LTC4002ES8-4.2 [Linear]

Standalone Li-Ion Switch Mode Battery Charger; 独立的锂离子开关模式电池充电器
LTC4002ES8-4.2
型号: LTC4002ES8-4.2
厂家: Linear    Linear
描述:

Standalone Li-Ion Switch Mode Battery Charger
独立的锂离子开关模式电池充电器

电池 开关
文件: 总16页 (文件大小:198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Final Electrical Specifications  
LTC4002-4.2  
Standalone Li-Ion  
Switch Mode Battery Charger  
June 2003  
U
FEATURES  
DESCRIPTIO  
Wide Input Supply Range: 4.7V to 24V  
TheLTC®4002-4.2isacompletebatterychargercontroller  
for single cell 4.2V lithium-ion batteries. With a 500kHz  
switching frequency, the LTC4002-4.2 provides a small,  
simpleandefficientsolutiontofastchargeLi-Ionbatteries  
from a wide range of supply voltages. An external sense  
resistor sets the charge current with ±5% accuracy. An  
internal resistor divider and precision reference set the  
final float voltage to 4.2V with ±1% accuracy.  
High Efficiency Current Mode PWM Controller with  
500kHz Switching Frequency  
±1% Charge Voltage Accuracy  
End-of-Charge Current Detection Output  
3 Hour Charge Termination Timer  
Constant Switching Frequency for Minimum Noise  
±5% Charge Current Accuracy  
Low 10µA Reverse Battery Drain Current  
When the input supply is removed, the LTC4002-4.2  
automatically enters a low current sleep mode, dropping  
the battery drain current to 10µA. An internal comparator  
detects the near end-of-charge condition while an internal  
timer sets the total charge time and terminates the charge  
cycle. After the charge cycle ends, if the battery voltage  
drops below 4.05V, a new charge cycle will automatically  
begin.  
Automatic Battery Recharge  
Automatic Shutdown When Input Supply is Removed  
Automatic Trickle Charging of Low Voltage Batteries  
Battery Temperature Sensing and Charge  
Qualification  
Stable with Ceramic Output Capacitor  
8-Lead SO and 1U0-Lead DFN Packages  
APPLICATIO S  
The LTC4002-4.2 is available in the 8-lead SO and 10-lead  
DFN packages.  
Portable Computers  
Charging Docks  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Handheld Instruments  
U
TYPICAL APPLICATIO  
V
IN  
5V TO 24V  
B330B-13  
Efficiency vs Input Voltage  
2
0.1µF  
10µF  
100  
90  
80  
70  
60  
V
CER  
CC  
CER  
BAT  
2k  
I
R
= 1.5A  
SENSE  
CHRG  
3
GATE  
Si6435ADQ  
= 68m  
(CURVES INCLUDE  
INPUT DIODE)  
LTC4002ES8-4.2  
B330B-13  
L1  
6.8µH  
CHARGE  
STATUS  
V
BAT  
= 4V  
5
7
6
CHRG  
SENSE  
V
BAT  
= 3.8V  
68mΩ  
1
COMP  
NTC  
BAT  
GND  
+
22µF  
CER  
0.47µF  
Li-Ion  
BATTERY  
8
4
2.2k  
10k  
NTC  
400242 F01  
T
NTC: DALE NTHS-1206N02  
15  
INPUT VOLTAGE (V)  
5
10  
20  
25  
400242 TA02  
Figure 1. 1.5A Single Cell Li-Ion Battery Charger  
400242i  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
1
LTC4002-4.2  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
Supply Voltage (VCC) .............................................. 24V  
GATE .................................................. (VCC 8V) to VCC  
BAT, SENSE .............................................. 0.3V to 14V  
CHRG, COMP, NTC ..................................... 0.3V to 8V  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
ORDER PART  
NUMBER  
ORDER PART  
TOP VIEW  
NUMBER  
COMP  
1
2
3
4
5
10 NC  
COMP  
1
2
3
4
8
7
6
5
NTC  
V
CC  
9
8
7
6
NTC  
LTC4002EDD-4.2  
LTC4002ES8-4.2  
11  
GATE  
PGND  
SGND  
SENSE  
BAT  
V
SENSE  
BAT  
CC  
GATE  
GND  
CHRG  
CHRG  
DD PART MARKING  
LAGG  
S8 PART MARKING  
400242  
DD PACKAGE  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 110°C/W  
10-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 43°C/W  
EXPOSED PAD IS GND (PIN 11)  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 10V unless otherwise noted.  
SYMBOL PARAMETER  
DC Characteristics  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
V
Supply Voltage  
Supply Current  
4.7  
24  
V
CC  
CC  
CC  
I
Current Mode  
Shutdown Mode  
Sleep Mode  
3
3
10  
5
5
20  
mA  
mA  
µA  
CC  
V
V
Battery Regulated Float Voltage  
Constant Current Sense Voltage  
5V V 24V (Note 2)  
4.168  
4.158  
4.2  
4.232  
4.242  
V
V
BAT  
CC  
3V V  
4V (Note 3)  
0°C T 85°C  
93  
90  
100  
107  
110  
mV  
mV  
SNS(CHG)  
BAT  
A
–40°C T 85°C  
A
V
V
V
Trickle Current Sense Voltage  
V
V
V
= 0V (Note 3)  
Rising  
5
10  
2.9  
4.2  
200  
360  
250  
100  
25  
15  
3.05  
4.5  
mV  
V
SNS(TRKL)  
TRKL  
BAT  
BAT  
Trickle Charge Threshold Voltage  
2.75  
3.9  
V
V
Undervoltage Lockout Threshold Voltage  
Undervoltage Lockout Hysteresis Voltage  
Rising  
CC  
V
UV  
CC  
CC  
V  
mV  
mV  
mV  
µA  
UV  
MSD  
V
V
Manual Shutdown Threshold Voltage  
Automatic Shutdown Threshold Voltage  
COMP Pin Output Current  
COMP Pin Falling  
200  
500  
V
V
V
– V  
BAT  
ASD  
CC  
I
I
= 1.2V  
= 1V  
COMP  
CHRG  
COMP  
CHRG  
CHRG Pin Weak Pull-Down Current  
CHRG Pin Output Low Voltage  
End-of-Charge Ratio  
15  
10  
35  
0.3  
32  
10  
µA  
V
I
= 1mA  
CHRG  
0.15  
25  
V
CHRG  
R
V
/V  
SNS(EOC) SNS(CHG)  
%
EOC  
t
Charge Time Accuracy  
%
TIMER  
400242i  
2
LTC4002-4.2  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 10V unless otherwise noted.  
SYMBOL PARAMETER CONDITIONS  
MIN  
75  
TYP  
MAX  
95  
UNITS  
I
NTC Pin Output Current  
V
= 0.85V  
85  
µA  
NTC  
NTC  
V
NTC Pin Threshold Voltage (Hot)  
V
Falling  
340  
355  
25  
370  
mV  
mV  
NTC-HOT  
NTC  
Hysteresis  
Rising  
V
NTC Pin Threshold Voltage (Cold)  
V
2.428  
100  
2.465  
170  
2.502  
200  
1
V
mV  
NTC-COLD  
NTC  
Hysteresis  
V  
RECHRG  
Recharge Battery Voltage Offset from Full  
Charged Battery Voltage  
V
– V , V Falling  
RECHRG BAT  
150  
mV  
BAT(FULLCHARGED)  
I
CHRG Pin Leakage Current  
V
= 8V, Charging Stops  
µA  
LEAK  
CHRG  
Oscillator  
f
Switching Frequency  
Maximum Duty Cycle  
450  
500  
550  
100  
kHz  
%
OSC  
DC  
Gate Drive  
t
t
Rise Time  
C
C
V
= 2000pF, 10% to 90%  
= 2000pF, 90% to 10%  
20  
50  
ns  
ns  
V
r
f
GATE  
GATE  
Fall Time  
V  
V  
V  
Output Clamp Voltage  
Output High Voltage  
Output Low Voltage  
– V , V 9V  
GATE CC  
8
GATE  
CC  
V  
V  
= V – V , V 7V  
GATE CC  
0.3  
V
GATEHI  
GATELO  
GATEHI  
GATELO  
CC  
= V – V  
, V 7V  
GATE CC  
4.5  
V
CC  
Note 1: Absolute Maximum Rating are those values beyond which the life  
of a device may be impaired.  
Note 2: The LTC4002-4.2 is tested with Test Circuit 1.  
Note 3: The LTC4002-4.2 is tested with Test Circuit 2.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C, VCC = 10V unless otherwise noted.  
Oscillator Frequency  
vs Temperature  
Supply Current vs Temperature  
Supply Current vs VCC  
4.0  
3.5  
550  
500  
450  
4
CURRENT MODE  
3
3.0  
2.5  
2
50  
TEMPERATURE (°C)  
100 125  
25  
0
50  
75 100 125  
–50 –25  
0
25  
75  
15  
(V)  
50  
25  
5
20  
25  
10  
TEMPERATURE (°C)  
V
CC  
400242 G01  
400242 G03  
400242 G02  
400242i  
3
LTC4002-4.2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C, VCC = 10V unless otherwise noted.  
Current Mode Sense Voltage  
vs Temperature  
Current Mode Sense Voltage  
vs VCC  
Oscillator Frequency vs VCC  
104  
100  
96  
510  
500  
102  
V
BAT  
= 4V  
V
BAT  
= 4V  
100  
490  
98  
25  
0
50  
75 100 125  
15  
(V)  
20  
50  
25  
15  
(V)  
20  
5
25  
5
25  
10  
10  
TEMPERATURE (°C)  
V
V
CC  
CC  
400242 G05  
400242 G04  
400242 G04  
Trickle Charge Voltage  
vs Temperature  
Trickle Charge Voltage  
vs VCC  
CHRG Pin Output Low Voltage  
vs VCC  
3.0  
2.9  
150  
140  
3.0  
2.9  
2.8  
V
BAT  
= 4V  
I
= 1mA  
LOAD  
2.8  
130  
15  
(V)  
20  
15  
(V)  
20  
5
25  
5
25  
50 25  
0
25  
50  
75 100 125  
10  
10  
V
V
TEMPERATURE (°C)  
CC  
CC  
400242 G08  
400242 G09  
400242 G07  
CHRG Pin Weak Pull-Down  
Current vs Temperature  
CHRG Output Pin Weak Pull-Down  
Current vs VCC  
CHRG Pin Output Low Voltage  
vs Temperature  
28  
25  
22  
180  
140  
100  
29  
25  
21  
V
CHRG  
= 8V  
I
= 1mA  
V
CHRG  
= 8V  
LOAD  
5
10  
15  
(V)  
20  
25  
25  
0
50  
75 100 125  
25  
0
50  
75 100 125  
50  
25  
50  
25  
V
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CC  
400242 G11  
400242 G10  
400242 G23  
400242i  
4
LTC4002-4.2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C, VCC = 10V unless otherwise noted.  
Trickle Charge Sense Voltage  
vs Temperature  
COMP Pin Output Current  
vs VCC  
Trickle Charge Sense Voltage  
vs VCC  
11  
102  
10.4  
10.0  
9.6  
V
BAT  
= 2.5V  
V
COMP  
= 0V  
V
BAT  
= 2.5V  
10  
100  
9
98  
15  
(V)  
20  
15  
(V)  
20  
5
25  
5
25  
10  
10  
25  
0
50  
75 100 125  
50  
25  
V
V
TEMPERATURE (°C)  
CC  
CC  
400242 G13  
400242 G14  
400242 G12  
NTC Pin Output Current  
vs Temperature  
COMP Pin Output Current  
vs Temperature  
NTC Pin Output Current  
vs VCC  
104  
100  
96  
86  
85  
89  
85  
81  
V
= 0V  
V
NTC  
= 0V  
V
= 0V  
COMP  
NTC  
84  
25  
0
50  
75 100 125  
50  
25  
15  
(V)  
20  
5
25  
25  
0
50  
75 100 125  
10  
50  
25  
TEMPERATURE (°C)  
V
TEMPERATURE (°C)  
CC  
400242 G15  
400242 G16  
400242 G17  
End-of-Charge Ratio  
vs Temperature  
Recharge Voltage Offset from Full  
Charged Voltage vs Temperature  
Recharge Voltage Offset from Full  
Charged Voltage vs VCC  
160  
150  
190  
150  
110  
29  
25  
21  
140  
15  
(V)  
20  
25  
0
50  
75 100 125  
5
10  
25  
25  
0
50  
75 100 125  
50  
25  
50  
25  
V
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CC  
400242 G19  
400242 G18  
400242 G20  
400242i  
5
LTC4002-4.2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C, VCC = 10V unless otherwise noted.  
End-of-Charge Ratio  
vs VCC  
Undervoltage Lockout Threshold  
vs Temperature  
29  
25  
21  
4.4  
4.2  
4.0  
V
CC  
RISING  
5
10  
15  
(V)  
20  
25  
25  
0
50  
75 100 125  
50  
25  
V
CC  
TEMPERATURE (°C)  
400242 G21  
400242 G22  
U
U
U
PI FU CTIO S (DFN/SO-8)  
COMP (Pin 1/Pin 1): Compensation, Soft-Start and Shut-  
downControlPin.TheCOMPpinisthecontrolsignalofthe  
innerloopofthecurrentmodePWM.Chargingbeginswhen  
theCOMPpinreaches800mV.Therecommendedcompen-  
sation components are a 0.47µF (or larger) capacitor and  
a 2.2k series resistor. A 100µA current into the compen-  
sation capacitor also sets the soft-start slew rate. Pulling  
the COMP pin below 350mV will shut down the charger.  
120µs, the N-channel MOSFET turns off and a 25µA cur-  
rentsourceisconnectedfromtheCHRGpintoGND.When  
thetimerrunsoutortheinputsupplyisremoved,the25µA  
currentsourceisturnedoffandtheCHRGpinbecomeshigh  
impedance.  
BAT (Pin 7/Pin 6): Battery Sense Input. A bypass capaci-  
tor of 22µF is required to minimize ripple voltage. An  
internal resistor divider, which is disconnected in sleep  
mode, sets the final float voltage at this pin. If the battery  
connection is opened when charging, an overvoltage  
circuit will limit the charger output voltage to 10% above  
the programmed float voltage.  
VCC (Pin 2/Pin 2): Positive Supply Voltage Input. VCC can  
range from 4.7V to 24V. A 0.1µF or higher capacitor is  
required at the VCC pin with the lead length kept to a mini-  
mum. A 10µF low ESR capacitor is also required at the  
source pins of the power P-channel MOSFET.  
When VBAT is within 250mV of VCC, the LTC4002-4.2 is  
forced into sleep mode, dropping ICC to 10µA.  
GATE (Pin 3/Pin 3): Gate Drive Output. Driver Output for  
theP-ChannelMOSFET. Thevoltageatthispinisinternally  
clamped to 8V below VCC, allowing a low voltage MOSFET  
with gate-to-source breakdown voltage of 8V or less to be  
used.  
SENSE(Pin8/Pin7):CurrentAmplifierSenseInput.Asense  
resistor, RSENSE, must be connected between the SENSE  
and BAT pins. The maximum charge current is equal to  
100mV/RSENSE  
.
PGND, SGND, Exposed Pad, GND (Pins 4, 5, 11/4): IC  
Ground.  
NTC(Pin9/Pin8):NTC(NegativeTemperatureCoefficient)  
Thermistor Input. With an external 10kNTC thermistor  
to ground, this pin senses the temperature of the battery  
pack and stops the charger when the temperature is out of  
range. When the voltage at this pin drops below 350mV at  
CHRG (Pin 6/Pin 5): Open-Drain Charge Status Output.  
When the battery is being charged, the CHRG pin is pulled  
low by an internal N-channel MOSFET. When the charge  
currentdropsto25%ofthefull-scalecurrentformorethan  
400242i  
6
LTC4002-4.2  
U
U
U
(DFN/SO-8)  
PI FU CTIO S  
hottemperatureorrisesabove2.465Vatcoldtemperature,  
charging is suspended and the internal timer stops. The  
CHRG pin output is not affected during this hold state. To  
disable the temperature qualification function, ground the  
NTC pin.  
NC (Pin 10/NA): No Connect.  
W
BLOCK DIAGRA  
V
CC  
CLK:  
100µA  
I
I
L
SLOP  
COMP  
DRIVER  
+
GATE  
S
Q
C
PWM  
R
R
20mV  
R
SLOP  
IL  
+
+
C
EOC  
R
100mV  
SENSE  
+
+
M1  
CA  
VA  
BAT  
+
M2  
4.2V  
2.9V  
4.62V  
+
M3  
C
LB  
OV  
RQ  
90µA  
+
C
C
UVLO  
4.2V  
+
+
UV EOC  
C
SD  
SD  
RQ  
350mV  
4.05V  
LOGIC  
CHRG  
C/10  
Q4  
+
2.465V  
V
CC  
STOP  
TEMP  
C
COLD  
Q5  
NTC_DISABLE  
85µA  
25µA  
NTC  
+
GND  
C
HOT  
350mV  
50mV  
400242 BD  
+
400242i  
7
LTC4002-4.2  
TEST CIRCUITS  
Test Circuit 1  
15V  
1.5V  
LT1006  
+
0V  
LTC4002-4.2  
100µA  
SENSE  
BAT  
+
COMP  
R
SENSE  
CA  
10Ω  
V
BAT  
400242 TC01  
Test Circuit 2  
15V  
+
1.5V  
LT1006  
0V  
SENSE  
100µA  
COMP  
R
SENSE  
CA  
VA  
BAT  
10Ω  
+
1mA  
+
4.2V  
LTC4002-4.2  
400242 TC02  
400242i  
8
LTC4002-4.2  
U
OPERATIO  
The LTC4002 is a constant current, constant voltage  
Li-Ion battery charger controller that uses a current mode  
PWMstep-down(buck)switchingarchitecture.Thecharge  
When the current drops to 25% of the full-scale charge  
current, an internal comparator turns off the internal pull-  
down N-channel MOSFET at the CHRG pin, and connects  
a weak current source to ground to indicate a near end-of-  
charge condition.  
current is set by an external sense resistor (RSENSE  
)
across the SENSE and BAT pins. The final battery float  
voltage is internally set to 4.2V. For batteries like lithium-  
ion that require accurate final float voltage, the internal  
2.465V reference, voltage amplifier and the resistor di-  
vider provide regulation with ±1% accuracy.  
Aninternal3hourtimerdeterminesthetotalchargetime.  
After a time out occurs, the charge cycle is terminated  
and the CHRG pin is forced high impedance. To restart  
the charge cycle, remove and reapply the input voltage or  
momentarily shut the charger down. Also, a new charge  
cycle will begin if the battery voltage drops below the  
recharge threshold voltage of 4.05V.  
AchargecyclebeginswhenthevoltageattheVCC pinrises  
abovetheUVLOlevel(4.2V)andis250mVormoregreater  
than the battery voltage. At the beginning of the charge  
cycle, if the battery voltage is less than 2.9V, the charger  
goes into trickle charge mode. The trickle charge current  
is internally set to 10% of the full-scale current. If the  
battery voltage stays low for 30 minutes, the battery is  
considered faulty and the charge cycle is terminated.  
When the input voltage is present, the charger can be shut  
down (ICC = 3mA) by pulling the COMP pin low. When the  
input voltage is not present, the charger goes into sleep  
mode, dropping ICC to 10µA. This will greatly reduce the  
currentdrainonthebatteryandincreasethestandbytime.  
When the battery voltage exceeds 2.9V, the charger goes  
into the full-scale constant current charge mode. In con-  
stant current mode, the charge current is set by the  
external sense resistor RSENSE and an internal 100mV  
A10kNTC(negativetemperaturecoefficient)thermistor  
can be connected from the NTC pin to ground for battery  
temperature qualification. The charge cycle is suspended  
when the temperature is outside of the 0°C to 50°C  
window (with DALE NTHS-1206N02).  
reference; IBAT = 100mV/RSENSE  
.
When the battery voltage approaches the programmed  
float voltage, the charge current will start to decrease.  
400242i  
9
LTC4002-4.2  
W U U  
U
APPLICATIO S I FOR ATIO  
Undervoltage Lockout (UVLO)  
CHRG Status Output Pin  
Anundervoltagelockoutcircuitmonitorstheinputvoltage  
and keeps the charger off until VCC rises above 4.2V and  
at least 250mV above the battery voltage. To prevent  
oscillation around the threshold voltage, the UVLO circuit  
has 200mV of built-in hysteresis.  
When a charge cycle starts, the CHRG pin is pulled to  
groundbyaninternalN-channelMOSFETwhichiscapable  
of driving an LED. When the charge current drops to 25%  
ofthefull-scalecurrentformorethan120µs,theN-channel  
MOSFET turns off and a weak 25µA current source to  
ground is connected to the CHRG pin. This weak 25µA  
pull-down remains until the timer ends the charge cycle,  
or the charger is in manual shutdown or sleep mode.  
Trickle Charge and Defective Battery Detection  
At the beginning of a charge cycle, if the battery voltage is  
below2.9V,thechargergoesintotricklechargemodewith  
the charge current reduced to 10% of the full-scale cur-  
rent. If the low-battery voltage persists for 30 minutes, the  
battery is considered defective, the charge cycle is termi-  
nated and the CHRG pin is forced to be high impedance.  
Afteratimeoutoccurs(chargecycleends), thepinwillgo  
into high impedance. By using two different value resis-  
tors, a microprocessor can detect three states from this  
pin (charging, end-of-charge and charging stopped) see  
Figure 2.  
To detect the charge mode, force the digital output pin,  
OUT, high and measure the voltage at the CHRG pin. The  
N-channel MOSFET will pull the pin low even with a 2k  
pull-up resistor. Once the charge current drops to 25% of  
the full-scale current, the N-channel MOSFET is turned off  
and a 25µA current source is connected to the CHRG pin.  
The IN pin will then be pulled high by the 2k resistor  
connected to OUT. Now force the OUT pin into a high  
impedance state, the current source will pull the pin low  
through the 400k resistor. When the internal timer has  
expired, the CHRG pin changes to a high impedance state  
and the 400k resistor will then pull the pin high to indicate  
the charging has stopped.  
Shutdown  
The LTC4002 can be shut down by pulling the COMP pin  
to ground which pulls the GATE pin high and turns off the  
external P-channel MOSFET. When the COMP pin is re-  
leased, the internal timer is reset and a new charge cycle  
starts. In shutdown, the output of the CHRG pin is high  
impedance and the quiescent current remains at 3mA.  
Removing the input power supply will put the charger  
into sleep mode. If the voltage at the VCC pin drops below  
(VBAT + 250mV) or below the UVLO level (4.2V), the  
LTC4002-4.2 goes into a low current (ICC = 10µA) sleep  
mode, reducing the battery drain current.  
V
V
DD  
CC  
400k  
2k  
LTC4002-4.2  
CHRG  
µPROCESSOR  
OUT  
IN  
400242 F02  
Figure 2. Microprocessor Interface  
400242i  
10  
LTC4002-4.2  
W U U  
APPLICATIO S I FOR ATIO  
U
Gate Drive  
Automatic Battery Recharge  
The LTC4002-4.2 gate driver can provide high transient  
currents to drive the external pass transistor. The rise and  
fall times are typically 20ns and 50ns respectively when  
driving a 2000pF load, which is typical for a P-channel  
MOSFET with RDS(ON) in the range of 50m.  
After the 3 hour charge cycle is completed and both the  
battery and the input power supply (wall adapter) are still  
connected, a new charge cycle will begin if the battery  
voltage drops below 4.05V due to self-discharge or exter-  
nalloading.Thiswillkeepthebatterycapacityatmorethan  
80% at all times without manually restarting the charge  
cycle.  
Avoltageclampisaddedtolimitthegatedriveto8Vbelow  
VCC. For example, if VCC is 10V then the GATE output will  
pull down to 2V max. This allows low voltage P-channel  
MOSFETs with superior RDS(ON) to be used as the pass  
transistor thus increasing efficiency.  
Battery Temperature Detection  
A negative temperature coefficient (NTC) thermistor  
located close to the battery pack can be used to monitor  
batterytemperatureandwillnotallowchargingunlessthe  
battery temperature is within an acceptable range.  
Stability  
Both the current loop and the voltage loop share a com-  
mon, high impedance, compensation node (COMP pin). A  
seriescapacitorandresistoronthispincompensatesboth  
loops. The resistor is included to provide a zero in the loop  
response and boost the phase margin.  
Connect a 10kthermistor (DALE NTHS-1206N02) from  
theNTCpintoground.Ifthetemperaturerisesto50°C,the  
resistance of the NTC will be approximately 4.1k. With  
the 85µA pull-up current source, the Hot temperature  
voltage threshold is 350mV. For Cold temperature, the  
voltage threshold is set at 2.456V which is equal to 0°C  
(RNTC 28.4k) with 85µA of pull-up current. If the  
temperature is outside the window, the GATE pin will be  
pulled up to VCC and the timer frozen while the output  
statusattheCHRGpinremainsthesame.Thechargecycle  
begins or resumes once the temperature is within the  
acceptable range. Short the NTC pin to ground to disable  
the temperature qualification feature.  
The compensation capacitor also provides a soft-start  
function for the charger. Upon start-up, the COMP pin  
voltage will quickly rise to 0.05V, due to the 2.2k series  
resistor, then ramp at a rate set by the internal 100µA pull-  
up current source and the external capacitor. Battery  
charge current starts ramping up when the COMP pin  
voltage reaches 0.8V and full current is achieved with the  
COMP pin at 1.3V. With a 0.47µF capacitor, time to reach  
full charge current is about 235ms. Capacitance can be  
increased up to 1µF if a longer start-up time is needed.  
400242i  
11  
LTC4002-4.2  
W U U  
U
APPLICATIO S I FOR ATIO  
Input and Output Capacitors  
Switchingripplecurrentsplitsbetweenthebatteryandthe  
output capacitor depending on the ESR of the output ca-  
pacitor and the battery impedance. EMI considerations  
usually make it desirable to minimize ripple current in the  
battery leads. Ferrite beads or an inductor may be added  
to increase battery impedance at the 500kHz switching  
frequency. If the ESR of the output capacitor is 0.2and  
thebatteryimpedanceisraisedto4withabeadorinduc-  
tor, only 5% of the current ripple will flow in the battery.  
Since the input capacitor is assumed to absorb all input  
switching ripple current in the converter, it must have an  
adequateripplecurrentrating.Worst-caseRMSripplecur-  
rent is approximately one-half of output charge current.  
Actual capacitance value is not critical. Solid tantalum  
capacitors have a high ripple current rating in a relatively  
small surface mount package, but caution must be used  
when tantalum capacitors are used for input bypass. High  
input surge currents can be created when the adapter is  
hot-plugged to the charger and solid tantalum capacitors  
have a known failure mechanism when subjected to very  
high turn-on surge currents. Selecting the highest pos-  
sible voltage rating on the capacitor will minimize prob-  
lems. Consult with the manufacturer before use.  
Design Example  
As a design example, take a charger with the following  
specifications: VIN = 5V to 24V, VBAT = 4V nominal, IBAT  
1.5A, fOSC = 500kHz, see Figure 1.  
=
First, calculate the SENSE resistor :  
The selection of output capacitor COUT is primarily deter-  
mined by the ESR required to minimize ripple voltage and  
load step transients. The output ripple VOUT is approxi-  
mately bounded by:  
RSENSE = 100mV/1.5A = 68mΩ  
Choose the inductor for about 65% ripple current at the  
maximum VIN:  
4V  
4V  
24V  
L =  
1–  
= 6.838µH  
1
500kHz 0.65 1.5A  
VOUT ≤ ∆IL ESR +  
(
)(  
)(  
)
8fOSC OUT  
C
Selecting a standard value of 6.8µH results in a maximum  
Since IL increases with input voltage, the output ripple is  
highestatmaximuminputvoltage.Typically,oncetheESR  
requirement is satisfied, the capacitance is adequate for  
filtering and has the necessary RMS current rating.  
ripple current of :  
4V  
4V  
IL =  
1–  
= 980.4mA  
500kHz 6.8µH  
24V  
(
)(  
)
400242i  
12  
LTC4002-4.2  
W U U  
APPLICATIO S I FOR ATIO  
U
Next, choose the P-channel MOSFET. The Si6435ADQ in  
a TSSOP-8 package with RDS(ON) = 42m(nom), 55mΩ  
(max) offers a small solution. The maximum power dissi-  
pation with VIN = 5V and VBAT = 4V at 50°C ambient  
temperature is:  
Board Layout Suggestions  
When laying out the printed circuit board, the following  
considerations should be taken to ensure proper opera-  
tion of the LTC4002-4.2.  
GATEpinriseandfalltimesare20nsand50nsrespectively  
(with CGATE = 2000pF). To minimize radiation, the catch  
diode, pass transistor and the input bypass capacitor  
traces should be kept as short as possible. The positive  
side of the input capacitor should be close to the source of  
the P-channel MOSFET; it provides the AC current to the  
pass transistor. The connection between the catch diode  
and the pass transistor should also be kept as short as  
possible. The SENSE and BAT pins should be connected  
directly to the sense resistor (Kelvin sensing) for best  
charge current accuracy.  
2
1.5A 55m4V  
(
) (  
)(  
)
PD =  
= 0.099W  
5V  
TJ = 50°C + (0.099W)(65°C/W) = 56.5°C  
CIN is chosen for an RMS current rating of about 0.8A at  
85°C. The output capacitor is chosen for an ESR similar to  
thebatteryimpedanceofabout100m.Theripplevoltage  
on the BAT pin is:  
IL(MAX) ESR  
(
)
VOUT(RIPPLE)  
=
=
2
The compensation capacitor connected at the COMP pin  
should return to the ground pin of the IC or as close to it  
as possible. This will prevent ground noise from disrupt-  
ing the loop stability. The ground pin also works as a heat  
sink, therefore use a generous amount of copper around  
the ground pin. This is especially important for high VCC  
and/or high gate capacitance applications.  
0.98A 0.1Ω  
(
)(  
)
= 49mV  
2
C1: Taiyo Yuden TMK325BJ106MM  
C2: Taiyo Yuden JMK325BJ226MM  
L1: TOKO B952AS-6R8N  
TheSchottkydiodeD2showninFigure1conductscurrent  
whenthepasstransistorisoff.Inalowdutycyclecase,the  
current rating should be the same or higher than the  
chargecurrent.Alsoitshouldwithstandreversevoltageas  
high as VIN.  
400242i  
13  
LTC4002-4.2  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
R = 0.115  
TYP  
6
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.38 ± 0.10  
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 5)  
(DD10) DFN 0403  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
400242i  
14  
LTC4002-4.2  
U
PACKAGE DESCRIPTIO  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
.160 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
400242i  
15  
LTC4002-4.2  
U
TYPICAL APPLICATIO  
Single Cell 4.2V, 2A Li-Ion Battery Charger  
V
IN  
5V TO 12V  
100k  
1/2 Si9933ADY  
C1  
10µF  
CER  
2
0.1µF  
CER  
V
CC  
3
1/2 Si9933ADY  
GATE  
B330-13  
LTC4002ES8-4.2  
L1  
6.8µH  
7
6
5
1
CHRG  
SENSE  
R
SENSE  
50mΩ  
COMP  
BAT  
C2  
22µF  
CER  
+
NTC  
8
GND  
4
Li-Ion  
0.47µF  
2.2k  
BATTERY  
400242 TA01  
10k  
T
NTC  
NTC: DALE NTHS-1206N02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1732/LTC4050  
Constant Voltage/Constant Current Li-Ion Linear  
Battery Chargers  
Standalone Battery Charger, No uC or Firmware Required, Auto  
Recharge of Low Battery, 10-Pin MSOP, Input Supply Detection  
LTC1733  
Li-Ion Battery Charger with Termal Regulation  
Standalone Charger, Constant-Current/Constant-Voltage/  
Constant-Temperature, Integrated MOSFET, No External Sense  
Resistor or Blocking Diodes  
LTC1734/LTC1734L SOT-23 Li-Ion Battery Chargers  
Need Only Two External Components, Monitors Charge Current, No  
Reverse Diode or Sense Resistor Required, 50mA to 700mA  
LTC1980  
Combination Battery Charger and DC/DC Converter  
Wall Adapter May Be Above or Below Battery Voltage, Standalone,  
1-, 2-Cell Li-Ion, Also for Charging NiMH and NiCd Batteries  
LTC4006/LTC4007  
LTC4008  
4A Multiple Cell Li-Ion, NiCd, NiMH, Lead Acid  
Battery Chargers  
6V V 28V, High Efficiency 90%, V  
Digital Interface I/O, Small Inductor  
28V,  
OUT  
IN  
LTC4052/LTC1730  
Integrated Pulse Chargers for a 1-Cell Li-Ion Battery  
0.35Internal N-FET Requires No Blocking Diode,  
Current Limit for Safety  
LTC4053  
USB Compatible Li-Ion Linear Battery Charger  
Charges from USB Input or AC/DC, 100mA/500mA Up to 1.25A,  
Thermal Regulation, Fully Integrated  
LTC4054  
Standalone Linear Li-Ion Battery Charger  
with Integrated Pass Transistor in ThinSOTTM  
Thermal Regulation Prevents Overheating, C/10 Termination,  
C/10 Indicator  
LTC4056  
LTC4412  
Standalone SOT-23 Li-Ion Linear Battery Charger  
Low Loss PowerPathTM Controller in ThinSOT  
Charge Termination Included, I 700mA, 8-Lead ThinSOT Package  
CH  
Automatic Switching Between DC Sources, Simplified Load Sharing  
PowerPath and ThinSOT are trademarks of Linear Technology Corporation.  
400242i  
LT/TP 0603 1K PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY