LTC4058XEDD-4.2 [Linear]

Standalone Linear Li-Ion Battery Charger with Thermal Regulation in DFN; 独立线性锂离子电池充电器, DFN热调节
LTC4058XEDD-4.2
型号: LTC4058XEDD-4.2
厂家: Linear    Linear
描述:

Standalone Linear Li-Ion Battery Charger with Thermal Regulation in DFN
独立线性锂离子电池充电器, DFN热调节

电池
文件: 总12页 (文件大小:182K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4058-4.2/LTC4058X-4.2  
Standalone Linear  
Li-Ion Battery Charger with  
Thermal Regulation in DFN  
U
FEATURES  
DESCRIPTIO  
Programmable Charge Current Up to 950mA  
The LTC®4058 is a complete constant-current/constant-  
voltage linear charger for single cell lithium-ion batteries.  
Its DFN package and low external component count make  
the LTC4058 ideally suited for portable applications. Fur-  
thermore, the LTC4058 is designed to work within USB  
power specifications.  
Complete Linear Charger in DFN Package  
No MOSFET, Sense Resistor or Blocking Diode  
Required  
Thermal Regulation Maximizes Charge Rate  
Without Risk of Overheating*  
Battery Kelvin Sensing Improves Charging Accuracy  
The LTC4058 can Kelvin sense the battery terminal for  
more accurate float voltage charging. No external sense  
resistor or external blocking diode are required due to the  
internal MOSFET architecture. Thermal feedback regu-  
latesthechargecurrenttolimitthedietemperatureduring  
high power operation or high ambient temperature condi-  
tions. The charge voltage is fixed at 4.2V and the charge  
current is programmed with a resistor. The LTC4058  
terminates the charge cycle when the charge current  
drops to 10% of the programmed value after the final float  
voltage is reached.  
Charges Directly from a USB Port  
C/10 Charge Termination  
Preset 4.2V Charge Voltage with ±1% Accuracy  
Charge Current Monitor Output for Gas Gauging*  
Automatic Recharge  
Charge Status Output  
“AC Present” Output  
2.9V Trickle Charge Threshold (LTC4058)  
Available Without Trickle Charge (LTC4058X)  
Soft-Start Limits Inrush Current  
Low Profile (3mm × 3mm × 0.75mm) DFN Package  
When the input supply (wall adapter or USB supply) is  
removed,theLTC4058entersalowcurrentstatedropping  
the battery drain current to less than 2µA. Other features  
include charge current monitor, undervoltage lockout,  
automatic recharge and status pins to indicate charge  
termination and the presence of an input voltage.  
U
APPLICATIO S  
Cellular Telephones, PDAs, MP3 Players  
Bluetooth Applications  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
*US Patent 6,522,118  
U
TYPICAL APPLICATIO  
Complete Charge Cycle (750mAh Battery)  
700  
600  
500  
400  
300  
200  
100  
0
4.75  
4.50  
4.25  
4.00  
3.75  
3.50  
3.25  
3.00  
CONSTANT  
CURRENT  
Single Cell Li-Ion Battery Charger with Kelvin Sense  
CONSTANT  
VOLTAGE  
600mA  
V
IN  
V
CC  
BAT  
BSENSE  
4.5V TO 6.5V  
LTC4058-4.2  
CHRG  
ACPR  
1-CELL  
Li-Ion  
BATTERY  
+
EN  
PROG  
GND  
V
= 5V  
CC  
JA  
1.65k  
1µF  
θ
= 40°C/W  
R
= 1.65k  
PROG  
405842 TA01  
T
A
= 25°C  
0.25 0.5 0.75 1.0 1.25  
1.75 2.0 2.25  
0
1.5  
405842 TA02  
TIME (HOURS)  
sn405842 405842fs  
1
LTC4058-4.2/LTC4058X-4.2  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
U W  
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
Input Supply Voltage (VCC) ....................... –0.3V to 10V  
PROG............................................. 0.3V to VCC + 0.3V  
BAT, BSENSE.............................................. –0.3V to 7V  
CHRG, ACPR, EN ...................................... –0.3V to 10V  
BAT Short-Circuit Duration .......................... Continuous  
BAT Pin Current ........................................................ 1A  
PROG Pin Current................................................... 1mA  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
ORDER PART  
NUMBER  
BSENSE  
BAT  
1
2
3
4
8
7
6
5
EN  
ACPR  
LTC4058EDD-4.2  
LTC4058XEDD-4.2  
9
CHRG  
GND  
V
CC  
PROG  
DD PART MARKING  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
LAEV  
LBDH  
TJMAX = 125°C, θJA = 40°C/W (NOTE 3)  
EXPOSED PAD IS GROUND (PIN 9)  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Input Supply Voltage  
Input Supply Current  
4.25  
6.5  
V
CC  
I
Charge Mode (Note 4), R  
Standby Mode (Charge Terminated)  
Shutdown Mode (EN = 5V, V < V  
= 10k  
0.3  
200  
25  
1
500  
50  
mA  
µA  
µA  
CC  
PROG  
CC  
BSENSE  
or V < V  
)
CC  
UV  
V
Regulated Output (Float) Voltage  
BAT Pin Current  
0°C T 85°C, 4.3V < V < 6.5V  
4.158  
4.2  
4.242  
V
FLOAT  
A
CC  
I
R
PROG  
R
PROG  
= 10k, Current Mode  
= 2k, Current Mode  
93  
465  
100  
500  
107  
535  
mA  
mA  
BAT  
I
BSENSE Pin Current (Note 5)  
Standby Mode, V  
Shutdown Mode (EN = 5V, V < V  
= 4.2V  
–2.5  
±1  
–6  
±2  
µA  
µA  
BSENSE  
BSENSE  
or  
BSENSE  
CC  
V
< V )  
CC  
UV  
Sleep Mode, V = 0V  
±1  
45  
±2  
60  
µA  
mA  
V
CC  
I
Trickle Charge Current  
V
< V  
, R = 2k (Note 6)  
TRIKL PROG  
30  
2.8  
60  
TRIKL  
BSENSE  
V
V
V
V
V
V
Trickle Charge Threshold Voltage  
Trickle Charge Hysteresis Voltage  
R
R
= 10k, V Rising (Note 6)  
BSENSE  
2.9  
80  
3
TRIKL  
TRHYS  
UV  
PROG  
PROG  
= 10k (Note 6)  
110  
3.92  
300  
mV  
V
V
V
Undervoltage Lockout Voltage  
Undervoltage Lockout Hysteresis  
From V Low to High  
3.7  
150  
0.4  
3.8  
200  
0.7  
0.7  
2
CC  
CC  
CC  
mV  
V
UVHYS  
EN(IL)  
EN(IH)  
EN Pin Input Low Voltage  
EN Pin Input High Voltage  
EN Pin Pull-Down Resistor  
1
5
V
R
1.2  
MΩ  
EN  
V
V
– V  
Lockout Threshold  
V
V
from Low to High  
from High to Low  
70  
5
100  
30  
140  
50  
mV  
mV  
ASD  
CC  
BSENSE  
CC  
CC  
I
C/10 Termination Current Threshold  
R
PROG  
R
PROG  
= 10k (I = 100mA) (Note 7)  
CHG  
0.085  
0.085  
0.10  
0.10  
0.115  
0.115  
mA/mA  
mA/mA  
TERM  
= 2k (I  
= 500mA)  
CHG  
V
V
V
PROG Pin Voltage  
R
= 10k, Current Mode  
= 5mA  
0.93  
1
1.07  
0.6  
V
V
PROG  
CHRG  
ACPR  
PROG  
CHRG  
CHRG Pin Output Low Voltage  
ACPR Pin Output Low Voltage  
Recharge Battery Threshold Voltage  
I
I
0.35  
0.35  
100  
= 5mA  
0.6  
V
ACPR  
V  
V
– V  
, 0°C T 85°C  
60  
140  
mV  
RECHRG  
FLOAT  
RECHRG  
A
sn405842 405842fs  
2
LTC4058-4.2/LTC4058X-4.2  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
T
Junction Temperature in Constant  
Temperature Mode  
120  
°C  
LIM  
R
ON  
Power FET “ON” Resistance  
600  
mΩ  
(Between V and BAT)  
CC  
t
t
t
Soft-Start Time  
I
= 0 to I  
=1000V/R  
PROG  
100  
2
µs  
ms  
µs  
SS  
BAT  
BAT  
Recharge Comparator Filter Time  
Termination Comparator Filter Time  
V
High to Low  
0.75  
400  
4.5  
RECHARGE  
TERM  
BSENSE  
I
Drops Below I /10  
1000  
2500  
BAT  
CHG  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
Note 2: The LTC4058E-4.2/LTC4058XE-4.2 are guaranteed to meet  
performance specifications from 0°C to 70°C. Specifications over the  
–40°C to 85°C operating temperature range are assured by design,  
characterization and correlation with statistical process controls.  
Note 4: Supply current includes PROG pin current (approximately 100µA)  
but does not include any current delivered to the battery through the BAT  
pin (approximately 100mA).  
Note 5: For all Li-Ion applications, the BSENSE pin must be electrically  
connected to the BAT pin.  
Note 6: This parameter is not applicable to the LTC4058X.  
Note 3: Failure to solder the exposed backside of the package to the PC  
board will result in a thermal resistance much higher than 40°C/W.  
Note 7: I  
with indicated PROG resistor.  
is expressed as a fraction of measured full charge current  
TERM  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
PROG Pin Voltage vs Supply  
Voltage (Constant Current Mode)  
PROG Pin Voltage  
vs Temperature  
Charge Current  
vs PROG Pin Voltage  
1.015  
1.010  
1.005  
1.000  
0.995  
0.990  
0.985  
600  
500  
400  
300  
200  
100  
0
1.0100  
1.0075  
1.0050  
1.0025  
V
V
T
= 5V  
V
V
= 5V  
V
= 5V  
CC  
CC  
CC  
= V  
= 4V  
= V  
= 4V  
T = 25°C  
A
BAT  
BSENSE  
BAT  
PROG  
BSENSE  
= 10k  
= 25°C  
R
= 2k  
PROG  
R
A
R
= 10k  
PROG  
1.0000  
0.9975  
0.9950  
0.9925  
0.9900  
4
5
5.5  
(V)  
6
6.5  
7
–50  
–25  
0
50  
75  
100  
0
0.4  
0.6  
(V)  
PROG  
0.8  
1
1.2  
4.5  
25  
0.2  
V
V
TEMPERATURE (°C)  
CC  
405842 G01  
405842 G02  
405842 G03  
sn405842 405842fs  
3
LTC4058-4.2/LTC4058X-4.2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Regulated Output (Float) Voltage  
vs Charge Current  
Regulated Output (Float) Voltage  
vs Temperature  
Regulated Output (Float) Voltage  
vs Supply Voltage  
4.26  
4.215  
4.210  
4.205  
4.200  
4.195  
4.190  
4.185  
4.215  
4.210  
4.205  
4.200  
4.195  
4.190  
4.185  
V
A
R
= 5V  
V
= 5V  
PROG  
T = 25°C  
A
CC  
CC  
R
T
= 25°C  
= 10k  
R
= 10k  
PROG  
4.24  
4.22  
= 1.25k  
PROG  
4.20  
4.18  
4.16  
4.14  
4.12  
4.10  
100 200  
400 500 600 700  
(mA)  
–50  
0
25  
50  
75  
100  
4
5
5.5  
(V)  
6
6.5  
7
0
300  
–25  
4.5  
TEMPERATURE (°C)  
V
I
CC  
BAT  
405842 G04  
405842 G05  
405842 G06  
CHRG Pin I-V Curve  
(Pull-Down State)  
ACPR Pin I-V Curve  
(Pull-Down State)  
Trickle Charge Current  
vs Temperature  
30  
25  
20  
15  
30  
25  
20  
15  
60  
50  
40  
30  
20  
10  
0
V
V
= 5V  
CC  
T
= –40°C  
T
A
= –40°C  
A
= V  
= 2.5V  
BAT  
BSENSE  
T
T
= 25°C  
= 90°C  
T
T
= 25°C  
= 90°C  
A
A
A
A
R
= 2k  
PROG  
10  
5
10  
5
R
= 10k  
50  
PROG  
25  
V
V
= 5V  
V
V
= 5V  
CC  
CC  
= V  
BSENSE  
= 4V  
= V  
BSENSE  
= 4V  
BAT  
BAT  
0
0
4
6
7
4
6
7
–50  
0
75  
100  
0
1
2
3
5
0
1
2
3
5
–25  
TEMPERATURE (°C)  
V
CHRG  
(V)  
V
ACPR  
(V)  
405842 G07  
405842 G08  
405842 G09  
Trickle Charge Current  
vs Supply Voltage  
Trickle Charge Threshold Voltage  
vs Temperature  
Charge Current vs Battery Voltage  
60  
50  
40  
30  
20  
10  
0
600  
500  
400  
300  
3.000  
2.975  
2.950  
2.925  
V
T
= V  
= 2.5V  
BSENSE  
V
= 5V  
PROG  
BAT  
A
CC  
= 25°C  
R
= 10k  
R
= 2k  
PROG  
2.900  
2.875  
200  
100  
0
2.850  
2.825  
2.800  
R
= 10k  
6
PROG  
V
= 5V  
CC  
JA  
θ
= 40°C/W  
R
= 2k  
PROG  
4
5
5.5  
(V)  
6.5  
7
–50  
–25  
0
50  
75  
100  
2.4 2.7  
3
3.3 3.6 3.9  
(V)  
4.2  
4.5  
4.5  
25  
V
TEMPERATURE (°C)  
V
BAT  
CC  
405842 G10  
405842 G11  
405842 G08  
sn405842 405842fs  
4
LTC4058-4.2/LTC4058X-4.2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Charge Current  
vs Ambient Temperature  
Recharge Threshold Voltage  
vs Temperature  
Charge Current vs Supply Voltage  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
4.16  
V
= 5V  
CC  
ONSET OF THERMAL REGULATION  
R
= 2k  
R
= 10k  
PROG  
PROG  
4.14  
4.12  
4.10  
4.08  
4.06  
4.04  
R
PROG  
= 2k  
V
T
JA  
= V  
= 4V  
V
V
θ
= 5V  
= V  
BAT  
A
BSENSE  
CC  
= 25°C  
= 4V  
BAT  
BSENSE  
θ
= 40°C/W  
= 40°C/W  
JA  
200  
100  
0
R
= 10k  
50  
R
PROG  
= 10k  
PROG  
25  
4
5
5.5  
6
6.5  
7
–50 –25  
0
75  
100 125  
–50  
0
25  
50  
75  
100  
4.5  
–25  
V
CC  
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
405842 G13  
405842 G14  
405842 G15  
Power FET “ON” Resistance  
vs Temperature  
Power FET Transistor Curve  
800  
800  
700  
600  
500  
V
V
V
= 5V  
BAT  
BSENSE  
V
V
T
= 5V  
CC  
CC  
BSENSE  
= 4.8V  
= 3.5V  
= 25°C  
= 4V  
A
700  
600  
500  
R
= 2k  
R
PROG  
= 2k  
PROG  
400  
300  
200  
100  
0
400  
300  
–50  
0
25  
50  
75  
100  
–25  
4.1  
4.4  
V
5
3.8  
5.3  
4.7  
(V)  
TEMPERATURE (°C)  
BAT  
405842 G17  
405842 G16  
U
U
U
PI FU CTIO S  
BSENSE (Pin 1): Battery Sense. This pin is used to Kelvin  
sense the positive battery terminal and regulate the final  
float voltage to 4.2V. An internal precision resistor divider  
sets this float voltage and is disconnected in shutdown  
mode. For Li-Ion applications, this pin must be electri-  
cally connected to BAT.  
internal N-channel MOSFET. When the charge cycle is  
completed, CHRG becomes high impedance.  
GND (Pins 4, 9): Ground/Exposed Pad. The exposed  
backside of the package (Pin 9) is also ground and must  
be soldered to the PC board for maximum heat transfer.  
PROG (Pin 5): Charge Current Program and Charge Cur-  
rent Monitor. Charge current is programmed by connect-  
ing a 1% resistor, RPROG, to ground. When charging in  
constant-currentmode,thispinservosto1V.Inallmodes,  
BAT (Pin 2): Charge Current Output. Provides charge  
currenttothebatteryfromtheinternalP-channelMOSFET.  
CHRG (Pin 3): Charge Status Open-Drain Output. When  
the battery is charging, the CHRG pin is pulled low by an  
sn405842 405842fs  
5
LTC4058-4.2/LTC4058X-4.2  
U
U
U
PI FU CTIO S  
the voltage on this pin can be used to measure the charge  
ACPR (Pin 7): Power Supply Status Open-Drain Output.  
WhenVCC isgreaterthantheundervoltagelockoutthresh-  
old and at least 100mV above VBSENSE, the ACPR pin is  
pulled to ground; otherwise, the pin is high impedance.  
current using the following formula:  
IBAT = (VPROG/RPROG) • 1000  
Thispinisclampedtoapproximately2.4V. Drivingthispin  
tovoltagesbeyondtheclampvoltagecandrawcurrentsas  
high as 1.5mA.  
EN(Pin8):EnableInput. AlogichighontheENpinwillput  
the LTC4058 into shutdown mode where the battery drain  
current is reduced to less than 2µA and the supply current  
is reduced to less than 50µA. A logic low or floating the EN  
pin (allowing an internal 2Mpull-down resistor to pull  
this pin low) enables charging.  
VCC (Pin 6): Positive Input Supply Voltage. Provides  
power to the charger. VCC can range from 4.25V to 6.5V.  
This pin should be bypassed with at least a 1µF capacitor.  
When VCC is within 100mV of the BSENSE pin voltage, the  
LTC4058 enters shutdown mode dropping the battery  
drain current to less than 2µA.  
W
BLOCK DIAGRA  
6
V
CC  
120°C  
T
A
T
DIE  
1×  
1000×  
BAT  
+
2
1
5µA  
BSENSE  
MA  
R1  
ACPR  
CHRG  
+
7
3
VA  
R2  
CA  
+
REF  
1.21V  
R3  
1V  
CHARGE ACPR  
LOGIC  
R4  
0.1V  
R5  
+
TERM  
C1  
EN  
SHDN  
EN  
TRICKLE CHARGE  
DISABLED ON THE  
LTC4058X  
8
R
C2  
EN  
+
2.9V  
TO BAT  
PROG  
GND  
4, 9  
5
R
PROG  
405842 BD  
sn405842 405842fs  
6
LTC4058-4.2/LTC4058X-4.2  
U
OPERATIO  
The LTC4058 is a single cell lithium-ion battery charger  
using a constant-current/constant-voltage algorithm. It  
can deliver up to 950mA of charge current (using a good  
thermal PCB layout) with a final float voltage accuracy of  
±1%. The LTC4058 includes an internal P-channel power  
MOSFET and thermal regulation circuitry. No blocking  
diode or external current sense resistor is required; thus,  
the basic charger circuit requires only two external com-  
ponents. Furthermore, the LTC4058 is capable of operat-  
ing from a USB power source.  
Charge Termination  
The charge cycle terminates when the charge current falls  
to 10% the programmed value after the final float voltage  
is reached. This condition is detected by using an internal,  
filtered comparator to monitor the PROG pin. When the  
PROG pin voltage falls below 100mV1 for longer than  
tTERM (typically 1ms), charging is terminated. The charge  
current is latched off and the LTC4058 enters standby  
mode where the input supply current drops to 200µA.  
(Note: C/10 termination is disabled in trickle charging and  
thermal limiting modes.)  
Normal Charge Cycle  
When charging, transient loads on the BAT pin can cause  
thePROGpintofallbelow100mVforshortperiodsoftime  
before the DC charge current has dropped to 10% of the  
programmed value. The 1ms filter time (tTERM) on the  
termination comparator ensures that transient loads of  
this nature do not result in premature charge cycle termi-  
nation. Once the averagecharge current drops below 10%  
of the programmed value, the LTC4058 terminates the  
charge cycle and ceases to provide any current through  
the BAT pin. In this state, all loads on the BAT pin must be  
supplied by the battery.  
AchargecyclebeginswhenthevoltageattheVCC pinrises  
abovetheUVLOthresholdlevelanda1%programresistor  
is connected from the PROG pin to ground. If the BSENSE  
pinislessthan2.9V,thechargerenterstricklechargemode.  
In this mode, the LTC4058 supplies approximately 1/10th  
the programmed charge current to bring the battery volt-  
age up to a safe level for full current charging. (Note: The  
LTC4058X does not include this trickle charge feature.)  
WhentheBSENSEpinvoltagerisesabove2.9V,thecharger  
enters constant-current mode where the programmed  
chargecurrentissuppliedtothebattery.WhentheBSENSE  
pin approaches the final float voltage (4.2V), the LTC4058  
enters constant-voltage mode and the charge current be-  
ginstodecrease. Whenthechargecurrentdropsto1/10th  
of the programmed value, the charge cycle ends.  
The LTC4058 constantly monitors the BAT pin voltage in  
standbymode.Ifthisvoltagedropsbelowthe4.1Vrecharge  
threshold (VRECHRG), another charge cycle begins and  
charge current is once again supplied to the battery. To  
manuallyrestartachargecyclewheninstandbymode, the  
inputvoltagemustberemovedandreappliedorthecharger  
mustbeshutdownandrestartedusingtheENpin.Figure 1  
shows the state diagram of a typical charge cycle.  
Programming Charge Current  
The charge current is programmed using a single resistor  
from the PROG pin to ground. The charge current out of  
the BAT pin is 1000 times the current out of the PROG pin.  
The program resistor and the charge current are calcu-  
lated using the following equations:  
Charge Status Indicator (CHRG)  
The charge status output has two states: pull-down and  
high impedance. The pull-down state indicates that the  
LTC4058 is in a charge cycle. Once the charge cycle has  
terminated or the LTC4058 is disabled, the pin state  
becomes high impedance.  
1000V  
ICHG  
1000V  
RPROG  
RPROG  
=
, ICHG =  
ChargecurrentoutoftheBATpincanbedeterminedatany  
time by monitoring the PROG pin voltage and using the  
following equation:  
1Any external sources that hold the PROG pin above 100mV will prevent the LTC4058 from  
terminating a charge cycle.  
VPROG  
RPROG  
IBAT  
=
1000  
sn405842 405842fs  
7
LTC4058-4.2/LTC4058X-4.2  
U
OPERATIO  
POWER ON  
chargerwillautomaticallyreducethecurrentinworst-case  
conditions. DFN power considerations are discussed fur-  
ther in the Applications Information section.  
BSENSE < 2.9V  
TRICKLE CHARGE  
MODE  
EN DRIVEN LOW  
OR  
UVLO CONDITION  
STOPS  
1/10TH FULL CURRENT  
Undervoltage Lockout (UVLO)  
CHRG: STRONG  
PULL-DOWN  
Aninternalundervoltagelockoutcircuitmonitorstheinput  
voltageandkeepsthechargerinshutdownmodeuntilVCC  
risesabovetheundervoltagelockoutthreshold. TheUVLO  
circuit has a built-in hysteresis of 200mV. Furthermore, to  
protect against reverse current in the power MOSFET, the  
UVLO circuit keeps the charger in shutdown mode if VCC  
falls to within 30mV of the BSENSE voltage. If the UVLO  
comparator is tripped, the charger will not come out of  
shutdown mode until VCC rises 100mV above the BSENSE  
voltage.  
BSENSE > 2.9V  
BSENSE > 2.9V  
SHUTDOWN MODE  
CHARGE MODE  
FULL CURRENT  
CHRG: STRONG  
I
DROPS TO <25µA  
CC  
CHRG: Hi-Z  
PULL-DOWN  
PROG < 100mV  
STANDBY MODE  
NO CHARGE CURRENT  
CHRG: Hi-Z  
EN DRIVEN HIGH  
OR  
UVLO CONDITION  
2.9V < BSENSE < 4.1V  
405842 F01  
Manual Shutdown  
Figure 1. State Diagram of a Typical Charge Cycle  
At any point in the charge cycle, the LTC4058 can be put  
into shutdown mode by driving the EN pin high. This  
reduces the battery drain current to less than 2µA and the  
supply current to less than 50µA. When in shutdown  
mode, the CHRG pin is in the high impedance state. A new  
charge cycle can be initiated by driving the EN pin low. A  
resistor pull-down on this pin forces the LTC4058 to be  
enabled if the pin is allowed to float.  
Power Supply Status Indicator (ACPR)  
The power supply status output has two states: pull-down  
and high impedance. The pull-down state indicates that  
VCC isabovetheUVLOthreshold(3.8V)andisalso100mV  
above the battery voltage. When these conditions are not  
met, the ACPR pin is high impedance indicating that the  
LTC4058 is unable to charge the battery.  
Thermal Limiting  
Automatic Recharge  
Aninternalthermalfeedbackloopreducestheprogrammed  
chargecurrentifthedietemperatureattemptstoriseabove  
apresetvalueofapproximately120°C.Thisfeatureprotects  
the LTC4058 from excessive temperature and allows the  
user to push the limits of the power handling capability of  
agivencircuitboardwithoutriskofdamagingtheLTC4058.  
Thechargecurrentcanbesetaccordingtotypical(notworst  
case) ambient temperature with the assurance that the  
Oncethechargecycleisterminated,theLTC4058continu-  
ously monitors the voltage on the BSENSE pin using a  
comparator with a 2ms filter time (tRECHARGE). A charge  
cycle restarts when the battery voltage falls below 4.10V  
(whichcorrespondstoapproximately80%to90%battery  
capacity). This ensures that the battery is kept at, or near,  
a fully charged condition and eliminates the need for  
periodic charge cycle initiations. The CHRG output enters  
a pull-down state during recharge cycles.  
sn405842 405842fs  
8
LTC4058-4.2/LTC4058X-4.2  
U
W U U  
APPLICATIO S I FOR ATIO  
Kelvin Sensing the Battery (BSENSE Pin)  
out of the BAT pin is typically of more interest than the  
instantaneous current pulses. In such a case, a simple RC  
filter can be used on the PROG pin to measure the average  
battery current, as shown in Figure 2. A 10k resistor has  
been added between the PROG pin and the filter capacitor  
to ensure stability.  
The internal P-channel MOSFET drain is connected to the  
BAT pin, while the BSENSE pin connects through an inter-  
nal precision resistor divider to the input of the constant-  
voltageamplifier. ThisarchitectureallowstheBSENSEpin  
to Kelvin sense the positive battery terminal. This is espe-  
cially useful when the copper trace from the BAT pin to the  
Li-Ion battery is long and has a high resistance. High  
charge currents can cause a significant voltage drop be-  
tween the positive battery terminal and the BAT pin. In this  
situation, a separate trace from the BSENSE pin to the  
battery terminals will eliminate this voltage error and re-  
sultinmoreaccuratebatteryvoltagesensing.TheBSENSE  
pin MUST be electrically connected to the BAT pin.  
LTC4058-4.2  
CHARGE  
10k  
CURRENT  
PROG  
MONITOR  
CIRCUITRY  
R
PROG  
C
FILTER  
GND  
405842 F02  
Figure 2. Isolating Capacitive Load on PROG Pin and Filtering  
Stability Considerations  
Power Dissipation  
The constant-voltage mode feedback loop is stable with-  
out an output capacitor, provided a battery is connected to  
the charger output. With no battery present, an output  
capacitor on the BAT pin is recommended to reduce ripple  
voltage. When using high value, low ESR ceramic capaci-  
tors, it is recommended to add a 1resistor in series with  
the capacitor. No series resistor is needed if tantalum  
capacitors are used.  
It is not necessary to design for worst-case power dissi-  
pation scenarios because the LTC4058 automatically re-  
duces the charge current during high power conditions.  
The conditions that cause the LTC4058 to reduce charge  
currentthroughthermalfeedbackcanbeapproximatedby  
considering the power dissipated in the IC. Nearly all of  
this power dissipation is generated by the internal  
MOSFET—this is calculated to be approximately:  
In constant-current mode, the PROG pin is in the feedback  
loop, not the battery. The constant-current mode stability  
is affected by the impedance at the PROG pin. With no  
additional capacitance on the PROG pin, the charger is  
stable with program resistor values as high as 20k; how-  
ever, additional capacitance on this node reduces the  
maximum allowed program resistor. The pole frequency  
at the PROG pin should be kept above 100kHz. Therefore,  
if the PROG pin is loaded with a capacitance, CPROG, the  
following equation can be used to calculate the maximum  
PD = (VCC – VBAT) • IBAT  
where PD is the power dissipated, VCC is the input supply  
voltage, VBAT is the battery voltage and IBAT is the charge  
current. The approximate ambient temperature at which  
the thermal feedback begins to protect the IC is:  
TA = 120°C – PDθJA  
TA = 120°C – (VCC – VBAT) • IBAT θJA  
Example: An LTC4058 operating from a 5V supply is  
programmed to supply 800mA full-scale current to a  
dischargedLi-Ionbatterywithavoltageof3.3V.Assuming  
θJA is 50°C/W (see Thermal Considerations), the ambient  
temperatureatwhichtheLTC4058willbegintoreducethe  
charge current is approximately:  
resistance value for RPROG  
:
1
RPROG  
2π 105 CPROG  
Average, ratherthaninstantaneouschargecurrentmaybe  
of interest to the user. For example, if a switching power  
supply operating in low current mode is connected in  
parallel with the battery, the average current being pulled  
TA = 120°C – (5V – 3.3V) • (800mA) • 50°C/W  
TA = 120°C – 1.36W • 50°C/W = 120°C – 68°C  
TA = 52°C  
sn405842 405842fs  
9
LTC4058-4.2/LTC4058X-4.2  
W U U  
U
APPLICATIO S I FOR ATIO  
The LTC4058 can be used above 52°C ambient but the  
ceramiccapacitors.Becauseoftheself-resonantandhigh  
chargecurrentwillbereducedfrom800mA.Theapproxi- Q characteristics of some types of ceramic capacitors,  
mate current at a given ambient temperature can be high voltage transients can be generated under some  
approximated by:  
start-up conditions such as connecting the charger input  
to a live power source. Adding a 1.5resistor in series  
with an X5R ceramic capacitor will minimize start-up  
voltage transients. For more information, see Application  
Note 88.  
120°C – TA  
V – V • θ  
CC JA  
IBAT  
=
(
)
BAT  
Using the previous example with an ambient temperature  
of 60°C, the charge current will be reduced to  
approximately:  
Charge Current Soft-Start  
The LTC4058 includes a soft-start circuit to minimize the  
inrushcurrentatthestartofachargecycle.Whenacharge  
cycle is initiated, the charge current ramps from zero to  
thefull-scalecurrentoveraperiodofapproximately100µs.  
Thishastheeffectofminimizingthetransientcurrentload  
on the power supply during start-up.  
120°C – 60°C  
5V – 3.3V • 50°C/W 85°C/A  
60°C  
IBAT  
=
=
(
)
IBAT = 706mA  
Moreover,whenthermalfeedbackreducesthechargecur-  
rentthevoltageatthePROGpinisalsoreducedproportion-  
ally as discussed in the Operation section. It is important  
to remember that LTC4058 applications do not need to be  
designedforworst-casethermalconditionssincetheICwill  
automatically reduce power dissipation when the junction  
temperature reaches approximately 120°C.  
USB and Wall Adapter Power  
The LTC4058 allows charging from both a wall adapter  
and a USB port. Figure 3 shows an example of how to  
combinewall adapterand USB powerinputs. AP-channel  
MOSFET, MP1, is used to prevent back conducting into  
the USB port when a wall adapter is present and a  
Schottky diode, D1, is used to prevent USB power loss  
through the 1k pull-down resistor.  
Thermal Considerations  
In order to deliver maximum charge current under all  
conditions, it is critical that the exposed metal pad on the  
backside of the LTC4058 package is soldered to the PC  
board ground. Correctly soldered to a 2500mm2 double-  
sided 1oz copper board, the LTC4058 has a thermal  
resistance of approximately 40°C/W. Failure to make  
thermal contact between the exposed pad on the back-  
side of the package and the copper board will result in  
thermal resistances far greater than 40°C/W. As an  
example, a correctly soldered LTC4058 can deliver over  
800mA to a battery from a 5V supply at room tempera-  
ture. Without a backside thermal connection, this num-  
ber will drop considerably.  
Typically a wall adapter can supply more current than the  
500mA-limited USB port. Therefore, an N-channel  
MOSFET, MN1, and an extra 3.3k program resistor are  
used to increase the charge current to 800mA when the  
wall adapter is present.  
5V WALL  
ADAPTER  
I
CHG  
800mA I  
LTC4058-4.2  
BAT  
CHG  
2
1
5
SYSTEM  
LOAD  
D1  
6
USB POWER  
500mA I  
V
CC  
BSENSE  
CHG  
4, 9  
MP1  
GND PROG  
+
Li-Ion  
BATTERY  
3.3k  
1k  
2k  
MN1  
VCC Bypass Capacitor  
405842 F03  
Many types of capacitors can be used for input bypassing,  
however,cautionmustbeexercisedwhenusingmultilayer  
Figure 3. Combining Wall Adapter and USB Power  
sn405842 405842fs  
10  
LTC4058-4.2/LTC4058X-4.2  
U
W U U  
APPLICATIO S I FOR ATIO  
DRAIN-BULK  
DIODE OF FET  
Reverse Polarity Input Voltage Protection  
LTC4058  
CC  
In some applications, protection from reverse polarity  
voltage on VCC is desired. If the supply voltage is high  
enough, a series blocking diode can be used. In other  
cases,wherethevoltagedropmustbekeptlow,aP-channel  
MOSFET can be used (as shown in Figure 4).  
V
V
IN  
405842 F04  
Figure 4. Low Loss Input Reverse Polarity Protection  
U
PACKAGE DESCRIPTIO  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.28 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(DD8) DFN 0203  
4
1
0.28 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
sn405842 405842fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC4058-4.2/LTC4058X-4.2  
U
TYPICAL APPLICATIO S  
Full Featured Single Cell Li-Ion Charger  
Li-Ion Battery Charger with Reverse Polarity Input Protection  
V
IN  
5V  
5V  
WALL  
1k  
1k  
6
ADAPTER  
6
500mA  
V
500mA  
CC  
V
2
BAT  
CC  
BAT  
BSENSE  
2
1
7
3
ACPR  
CHRG  
1
BSENSE  
4.7µF  
LTC4058-4.2  
1-CELL  
Li-Ion  
BATTERY  
LTC4058-4.2  
+
1-CELL  
Li-Ion  
BATTERY  
+
8
5
4.7µF  
8
5
EN PROG  
EN PROG  
GND  
4, 9  
2k  
GND  
4, 9  
1µF  
2k  
405842 TA04  
405842 TA03  
USB/Wall Adapter Power Li-Ion Charger  
I
BAT  
2
1
BAT  
BSENSE  
5V WALL  
ADAPTER  
+
LTC4058-4.2  
Li-Ion  
CELL  
6
USB  
POWER  
V
CC  
2.5k  
5
1µF  
PROG  
GND  
100mA/  
500mA  
1k  
4, 9 10k  
µC  
405842 TA05  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1732  
Lithium-Ion Linear Battery Charger Controller  
Simple Charger uses External FET, Features Preset Voltages, C/10  
Charger Detection and Programmable Timer, Input Power Good Indication  
Standalone Charger with Programmable Timer, Up to 1.5A Charge Current  
Simple ThinSOT Charger, No Blocking Diode, No Sense Resistor Needed  
LTC1733  
LTC1734  
LTC1734L  
LTC1998  
LTC4007  
Monolithic Lithium-Ion Linear Battery Charger  
Lithium-Ion Linear Battery Charger in ThinSOTTM  
Lithium-Ion Linear Battery Charger in ThinSOT  
Lithium-Ion Low Battery Detector  
Low Current Version of LTC1734; 50mA I  
180mA  
CHRG  
1% Accurate 2.5µA Quiescent Current, SOT-23  
4A Multicell Li-Ion Battery Charger  
Standalone Charger, 6V V 28V, Up to 96% Efficiency,  
IN  
±0.8% Charging Voltage Accuracy  
LTC4050  
Lithium-Ion Linear Battery Charger Controller  
Features Preset Voltages, C/10 Charger Detection and Programmable Timer,  
Input Power Good Indication, Thermistor Interface  
LTC4052  
LTC4053  
LTC4054  
Monolithic Lithium-Ion Battery Pulse Charger  
No Blocking Diode or External Power FET Required, 1.5A Charge Current  
USB Compatible Monolithic Li-Ion Battery Charger  
Standalone Charger with Programmable Timer, Up to 1.25A Charge Current  
Standalone Linear Li-Ion Battery Charger  
with Integrated Pass Transistor in ThinSOT  
Thermal Regulation Prevents Overheating, C/10 Termination,  
C/10 Indicator, Up to 800mA Charge Current  
LTC4057  
LTC4410  
Li-Ion Linear Battery Charger  
USB Power Manager  
Up to 800mA Charge Current, Thermal Regulation, ThinSOT Package  
For Simultaneous Operation of USB Peripheral and Battery Charging from USB  
Port, Keeps Current Drawn from USB Port Constant, Keeps Battery Fresh, Use  
with the LTC4053, LTC1733, or LTC4054  
LTC4412  
Low Loss PowerPathTM Controller in ThinSOT  
Automatic Switching Between DC Sources, Load Sharing,  
Replaces ORing Diodes  
ThinSOT and PowerPath are trademarks of Linear Technology Corporation.  
sn405842 405842fs  
LT/TP 1103 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY