
B1  
0.47µF  
BOOST1  
TG1  
150µF  
R
15k  
SS1  
ITH1  
I
TH1  
D1  
D2  
C
820pF  
ITH1  
C
0.1µF  
V
IN  
V
IN  
9V TO 38V  
C
IN  
22µF  
SS1  
INTV  
CC  
C
INT  
4.7µF  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
C
B2  
0.47µF  
BOOST2  
L2  
7.2µH  
R
SENSE2  
10mΩ  
C
0.1µF  
SS2  
V
8.5V  
3A  
OUT2  
SW2  
BG2  
SS2  
C
C
680pF  
OUT2  
ITH2  
R
27k  
150µF  
ITH2  
I
TH2  
C
100pF  
C2  
ITH2A  
V
FB2  
R
A2  
44.2k  
+
SENSE2  
C
1nF  
F2  
39pF  
SENSE2  
R
B2  
442k  
38581 F12  
C
, C : SANYO 10TPD150M  
OUT1 OUT2  
L1: SUMIDA CDEP105-3R2M  
L2: SUMIDA CDEP105-7R2M  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
Start-Up  
SW Node Waveforms  
Efficiency vs Output Current  
100  
90  
V
80  
OUT2  
V
= 8.5V  
V
= 3.3V  
OUT  
2V/DIV  
OUT  
70  
SW1  
5V/DIV  
60  
50  
V
OUT1  
2V/DIV  
40  
30  
20  
10  
0
SW2  
5V/DIV  
V
= 12V  
IN  
Burst Mode OPERATION  
0.1 10  
OUTPUT CURRENT (A)  
3858 F12c  
3858 F12d  
20ms/DIV  
1µs/DIV  
0.000010.0001 0.001 0.01  
1
38581 F12b  
Figure 12. High Efficiency Dual 8.5V/3.3V Step-Down Converter  
38581fb  
ꢁꢈ  
LTC3858-1  
Typical applicaTions  
High Efficiency Dual 2.5V/3.3V Step-Down Converter  
R
B1  
143k  
LTC3858-1  
+
C
SENSE1  
INTV  
CC  
F1  
C1  
1nF  
22pF  
100k  
R
A1  
68.1k  
SENSE1  
PGOOD1  
BG1  
L1  
2.4µH  
MBOT1  
MTOP1  
V
FB1  
V
2.5V  
5A  
OUT1  
C
100pF  
ITH1A  
SW1  
R
C
C
SENSE1  
7mΩ  
OUT1  
B1  
0.47µF  
BOOST1  
TG1  
150µF  
R
ITH1  
22k  
I
TH1  
D1  
D2  
C
820pF  
ITH1  
C
SS1  
0.01µF  
V
IN  
V
IN  
4V TO 38V  
C
IN  
22µF  
SS1  
INTV  
CC  
C
INT  
4.7µF  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
C
B2  
0.47µF  
BOOST2  
L2  
3.2µH  
R
SENSE2  
7mΩ  
C
SS2  
0.01µF  
V
3.3V  
5A  
OUT2  
SW2  
BG2  
SS2  
C
C
820pF  
OUT2  
ITH2  
R
15k  
150µF  
ITH2  
I
TH2  
C
150pF  
C2  
ITH2A  
V
FB2  
R
A2  
68.1k  
+
SENSE2  
C
1nF  
F2  
15pF  
SENSE2  
R
B2  
215k  
38581 F13  
C
, C : SANYO 10TPD150M  
OUT1 OUT2  
L1: SUMIDA CDEP105-2R5  
L2: SUMIDA CDEP105-3R2M  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
38581fb  
ꢂ0  
LTC3858-1  
Typical applicaTions  
High Efficiency Dual 12V/5V Step-Down Converter  
R
B1  
422k  
+
C
SENSE1  
INTV  
F1  
CC  
C1  
1nF  
33pF  
100k  
R
A1  
SENSE1  
PGOOD1  
BG1  
30.1k  
L1  
8.8µH  
MBOT1  
MTOP1  
V
FB1  
V
12V  
3A  
OUT1  
C
100pF  
ITH1A  
SW1  
R
C
C
SENSE1  
OUT1  
B1  
BOOST1  
TG1  
10mΩ  
47µF  
0.47µF  
R
ITH1  
33k  
I
TH1  
D1  
D2  
C
SS1  
0.01µF  
LTC3858-1  
C
680pF  
ITH1  
V
IN  
V
SS1  
IN  
12.5V TO 38V  
C
IN  
INTV  
CC  
C
22µF  
INT  
4.7µF  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
60k  
0.47µF  
L2  
4.3µH  
R
SENSE2  
7mΩ  
C
0.01µF  
SS2  
V
OUT2  
5V  
SW2  
BG2  
SS2  
5.5A  
C
C
680pF  
OUT2  
ITH2  
R
17k  
150µF  
ITH2  
I
TH2  
C
100pF  
C2  
ITH2A  
V
FB2  
C
: KEMET T525D476M016E035  
: SANYO 10TPD150M  
R
OUT1  
OUT2  
A2  
+
SENSE2  
C
75k  
L1: SUMIDA CDEP105-8R8M  
L2: SUMIDA CDEP105-4R3M  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
C
1nF  
F2  
15pF  
SENSE2  
R
B2  
393k  
38581 TA02a  
38581fb  
ꢂꢀ  
LTC3858-1  
Typical applicaTions  
High Efficiency Dual 24V/5V Step-Down Converter  
R
B1  
487k  
+
C
SENSE1  
INTV  
F1  
CC  
C1  
1nF  
18pF  
100k  
R
A1  
SENSE1  
PGOOD1  
BG1  
16.9k  
L1  
22µH  
MBOT1  
MTOP1  
V
FB1  
V
24V  
1A  
OUT1  
C
100pF  
ITH1A  
SW1  
R
C
C
SENSE1  
OUT1  
B1  
BOOST1  
TG1  
25mΩ  
22µF  
25V  
×2  
0.47µF  
R
46k  
ITH1  
I
TH1  
D1  
D2  
C
0.01µF  
SS1  
CERAMIC  
LTC3858-1  
C
680pF  
ITH1  
V
IN  
V
SS1  
IN  
24.5V TO 38V  
C
IN  
INTV  
CC  
C
4.7µF  
22µF  
INT  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
60k  
0.47µF  
L2  
4.3µH  
R
SENSE2  
7mΩ  
C
0.01µF  
SS2  
V
5V  
5A  
OUT2  
SW2  
BG2  
SS2  
C
C
680pF  
OUT2  
ITH2  
R
17k  
150µF  
ITH2  
I
TH2  
C
100pF  
C2  
ITH2A  
V
FB2  
R
A2  
+
SENSE2  
75k  
C
: SANYO 10TPD150M  
OUT2  
L1: SUMIDA CDRH105R-220M  
L2: SUMIDA CDEP105-4R3M  
C
1nF  
F2  
15pF  
SENSE2  
MTOP1, MTOP2, MBOT1, MBOT2: VISHAY Si7848DP  
R
B2  
392k  
38581 TA04  
38581fb  
ꢂꢁ  
LTC3858-1  
Typical applicaTions  
High Efficiency Dual 1V/1.2V Step-Down Converter  
R
B1  
28.7k  
+
C
SENSE1  
F1  
INTV  
CC  
C1  
1nF  
56pF  
100k  
R
A1  
SENSE1  
PGOOD1  
BG1  
115k  
L1  
0.47µH  
MBOT1  
MTOP1  
V
FB1  
V
OUT1  
C
220pF  
ITH1A  
1V  
SW1  
C
R
OUT1 8A  
C
SENSE1  
4mΩ  
B1  
BOOST1  
TG1  
220µF  
0.47µF  
R
ITH1  
3.93k  
s2  
I
TH1  
D1  
D2  
LTC3858-1  
C
1000pF  
ITH1  
C
SS1  
0.01µF  
V
IN  
V
IN  
12V  
C
IN  
SS1  
22µF  
INTV  
CC  
C
INT  
4.7µF  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
60k  
0.47µF  
L2  
0.47µH  
R
SENSE2  
4mΩ  
C
0.01µF  
SS2  
V
OUT2  
1.2V  
SW2  
BG2  
SS2  
C
OUT2 8A  
C
1000pF  
ITH2  
220µF  
R
3.43k  
ITH2  
s2  
I
TH2  
C
220pF  
C2  
ITH2A  
V
FB2  
R
C
, C  
: SANYO 2RSTPE220M  
A2  
OUT1 OUT2  
+
SENSE2  
115k  
L1: SUMIDA CDEP105-3R2M  
L2: SUMIDA CDEP105-7R2M  
MTOP1, MTOP2: RENESAS RJK0305  
MBOT1, MBOT2: RENESAS RJK0328  
C
1nF  
F2  
56pF  
SENSE2  
R
B2  
38581 TA03a  
57.6k  
38581fb  
ꢂꢂ  
LTC3858-1  
Typical applicaTions  
High Efficiency Dual 1V/1.2V Step-Down Converter with Inductor DCR Current Sensing  
R
R
S1  
1.18k  
B1  
28.7k  
+
C
SENSE1  
SENSE1  
F1  
INTV  
CC  
C1  
0.1µF  
56pF  
100k  
R
A1  
PGOOD1  
115k  
L1  
0.47µH  
MBOT1  
MTOP1  
V
BG1  
SW1  
FB1  
V
OUT1  
C
200pF  
ITH1A  
1V  
C
OUT1 8A  
C
B1  
BOOST1  
TG1  
220µF  
0.47µF  
R
ITH1  
3.93k  
s2  
I
TH1  
D1  
D2  
LTC3858-1  
C
1000pF  
ITH1  
C
SS1  
0.01µF  
V
IN  
V
IN  
12V  
C
IN  
SS1  
22µF  
INTV  
CC  
C
INT  
4.7µF  
PGND  
PLLIN/MODE  
SGND  
MTOP2  
MBOT2  
EXTV  
TG2  
CC  
RUN1  
RUN2  
FREQ  
R
C
FREQ  
B2  
BOOST2  
65k  
0.47µF  
L2  
0.47µH  
C
0.01µF  
SS2  
V
OUT2  
1.2V  
SW2  
BG2  
SS2  
C
OUT2 8A  
C
1000pF  
ITH2  
220µF  
R
3.93k  
ITH2  
s2  
I
TH2  
C
220pF  
C2  
ITH2A  
V
FB2  
R
A2  
+
SENSE2  
115k  
C
, C  
: SANYO 2R5TPE220M  
OUT1 OUT2  
L1, L2: SUMIDA IHL P2525CZERR47M06  
MTOP1, MTOP2: RENESAS RJK0305  
MBOT1, MBOT2: RENESAS RJK0328  
C
0.1µF  
F2  
56pF  
SENSE2  
R
S2  
1.18k  
R
B2  
57.6k  
38581 TA05  
38581fb  
ꢂꢃ  
LTC3858-1  
package DescripTion  
UFD Package  
28-Lead Plastic QFN (4mm × 5mm)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1712ꢀRevꢀB)  
0.70 p0.05  
4.50 p 0.05  
3.10 p 0.05  
2.50 REF  
2.65 p 0.05  
3.65 p 0.05  
PACKAGE  
OUTLINE  
0.25 p0.05  
0.50 BSC  
3.50 REF  
4.10 p 0.05  
5.50 p 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 OR 0.35  
s 45o CHAMFER  
2.50 REF  
R = 0.115  
TYP  
R = 0.05  
TYP  
0.75 p 0.05  
4.00 p 0.10  
(2 SIDES)  
27  
28  
0.40 p 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
5.00 p 0.10  
(2 SIDES)  
3.50 REF  
3.65 p 0.10  
2.65 p 0.10  
(UFD28) QFN 0506 REV B  
0.25 p 0.05  
0.50 BSC  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
38581fb  
ꢂꢄ  
LTC3858-1  
package DescripTion  
GN Package  
28-Lead Plastic SSOP (Narrow .150 Inch)  
(ReferenceꢀLTCꢀDWGꢀ#ꢀ05-08-1641)  
.386 – .393*  
(9.804 – 9.982)  
.045 p.005  
.033  
(0.838)  
REF  
28 27 26 25 24 23 22 21 20 19 18 17 1615  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 p.0015  
.0250 BSC  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
RECOMMENDED SOLDER PAD LAYOUT  
.015 p .004  
(0.38 p 0.10)  
.0532 – .0688  
(1.35 – 1.75)  
s 45o  
.004 – .0098  
(0.102 – 0.249)  
.0075 – .0098  
(0.19 – 0.25)  
0o – 8o TYP  
.016 – .050  
(0.406 – 1.270)  
.008 – .012  
.0250  
(0.635)  
BSC  
GN28 (SSOP) 0204  
(0.203 – 0.305)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
2. DIMENSIONS ARE IN  
(MILLIMETERS)  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
38581fb  
ꢂꢅ  
LTC3858-1  
revision hisTory (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
11/09 ChangeꢀtoꢀAbsoluteꢀMaximumꢀRatings  
ChangeꢀtoꢀElectricalꢀCharacteristics  
ChangeꢀtoꢀTypicalꢀPerformanceꢀCharacteristics  
ChangeꢀtoꢀPinꢀFunctions  
2
3,ꢀ4  
6
8,ꢀ9  
TextꢀChangesꢀtoꢀOperationꢀSection  
TextꢀChangesꢀtoꢀApplicationsꢀInformationꢀSection  
ChangeꢀtoꢀTableꢀ2  
11,ꢀ12,ꢀ13  
20,ꢀ21,ꢀ22,ꢀ23,ꢀ25  
22  
27  
38  
ChangeꢀtoꢀFigureꢀ10  
ChangesꢀtoꢀRelatedꢀParts  
38581fb  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.ꢀ  
However,ꢀnoꢀresponsibilityꢀisꢀassumedꢀforꢀitsꢀuse.ꢀLinearꢀTechnologyꢀCorporationꢀmakesꢀnoꢀrepresenta-  
tionꢀthatꢀtheꢀinterconnectionꢀofꢀitsꢀcircuitsꢀasꢀdescribedꢀhereinꢀwillꢀnotꢀinfringeꢀonꢀexistingꢀpatentꢀrights.  
ꢂꢆ  
LTC3858-1  
relaTeD parTs  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC3857/LTC3857-1 LowꢀI ,ꢀDualꢀOutputꢀ2-PhaseꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ50kHzꢀtoꢀ900kHz,ꢀꢀ  
Q
DC/DCꢀControllerꢀwithꢀ99%ꢀDutyꢀCycle  
4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ24V,ꢀI ꢀ=ꢀ50µA,  
IN OUT Q  
LTC3868/LTC3868-1 LowꢀI ,ꢀDualꢀOutputꢀ2-PhaseꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ50kHzꢀtoꢀ900kHz,ꢀ  
Q
DC/DCꢀControllerꢀwithꢀ99%ꢀDutyꢀCycle  
4Vꢀ≤ꢀV ꢀ≤ꢀ24V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ14V,ꢀI ꢀ=ꢀ170µA,  
IN OUT Q  
LTC3834/LTC3834-1 LowꢀI ,ꢀSynchronousꢀStep-DownꢀDC/DCꢀController  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ140kHzꢀtoꢀ650kHz,ꢀ  
4Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ10V,ꢀI ꢀ=ꢀ30µA,  
Q
IN  
OUT  
Q
LTC3835/LTC3835-1 LowꢀI ,ꢀSynchronousꢀStep-DownꢀDC/DCꢀController  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ140kHzꢀtoꢀ650kHz,ꢀ  
4Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ10V,ꢀI ꢀ=ꢀ80µA,  
Q
IN  
OUT  
Q
LT3845  
LT3800  
LTC3824  
LowꢀI ,ꢀHighꢀVoltageꢀSynchronousꢀStep-Downꢀꢀ  
AdjustableꢀFixedꢀOperatingꢀFrequencyꢀ100kHzꢀtoꢀ500kHz,ꢀ  
4Vꢀ≤ꢀV ꢀ≤ꢀ60V,ꢀ1.23Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀI ꢀ=ꢀ120µA,ꢀTSSOP-16  
Q
DC/DCꢀController  
IN  
OUT  
Q
LowꢀI ,ꢀHighꢀVoltageꢀSynchronousꢀStep-Downꢀꢀ  
Fixedꢀ200kHzꢀOperatingꢀFrequency,ꢀ4Vꢀ≤ꢀV ꢀ≤ꢀ60V,ꢀ1.23Vꢀ≤ꢀV ꢀ≤ꢀ36V,ꢀ  
IN OUT  
I ꢀ=ꢀ100µA,ꢀTSSOP-16  
Q
Q
DC/DCꢀController  
LowꢀI ,ꢀHighꢀVoltageꢀDC/DCꢀController,ꢀ100%ꢀDutyꢀCycle SelectableꢀFixedꢀ200kHzꢀtoꢀ600kHzꢀOperatingꢀFrequency,ꢀ  
Q
4Vꢀ≤ꢀV ꢀ≤ꢀ60V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀV ,ꢀI ꢀ=ꢀ40µA,ꢀMSOP-10E  
IN  
OUT  
IN Q  
LTC3850/LTC3850-1ꢀ Dualꢀ2-Phase,ꢀHighꢀEfficiencyꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ780kHz,ꢀ  
LTC3850-2  
DC/DCꢀControllers,ꢀR  
ꢀorꢀDCRꢀCurrentꢀSensingꢀandꢀ 4Vꢀ≤ꢀV ꢀ≤ꢀ30V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V  
SENSE IN OUT  
Tracking  
LTC3855  
Dual,ꢀMultiphase,ꢀSynchronousꢀDC/DCꢀStep-Downꢀ  
ControllerꢀwithꢀDiffampꢀandꢀDCRꢀTemperatureꢀ  
Compensation  
Phase-LockableꢀFixedꢀFrequencyꢀ250kHzꢀtoꢀ770kHz,ꢀꢀ  
4.5Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ12.5V  
IN  
OUT  
LTC3853  
TripleꢀOutput,ꢀMultiphaseꢀSynchronousꢀStep-Downꢀ  
Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ750kHz,ꢀ  
4Vꢀ≤ꢀV ꢀ≤ꢀ24V,ꢀV ꢀUpꢀtoꢀ13.5V  
DC/DCꢀController,ꢀR  
Tracking  
ꢀorꢀDCRꢀCurrentꢀSensingꢀandꢀ  
SENSE  
IN  
OUT  
LTC3854  
LTC3775  
SmallꢀFootprintꢀWideꢀV ꢀRangeꢀSynchronousꢀStep-Downꢀ Fixedꢀ400kHzꢀOperatingꢀFrequency,ꢀ4.5Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀꢀ  
IN IN  
DC/DCꢀController  
0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V,ꢀ2mmꢀ×ꢀ3mmꢀQFN-12,ꢀMSOP-12  
OUT  
HighꢀFrequencyꢀSynchronousꢀVoltageꢀModeꢀStep-Downꢀ FastꢀTransientꢀResponse,ꢀt  
ꢀ=ꢀ30ns,ꢀ4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀ  
ON(MIN)  
IN  
DC/DCꢀController  
0.6Vꢀ≤ꢀV ꢀ≤ꢀ0.8V ,ꢀMSOP-16E,ꢀ3mmꢀ×ꢀ3mmꢀQFN-16  
OUT IN  
LTC3851A/ꢀ  
LTC3851A-1  
NoꢀR ™ꢀWideꢀV ꢀRangeꢀSynchronousꢀStep-Downꢀ Phase-LockableꢀFixedꢀOperatingꢀFrequencyꢀ250kHzꢀtoꢀ750kHz,ꢀꢀ  
SENSE  
IN  
DC/DCꢀController  
4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5.25V,ꢀMSOP-16E,ꢀ3mmꢀ×ꢀ3mmꢀQFN-16,ꢀ  
IN  
OUT  
SSOP-16  
LTC3878/LTC3879 NoꢀR  
ꢀConstantꢀOn-TimeꢀSynchronousꢀStep-Downꢀ VeryꢀFastꢀTransientꢀResponse,ꢀt  
ꢀ=ꢀ43ns,ꢀ4Vꢀ≤ꢀV ꢀ≤ꢀ38V,ꢀ  
SENSE  
ON(MIN) IN  
DC/DCꢀController  
V
ꢀUpꢀ90%ꢀofꢀV ,ꢀMSOP-16E,ꢀ3mmꢀ×ꢀ3mmꢀQFN-16,ꢀSSOP-16  
OUT IN  
LTM4600HV  
10AꢀDC/DCꢀµModule®ꢀCompleteꢀPowerꢀSupply  
HighꢀEfficiency,ꢀCompactꢀSize,ꢀUltraFast™ꢀTransientꢀResponse,ꢀ  
4.5Vꢀ≤ꢀV ꢀ≤ꢀ28V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5V,ꢀ15mmꢀ×ꢀ15mmꢀ×ꢀ2.8mm  
IN  
OUT  
LTM4601AHV  
12AꢀDC/DCꢀµModuleꢀCompleteꢀPowerꢀSupply  
HighꢀEfficiency,ꢀCompactꢀSize,ꢀUltrafastꢀTransientꢀResponse,ꢀ  
4.5Vꢀ≤ꢀV ꢀ≤ꢀ28V,ꢀ0.8Vꢀ≤ꢀV ꢀ≤ꢀ5V,ꢀ15mmꢀ×ꢀ15mmꢀ×ꢀ2.8mm  
IN  
OUT  
38581fb  
LT 0110 REV B • PRINTED IN USA  
Linear Technology Corporation  
1630ꢀ McCarthyꢀ Blvd.,ꢀ Milpitas,ꢀ CAꢀ 95035-7417  
ꢂꢇ  
ꢀ  
LINEAR TECHNOLOGY CORPORATION 2009  
(408)ꢀ432-1900ꢀ FAX:(408)434-0507ꢀ www.linear.com  

相关型号:

LTC3858IUFD-1

Low IQ, Dual 2-Phase Synchronous Step-Down Controller
Linear

LTC3858IUFD-1PBF

Low IQ, Dual 2-Phase Synchronous Step-Down Controller
Linear

LTC3858IUFD-1TRPBF

Low IQ, Dual 2-Phase Synchronous Step-Down Controller
Linear

LTC3858IUH

Low IQ, Dual 2-Phase Synchronous Step-Down Controller
Linear

LTC3858IUHPBF

Low IQ, Dual 2-Phase Synchronous Step-Down Controller
Linear

LTC3858IUHTRPBF

Low IQ, Dual 2-Phase Synchronous Step-Down Controller
Linear

LTC3859

High Voltage, Current Mode Switching Regulator Controller Thermal Shutdown
Linear

LTC3859

PolyPhase Synchronous Boost Controller
Linear System

LTC3859A

60V Low IQ, Dual, 2-Phase Synchronous Step-Down
Linear System

LTC3859A

60V Low IQ Step-Down DC/DC Controller with 100% Duty Cycle Capability
Linear

LTC3859AL

Triple Output, Buck/Buck/Boost Synchronous Controller with 28μA Burst Mode IQ
Linear

LTC3859EFE-PBF

Low IQ, Triple Output, Buck/Buck/Boost Synchronous Controller
Linear