LTC4002ES8-4.2#TR [Linear]

LTC4002 - Standalone Li-Ion Switch Mode Battery Charger; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C;
LTC4002ES8-4.2#TR
型号: LTC4002ES8-4.2#TR
厂家: Linear    Linear
描述:

LTC4002 - Standalone Li-Ion Switch Mode Battery Charger; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C

电池 开关
文件: 总16页 (文件大小:168K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4002  
Standalone Li-Ion  
Switch Mode Battery Charger  
U
FEATURES  
DESCRIPTIO  
Wide Input Supply Range:  
The LTC®4002 is a complete battery charger controller for  
one (4.2V) or two (8.4V) cell lithium-ion batteries. With a  
500kHz switching frequency, the LTC4002 provides a  
small, simple and efficient solution to fast charge Li-Ion  
batteriesfromawiderangeofsupplyvoltages. Anexternal  
senseresistorsetsthechargecurrentwith±5%accuracy.  
An internal resistor divider and precision reference set the  
final float voltage to 4.2V per cell with ±1% accuracy.  
4.7V to 22V – 4.2 Version  
8.9V to 22V – 8.4 Version  
High Efficiency Current Mode PWM Controller with  
500kHz Switching Frequency  
±1% Charge Voltage Accuracy  
End-of-Charge Current Detection Output  
3 Hour Charge Termination Timer  
Constant Switching Frequency for Minimum Noise  
Whentheinputsupplyisremoved,theLTC4002automati-  
callyentersalowcurrentsleepmode,droppingthebattery  
drain current to 10µA. An internal comparator detects the  
near end-of-charge condition while an internal timer sets  
thetotalchargetimeandterminatesthechargecycle.After  
the charge cycle ends, if the battery voltage drops below  
4.05Vpercell, anewchargecyclewillautomaticallybegin.  
±5% Charge Current Accuracy  
Low 10µA Reverse Battery Drain Current  
Automatic Battery Recharge  
Automatic Shutdown When Input Supply is Removed  
Automatic Trickle Charging of Low Voltage Batteries  
Battery Temperature Sensing and Charge  
Qualification  
TheLTC4002isavailableinthe8-leadSOand10-leadDFN  
packages.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Stable with Ceramic Output Capacitor  
8-Lead SO and 10-Lead DFN Packages  
U
APPLICATIO S  
Portable Computers  
Charging Docks  
Handheld Instruments  
U
TYPICAL APPLICATIO  
1.5A Single Cell Li-Ion Battery Charger  
Efficiency vs Input Voltage  
V
IN  
100  
(CURVES INCLUDE  
INPUT DIODE)  
5V TO 22V  
90  
V
BAT  
= 4V  
0.1µF  
10µF  
V
CC  
BAT  
2k  
GATE  
V
= 3.8V  
80  
70  
60  
BAT  
LTC4002ES8-4.2  
CHARGE  
STATUS  
6.8µH  
CHRG  
SENSE  
68m  
22µF  
COMP  
NTC  
BAT  
GND  
5
10  
15  
INPUT VOLTAGE (V)  
20  
25  
+
0.47µF  
Li-Ion  
4002 TA02  
BATTERY  
2.2k  
10k  
NTC  
4002 TA01  
T
NTC: DALE NTHS-1206N02  
4002f  
1
LTC4002  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Supply Voltage (VCC) .............................................. 24V  
GATE .................................................. (VCC 8V) to VCC  
BAT, SENSE .............................................. 0.3V to 14V  
CHRG, NTC ................................................. 0.3V to 8V  
Operating Temperature Range (Note 4) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Lead Temperature (S8 Package)  
(Soldering, 10 sec) ........................................... 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
NUMBER  
COMP  
1
2
3
4
5
10 NC  
COMP  
1
2
3
4
8
7
6
5
NTC  
V
9
8
7
6
NTC  
CC  
LTC4002EDD-4.2  
LTC4002EDD-8.4  
LTC4002ES8-4.2  
LTC4002ES8-8.4  
11  
GATE  
PGND  
SGND  
SENSE  
BAT  
V
SENSE  
BAT  
CC  
GATE  
GND  
CHRG  
CHRG  
DD PART MARKING  
S8 PART MARKING  
DD PACKAGE  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 110°C/W  
10-LEAD (3mm × 3mm) PLASTIC DFN  
LAGG  
LBGY  
400242  
400284  
TJMAX = 125°C, θJA = 43°C/W  
EXPOSED PAD IS GND (PIN 11)  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
(LTC4002-4.2) The denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. VCC = 10V unless otherwise noted.  
SYMBOL PARAMETER  
DC Characteristics  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
Supply Voltage  
Supply Current  
4.7  
22  
V
CC  
CC  
CC  
I
Current Mode  
Shutdown Mode  
Sleep Mode  
3
3
10  
5
5
20  
mA  
mA  
µA  
CC  
V
V
Battery Regulated Float Voltage  
Constant Current Sense Voltage  
5V V 22V (Note 2)  
4.168  
4.158  
4.2  
4.232  
4.242  
V
V
BAT(FLT)  
CC  
3V V  
4V (Note 3)  
0°C T 85°C  
93  
90  
100  
107  
110  
mV  
mV  
SNS(CHG)  
BAT  
A
–40°C T 85°C  
A
V
V
V
Trickle Current Sense Voltage  
V
V
V
= 0V (Note 3)  
Rising  
5
10  
2.9  
4.2  
200  
360  
250  
100  
25  
15  
3.05  
4.5  
mV  
V
SNS(TRKL)  
TRKL  
BAT  
BAT  
Trickle Charge Threshold Voltage  
2.75  
3.9  
V
V
Undervoltage Lockout Threshold Voltage  
Undervoltage Lockout Hysteresis Voltage  
Rising  
CC  
V
UV  
CC  
CC  
V  
mV  
mV  
mV  
µA  
µA  
V
UV  
MSD  
V
V
Manual Shutdown Threshold Voltage  
Automatic Shutdown Threshold Voltage  
COMP Pin Output Current  
COMP Pin Falling  
200  
500  
V
V
V
– V  
BAT  
ASD  
CC  
I
I
= 1.2V  
= 1V  
COMP  
CHRG  
COMP  
CHRG  
CHRG Pin Weak Pull-Down Current  
CHRG Pin Output Low Voltage  
End-of-Charge Ratio  
15  
10  
35  
0.3  
32  
10  
V
I
= 1mA  
CHRG  
0.15  
25  
CHRG  
R
V
/V  
SNS(EOC) SNS(CHG)  
%
EOC  
t
Charge Time Accuracy  
%
TIMER  
4002f  
2
LTC4002  
ELECTRICAL CHARACTERISTICS  
(LTC4002-4.2) The denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. VCC = 10V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
75  
TYP  
MAX  
95  
UNITS  
I
NTC Pin Output Current  
V
= 0.85V  
85  
µA  
NTC  
NTC  
V
NTC Pin Threshold Voltage (Hot)  
V
Falling  
340  
355  
25  
370  
mV  
mV  
NTC-HOT  
NTC  
Hysteresis  
Rising  
V
NTC Pin Threshold Voltage (Cold)  
V
2.428  
100  
2.465  
170  
2.502  
200  
1
V
mV  
NTC-COLD  
NTC  
Hysteresis  
V  
RECHRG  
Recharge Battery Voltage Offset from Full  
Charged Battery Voltage  
V
– V , V Falling  
RECHRG BAT  
150  
mV  
BAT(FULLCHARGED)  
I
CHRG Pin Leakage Current  
V
= 8V, Charging Stops  
µA  
LEAK  
CHRG  
Oscillator  
f
Switching Frequency  
Maximum Duty Cycle  
450  
500  
550  
100  
kHz  
%
OSC  
DC  
Gate Drive  
t
t
Rise Time  
C
C
V
= 2000pF, 10% to 90%  
= 2000pF, 90% to 10%  
20  
50  
ns  
ns  
V
r
f
GATE  
GATE  
Fall Time  
V  
V  
V  
Output Clamp Voltage  
Output High Voltage  
Output Low Voltage  
– V , V 9V  
GATE CC  
8
GATE  
CC  
V  
V  
= V – V , V 7V  
GATE CC  
0.3  
V
GATEHI  
GATELO  
GATEHI  
GATELO  
CC  
= V – V  
, V 7V  
GATE CC  
4.5  
V
CC  
(LTC4002-8.4) The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at  
TA = 25°C. VCC = 12V unless otherwise noted.  
SYMBOL PARAMETER  
DC Characteristics  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
Supply Voltage  
Supply Current  
8.9  
22  
V
CC  
CC  
CC  
I
Current Mode  
Shutdown Mode  
Sleep Mode  
3
3
10  
5
5
20  
mA  
mA  
µA  
CC  
V
V
Battery Regulated Float Voltage  
Constant Current Sense Voltage  
9V V 22V (Note 2)  
8.336  
8.316  
8.4  
8.464  
8.484  
V
V
BAT(FLT)  
CC  
95  
93  
100  
100  
105  
107  
mV  
mV  
SNS(CHG)  
6V V  
8V (Note 3)  
BAT  
V
V
V
Trickle Current Sense Voltage  
V
V
V
= 0V (Note 3)  
Rising  
5
10  
5
15  
5.3  
8.5  
mV  
V
SNS(TRKL)  
TRKL  
BAT  
BAT  
Trickle Charge Threshold Voltage  
4.7  
V
V
Undervoltage Lockout Threshold Voltage  
Undervoltage Lockout Hysteresis Voltage  
Rising  
CC  
7.5  
500  
350  
250  
100  
25  
V
UV  
CC  
CC  
V  
mV  
mV  
mV  
µA  
µA  
V
UV  
V
V
Manual Shutdown Threshold Voltage  
Automatic Shutdown Threshold Voltage  
COMP Pin Output Current  
COMP Pin Falling  
200  
500  
MSD  
V
V
V
– V  
BAT  
ASD  
CC  
I
I
= 1.2V  
= 1V  
COMP  
CHRG  
COMP  
CHRG  
CHRG Pin Weak Pull-Down Current  
CHRG Pin Output Low Voltage  
End-of-Charge Ratio  
15  
5
35  
0.3  
15  
10  
95  
V
I
= 1mA  
CHRG  
0.15  
10  
CHRG  
R
V
/V  
SNS(EOC) SNS(CHG)  
%
EOC  
TIMER  
NTC  
t
I
Charge Time Accuracy  
%
NTC Pin Output Current  
V
= 0.85V  
75  
85  
µA  
NTC  
4002f  
3
LTC4002  
ELECTRICAL CHARACTERISTICS  
(LTC4002-8.4) The denotes the specifications which apply over the full  
operating temperature range, otherwise specifications are at TA = 25°C. VCC = 12V unless otherwise noted.  
SYMBOL PARAMETER  
CONDITIONS  
Falling  
Hysteresis  
MIN  
TYP  
MAX  
UNITS  
V
NTC Pin Threshold Voltage (Hot)  
V
340  
355  
25  
370  
mV  
mV  
NTC-HOT  
NTC  
V
NTC Pin Threshold Voltage (Cold)  
V
Rising  
2.428  
200  
2.465  
170  
2.502  
400  
1
V
mV  
NTC-COLD  
NTC  
Hysteresis  
V  
RECHRG  
Recharge Battery Voltage Offset from Full  
Charged Battery Voltage  
V
V
– V , V Falling  
RECHRG BAT  
300  
mV  
BAT(FULLCHARGED)  
I
CHRG Pin Leakage Current  
= 8V, Charging Stops  
µA  
LEAK  
CHRG  
Oscillator  
f
Switching Frequency  
Maximum Duty Cycle  
450  
500  
550  
100  
kHz  
%
OSC  
DC  
Gate Drive  
t
t
Rise Time  
C
C
V
= 2000pF, 10% to 90%  
= 2000pF, 90% to 10%  
20  
50  
ns  
ns  
V
r
f
GATE  
GATE  
CC  
Fall Time  
V  
V  
V  
Output Clamp Voltage  
Output High Voltage  
Output Low Voltage  
– V  
8
GATE  
GATE  
V  
V  
= V – V  
GATE  
0.3  
V
GATEHI  
GATELO  
GATEHI  
GATELO  
CC  
= V – V  
4.5  
V
CC  
GATE  
Note 1: Absolute Maximum Rating are those values beyond which the life  
of a device may be impaired.  
Note 2: The LTC4002 is tested with Test Circuit 1.  
Note 3: The LTC4002 is tested with Test Circuit 2.  
Note 4: The LTC4002 is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C, VCC = 10V unless otherwise noted.  
Oscillator Frequency  
vs Temperature  
Supply Current vs Temperature  
Supply Current vs VCC  
4.0  
3.5  
550  
500  
450  
4
CURRENT MODE  
3
3.0  
2.5  
2
50  
TEMPERATURE (°C)  
100 125  
25  
0
50  
75 100 125  
–50 –25  
0
25  
75  
15  
(V)  
50  
25  
5
20  
25  
10  
TEMPERATURE (°C)  
V
CC  
4002 G01  
4002 G03  
4002 G02  
4002f  
4
LTC4002  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C, VCC = 10V unless otherwise noted.  
Undervoltage Lockout Threshold  
vs Temperature  
CHRG Pin Output Low Voltage  
vs VCC  
Oscillator Frequency vs VCC  
510  
150  
8
7
6
5
4
I
= 1mA  
V
CC  
RISING  
LOAD  
LTC4002-8.4  
500  
140  
LTC4002-4.2  
490  
130  
15  
(V)  
20  
15  
(V)  
20  
5
25  
25  
0
50  
75 100 125  
5
25  
10  
50  
25  
10  
V
V
TEMPERATURE (°C)  
CC  
CC  
4002 G04  
4002 G06  
4002 G05  
CHRG Pin Weak Pull-Down  
Current vs Temperature  
CHRG Output Pin Weak Pull-Down  
Current vs VCC  
CHRG Pin Output Low Voltage  
vs Temperature  
180  
140  
100  
29  
25  
21  
28  
25  
22  
I
= 1mA  
V
= 8V  
V
CHRG  
= 8V  
LOAD  
CHRG  
25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
5
10  
15  
(V)  
20  
25  
50  
25  
50  
25  
V
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CC  
4002 G07  
4002 G08  
4002 G09  
Recharge Voltage Offset  
Per Cell from Full Charged  
Voltage vs Temperature  
Recharge Voltage Offset from Full  
Charged Voltage vs VCC  
Recharge Voltage Offset from Full  
Charged Voltage vs VCC  
320  
300  
190  
150  
110  
160  
150  
LTC4002-8.4  
LTC4002-4.2  
280  
140  
15  
(V)  
20  
25  
0
50  
75 100 125  
15  
(V)  
5
10  
25  
50  
25  
5
20  
25  
10  
V
TEMPERATURE (°C)  
V
CC  
CC  
4002 G12  
4002 G10  
4002 G11  
4002f  
5
LTC4002  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C, VCC = 10V unless otherwise noted.  
Current Mode Sense Voltage  
vs VCC  
Current Mode Sense Voltage  
vs VCC  
Current Mode Sense Voltage  
vs Temperature  
102  
102  
104  
100  
96  
V
= 4V  
V
= 8V  
BAT  
BAT  
LTC4002-8.4  
LTC4002-4.2  
100  
100  
98  
98  
15  
(V)  
20  
15  
(V)  
25  
0
50  
75 100 125  
5
10  
25  
5
20  
25  
50  
25  
10  
V
V
TEMPERATURE (°C)  
CC  
CC  
4002 G14  
4002 G15  
4002 G13  
COMP Pin Output Current  
vs VCC  
COMP Pin Output Current  
vs Temperature  
NTC Pin Output Current  
vs VCC  
102  
100  
86  
85  
104  
100  
96  
V
COMP  
= 0V  
V
= 0V  
NTC  
V
COMP  
= 0V  
98  
84  
15  
(V)  
20  
15  
(V)  
20  
5
25  
25  
0
50  
75 100 125  
5
25  
10  
50  
25  
10  
V
V
TEMPERATURE (°C)  
CC  
CC  
4002 G16  
4002 G18  
4002 G17  
Trickle Charge Voltage  
vs Temperature  
Trickle Charge Voltage  
vs VCC  
Trickle Charge Voltage  
vs Temperature  
3.0  
2.9  
3.0  
2.9  
2.8  
5.2  
5.0  
4.8  
LTC4002-4.2  
LTC4002-4.2  
LTC4002-8.4  
2.8  
15  
(V)  
20  
25  
0
50  
75 100 125  
5
10  
25  
25  
0
50  
75 100 125  
50  
25  
50  
25  
V
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CC  
4002 G20  
4002 G19  
4002 G21  
4002f  
6
LTC4002  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C, VCC = 10V unless otherwise noted.  
Trickle Charge Sense Voltage  
vs Temperature  
Trickle Charge Voltage  
vs VCC  
Trickle Charge Sense Voltage  
vs VCC  
5.2  
10.4  
10.0  
9.6  
11  
LTC4002-8.4  
V
= 2.5V  
V
= 2.5V  
BAT  
BAT  
LTC4002-4.2  
LTC4002-4.2  
5.0  
10  
4.8  
9
15  
(V)  
20  
5
25  
25  
0
50  
75 100 125  
10  
50  
25  
15  
(V)  
5
20  
25  
10  
V
TEMPERATURE (°C)  
V
CC  
CC  
4002 G22  
4002 G23  
4002 G24  
NTC Pin Output Current  
vs Temperature  
Trickle Charge Sense Voltage  
vs Temperature  
Trickle Charge Sense Voltage  
vs VCC  
10.4  
10.0  
9.6  
89  
85  
81  
11  
10  
V
= 4V  
V
= 4V  
V
= 0V  
BAT  
BAT  
NTC  
LTC4002-8.4  
LTC4002-8.4  
9
25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
50  
25  
15  
(V)  
50  
25  
5
20  
25  
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
CC  
4002 G25  
4002 G27  
4002 G26  
End-of-Charge Ratio  
vs Temperature  
End-of-Charge Ratio  
vs VCC  
29  
25  
21  
28  
LTC4002-4.2  
LTC4002-4.2  
25  
22  
25  
0
50  
75 100 125  
5
10  
15  
(V)  
20  
25  
50  
25  
V
TEMPERATURE (°C)  
CC  
4002 G28  
4002 G29  
4002f  
7
LTC4002  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C, VCC = 10V unless otherwise noted.  
End-of-Charge Ratio  
vs Temperature  
End-of-Charge Ratio  
vs VCC  
14  
13  
12  
11  
10  
9
14  
13  
12  
11  
10  
9
LTC4002-8.4  
LTC4002-8.4  
8
8
7
7
6
6
5
10  
15  
(V)  
20  
25  
25  
0
50  
75 100 125  
50  
25  
V
TEMPERATURE (°C)  
CC  
4002 G31  
4002 G30  
U
U
U
(DFN/SO-8)  
PI FU CTIO S  
COMP (Pin 1/Pin 1): Compensation, Soft-Start and Shut-  
downControlPin.TheCOMPpinisthecontrolsignalofthe  
innerloopofthecurrentmodePWM.Chargingbeginswhen  
theCOMPpinreaches800mV.Therecommendedcompen-  
sation components are a 0.47µF (or larger) capacitor and  
a 2.2k series resistor. A 100µA current into the compen-  
sation capacitor also sets the soft-start slew rate. Pulling  
the COMP pin below 360mV will shut down the charger.  
currentdropsbelowtheEnd-of-Chargethresholdformore  
than 120µs, the N-channel MOSFET turns off and a 25µA  
current source is connected from the CHRG pin to GND.  
When the timer runs out or the input supply is removed,  
the 25µA current source is turned off and the CHRG pin  
becomes high impedance.  
BAT (Pin 7/Pin 6): Battery Sense Input. A bypass capaci-  
tor of 22µF is required to minimize ripple voltage. An  
internal resistor divider, which is disconnected in sleep  
mode, sets the final float voltage at this pin. If the battery  
connection is opened when charging, an overvoltage  
circuit will limit the charger output voltage to 10% above  
the programmed float voltage.  
VCC (Pin 2/Pin 2): Positive Supply Voltage Input. VCC can  
range from VBAT(FLT) + 0.5V to 22V. A 0.1µF or higher ca-  
pacitor is required at the VCC pin with the lead length kept  
to a minimum. A 10µF low ESR capacitor is also required  
at the source pins of the power P-channel MOSFET.  
GATE (Pin 3/Pin 3): Gate Drive Output. Driver Output for  
theP-ChannelMOSFET. Thevoltageatthispinisinternally  
clamped to 8V below VCC, allowing a low voltage MOSFET  
with gate-to-source breakdown voltage of 8V or less to be  
used.  
When VBAT is within 250mV of VCC, the LTC4002 is forced  
into sleep mode, dropping ICC to 10µA.  
SENSE(Pin8/Pin7):CurrentAmplifierSenseInput.Asense  
resistor, RSENSE, must be connected between the SENSE  
and BAT pins. The maximum charge current is equal to  
PGND, SGND, Exposed Pad, GND (Pins 4, 5, 11/Pin 4):  
ICGround.Theexposedpad(DFN)mustbesolderedtoPCB  
ground to provide both electrical contact and optimum  
thermal performance.  
100mV/RSENSE.  
NTC(Pin9/Pin8):NTC(NegativeTemperatureCoefficient)  
Thermistor Input. With an external 10kNTC thermistor  
to ground, this pin senses the temperature of the battery  
pack and stops the charger when the temperature is out of  
range. When the voltage at this pin drops below 355mV at  
CHRG (Pin 6/Pin 5): Open-Drain Charge Status Output.  
When the battery is being charged, the CHRG pin is pulled  
low by an internal N-channel MOSFET. When the charge  
4002f  
8
LTC4002  
U
U
U
PI FU CTIO S (DFN/SO-8)  
hottemperatureorrisesabove2.465Vatcoldtemperature,  
charging is suspended and the internal timer stops. The  
CHRG pin output is not affected during this hold state. To  
disable the temperature qualification function, ground the  
NTC pin.  
NC (Pin 10/NA): No Connect.  
W
BLOCK DIAGRA  
V
CC  
CLK:  
100µA  
I
I
L
SLOP  
COMP  
DRIVER  
+
GATE  
S
Q
C
R
PWM  
25mV or 10mV  
R
+
+
R
SLOP  
IL  
C
EOC  
R
100mV  
SENSE  
+
+
M1  
CA  
VA  
BAT  
+
M2  
4.2V/CELL  
2.9V OR 5V  
4.62V/CELL  
+
M3  
C
LB  
OV  
RQ  
90µA  
+
C
C
UVLO  
4.2V  
+
+
UV EOC  
C
SD  
RQ  
SD  
360mV  
4.05V/CELL  
LOGIC  
CHRG  
C/10  
Q4  
+
2.465V  
V
CC  
STOP  
TEMP  
C
Q5  
COLD  
NTC_DISABLE  
85µA  
NTC  
25µA  
+
C
HOT  
GND  
355mV  
50mV  
4002 BD  
+
4002f  
9
LTC4002  
TEST CIRCUITS  
Test Circuit 1  
Test Circuit 2  
15V  
15V  
1.5V  
1.5V  
LT1006  
LT1006  
+
+
0V  
0V  
SENSE  
BAT  
LTC4002  
100µA  
SENSE  
BAT  
100µA  
COMP  
+
R
SENSE  
COMP  
CA  
VA  
10  
R
SENSE  
+
CA  
10  
1mA  
V
BAT  
+
4002 TC01  
4.2V  
LTC4002  
4002 TC02  
U
OPERATIO  
The LTC4002 is a constant current, constant voltage  
Li-Ion battery charger controller that uses a current mode  
PWMstep-down(buck)switchingarchitecture.Thecharge  
charge mode. In constant current mode, the charge cur-  
rent is set by the external sense resistor RSENSE and an  
internal 100mV reference; IBAT = 100mV/RSENSE  
.
current is set by an external sense resistor (RSENSE  
)
When the battery voltage approaches the programmed  
float voltage, the charge current will start to decrease.  
When the current drops to 25% (4.2 version) or 10% (8.4  
version) of the full-scale charge current, an internal com-  
paratorturnsofftheinternalpull-downN-channelMOSFET  
at the CHRG pin, and connects a weak current source to  
ground to indicate a near end-of-charge condition.  
across the SENSE and BAT pins. The final battery float  
voltage is internally set to 4.2V per cell. For batteries like  
lithium-ion that require accurate final float voltage, the  
internal 2.465V reference, voltage amplifier and the resis-  
tor divider provide regulation with ±1% accuracy.  
AchargecyclebeginswhenthevoltageattheVCC pinrises  
above the UVLO level and is 250mV or more greater than  
the battery voltage. At the beginning of the charge cycle,  
if the battery voltage is less than the trickle charge thresh-  
old, 2.9V for the 4.2 version and 5V for the 8.4 version, the  
charger goes into trickle charge mode. The trickle charge  
current is internally set to 10% of the full-scale current. If  
the battery voltage stays low for 30 minutes, the battery  
is considered faulty and the charge cycle is terminated.  
Aninternal3hourtimerdeterminesthetotalchargetime.  
After a time out occurs, the charge cycle is terminated  
and the CHRG pin is forced high impedance. To restart  
the charge cycle, remove and reapply the input voltage or  
momentarily shut the charger down. Also, a new charge  
cycle will begin if the battery voltage drops below the  
recharge threshold voltage of 4.05V per cell.  
When the input voltage is present, the charger can be shut  
down (ICC = 3mA) by pulling the COMP pin low. When the  
input voltage is not present, the charger goes into sleep  
Whenthebatteryvoltageexceedsthetricklechargethresh-  
old, the charger goes into the full-scale constant current  
4002f  
10  
LTC4002  
U
OPERATIO  
temperature qualification. The charge cycle is suspended  
when the temperature is outside of the 0°C to 50°C  
window (with DALE NTHS-1206N02).  
mode, dropping ICC to 10µA. This will greatly reduce the  
currentdrainonthebatteryandincreasethestandbytime.  
A10kNTC(negativetemperaturecoefficient)thermistor  
can be connected from the NTC pin to ground for battery  
W U U  
U
APPLICATIO S I FOR ATIO  
Undervoltage Lockout (UVLO)  
CHRG Status Output Pin  
Anundervoltagelockoutcircuitmonitorstheinputvoltage  
and keeps the charger off until VCC rises above the UVLO  
threshold (4.2V for the 4.2 version, 7.5V for the 8.4  
version) and at least 250mV above the battery voltage. To  
preventoscillationaroundthethresholdvoltage,theUVLO  
circuit has 200mV per cell of built-in hysteresis. When  
specifying minimum input voltage requirements, the volt-  
age drop across the input blocking diode must be added  
to the minimum VCC supply voltage specification.  
When a charge cycle starts, the CHRG pin is pulled to  
groundbyaninternalN-channelMOSFETwhichiscapable  
of driving an LED. When the charge current drops below  
the End-of-Charge threshold for more than 120µs, the  
N-channel MOSFET turns off and a weak 25µA current  
source to ground is connected to the CHRG pin. This weak  
25µA pull-down remains until the timer ends the charge  
cycle,orthechargerisinmanualshutdownorsleepmode.  
After a time out occurs (charge cycle ends), the pin will  
become high impedance. By using two different value re-  
sistors,amicroprocessorcandetectthreestatesfromthis  
pin (charging, end-of-charge and charging stopped) see  
Figure 1.  
Trickle Charge and Defective Battery Detection  
At the beginning of a charge cycle, if the battery voltage is  
below the trickle charge threshold, the charger goes into  
trickle charge mode with the charge current reduced to  
10% of the full-scale current. If the low-battery voltage  
persists for 30 minutes, the battery is considered defec-  
tive, the charge cycle is terminated and the CHRG pin is  
forced high impedance.  
V
V
DD  
CC  
390k  
2k  
LTC4002  
CHRG  
µPROCESSOR  
OUT  
IN  
Shutdown  
4002 F02  
The LTC4002 can be shut down by pulling the COMP pin  
to ground which pulls the GATE pin high turning off the  
external P-channel MOSFET. When the COMP pin is re-  
leased, the internal timer is reset and a new charge cycle  
starts. In shutdown, the output of the CHRG pin is high  
impedance and the quiescent current remains at 3mA.  
Figure 1. Microprocessor Interface  
To detect the charge mode, force the digital output pin,  
OUT, high and measure the voltage at the CHRG pin. The  
N-channel MOSFET will pull the pin low even with a 2k  
pull-up resistor. Once the charge current drops below the  
End-of-Chargethreshold,theN-channelMOSFETisturned  
off and a 25µA current source is connected to the CHRG  
pin. The IN pin will then be pulled high by the 2k resistor  
connected to OUT. Now force the OUT pin into a high  
Removing the input power supply will put the charger  
into sleep mode. If the voltage at the VCC pin drops below  
(VBAT + 250mV) or below the UVLO level, the LTC4002  
goesintoalowcurrent(ICC=10µA)sleepmode,reducing  
the battery drain current.  
4002f  
11  
LTC4002  
W U U  
U
APPLICATIO S I FOR ATIO  
impedance state, the current source will pull the pin low  
through the 390k resistor. When the internal timer has  
expired, the CHRG pin changes to a high impedance state  
and the 390k resistor will then pull the pin high to indicate  
charging has stopped.  
COMP pin at 1.3V. With a 0.47µF capacitor, time to reach  
full charge current is about 2.35ms. Capacitance can be  
increased up to 1µF if a longer start-up time is needed.  
Automatic Battery Recharge  
After the 3 hour charge cycle is completed and both the  
battery and the input power supply (wall adapter) are still  
connected, a new charge cycle will begin if the battery  
voltage drops below 4.05V per cell due to self-discharge  
or external loading. This will keep the battery capacity at  
morethan80%atalltimeswithoutmanuallyrestartingthe  
charge cycle.  
Gate Drive  
The LTC4002 gate driver can provide high transient cur-  
rents to drive the external pass transistor. The rise and fall  
times are typically 20ns and 50ns respectively when  
driving a 2000pF load, which is typical for a P-channel  
MOSFET with RDS(ON) in the range of 50m.  
Avoltageclampisaddedtolimitthegatedriveto8Vbelow  
VCC. For example, if VCC is 10V then the GATE output will  
pull down to 2V max. This allows low voltage P-channel  
MOSFETs with superior RDS(ON) to be used as the pass  
transistor thus increasing efficiency.  
Battery Temperature Detection  
A negative temperature coefficient (NTC) thermistor  
located close to the battery pack can be used to monitor  
batterytemperatureandwillnotallowchargingunlessthe  
battery temperature is within an acceptable range.  
Stability  
Connect a 10kthermistor (DALE NTHS-1206N02) from  
theNTCpintoground.Ifthetemperaturerisesto50°C,the  
resistance of the NTC will be approximately 4.1k. With  
the 85µA pull-up current source, the Hot temperature  
voltage threshold is 350mV. For Cold temperature, the  
voltage threshold is set at 2.465V which is equal to 0°C  
(RNTC 28.4k) with 85µA of pull-up current. If the  
temperature is outside the window, the GATE pin will be  
pulled up to VCC and the timer frozen while the output  
statusattheCHRGpinremainsthesame.Thechargecycle  
begins or resumes once the temperature is within the  
acceptable range. Short the NTC pin to ground to disable  
the temperature qualification feature.  
Both the current loop and the voltage loop share a com-  
mon, high impedance, compensation node (COMP pin). A  
seriescapacitorandresistoronthispincompensatesboth  
loops. The resistor is included to provide a zero in the loop  
response and boost the phase margin.  
The compensation capacitor also provides a soft-start  
function for the charger. Upon start-up, the COMP pin  
voltage will quickly rise to 0.22V, due to the 2.2k series  
resistor, then ramp at a rate set by the internal 100µA pull-  
up current source and the external capacitor. Battery  
charge current starts ramping up when the COMP pin  
voltage reaches 0.8V and full current is achieved with the  
4002f  
12  
LTC4002  
W U U  
APPLICATIO S I FOR ATIO  
U
Input and Output Capacitors  
Switchingripplecurrentsplitsbetweenthebatteryandthe  
output capacitor depending on the ESR of the output ca-  
pacitor and the battery impedance. EMI considerations  
usually make it desirable to minimize ripple current in the  
battery leads. Ferrite beads or an inductor may be added  
to increase battery impedance at the 500kHz switching  
frequency. If the ESR of the output capacitor is 0.2and  
thebatteryimpedanceisraisedto4withabeadorinduc-  
tor, only 5% of the current ripple will flow in the battery.  
Since the input capacitor is assumed to absorb all input  
switching ripple current in the converter, it must have an  
adequateripplecurrentrating.Worst-caseRMSripplecur-  
rent is approximately one-half of output charge current.  
Actual capacitance value is not critical. Solid tantalum  
capacitors have a high ripple current rating in a relatively  
small surface mount package, but caution must be used  
when tantalum capacitors are used for input bypass. High  
input surge currents can be created when the adapter is  
hot-plugged to the charger and solid tantalum capacitors  
have a known failure mechanism when subjected to very  
high turn-on surge currents. Selecting the highest pos-  
sible voltage rating on the capacitor will minimize prob-  
lems. Consult with the manufacturer before use.  
Design Example  
As a design example, take a charger with the following  
specifications: VIN = 5V to 22V, VBAT = 4V nominal, IBAT  
1.5A, fOSC = 500kHz, see Figure 2.  
=
First, calculate the SENSE resistor :  
The selection of output capacitor COUT is primarily deter-  
mined by the ESR required to minimize ripple voltage and  
load step transients. The output ripple VOUT is approxi-  
mately bounded by:  
RSENSE = 100mV/1.5A = 68mΩ  
Choose the inductor for about 65% ripple current at the  
maximum VIN:  
4V  
4V  
22V  
L =  
1–  
= 6.713µH  
1
500kHz 0.65 1.5A  
VOUT ≤ ∆I ESR +  
(
)(  
)(  
)
L
8fOSCCOUT  
Selecting a standard value of 6.8µH results in a maximum  
Since IL increases with input voltage, the output ripple is  
highestatmaximuminputvoltage.Typically,oncetheESR  
requirement is satisfied, the capacitance is adequate for  
filtering and has the necessary RMS current rating.  
ripple current of :  
4V  
500kHz 6.8µH  
4V  
22V  
IL =  
1–  
= 962.6mA  
(
)(  
)
4002f  
13  
LTC4002  
W U U  
U
APPLICATIO S I FOR ATIO  
Next, choose the P-channel MOSFET. The Si6435ADQ in  
a TSSOP-8 package with RDS(ON) = 42m(nom), 55mΩ  
(max) offers a small solution. The maximum power dissi-  
pation with VIN = 5V and VBAT = 4V at 50°C ambient  
temperature is:  
Board Layout Suggestions  
When laying out the printed circuit board, the following  
considerations should be taken to ensure proper opera-  
tion of the LTC4002.  
GATEpinriseandfalltimesare20nsand50nsrespectively  
(with CGATE = 2000pF). To minimize radiation, the catch  
diode, pass transistor and the input bypass capacitor  
traces should be kept as short as possible. The positive  
side of the input capacitor should be close to the source of  
the P-channel MOSFET; it provides the AC current to the  
pass transistor. The connection between the catch diode  
and the pass transistor should also be kept as short as  
possible. The SENSE and BAT pins should be connected  
directly to the sense resistor (Kelvin sensing) for best  
charge current accuracy. Avoid routing the NTC PC board  
traceneartheMOSFETswitchtominimizecouplingswitch-  
ing noise into the NTC pin.  
2
1.5A 55m4V  
(
) (  
)(  
)
PD =  
= 0.099W  
5V  
TJ = 50°C + (0.099W)(65°C/W) = 56.5°C  
CIN is chosen for an RMS current rating of about 0.8A at  
85°C. The output capacitor is chosen for an ESR similar to  
thebatteryimpedanceofabout100m.Theripplevoltage  
on the BAT pin is:  
IL(MAX) ESR  
(
)
VOUT(RIPPLE)  
=
=
2
0.96A 0.1Ω  
(
)(  
)
= 48mV  
2
The compensation capacitor connected at the COMP pin  
should return to the ground pin of the IC or as close to it  
as possible. This will prevent ground noise from disrupt-  
ing the loop stability. The ground pin also works as a heat  
sink, therefore use a generous amount of copper around  
the ground pin. This is especially important for high VCC  
and/or high gate capacitance applications.  
C1: Taiyo Yuden TMK325BJ106MM  
C2: Taiyo Yuden JMK325BJ226MM  
L1: TOKO B952AS-6R8N  
TheSchottkydiodeD2showninFigure2conductscurrent  
whenthepasstransistorisoff.Inalowdutycyclecase,the  
current rating should be the same or higher than the  
chargecurrent.Alsoitshouldwithstandreversevoltageas  
high as VIN.  
V
IN  
5V TO 22V  
D1  
B330  
2
C3  
C1  
10µF  
CER  
V
0.1µF  
CC  
BAT  
CER  
3
M1  
GATE  
Si6435ADQ  
R1  
2k  
D2  
B330  
LTC4002ES8-4.2  
L1  
6.8µH  
CHARGE  
STATUS  
5
1
7
6
CHRG  
SENSE  
R
SENSE  
68m  
COMP  
NTC  
BAT  
GND  
C
C
4.2V  
Li-Ion  
BATTERY  
4002 F02  
+
C2  
22µF  
CER  
0.47µF  
8
4
R
C
2.2k  
10k  
NTC  
T
NTC: DALE NTHS-1206N02  
Figure 2. 1.5A Single Cell Li-Ion Battery Charger  
4002f  
14  
LTC4002  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
R = 0.115  
0.38 ± 0.10  
TYP  
6
10  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.10  
(2 SIDES)  
2.38 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
NOTE 3  
.045 ±.005  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
4002f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC4002  
U
TYPICAL APPLICATIO  
2-Cell 8.4V, 2A Li-Ion Battery Charger  
V
IN  
9V TO 12V  
R1  
100k  
M2  
1/2 Si9933ADY  
C1  
10µF  
CER  
2
C3  
V
0.1µF  
CC  
3
M1  
CER  
GATE  
1/2 Si9933ADY  
D2  
B330  
LTC4002ES8-8.4  
L1  
6.8µH  
7
6
5
CHRG  
SENSE  
R
SENSE  
50m  
1
COMP  
BAT  
C2  
22µF  
CER  
+
8.4V  
NTC  
8
GND  
4
C
C
Li-Ion  
0.47µF  
BATTERY  
R
C
2.2k  
10k  
T
4002 TA03  
NTC  
NTC: DALE NTHS-1206N02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1732-8.4  
2-Cell Li-Ion Linear Battery Charger  
8.8V V 12V; Programmable Charge Termination Timer  
Standalone Charger  
IN  
LTC1733  
Li-Ion Battery Charger with Termal Regulation  
Standalone Charger, Constant-Current/Constant-Voltage/  
Constant-Temperature, Integrated MOSFET, No External Sense  
Resistor or Blocking Diodes  
LTC1734/LTC1734L SOT-23 Li-Ion Battery Chargers  
Need Only Two External Components, Monitors Charge Current, No  
Reverse Diode or Sense Resistor Required, 50mA to 700mA  
LTC1980  
Combination Battery Charger and DC/DC Converter  
Wall Adapter May Be Above or Below Battery Voltage, Standalone,  
1-, 2-Cell Li-Ion, Also for Charging NiMH and NiCd Batteries  
LTC4006/LTC4007  
LTC4008  
4A Multiple Cell Li-Ion, NiCd, NiMH, Lead Acid  
Battery Chargers  
6V V 28V, High Efficiency 90%, V  
Digital Interface I/O, Small Inductor  
28V,  
IN  
OUT  
LTC4052/LTC1730  
Integrated Pulse Chargers for a 1-Cell Li-Ion Battery  
0.35Internal N-FET Requires No Blocking Diode,  
Current Limit for Safety  
LTC4053  
USB Compatible Li-Ion Linear Battery Charger  
Charges from USB Input or AC/DC, 100mA/500mA Up to 1.25A,  
Thermal Regulation, Fully Integrated  
LTC4054  
Standalone Linear Li-Ion Battery Charger  
with Integrated Pass Transistor in ThinSOTTM  
Thermal Regulation Prevents Overheating, C/10 Termination,  
C/10 Indicator  
LTC4056  
Standalone SOT-23 Li-Ion Linear Battery Charger  
Low Loss PowerPathTM Controllers in ThinSOT  
Charge Termination Included, I 700mA, 8-Lead ThinSOT Package  
CH  
LTC4412/LTC4413  
Automatic Switching Between DC Sources, Simplified Load Sharing  
PowerPath and ThinSOT are trademarks of Linear Technology Corporation.  
4002f  
LT/TP 1104 1K PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY