LTC4059EDC#TR [Linear]

LTC4059/LTC4059A - 900mA Linear Li-Ion Battery Chargers with Thermal Regulation in 2 x 2 DFN; Package: DFN; Pins: 6; Temperature Range: -40°C to 85°C;
LTC4059EDC#TR
型号: LTC4059EDC#TR
厂家: Linear    Linear
描述:

LTC4059/LTC4059A - 900mA Linear Li-Ion Battery Chargers with Thermal Regulation in 2 x 2 DFN; Package: DFN; Pins: 6; Temperature Range: -40°C to 85°C

电池
文件: 总12页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4059/LTC4059A  
900mA Linear Li-Ion  
Battery Chargers with  
Thermal Regulation in 2 × 2 DFN  
U
FEATURES  
DESCRIPTIO  
The LTC®4059/LTC4059A are constant-current/constant-  
voltagelinearchargersforsinglecelllithium-ionbatteries.  
Their 2mm × 2mm DFN package and low external compo-  
nent count make these chargers especially well suited for  
portable applications. Furthermore, they are designed to  
work within USB power specifications.  
Programmable Charge Current Up to 900mA  
Charge Current Monitor Output for Charge  
Termination*  
Constant-Current/Constant-Voltage Operation with  
Thermal Regulation to Maximize Charging Rate  
Without Risk of Overheating*  
Constant-Current Source Mode for Charging  
Nickel Batteries (LTC4059 Only)  
ACPR Pin Indicates Presence of Input Supply  
(LTC4059A Only)  
No External MOSFET, Sense Resistor or Blocking  
Diode Required  
Operating Supply Voltage from 3.75V to 8V  
Charges Single Cell Li-Ion Batteries Directly from  
USB Port  
No external sense resistor, MOSFET or blocking diode is  
required. Thermal feedback regulates the charge current  
tolimitthedietemperatureduringhighpoweroperationor  
high ambient thermal conditions. The charge voltage is  
fixed at 4.2V and the charge current is programmable.  
When the input supply (wall adapter or USB supply) is  
removed,theLTC4059/LTC4059Aautomaticallyenteralow  
currentstate,droppingthebatterycurrentdraintolessthan  
1µA. With power applied, they can be put into shutdown  
mode, reducing the supply current to 10µA.  
Preset 4.2V Charge Voltage with 0.6% Accuracy  
10µA Supply Current in Shutdown Mode  
Tiny 6-Lead (2mm × 2mm) DFN Package  
The LTC4059A features an open-drain status pin to indi-  
cate the presence of an input voltage. The LTC4059 can be  
used as a constant-current source to charge Nickel cells.  
Other features include undervoltage lockout protection  
and a current monitor pin which can indicate when to  
terminate a charge cycle.  
U
APPLICATIO S  
Wireless PDAs  
Cellular Phones  
Portable Electronics  
The LTC4059/LTC4059A are available in a 6-lead, low  
Wireless Headsets  
Digital Cameras  
profile (0.8mm) 2mm × 2mm DFN package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
*US Patent 6,522,118  
U
TYPICAL APPLICATIO  
Complete Charge Cycle (800mAh Battery)  
700  
4.4  
CONSTANT  
CURRENT  
CONSTANT  
VOLTAGE  
V
DD  
50k  
600  
4.2  
V
IN  
4.5V TO 8V  
500  
400  
300  
200  
100  
0
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
ACPR  
µP  
V
CC  
LTC4059A  
EN  
GND PROG  
600mA  
BAT  
1µF  
4.2V  
Li-Ion  
BATTERY  
+
2k  
V
= 5V  
PROG  
= 25°C  
CC  
4059 TA01  
R
= 2k  
T
A
0
0.5  
1
1.5  
2
2.5  
4059 TA02  
TIME (HOURS)  
4059fa  
1
LTC4059/LTC4059A  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Input Supply Voltage (VCC) ...................... –0.3V to 10V  
BAT, PROG, EN, Li CC, ACPR ................... –0.3V to 10V  
BAT Short-Circuit Duration ...........................Continuous  
BAT Pin Current ............................................... 1000mA  
PROG Pin Current............................................. 1000µA  
Junction Temperature.......................................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
ORDER PART  
NUMBER  
GND  
Li CC/ACPR*  
BAT  
1
2
3
6
5
4
EN  
7
PROG  
LTC4059EDC  
LTC4059AEDC  
V
CC  
DC6 PACKAGE  
6-LEAD (2mm × 2mm) PLASTIC DFN  
DC6 PART  
MARKING  
TJMAX = 125°C, θJA = 60°C/W TO 85°C/W (NOTE 3)  
*Li CC PIN 2 ON LTC4059EDC,  
ACPR PIN 2 ON LTC4059AEDC  
EXPOSED PAD IS GND (PIN 7)  
MUST BE SOLDERED TO PCB  
LAFU  
LBJH  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V unless otherwise noted.  
SYMBOL PARAMETER  
Supply Voltage  
CONDITIONS  
MIN  
TYP  
MAX  
8
UNITS  
V
V
V
CC  
3.75  
CC  
I
I
I
Quiescent V Supply Current  
V
V
V
= 4.5V (Forces I  
and I  
= 0)  
25  
10  
4
60  
25  
10  
µA  
CC  
CC  
BAT  
EN  
BAT  
PROG  
V
V
Supply Current in Shutdown  
= V  
µA  
CCMS  
CCUV  
CC  
CC  
Supply Current in Undervoltage  
< V ; V = 3.5V, V  
= 4V  
µA  
CC  
CC  
BAT CC  
BAT  
Lockout  
V
V
BAT  
Regulated Output Voltage  
I
= 2mA  
4.175  
4.158  
4.2  
4.2  
4.225  
4.242  
V
V
FLOAT  
BAT  
4.5V < V < 8V, I  
= 2mA  
BAT  
CC  
I
BAT Pin Current  
R
PROG  
R
PROG  
= 2.43k, Current Mode, V  
= 12.1k, Current Mode, V  
= 3.8V  
= 3.8V  
475  
94  
500  
100  
525  
106  
mA  
mA  
BAT  
BAT  
BAT  
I
I
Battery Drain Current in Shutdown  
V
V
= V , V > V  
BAT  
0
1
±1  
µA  
µA  
BMS  
BUV  
EN  
CC  
CC CC  
Battery Drain Current in Undervoltage  
Lockout  
< V , V  
= 4V  
0
4
BAT BAT  
V
V
V
– V  
Undervoltage Lockout  
V
V
from Low to High, V  
from High to Low, V  
= 3.7V  
= 3.7V  
100  
0
150  
35  
200  
80  
mV  
mV  
UV  
CC  
BAT  
CC  
CC  
BAT  
BAT  
Threshold  
PROG Pin Voltage  
R
R
= 2.43k, I  
= 12.1k, I  
= 500µA  
= 100µA  
1.18  
1.18  
1.21  
1.21  
1.24  
1.24  
V
V
PROG  
PROG  
PROG  
PROG  
PROG  
V
V
Manual Shutdown Threshold  
Manual Shutdown Hysteresis  
EN Pin Input Resistance  
V
V
V
V
V
Increasing  
Decreasing  
= 5V  
0.3  
0.92  
85  
1.2  
V
mV  
MΩ  
V
MS  
EN  
MSHYS  
EN  
R
1
1.85  
0.92  
85  
3
EN  
EN  
V
V
V
Voltage Mode Disable Threshold  
Voltage Mode Disable Hysteresis  
ACPR Pin Output Low Voltage  
Increasing (LTC4059 Only)  
Decreasing (LTC4059 Only)  
= 300µA (LTC4059A Only)  
0.3  
1.2  
Li CC  
Li CCHYS  
ACPR  
LIM  
Li CC  
Li CC  
ACPR  
mV  
V
I
0.25  
115  
0.5  
t
Junction Temperature In Constant  
Temperature Mode  
°C  
R
Power FET “ON” Resistance  
I
= 150mA  
BAT  
800  
1200  
mΩ  
ON  
(Between V and BAT)  
CC  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 2: The LTC4059E/LTC4059AE are guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the –40°C to 85°C  
Note 3: Failure to solder the exposed backside of the package to the PC  
board ground plane will result in a thermal resistance much higher than  
60°C/W.  
4059fa  
2
LTC4059/LTC4059A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Battery Regulation (Float) Voltage  
vs Battery Charge Current  
Battery Regulation (Float) Voltage  
vs Temperature  
Regulated Output (Float) Voltage  
vs Supply Voltage  
4.24  
4.23  
4.22  
4.21  
4.26  
4.24  
4.22  
4.20  
4.24  
V
I
= 5V  
T
I
= 25°C  
V
T
= 5V  
CC  
BAT  
R
A
CC  
A
R
= 2mA  
= 10mA  
= 25°C  
BAT  
4.23  
4.22  
4.21  
= 2.43k  
R
= 2.43k  
= 2.43k  
PROG  
PROG  
PROG  
4.20  
4.19  
4.18  
4.16  
4.20  
4.19  
4.18  
4.17  
4.16  
4.14  
4.12  
4.10  
4.18  
4.17  
4.16  
–25  
0
50  
–50  
75  
100  
100  
200  
400  
25  
5
6
0
500  
4
8
300  
(mA)  
7
TEMPERATURE (°C)  
I
V
(V)  
BAT  
CC  
4059 G02  
4059 G01  
4059 G03  
Charge Current vs Ambient  
Temperature with Thermal  
Regulation  
Charge Current vs Input Voltage  
Charge Current vs Battery Voltage  
600  
500  
600  
500  
600  
500  
400  
300  
V
T
= 3.85V  
Li CC = 5V  
LTC4059 ONLY  
BAT  
A
= 25°C  
R
PROG  
= 2.43k  
R
PROG  
= 2.43k  
Li CC = 0V  
LTC4059A  
THERMAL  
LIMITING  
400  
300  
400  
300  
THERMAL CONTROL  
LOOP IN OPERATION  
200  
100  
0
200  
100  
0
200  
100  
0
R
= 12.1k  
PROG  
5
R
= 12.1k  
50  
PROG  
25  
V
A
R
= 5V  
CC  
T
= 25°C  
V
V
= 5V  
BAT  
CC  
= 2.43k  
PROG  
= 3.85V  
4
6
7
8
2.5  
3
3.5  
(V)  
4
4.5  
100 125  
–50 –25  
0
75  
V
CC  
(V)  
V
BAT  
AMBIENT TEMPERATURE (°C)  
4059 G04  
4059 G05  
4059 G06  
PROG Pin Voltage  
vs Charge Current  
PROG Pin Voltage vs Temperature  
(Constant Current Mode)  
Power FET “ON” Resistance  
vs Temperature  
1.24  
1.23  
1.22  
1.21  
1200  
1000  
900  
800  
700  
600  
500  
400  
1.4  
1.2  
V
V
= 5V  
BAT  
V
T
= 5V  
V
I
= 5V  
CC  
CC  
A
R
CC  
BAT  
= 3.85V  
= 25°C  
= 100mA  
= 2.43k  
PROG  
1.0  
0.8  
0.6  
0.4  
0.2  
0
R
= 12.1k  
PROG  
R
= 2.43k  
PROG  
1.20  
1.19  
1.18  
50  
100 125  
–50 –25  
0
25  
75  
100  
200  
300  
(mA)  
500  
–50  
0
25  
50  
75  
100  
0
400  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
I
BAT  
4059 G08  
4059 F07  
4059 G09  
4059fa  
3
LTC4059/LTC4059A  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VCC – VBAT Undervoltage Lockout  
Threshold vs Battery Voltage  
EN Pin Current  
vs EN Voltage and Temperature  
UVLO Battery Drain Current  
vs Battery Voltage  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
PROG  
V
A
= 0V  
A
CC  
R
= 12.1k  
T
= 25°C  
T
= 25°C  
A
T
= 100°C  
A
T
= –20°C  
A
0
4
6
1
3
3
4
5
6
7
8
0
1
2
3
5
0
2
4
5
V
(V)  
V
EN  
(V)  
V
BAT  
(V)  
BAT  
4059 G10  
4059 G11  
4059 G12  
UVLO Battery Drain Current  
vs Temperature  
Manual Shutdown Supply Current  
vs Temperature  
Manual Shutdown Threshold  
Voltage vs Temperature  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
14  
12  
10  
8
V
V
= 0V  
= 4V  
V
CC  
V
EN  
= 5V  
= 5V  
CC  
BAT  
RISING  
6
FALLING  
4
2
0
–50 –25  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75  
100  
50  
TEMPERATURE (°C)  
100 125  
–25  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4059 G13  
4059 F15  
4059 G14  
Voltage Mode Disable Threshold  
Voltage vs Temperature  
(LTC4059 Only)  
ACPR Pin Output Low Voltage  
vs Temperature (LTC4059A Only)  
ACPR Pin (Pull-Down State)  
I-V Curve (LTC4059A Only)  
0.50  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
V
V
I
= 5V  
V
V
T
= 5V  
BAT  
= 25°C  
CC  
CC  
= 4.2V  
= 4.2V  
BAT  
ACPR  
0.45  
0.40  
= 300µA  
A
0.35  
0.30  
0.25  
0.20  
0.15  
RISING  
FALLING  
0.10  
25  
0
50  
75 100 125  
0
1
2
3
4
5
6
7
8
50  
25  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
ACPR  
(V)  
4059 G17  
4059 G18  
4059 F16  
4059fa  
4
LTC4059/LTC4059A  
U
U
U
PI FU CTIO S  
GND (Pins 1, 7): Ground/Exposed Pad. The exposed  
package pad is ground and must be soldered to the PC  
board for maximum heat transfer.  
PROG (Pin 5): Charge Current Program and Charge Cur-  
rent Monitor Pin. Connecting a resistor, RPROG, to ground  
programs the charge current. When charging in constant-  
current mode, this pin servos to 1.21V. In all modes, the  
voltage on this pin can be used to measure the charge  
current using the following formula:  
Li CC (Pin 2, LTC4059): Li-Ion/Constant Current Input  
Pin. Pulling this pin above VLi CC disables voltage mode  
thereby providing a constant current to the BAT pin. This  
feature is useful for charging Nickel chemistry batteries.  
Tie to GND if unused.  
VPROG  
RPROG  
IBAT  
=
1000  
ACPR (Pin 2, LTC4059A): Open-Drain Power Supply  
Status Output. When VCC is greater than the undervoltage  
lockout threshold, the ACPR pin will pull to ground;  
otherwise the pin is forced to a high impedance state.  
EN (Pin 6): Enable Input Pin. Pulling this pin above the  
manual shutdown threshold (VMS is typically 0.92V) puts  
theLTC4059inshutdownmode,thusterminatingacharge  
cycle.Inshutdownmode,theLTC4059haslessthan25µA  
supply current and less than 1µA battery drain current.  
Enable is the default state, but the pin should be tied to  
GND if unused.  
BAT (Pin 3): Charge Current Output. Provides charge  
current to the battery and regulates the final float voltage  
to 4.2V. An internal precision resistor divider from this pin  
sets this float voltage and is disconnected in shutdown  
mode.  
VCC (Pin 4): Positive Input Supply Voltage. This pin  
provides power to the charger. VCC can range from 3.75V  
to 8V. This pin should be bypassed with at least a 1µF  
capacitor. When VCC is within 35mV of the BAT pin  
voltage, the LTC4059 enters shutdown mode, dropping  
IBAT to less than 4µA.  
4059fa  
5
LTC4059/LTC4059A  
W
BLOCK DIAGRA  
4
V
CC  
M2  
1×  
M1  
1000×  
EN  
LOGIC  
6
R
D1  
D2  
EN  
BAT  
3
+
+
R1  
MA  
VA  
CA  
D3  
+
+
REF  
1.2V VOLTAGE  
REFERENCE  
REF  
R2  
R3  
T
+
DIE  
TA  
115°C  
PROG  
Li CC  
GND  
5
2
1,7  
4059 F01  
Figure 1 (LTC4059)  
4
V
CC  
M2  
1×  
M1  
1000×  
EN  
LOGIC  
6
R
BAT  
V
CC  
D1  
D2  
EN  
BAT  
+
3
+
ACPR  
+
2
R1  
MA  
VA  
CA  
D3  
+
+
REF  
1.2V VOLTAGE  
REFERENCE  
REF  
R2  
R3  
T
+
DIE  
TA  
115°C  
PROG  
GND  
5
1,7  
4059 F02  
Figure 2 (LTC4059A)  
4059fa  
6
LTC4059/LTC4059A  
U
OPERATIO  
The LTC4059/LTC4059A are linear battery chargers de-  
signed primarily for charging single cell lithium-ion bat-  
teries. Featuring an internal P-channel power MOSFET,  
the chargers use a constant-current/constant-voltage  
charge algorithm with programmable current. Charge  
currentcanbeprogrammedupto900mAwithafinalfloat  
voltage accuracy of ±0.6%. No blocking diode or external  
sense resistor is required; thus, the basic charger circuit  
requires only two external components. The ACPR pin  
(LTC4059A) monitors the status of the input voltage with  
an open-drain output. The Li CC pin (LTC4059) disables  
constant-voltage operation and turns the LTC4059 into a  
precisioncurrentsourcecapableofchargingNickelchem-  
istry batteries. Furthermore, the LTC4059/LTC4059A are  
designed to operate from a USB power source.  
benefitofthethermallimitisthatchargecurrentcanbeset  
according to typical, not worst-case, ambient tempera-  
tures for a given application with the assurance that the  
charger will automatically reduce the current in worst-  
case conditions.  
The charge cycle begins when the voltage at the VCC pin  
rises approximately 150mV above the BAT pin voltage, a  
program resistor is connected from the PROG pin to  
ground, and the EN pin is pulled below the shutdown  
threshold (typically 0.85V).  
If the BAT pin voltage is below 4.2V, or the Li CC pin is  
pulled above VLi CC (LTC4059 only), the LTC4059 will  
charge the battery with the programmed current. This is  
constant-currentmode. WhentheBATpinapproachesthe  
final float voltage (4.2V), the LTC4059 enters constant-  
voltage mode and the charge current begins to decrease.  
An internal thermal limit reduces the programmed charge  
current if the die temperature attempts to rise above a  
presetvalueofapproximately115°C. Thisfeatureprotects  
the LTC4059/LTC4059A from excessive temperature, and  
allows the user to push the limits of the power handling  
capabilityofagivencircuitboardwithoutriskofdamaging  
the LTC4059/LTC4059A orexternalcomponents. Another  
To terminate the charge cycle the EN should be pulled  
above the shutdown threshold. Alternatively, reducing the  
input voltage below the BAT pin voltage will also terminate  
the charge cycle.  
W U U  
U
APPLICATIO S I FOR ATIO  
Programming Charge Current  
Undervoltage Lockout (UVLO)  
The charge current is programmed using a single resistor  
from the PROG pin to ground. The battery charge current  
is 1000 times the current out of the PROG pin. The  
program resistor and the charge current are calculated  
using the following equations:  
Aninternalundervoltagelockoutcircuitmonitorstheinput  
voltageandkeepsthechargerinundervoltagelockoutuntil  
VCC risesapproximately150mVabovetheBATpinvoltage.  
The UVLO circuit has a built-in hysteresis of 115mV. If the  
BAT pin voltage is below approximately 2.75V, then the  
charger will remain in undervoltage lockout until VCC rises  
above approximately 3V. During undervoltage lockout  
conditions, maximum battery drain current is 4µA.  
1.21V  
ICHG  
1.21V  
RPROG  
RPROG = 1000 •  
, ICHG = 1000 •  
For best stability over temperature and time, 1% metal-  
film resistors are recommended.  
Power Supply Status Indicator  
(ACPR, LTC4059A Only)  
The charge current out of the BAT pin can be determined  
at any time by monitoring the PROG pin voltage and using  
the following equation:  
The power supply status output has two states: pull-down  
and high impedance. The pull-down state indicates that  
VCC is above the undervoltage lockout threshold (see  
Undervoltage Lockout). When this condition is not met,  
the ACPR pin is high impedance indicating that the  
VPROG  
IBAT  
=
1000  
RPROG  
LTC4059A is unable to charge the battery.  
4059fa  
7
LTC4059/LTC4059A  
W U U  
U
APPLICATIO S I FOR ATIO  
Shutdown Mode  
ance of the current source pair, M1 and M2 (note that M1  
is the internal P-channel power MOSFET). It ensures that  
the drain current of M1 is exactly 1000 times greater than  
the drain current of M2.  
ChargingcanbeterminatedbypullingtheENpinabovethe  
shutdown threshold (approximately 0.92V). In shutdown  
mode, thebatterydraincurrentisreducedtolessthan1µA  
and the supply current to 10µA.  
Amplifiers CA and VA are used in separate feedback loops  
to force the charger into constant-current or voltage  
mode, respectively. Diodes D1 and D2 provide priority to  
either the constant-current or constant-voltage loop;  
whicheveristryingtoreducethechargecurrentthemost.  
The output of the other amplifier saturates low which  
effectively removes its loop from the system. When in  
constant-current mode, CA servos the voltage at the  
PROG pin to be 1.21V. VA servos its inverting input to  
precisely 1.21V when in constant-voltage mode and the  
internal resistor divider made up of R1 and R2 ensures  
that the battery voltage is maintained at 4.2V. The PROG  
pin voltage gives an indication of the charge current  
during constant-voltage mode as discussed in the Pro-  
gramming Charge Current section.  
USB and Wall Adapter Power  
Although the LTC4059/LTC4059A allow charging from a  
USB port, a wall adapter can also be used to charge Li-Ion  
batteries. Figure 3 shows an example of how to combine  
walladapterandUSBpowerinputs. AP-channelMOSFET,  
MP1, isusedtopreventbackconductingintotheUSBport  
when a wall adapter is present and Schottky diode, D1, is  
used to prevent USB power loss through the 1k pull-down  
resistor.  
Typically a wall adapter can supply significantly more  
current than the 500mA limited USB port. Therefore, an  
N-channel MOSFET, MN1, and an extra program resistor  
areusedtoincreasethechargecurrentto850mAwhenthe  
wall adapter is present.  
Transconductance amplifier, TA, limits the die tempera-  
ture to approximately 115°C when in constant-tempera-  
turemode.TAactsinconjunctionwiththeconstant-current  
loop. When the die temperature exceeds approximately  
115°C, TA sources current through R3. This causes CA to  
reduce the charge current until the PROG pin voltage plus  
thevoltageacrossR3equals1.21V.DiodeD3ensuresthat  
TA does not affect the charge current when the die tem-  
perature is below approximately 115°C. The PROG pin  
voltage continues to give an indication of the charge  
current.  
5V WALL  
I
CHG  
ADAPTER  
3
5
SYSTEM  
LOAD  
850mA I  
CHG  
BAT  
LTC4059  
D1  
USB  
4
POWER  
V
CC  
+
Li-Ion  
BATTERY  
500mA I  
MP1  
1k  
CHG  
PROG  
3.4k  
MN1  
2.43k  
4059 F03  
Figure 3. Combining Wall Adapter and USB Power  
In typical operation, the charge cycle begins in constant-  
current mode with the current delivered to the battery  
equal to 1210V/RPROG. If the power dissipation of the  
LTC4059/LTC4059A results in the junction temperature  
approaching 115°C, the amplifier (TA) will begin decreas-  
ing the charge current to limit the die temperature to  
approximately 115°C. As the battery voltage rises, the  
LTC4059/LTC4059Aeitherreturntoconstant-currentmode  
or enter constant-voltage mode straight from constant-  
temperature mode. Regardless of mode, the voltage at the  
PROG pin is proportional to the current delivered to the  
battery.  
Constant Current/Constant Voltage/  
Constant Temperature  
The LTC4059/LTC4059A use a unique architecture to  
charge a battery in a constant-current, constant-voltage  
and constant-temperature fashion. Figures 1 and 2 show  
simplified block diagrams of the LTC4059 and LTC4059A  
respectively. Three of the amplifier feedback loops shown  
control the constant-current, CA, constant-voltage, VA,  
and constant-temperature, TA modes. A fourth amplifier  
feedback loop, MA, is used to increase the output imped-  
4059fa  
8
LTC4059/LTC4059A  
W U U  
APPLICATIO S I FOR ATIO  
U
Power Dissipation  
It is important to remember that LTC4059/LTC4059A  
applications do not need to be designed for worst-case  
thermal conditions since the IC will automatically reduce  
power dissipation when the junction temperature reaches  
approximately 115°C.  
The conditions that cause the LTC4059/LTC4059A to  
reduce charge current through thermal feedback can be  
approximated by considering the power dissipated in the  
IC. For high charge currents, the LTC4059 power dissipa-  
tion is approximately:  
Board Layout Considerations  
PD = (VCC – VBAT) • IBAT  
In order to be able to deliver maximum charge current  
under all conditions, it is critical that the exposed metal  
padonthebacksideoftheLTC4059/LTC4059Apackageis  
soldered to the PC board ground. Correctly soldered to a  
where PD is the power dissipated, VCC is the input supply  
voltage, VBAT is the battery voltage and IBAT is the charge  
current. It is not necessary to perform any worst-case  
power dissipation scenarios because the LTC4059  
/
2500mm2 double sided 1oz copper board the LTC4059  
/
LTC4059A will automatically reduce the charge current to  
maintain the die temperature at approximately 115°C.  
However, the approximate ambient temperature at which  
the thermal feedback begins to protect the IC is:  
LTC4059A have a thermal resistance of approximately  
60°C/W. Failure to make thermal contact between the  
exposed pad on the backside of the package and the  
copper board will result in thermal resistances far greater  
than60°C/W.Asanexample,acorrectlysolderedLTC4059  
/
TA = 115°C – PDθJA  
LTC4059A can deliver over 900mA to a battery from a 5V  
supply at room temperature. Without a backside thermal  
connection, this number could drop to less than 500mA.  
TA = 115°C – (VCC – VBAT) • IBAT θJA  
Example: Consider an LTC4059 operating from a 5V wall  
adapter providing 900mA to a 3.7V Li-Ion battery. The  
ambienttemperatureabovewhichtheLTC4059/LTC4059A  
begintoreducethe900mAchargecurrentisapproximately:  
Stability Considerations  
TheLTC4059containstwocontrolloops:constantvoltage  
and constant current. The constant-voltage loop is stable  
without any compensation when a battery is connected  
with low impedance leads. Excessive lead length, how-  
ever, may add enough series inductance to require a  
bypasscapacitorofatleast1µFfromBATtoGND. Further-  
more, a 4.7µF capacitor with a 0.2to 1series resistor  
from BAT to GND is required to keep ripple voltage low  
when the battery is disconnected.  
TA = 115°C – (5V – 3.7V) • (900mA) • 50°C/W  
TA = 115°C – 1.17W • 50°C/W = 115°C – 59°C  
TA = 56°C  
The LTC4059 can be used above 56°C, but the charge  
current will be reduced from 900mA. The approximate  
current at a given ambient temperature can be calculated:  
115°C – TA  
High value capacitors with very low ESR (especially ce-  
ramic) reduce the constant-voltage loop phase margin.  
Ceramiccapacitorsupto22µFmaybeusedinparallelwith  
a battery, but larger ceramics should be decoupled with  
0.2to 1of series resistance.  
IBAT  
=
V – V  
θ  
JA  
(
)
CC  
BAT  
Using the previous example with an ambient temperature  
of65°C,thechargecurrentwillbereducedtoapproximately:  
115°C – 65°C  
50°C  
I
nconstant-currentmode,thePROGpinisinthefeedback  
IBAT  
=
=
loop, not the battery. Because of the additional pole  
created by PROG pin capacitance, capacitance on this pin  
must be kept to a minimum. With no additional capaci-  
tanceonthePROGpin, thechargerisstablewithprogram  
resistor values as high as 12k. However, additional ca-  
pacitance on this node reduces the maximum allowed  
4059fa  
5V – 3.7V • 50°C/W 65°C/A  
(
)
IBAT = 770mA  
Furthermore, the voltage at the PROG pin will change  
proportionally with the charge current as discussed in the  
Programming Charge Current section.  
9
LTC4059/LTC4059A  
W U U  
U
APPLICATIO S I FOR ATIO  
program resistor. The pole frequency at the PROG pin  
should be kept above 500kHz. Therefore, if the PROG pin  
is loaded with a capacitance, CPROG, the following equa-  
tion should be used to calculate the maximum resistance  
filter can be used on the PROG pin to measure the average  
battery current as shown in Figure 4. A 20k resistor has  
been added between the PROG pin and the filter capacitor  
to ensure stability.  
value for RPROG  
:
V
CC Bypass Capacitor  
1
Many types of capacitors can be used for input bypassing;  
however, caution must be exercised when using multi-  
layerceramiccapacitors.Becauseoftheself-resonantand  
high Q characteristics of some types of ceramic capaci-  
tors, high voltage transients can be generated under some  
start-up conditions, such as connecting the charger input  
to a live power source. For more information, refer to  
Application Note 88.  
RPROG  
2π • 5 105 CPROG  
Average, rather than instantaneous, battery current may  
beofinteresttotheuser.Forexample,ifaswitchingpower  
supply operating in low current mode is connected in  
parallel with the battery, the average current being pulled  
out of the BAT pin is typically of more interest than the  
instantaneous current pulses. In such a case, a simple RC  
LTC4059  
20k  
CHARGE CURRENT  
PROG  
MONTIOR CIRCUITRY  
GND  
R
PROG  
C
FILTER  
4059 F04  
Figure 4. Isolating Capacitive Load on PROG Pin and Filtering  
Figure 5. Photo of Typical Circuit (2.5mm × 2.7mm)  
4059fa  
10  
LTC4059/LTC4059A  
U
PACKAGE DESCRIPTIO  
DC Package  
6-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1703)  
R = 0.115  
0.38 ± 0.05  
TYP  
4
6
0.56 ± 0.05  
(2 SIDES)  
0.675 ±0.05  
2.50 ±0.05  
0.61 ±0.05  
1.15 ±0.05  
2.00 ±0.10  
(4 SIDES)  
(2 SIDES)  
PIN 1  
NOTCH  
PACKAGE  
OUTLINE  
PIN 1  
TOP MARK  
(SEE NOTE 5)  
(DC6) DFN 0403  
3
1
0.25 ± 0.05  
0.25 ± 0.05  
0.50 BSC  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
1.37 ±0.05  
(2 SIDES)  
1.42 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WCCD-2)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
4059fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC4059/LTC4059A  
U
TYPICAL APPLICATIO  
V
IN  
4.5V TO 6.5V  
600mA  
2k  
V
BAT  
LTC4059  
EN PROG  
Li CC GND  
CC  
4.2V  
Li-Ion  
+
1µF  
BATTERY  
4059 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1733  
Monolithic Lithium-Ion Linear Battery Charger  
Lithium-Ion Linear Battery Charger in ThinSOTTM  
Lithium-Ion Low Battery Detector  
Standalone Charger with Programmable Timer, Up to 1.5A Charge Current  
Simple ThinSOT Charger, No Blocking Diode, No Sense Resistor Needed  
1% Accurate 2.5µA Quiescent Current, SOT-23  
LTC1734  
LTC1998  
LTC4050  
Lithium-Ion Linear Battery Charger Controller  
Simple Charger uses External FET, Features Preset Voltages, C/10  
Charger Detection and Programmable Timer, Input Power Good Indication,  
Thermistor Interface  
LTC4052  
LTC4053  
LTC4054  
Monolithic Lithium-Ion Battery Pulse Charger  
No Blocking Diode or External Power FET Required  
USB Compatible Monolithic Li-Ion Battery Charger  
Standalone Charger with Programmable Timer, Up to 1.25A Charge Current  
Standalone Linear Li-Ion Battery Charger  
with Integrated Pass Transistor in ThinSOT  
Thermal Regulation Prevents Overheating, C/10 Termination,  
C/10 Indicator  
LTC4056  
LTC4057  
LTC4410  
Standalone Lithium-Ion Linear Battery Charger  
in ThinSOT  
Standalone Charger with Programmable Timer, No Blocking Diode,  
No Sense Resistor Needed  
Monolithic Lithium-Ion Linear Battery Charger  
with Thermal Regulation in ThinSOT  
No External MOSFET, Sense Resistor or Blocking Diode Required,  
Charge Current Monitor for Gas Gauging  
USB Power Manager  
For Simultaneous Operation of USB Peripheral and Battery Charging from USB  
Port, Keeps Current Drawn from USB Port Constant, Keeps Battery Fresh, Use  
with the LTC4053, LTC1733 or LTC4054  
LTC4058  
950mA Standalone Li-Ion Charger in 3mm × 3mm  
DFN  
USB Compatible, Thermal Regulation Protects Against Overheating  
ThinSOT is a trademark of Linear Technology Corporation.  
4059fa  
LT/TP 0304 1K REV A • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY