LTC4211_12 [Linear]

Hot Swap Controller; 热插拔控制器
LTC4211_12
型号: LTC4211_12
厂家: Linear    Linear
描述:

Hot Swap Controller
热插拔控制器

控制器
文件: 总40页 (文件大小:312K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4211  
Hot Swap Controller with  
Multifunction Current Control  
FEATURES  
DESCRIPTION  
TheLTC®4211isaHotSwapcontrollerthatallowsaboard  
to be safely inserted and removed from a live backplane.  
An internal high side switch driver controls the gate of an  
external N-channel MOSFET for supply voltages ranging  
from 2.5V to 16.5V. The LTC4211 provides soft-start and  
inrush current limiting during the start-up period which  
has a programmable duration.  
n
Allows Safe Board Insertion and Removal  
from a Live Backplane  
n
Controls Supply Voltages from 2.5V to 16.5V  
n
Programmable Soft-Start with Inrush Current  
Limiting, No External Gate Capacitor Required  
n
Faster Turn-Off Time Because No External Gate  
Capacitor is Required  
n
Dual Level Overcurrent Fault Protection  
Two on-chip current limit comparators provide dual level  
overcurrent circuit breaker protection. The slow com-  
parator trips at VCC – 50mV and activates in 20μs (or is  
programmed by an external filter capacitor, MS only).  
The fast comparator trips at VCC – 150mV and typically  
responds in 300ns.  
n
Programmable Response Time for Overcurrent  
Protection (MS)  
n
Programmable Overvoltage Protection (MS)  
n
Automatic Retry or Latched Mode Operation (MS)  
n
High Side Drive for an External N-Channel FET  
n
User-Programmable Supply Voltage Power-Up Rate  
n
TheFBpinmonitorstheoutputsupplyvoltageandsignals  
the RESET output pin. The ON pin signal turns the chip on  
and off and can also be used for the reset function. The  
MS package has FAULT and FILTER pins to provide addi-  
tional functions like fault indication, autoretry or latch-off  
modes, programmable current limit response time and  
programmable overvoltage protection using an external  
Zener diode clamp.  
FB Pin Monitors V  
and Signals RESET  
OUT  
n
Glitch Filter Protects Against Spurious RESET Signal  
APPLICATIONS  
n
Electronic Circuit Breaker  
n
Hot Board Insertion and Removal (Either On  
Backplane or On Removable Card)  
Industrial High Side Switch/Circuit Breaker  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and Hot Swap  
is a trademark of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
n
TYPICAL APPLICATION  
Single Channel 5V Hot Swap Controller  
Power-Up Sequence  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
NO C  
LOAD  
(FEMALE)  
(MALE)  
R
M1  
SENSE  
0.007Ω  
V
5V  
5A  
V
GATE  
Si4410DY  
OUT  
LONG  
V
CC  
5V/DIV  
5V  
+
R
X
C
LOAD  
10Ω  
Z1*  
V
C
X
100nF  
RESET  
5V/DIV  
8
7
6
R5  
R3  
36k  
10k  
V
SENSE  
GATE  
FB  
CC  
5
1
R1  
20k  
V
ON  
R4  
15k  
1V/DIV  
SHORT  
2
μP  
LTC4211  
ON  
LOGIC  
V
R2  
10k  
TIMER  
RESET  
1V/DIV  
RESET  
TIMER  
3
GND  
2.5ms/DIV  
4211 TA01b  
4
PCB CONNECTION SENSE  
LONG  
C
TIMER  
10nF  
GND  
GND  
4211 TA01A  
Z1 = 1SMA10A OR SMAJ10A  
* OPTIONAL  
4211fb  
1
LTC4211  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Supply Voltage (V ) ................................................17V  
Operating Temperature Range  
CC  
Input Voltage  
LTC4211C................................................ 0°C to 70°C  
LTC4211I............................................. 40°C to 85°C  
Storage Temperature Range ..................65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
FB, ON .................................................. 0.3V to 17V  
SENSE, FILTER ........................... –0.3V to V + 0.3V  
CC  
TIMER...................................................... –0.3V to 2V  
Output Voltage  
GATE................................. Internally Limited (Note 3)  
RESET, FAULT ....................................... –0.3V to 17V  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
TOP VIEW  
RESET  
ON  
1
2
3
4
8
7
6
5
V
RESET  
ON  
FILTER  
TIMER  
GND  
1
2
3
4
5
10 FAULT  
CC  
RESET  
ON  
TIMER  
GND  
1
2
3
4
8 V  
CC  
9
8
7
6
V
CC  
7 SENSE  
6 GATE  
5 FB  
SENSE  
GATE  
FB  
SENSE  
GATE  
FB  
TIMER  
GND  
MS8 PACKAGE  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
8-LEAD PLASTIC MSOP  
S8 PACKAGE  
8-LEAD PLASTIC SO  
T
JMAX  
= 125°C, θ = 200°C/W  
JA  
T
= 125°C, θ = 200°C/W  
JMAX  
JA  
T
= 125°C, θ = 150°C/W  
JA  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC4211CS8#PBF  
LTC4211IS8#PBF  
LTC4211CMS8#PBF  
LTC4211IMS8#PBF  
LTC4211CMS#PBF  
LTC4211IMS#PBF  
TAPE AND REEL  
PART MARKING  
4211  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTC4211CS8#TRPBF  
LTC4211IS8#TRPBF  
LTC4211CMS8#TRPBF  
LTC4211IMS8#TRPBF  
LTC4211CMS#TRPBF  
LTC4211IMS#TRPBF  
8-Lead Plastic SO  
4211I  
8-Lead Plastic SO  
–40°C to 85°C  
0°C to 70°C  
LTSC  
8-Lead Plastic MSOP  
8-Lead Plastic MSOP  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
LTSD  
–40°C to 85°C  
0°C to 70°C  
LTSU  
LTSV  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
16.5  
1.5  
UNITS  
V
l
l
l
V
V
V
Supply Voltage Range  
Supply Current  
2.5  
CC  
CC  
CC  
I
CC  
FB = High, ON = High, TIMER = Low  
1
2.3  
120  
1
mA  
V
V
V
Internal V Undervoltage Lockout  
V
Low-to-High Transition  
2.13  
2.47  
LKO  
CC  
CC  
V
Undervoltage Lockout Hysteresis  
CC  
mV  
μA  
LKOHST  
INFB  
I
FB Input Current  
V
FB  
= V or GND  
10  
CC  
4211fb  
2
LTC4211  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1
MAX  
10  
UNITS  
μA  
I
I
I
ON Input Current  
V
V
V
= V or GND  
CC  
INON  
ON  
l
RESET, FAULT Leakage Current  
SENSE Input Current  
= V = 15V, Pull-Down Device Off  
FAULT  
0.1  
1
2.5  
10  
μA  
LEAK  
RESET  
SENSE  
= V or GND  
μA  
INSENSE  
CC  
l
l
l
l
V
V
SENSE Trip Voltage (V – V  
)
)
Fast Comparator Trips  
Slow Comparator Trips  
130  
40  
150  
50  
170  
60  
mV  
mV  
μA  
CB(FAST)  
CB(SLOW)  
GATEUP  
CC  
SENSE  
SENSE  
SENSE Trip Voltage (V – V  
CC  
I
I
GATE Pull-Up Current  
Charge Pump On, V  
ON Low  
≤ 0.2V  
–12.5  
130  
10  
200  
50  
–7.5  
270  
GATE  
Normal GATE Pull-Down Current  
Fast GATE Pull-Down Current  
μA  
GATEDOWN  
FAULT Latched and Circuit Breaker Tripped or in  
UVLO  
mA  
l
l
l
l
l
l
ΔV  
External N-Channel Gate Drive  
V
GATE  
V
GATE  
V
GATE  
V
GATE  
V
GATE  
V
GATE  
– V (For V = 2.5V)  
2.5  
4.5  
5.0  
10  
10  
8
8
V
V
V
V
V
V
GATE  
CC  
CC  
– V (For V = 2.7V)  
8
CC  
CC  
– V (For V = 3.3V)  
10  
16  
18  
18  
CC  
CC  
– V (For V = 5V)  
CC  
CC  
– V (For V = 12V)  
CC  
CC  
– V (For V = 15V)  
CC  
CC  
l
l
l
V
V
GATE Overvoltage Lockout Threshold  
FB Voltage Threshold  
0.08  
0.2  
1.236  
0.5  
0.3  
1.248  
5
V
V
GATEOV  
FB High to Low  
1.223  
FB  
ΔV  
FB Threshold Line Regulation  
FB Voltage Threshold Hysteresis  
ON Threshold High  
2.5V ≤ V ≤ 16.5V  
mV  
mV  
V
FB  
CC  
V
V
V
V
3
FBHST  
ONHI  
l
l
1.23  
1.20  
1.316  
1.236  
80  
1.39  
1.26  
ON Threshold Low  
V
ONLO  
ONHST  
FILTER  
ON Hysteresis  
mV  
μA  
μA  
V
l
l
l
I
FILTER Current  
During Slow Fault Condition  
–2.5  
7
–2  
–1.5  
13  
During Normal and Reset Conditions  
Latched Off Threshold, FILTER Low to High  
10  
V
V
FILTER Threshold  
1.20  
1.236  
80  
1.26  
FILTER  
FILTERHST  
TMR  
FILTER Threshold Hysteresis  
TIMER Current  
mV  
μA  
mA  
V
l
I
Timer On, V  
= 1V  
2.5  
–2  
–1.5  
TIMER  
Timer Off, TIMER = 1.5V  
TIMER Low to High  
3
l
l
l
V
TIMER Threshold  
1.20  
0.15  
1.20  
1.236  
0.200  
1.236  
50  
1.26  
0.40  
1.26  
TMR  
TIMER High to Low  
V
V
V
V
V
FAULT Threshold  
Latched Off Threshold, FAULT High to Low  
V
FAULT  
FAULT Threshold Hysteresis  
Output Low Voltage  
mV  
V
FAULTHST  
OLFAULT  
OLRESET  
FAULTFC  
FAULTSC  
l
l
l
l
I
I
= 1.6mA  
0.14  
0.14  
300  
20  
0.4  
0.4  
700  
30  
FAULT  
RESET  
Output Low Voltage  
= 1.6mA  
V
t
t
FAST COMP Trip to GATE Discharging  
SLOW COMP Trip to GATE Discharging  
V
V
= 0mV to 200mV Step  
= 0mV to 100mV Step,  
ns  
μs  
CB  
10  
4
CB  
8-Pin Version or FILTER Floating  
l
V
= 0mV to 100mV Step,  
6
8
ms  
CB  
10nF at FILTER Pin to GND  
l
l
t
t
FAULT Low to GATE Discharging  
FILTER High to FAULT Latched  
V
V
= 5V to 0V  
= 0V to 5V  
1
2
3
5
7
μs  
μs  
EXTFAULT  
FAULT  
4.5  
FILTER  
FILTER  
4211fb  
3
LTC4211  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 5V, unless otherwise noted. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
150  
8
MAX  
UNITS  
μs  
l
t
t
Circuit Breaker Reset Delay Time  
Turn-Off Time  
ON Low to FAULT High  
ON Low to GATE Off  
250  
RESET  
OFF  
μs  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All current into device pins are positive; all current out of device  
pins are negative; all voltages are referenced to ground unless otherwise  
specified.  
Note 3: An internal Zener at the GATE pin clamps the charge pump voltage  
to a typical maximum operating voltage of 26V. External voltage applied to  
the GATE pin beyond the internal Zener voltage may damage the part. If a  
lower GATE pin voltage is desired, use an external Zener diode. The GATE  
capacitance must be <0.15μF at maximum V  
.
CC  
TYPICAL PERFORMANCE CHARACTERISTICS  
Undervoltage Lockout Threshold  
vs Temperature  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.4  
T
= 25°C  
A
RISING EDGE  
2.3  
V
V
= 15V  
= 12V  
CC  
CC  
FALLING EDGE  
2.2  
2.1  
2.0  
V
= 5V  
= 3V  
CC  
CC  
V
0
2
4
6
8
10 12 14 16 18 20  
25 50  
TEMPERATURE (°C)  
–75 –50 –25  
0
75 100 125 150  
–75 –50 –25  
0
50  
100 125 150  
75  
25  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
4211 G01  
4211 G02  
4211 G03  
ON Pin Threshold  
vs Temperature  
ON Pin Threshold  
vs Supply Voltage  
GATE Voltage vs Supply Voltage  
1.40  
1.35  
1.40  
1.35  
30  
25  
T
= 25°C  
V
= 5V  
A
T = 25°C  
A
CC  
HIGH THRESHOLD  
HIGH THRESHOLD  
LOW THRESHOLD  
1.30  
1.30  
1.25  
20  
15  
LOW THRESHOLD  
1.25  
1.20  
1.20  
1.15  
1.10  
10  
5
1.15  
1.10  
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4211 G04  
4211 G06  
4211 G05  
4211fb  
4
LTC4211  
TYPICAL PERFORMANCE CHARACTERISTICS  
V
GATE – VCC vs Supply Voltage  
GATE Voltage vs Temperature  
VGATE – VCC vs Temperature  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
30  
25  
T
= 25°C  
A
V
= 15V  
CC  
V
= 12V  
CC  
V
= 12V  
= 5V  
CC  
20  
V
CC  
V
= 15V  
V
V
= 5V  
= 3V  
CC  
CC  
CC  
15  
10  
V
= 3V  
CC  
6
6
4
4
5
0
2
2
0
0
0
2
4
6
8
10  
20  
–75 –50 –25  
0
100 125 150  
12 14 16 18  
25 50 75  
–75 –50 –25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4211 G08  
4211 G09  
4211 G07  
GATE Output Source Current  
vs Supply Voltage  
GATE Output Source Current  
vs Temperature  
Normal GATE Pull-Down Current  
vs Supply Voltage  
13  
12  
260  
240  
13  
T
= 25°C  
T = 25°C  
A
A
12  
11  
11  
10  
220  
200  
V
= 15V  
CC  
V
10  
9
= 3V  
CC  
V
= 12V  
V
= 5V  
CC  
CC  
9
8
7
180  
160  
140  
8
7
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4211 G10  
4211 G12  
4211 G11  
Fast GATE Pull-Down Current  
vs Temperature  
Fast GATE Pull-Down Current  
vs Supply Voltage  
Normal GATE Pull-Down Current  
vs Temperature  
80  
70  
80  
70  
260  
240  
T
= 25°C  
A
V
= 5V  
CC  
V
= 5V  
CC  
60  
60  
50  
220  
50  
40  
200  
180  
40  
30  
20  
30  
20  
160  
140  
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4211 G14  
4211 G15  
4211 G13  
4211fb  
5
LTC4211  
TYPICAL PERFORMANCE CHARACTERISTICS  
Feedback Threshold  
vs Supply Voltage  
Feedback Threshold  
vs Temperature  
FILTER Threshold  
vs Supply Voltage  
1.250  
1.245  
1.240  
1.40  
1.35  
1.250  
1.245  
T
= 25°C  
V
= 5V  
T
= 25°C  
A
CC  
A
HIGH THRESHOLD  
LOW THRESHOLD  
1.30  
1.25  
HIGH THRESHOLD  
LOW THRESHOLD  
1.240  
HIGH THRESHOLD  
LOW THRESHOLD  
1.235  
1.230  
1.225  
1.235  
1.230  
1.225  
1.20  
1.15  
1.10  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4211 G16  
4211 G18  
4211 G17  
FILTER Pull-Up Current  
vs Supply Voltage  
FILTER Pull-Up Current  
vs Temperature  
FILTER Threshold vs Temperature  
2.3  
2.2  
1.40  
1.35  
2.3  
2.2  
T
A
= 25°C  
V
= 5V  
V
= 5V  
CC  
CC  
1.30  
2.1  
2.0  
2.1  
HIGH THRESHOLD  
1.25  
1.20  
2.0  
1.9  
1.9  
1.8  
1.7  
LOW THRESHOLD  
1.15  
1.10  
1.8  
1.7  
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–75 –50 –25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4211 G20  
4211 G19  
4211 G21  
FILTER Pull-Down Current  
vs Temperature  
FILTER Pull-Down Current  
vs Supply Voltage  
TIMER High Threshold  
vs Supply Voltage  
1.26  
1.25  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
T = 25°C  
A
V
= 5V  
T
= 25°C  
CC  
A
1.24  
1.23  
1.22  
1.21  
1.20  
9.0  
9.0  
8.5  
8.5  
8.0  
8.0  
0
2
4
6
8
10 12 14 16 18 20  
25 50  
–75 –50 –25  
0
75 100 125 150  
0
2
4
6
8
10 12 14 16 18 20  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
4211 G24  
4211 G23  
4211 G22  
4211fb  
6
LTC4211  
TYPICAL PERFORMANCE CHARACTERISTICS  
TIMER Low Threshold  
vs Supply Voltage  
TIMER High Threshold  
vs Temperature  
TIMER Low Threshold  
vs Temperature  
1.0  
0.8  
0.6  
1.26  
1.25  
1.0  
0.8  
T
A
= 25°C  
V
= 5V  
V
= 5V  
CC  
CC  
1.24  
0.6  
1.23  
1.22  
0.4  
0.2  
0
0.4  
0.2  
0
1.21  
1.20  
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
50  
100 125 150  
75  
25  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4211 G26  
4211 G25  
4211 G27  
TIMER Pull-Down Current  
vs Supply Voltage  
TIMER Pull-Up Current  
vs Supply Voltage  
TIMER Pull-Up Current  
vs Temperature  
2.30  
2.20  
6
5
2.3  
2.2  
T
= 25°C  
T = 25°C  
A
V
= 5V  
A
CC  
2.1  
2.10  
2.00  
4
3
2.0  
1.9  
1.90  
1.80  
1.70  
2
1
0
1.8  
1.7  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4211 G28  
4211 G30  
4211 G29  
TIMER Pull-Down Current  
vs Temperature  
VOL vs Temperature  
VOL vs Supply Voltage  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6
5
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
V
= 5V  
CC  
V
= 5V  
A
CC  
RESET OR FAULT  
RESET OR FAULT  
4
3
2
I
OL  
= 5mA  
I
= 5mA  
OL  
1
0
I
OL  
= 1mA  
I
OL  
= 1mA  
0
2
4
6
8
10 12 14 16 18 20  
25 50  
–75 –50 –25  
0
75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4211 G32  
4211 G33  
4211 G31  
4211fb  
7
LTC4211  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCB (SLOW COMP)  
vs Temperature  
VCB (SLOW COMP)  
vs Supply Voltage  
VCB (FAST COMP)  
vs Supply Voltage  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
170  
165  
160  
155  
150  
145  
140  
135  
130  
T
= 25°C  
V
= 5V  
T = 25°C  
A
A
CC  
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150  
0
2
4
6
8
10 12 14 16 18 20  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
4211 G34  
4211 G35  
4211 G36  
VCB (FAST COMP)  
vs Temperature  
SLOW COMP Response Time vs  
Supply Voltage  
SLOW COMP Response Time vs  
Temperature  
26  
24  
22  
20  
18  
16  
14  
12  
10  
170  
165  
160  
155  
150  
145  
140  
135  
130  
26  
24  
22  
20  
18  
16  
14  
12  
10  
V
= 5V  
8-PIN VERSION OR FILTER FLOATING  
T
= 25°C  
CC  
A
8-PIN VERSION  
OR FILTER FLOATING  
V
= 12V  
= 5V  
CC  
V
= 15V  
CC  
V
= 3V  
V
CC  
CC  
25 50  
25 50  
TEMPERATURE (°C)  
–75 50 –25  
0
75 100 125 150  
–75 –50 –25  
0
75 100 125 150  
0
2
4
6
8
10 12 14 16 18 20  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
4211 G37  
4211 G39  
4211 G38  
FAST COMP Response Time vs  
Supply Voltage  
FAST COMP Response Time vs  
Temperature  
FILTER High to FAULT Activation  
Time vs Supply Voltage  
800  
700  
600  
500  
400  
300  
200  
100  
0
6.0  
5.5  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
V
CB  
= 0mV TO 200mV STEP  
T
= 25°C  
A
A
V
= 0mV TO 200mV STEP  
CB  
5.0  
4.5  
V
= 3V  
= 5V  
CC  
V
= 12V  
CC  
V
CC  
4.0  
3.5  
3.0  
V
= 15V  
CC  
0
2
4
6
8
10 12 14 16 18 20  
25 50  
TEMPERATURE (°C)  
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
75 100 125 150  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
4211 G42  
4211 G40  
4211 G41  
4211fb  
8
LTC4211  
TYPICAL PERFORMANCE CHARACTERISTICS  
FILTER High to FAULT Activation  
Time vs Temperature  
Circuit Breaker RESET Time  
vs Supply Voltage  
Circuit Breaker RESET Time  
vs Temperature  
200  
180  
200  
180  
6.0  
5.5  
T = 25°C  
A
V
= 5V  
V
= 5V  
CC  
CC  
160  
5.0  
160  
140  
140  
120  
4.5  
4.0  
120  
100  
80  
100  
80  
3.5  
3.0  
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150  
–75 –50 –25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4211 G44  
4211 G45  
4211 G43  
FAULT Pin Low to GATE Discharging  
Time vs Supply Voltage  
FAULT Pin Low to GATE Discharging  
Time vs Temperature  
FAULT Threshold Voltage  
vs Supply Voltage  
4.5  
4.0  
4.5  
4.0  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
T
= 25°C  
V
= 5V  
CC  
T
= 25°C  
A
A
3.5  
3.5  
3.0  
3.0  
2.5  
HIGH THRESHOLD  
LOW THRESHOLD  
2.5  
2.0  
1.5  
2.0  
1.5  
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150  
0
2
4
6
8
10 12 14 16 18 20  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
4211 G46  
4211 G47  
4211 G48  
FAULT Threshold Voltage  
vs Temperature  
Turn Off Time  
vs Supply Voltage  
Turn Off Time vs Temperature  
11  
10  
11  
10  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
T
A
= 25°C  
V
= 5V  
V
= 5V  
CC  
CC  
9
9
8
HIGH THRESHOLD  
LOW THRESHOLD  
8
7
7
6
5
6
5
0
2
4
6
8
10 12 14 16 18 20  
25 50  
–75 50 –25  
0
75 100 125 150  
100  
125 150  
–75 –50 –25  
0
25 50 75  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4211 G50  
4211 G49  
4211 G51  
4211fb  
9
LTC4211  
TYPICAL PERFORMANCE CHARACTERISTICS  
GATE Overvoltage Lockout Threshold  
vs Supply Voltage  
GATE Overvoltage Lockout Threshold  
vs Temperature  
0.5  
0.5  
0.4  
T
= 25°C  
V
= 5V  
A
CC  
0.4  
0.3  
0.3  
0.2  
0.1  
0
0.2  
0.1  
0
0
2
4
6
8
10 12 14 16 18 20  
–75 –50 –25  
0
25 50 75 100 125 150  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4211 G52  
4211 G53  
PIN FUNCTIONS (8-Lead Package/10-Lead Package)  
RESET (Pin 1/Pin 1): An open-drain output that pulls to  
GND if the voltage at the FB pin (Pin 5/Pin 6) falls below  
the FB pin threshold (1.236V). During the start-up cycle,  
the RESET pin goes high impedance at the end of the  
second timing cycle after the FB pin goes above the FB  
threshold. This pin requires an external pull-up resistor  
TIMER (Pin 3/Pin 4): A capacitor connected from this pin  
toGNDsetstheLTC4211’ssystemtiming. TheLTC4211’s  
initial and second start-up timing cycles and its internal  
“power good” delay time are defined by this capacitor.  
GND (Pin 4/Pin 5): Device Ground Connection. Connect  
this pin to the system’s analog ground plane.  
to V . If an undervoltage lockout condition occurs, the  
CC  
FB (Pin 5/Pin 6): The FB (Feedback) pin is an input to the  
RESETpinpullslowindependentlyoftheFBpintoprevent  
false glitches.  
COMP2comparatorandmonitorstheoutputsupplyvoltage  
through an external resistor divider. If V < 1.236V, the  
FB  
ON (Pin 2/Pin 2): An active high signal used to enable or  
disableLTC4211operation. COMP1’shigh-to-lowthresh-  
old is set at 1.236V and its hysteresis is set at 80mV. If a  
RESET pin pulls low. An internal glitch filter at COMP2’s  
output helps prevent negative voltage transients from  
triggering a reset condition. If V > 1.239V, the RESET  
FB  
logic high signal is applied to the ON pin (V > 1.316V),  
ON  
pin goes high at the end of the second timing cycle.  
the first timing cycle begins if an overvoltage condition  
GATE (Pin 6/Pin 7): The output signal at this pin is the  
high side gate drive for the external N-channel FET pass  
transistor.  
does not exist on the GATE pin (Pin 6/Pin 7). If a logic  
low signal is applied to the ON pin (V < 1.236V), the  
ON  
GATE pin is pulled low by an internal 200μA current sink.  
The ON pin can also be used to reset the electronic circuit  
breaker. IftheONpiniscycledlowandthenhighfollowing  
a circuit breaker trip, the internal circuit breaker is reset,  
and the LTC4211 begins a new start-up cycle.  
As shown in the Block Diagram, an internal charge pump  
supplies a 10μA gate current and sufficient gate volt-  
age drive to the external FET for supply voltages from  
2.5V to 16.5V. The internal charge-pump and zener  
4211fb  
10  
LTC4211  
PIN FUNCTIONS (8-Lead Package/10-Lead Package)  
clamps at the GATE pin determine the gate drive voltage  
V
(Pin 8/Pin 9): This is the positive supply input to  
CC  
(ΔV  
= V  
– V ). The charge pump produces a  
the LTC4211. The LTC4211 operates from 2.5V < V  
<
GATE  
GATE  
CC  
CC  
minimum 4.5V of ΔV  
for supplies in the range of 2.7V  
16.5V, and the supply current is typically 1mA. An internal  
undervoltage lockout circuit disables the device until the  
voltage at V exceeds 2.3V.  
GATE  
≤ V < 4.75V. For 4.75V ≤ V ≤ 12V the ΔV is limited  
CC  
CC  
GATE  
by zener clamp Z1 connected between the GATE and V  
CC  
CC  
pins. The ΔV  
is typically at 12V and with guaranteed  
GATE  
FAULT (Not available on S8/MS8, Pin 10 MS): FAULT is  
both an input and an output. Connected to this pin are an  
analogcomparator(COMP6)andanopen-drainN-channel  
FET. During normal operation, if COMP6 is driven below  
1.236V, the electronic circuit breaker trips and the GATE  
pin pulls low. Typically, a 10k pull-up resistor connects  
to the FAULT pin. This pull-up is required to allow the  
LTC4211 to begin a second timing cycle (VFAULT > 1.286)  
and start-up properly. This also allows the use of the  
FAULT pin as a status output. Under normal operating  
conditions, the FAULT output is a logic high. Two condi-  
tions cause an active low on FAULT: (1) the LTC4211’s  
electronic circuit breaker trips because of an output short  
circuit causing a fast output overcurrent transient (FAST  
COMP trips circuit breaker); or (2) VFILTER > 1.236V. The  
FAULT output is driven to logic low and is latched logic  
low until the ON pin is driven to logic low for 150μs (the  
tRESET duration).  
minimum value of 10V. For V > 12V, the Zener clamp  
CC  
Z2 begins to set the limitation for ΔV  
. Z2 clamps the  
GATE  
gatevoltagetogroundto26Vtypically. TheminimumZ2’s  
clamp voltage is 23V. This effectively sets ΔV to 8V  
GATE  
minimum at V = 15V.  
CC  
SENSE (Pin 7/Pin 8): Circuit Breaker Set Pin. With a sense  
resistorplacedinthepowerpathbetweenV andSENSE,  
CC  
theLTC4211’selectroniccircuitbreakertripsifthevoltage  
across the sense resistor exceeds the thresholds set inter-  
nally for the SLOW COMP and the FAST COMP, as shown  
intheBlockDiagram.ThethresholdfortheSLOWCOMPis  
V
= 50mV, and the electronic circuit breaker trips  
CB(SLOW)  
if the voltage across the sense resistor exceeds 50mV for  
20μs. The SLOW COMP delay is fixed in the S8/MS8 ver-  
sion and adjustable in the MS version of the LTC4211. To  
adjust the SLOW COMP’s delay, please refer to the section  
on Adjusting SLOW COMP’s Response Time.  
Under transient conditions where large step current  
changes can and do occur over shorter periods of time,  
a second (fast) comparator instead trips the electronic  
circuit breaker. The threshold for the FAST COMP is set at  
FILTER (Not available S8/MS8, Pin 3 MS): Overcurrent  
Fault Timing Pin and Overvoltage Fault Set pin. With a  
capacitor connected from this pin to ground, the SLOW  
COMP’s response time can be adjusted. In the S8/MS8  
version of the LTC4211, the FILTER pin is not available  
and the delay time from overcurrent detect to GATE OFF  
is fixed at 20μs.  
V
= 150mV, and the circuit breaker trips if the  
CB(FAST)  
voltage across the sense resistor exceeds 150mV for  
more than 300ns. The FAST COMP’s delay is fixed in the  
LTC4211andcannotbeadjusted. Todisabletheelectronic  
circuit breaker, connect the V and SENSE pins together.  
CC  
4211fb  
11  
LTC4211  
BLOCK DIAGRAM  
V
8 (9)  
SENSE 7 (8)  
GATE 6 (7)  
CC  
+
Z2  
Z
Z1  
V
(TYP) = 26V  
V
(TYP) = 12V  
Z
COMP7  
V
CC  
CHARGE  
PUMP  
0.2V  
10μA  
UVLO  
+
+
50mV  
150mV  
t
TIMER  
RESET  
+
+
1
M3  
CB  
V
CC  
SLOW  
COMP  
FAST  
M1  
COMP  
0.2V  
+
200μA  
10μA  
2μA  
COMP3  
COMP4  
START-UP  
CURRENT  
REGULATOR CHARGING  
GLITCH FILTER  
(SEE NOTE 1)  
300ns  
DELAY  
TIMER  
3 (4)  
TRIPS  
OR UVLO ON LOW  
GATE  
M6  
+
POWER BAD  
V
REF  
V
+
V
CC  
REF  
NORMAL  
LOGIC  
COMP6  
2μA  
FAULT  
FAULT  
M5  
CB TRIPS  
(10)  
MS ONLY  
FILTER  
+
M2  
(3)  
MS ONLY  
COMP5  
GLITCH FILTER  
FUNCTION OF  
OVERDRIVE  
M4  
GLITCH FILTER  
150μs  
V
REF  
GND  
4 (5)  
V
REF  
10μA  
NORMAL, RESET  
BG  
0.2V  
V
= 1.236V  
COMP1  
COMP2  
REF  
+
+
V
REF  
V
REF  
4211 BD  
2
ON  
5 (6) FB  
NOTE 1: SET BY FILTER CAPACITOR FOR MS  
20μs DEFAULT FOR MS8, S8  
PIN NUMBERS FOR S8/MS8 (MS)  
4211fb  
12  
LTC4211  
OPERATION  
HOT CIRCUIT INSERTION  
COMP2 output goes high. After a glitch filter delay, RESET  
is pulled low (Time Point 1). When the voltage at the FB  
pin rises above its reset threshold (1.239V), COMP2’s  
output goes low and a timing cycle starts (Time Point 4).  
After a complete timing cycle, RESET is pulled high by  
the external pull-up resistor. If the FB pin rises above the  
reset threshold for less than a timing cycle, the RESET  
output remains low (Time Points 2 to 3).  
When circuit boards are inserted into or removed from  
live backplanes, the supply bypass capacitors can draw  
huge transient currents from the backplane power bus as  
they charge. The transient current can cause permanent  
damage to the connector pins as well as cause glitches  
on the system supply, causing other boards in the system  
to reset.  
As shown in Figure 5, the LTC4211’s RESET pin is logic  
low during any undervoltage lockout condition and during  
the initial insertion of a PC board. Under normal opera-  
tion, RESET goes to logic high at the end of the soft-start  
cycle only after the FB pin voltage rises above its reset  
threshold of 1.239V.  
The LTC4211 is designed to turn a printed circuit board’s  
supply voltages ON and OFF in a controlled manner, al-  
lowing the circuit board to be safely inserted or removed  
from a live backplane. The device provides a system  
reset signal to indicate when board supply voltage drops  
below a predetermined level, as well as a dual function  
fault monitor.  
1
2
3
4
V1 V2  
V1 V2  
V
OUT  
OUTPUT VOLTAGE MONITOR  
1.236V  
TIMER  
The LTC4211 uses a 1.236V bandgap reference, precision  
voltage comparator and an external resistor divider to  
monitor the output supply voltage as shown in Figure 1.  
RESET  
POWER GOOD  
DELAY  
The operation of the supply monitor in normal mode is  
illustrated in Figure 2. When the voltage at the FB pin  
drops below its reset threshold (1.236V), the comparator  
4211 F02  
Figure 2. Supply Monitor Waveforms in Normal Mode  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
R
SENSE  
Q1  
LONG  
V
V
CC  
OUT  
+
C
LOAD  
8
7
6
LTC4211  
ON  
V
CC  
SENSE  
GATE  
R3  
R1  
R2  
10k  
FB  
5
1
+
2
SHORT  
ON/RESET  
COMP2  
LOGIC  
μP  
1.236V  
REFERENCE  
RESET  
TIMER  
RESET  
Q2  
TIMER  
GND  
3
4
C
TIMER  
4211 F01  
LONG  
GND  
Figure 1. Supply Voltage Monitor Block Diagram  
4211fb  
13  
LTC4211  
OPERATION  
UNDERVOLTAGE LOCKOUT  
250  
200  
150  
T
= 25°C  
A
The LTC4211’s power-on reset circuit initializes the start-  
up procedure and ensures the chip is in the proper state if  
the input supply voltage is too low. If the supply voltage  
falls below 2.18V, the LTC4211 is in undervoltage lockout  
(UVLO) mode, and the GATE pin is pulled low. Since the  
UVLO circuitry uses hysteresis, the chip restarts after the  
supply voltage rises above 2.3V and the ON pin goes high.  
100  
50  
0
In addition, users can utilize the ON comparator (COMP1)  
or the FAULT comparator (COMP6) to effectively program  
a higher undervoltage lockout level. Figure 3 shows how  
the external resistor divider at the ON pin programs the  
system’s undervoltage lockout voltage. The system will  
entertheplug-incycleaftertheONpinrisesabove1.316V.  
0
20 40 60 80 100 120 140 160 180 200  
FB TRANSIENT (mV)  
4211 F04  
Figure 4. FB Comparator Glitch Filter Time  
vs Feedback Transient Voltage  
The resistor divider sets the circuit to turn on when V  
CC  
reaches around 79% of its final value. If a different turn on  
SYSTEM TIMING  
V
voltage is desired change the resistor divider values  
CC  
accordingly. Alternatively, the FAULT comparator can be  
used to configure the external undervoltage lockout level.  
If the FAULT comparator is used for this purpose, the  
system will wait for the input voltage to increase above  
the level set by the user before starting the second timing  
cycle. Also, if the input voltage drops below the set level  
in normal operating mode, the user must cycle the ON pin  
System timing for the LTC4211 is generated at the TIMER  
pin (see the Block Diagram). If the LTC4211’s internal  
timing circuit is off, an internal N-channel FET connects  
the TIMER pin to GND. If the timing circuit is enabled,  
an internal 2μA current source is then connected to the  
TIMER pin to charge C  
at a rate given by Equation 1:  
TIMER  
2µA  
C
TIMER  
or V to restart the system.  
(1)  
CC  
CTIMER Charge-Up Rate =  
V
V
V
IN  
12V  
IN  
IN  
3.3V  
5V  
When the TIMER pin voltage reaches COMP4’s threshold  
of 1.236V, the TIMER pin is reset to GND. Equation 2 gives  
an expression for the timer period:  
R1  
10k  
R1  
20k  
R1  
61.9k  
ON PIN  
ON PIN  
ON PIN  
R2  
10k  
R2  
10k  
R2  
10k  
CTIMER  
2µA  
(2)  
tTIMER = 1.236V •  
4211 F03  
(a) 3.3V  
(b) 5V  
(c) 12V  
IN  
IN  
IN  
As a design aid, the LTC4211’s timer period as a function  
TIMER  
is shown in Table 1.  
Figure 3. ON Pin Sets the Undervoltage  
Lockout Voltage Externally  
of the C using standard values from 3.3nF to 0.33μF  
GLITCH FILTER FOR RESET  
The LTC4211 has a glitch filter to prevent transients on the  
FB pin from generating a system reset. The relationship  
between glitch filter time and the FB transient voltage is  
shown in Figure 4.  
4211fb  
14  
LTC4211  
OPERATION  
Table 1. tTIMER vs CTIMER  
The C  
value is vital to ensure a proper start-up and  
TIMER  
reliable operation. A system may not start up if a timing  
period is set too short relative to the time needed for the  
output voltage to ramp up from zero to its rated value.  
Conversely, this timing period should not be too long as  
an output short can occur at start-up causing the exter-  
nal MOSFET to overheat. A good starting point is to set  
C
t
TIMER  
TIMER  
0.0033μF  
0.0047μF  
0.0068μF  
0.0082μF  
0.01μF  
2.0ms  
2.9ms  
4.2ms  
5.1ms  
6.2ms  
C
= 10nF and adjust its value accordingly to suit the  
TIMER  
specific applications.  
0.015μF  
0.022μF  
0.033μF  
0.047μF  
0.068μF  
0.082μF  
0.1μF  
9.3ms  
13.6ms  
20.4ms  
29.0ms  
42.0ms  
50.7ms  
61.8ms  
92.7ms  
136ms  
204ms  
OPERATING SEQUENCE  
Power-Up, Start-Up Check and Plug-In Timing Cycle  
The sequence of operation for the LTC4211 is illustrated  
in the timing diagram of Figure 5. When a PC board is  
inserted into a live backplane, the LTC4211 first performs  
0.15μF  
0.22μF  
0.33μF  
CHECK FOR FILTER LOW (<V  
– 80mV)  
+ 50mV)  
REF  
REF  
CHECK FOR FAULT HIGH (>V  
FAST COMPARATOR ARMED  
ON GOES LOW  
CHECK FOR GATE < 0.2V  
2
SLOW COMPARATOR ARMED  
RESET PULLED LOW DUE TO POWER BAD  
1
3
4 5  
6
7
8
9 10  
V
CC  
ON  
V
= V  
REF  
TMR  
2μA  
TIMER  
2μA  
GATE  
10μA  
200μA  
POWER  
GOOD  
FB  
POWER BAD  
(V < V  
)
FB  
REF  
V
(V > V  
)
OUT  
REF  
RESET  
4211 F05  
PLUG-IN CYCLE  
FIRST TIMING CYCLE  
SOFT-START CYCLE  
SECOND TIMING CYCLE  
Figure 5. Normal Power-Up Sequence  
4211fb  
15  
LTC4211  
OPERATION  
a start-up check to make sure the supply voltage is above  
its 2.3V UVLO threshold (see Time Point 1). If the input  
supply voltage is valid, the gate of the external pass tran-  
sistor is pulled to ground by the internal 200μA current  
source connected at the GATE pin. The TIMER pin is held  
low by an internal N-channel pull-down transistor (see  
M6, LTC4211 Block Diagram) and the FILTER pin voltage  
is pulled to ground by an internal 10μA current source.  
An expression for the GATE voltage slew rate is given by  
Equation 3:  
dVGATE 10µA  
(3)  
VGATE Slew Rate,  
=
dt  
CGATE  
Adding C  
slows the GATE voltage slew rate at the ex-  
GATE  
pense of slower system turn-on and turn-off time. Should  
this technique be used, values for C  
are recommended.  
less than 150nF  
GATE  
Once V and ON (the ON pin is >1.316) are valid, the  
CC  
LTC4211 checks to make sure that GATE is OFF (V  
<
The inrush current being delivered to the load while  
the GATE is ramping is dependent on C and C  
GATE  
0.2V) at Time Point 2. An internal timing circuit is enabled  
andtheTIMERpinvoltagerampsupattheratedescribedby  
Equation1.AtTimePoint3(thetimingperiodprogrammed  
.
GATE  
LOAD  
Equation 4 gives an expression for the inrush current  
during the second timing cycle:  
by C  
), the TIMER pin voltage equals V  
TIMER  
(1.236V).  
TMR  
dVGATE  
dt  
CLOAD  
CGATE  
Next, the TIMER pin voltage ramps down to Time Point 4  
where the LTC4211 performs two checks: (1) FILTER pin  
I
=
CLOAD = 10µA •  
= 3300pF and C  
(4)  
INRUSH  
voltage is low (V  
< 1.156V) and (2) FAULT pin volt-  
FILTER  
For example, if C  
= 2000μF, the  
(5)  
GATE  
LOAD  
age is high (V  
> 1.286V). If both conditions are met,  
FAULT  
inrush current charging C  
is:  
LOAD  
the LTC4211 begins a second timing (soft-start) cycle.  
2000µF  
Second Timing (Soft-Start) Cycle  
I
= 10µA •  
= 6.06A  
INRUSH  
0.0033µF  
Atthebeginningofthesecondtimingcycle(TimePoint5),  
the LTC4211’s FAST COMP is armed and an internal 10μA  
current source working with an internal charge pump  
providesthegatedrivetotheexternalpasstransistor. The  
LTC4211 automatically limits the inrush current in one of  
two ways: by controlling the GATE pin voltage slew rate  
or by actively limiting the inrush current. If GATE voltage  
At Time Point 6, the output voltage trips COMP2’s thresh-  
old, signaling an output voltage “power good” condition.  
At Time Point 7, RESET is asserted high, SLOW COMP is  
armed and the LTC4211 enters a fault monitor mode. The  
TIMER voltage then ramps down to Time Point 8.  
Power-Off Cycle  
slew rate control is preferred, an external capacitor C  
can be used from GATE to ground, as shown in Figure 6.  
GATE  
AsshownatTimePoint9,anexternalhardresetisinitiated  
by pulling the ON pin low (V < 1.236V). The GATE pin  
ON  
R
M1  
SENSE  
V
5V  
5A  
voltage is ramped to ground by the internal 200μA cur-  
0.007Ω  
Si4410DY  
OUT  
V
IN  
5V  
C
*
rent source, discharging C  
and turning off the pass  
GATE  
GATE  
+
R1  
transistor.AsC  
discharges,theoutputvoltagecrosses  
LOAD  
C
LOAD  
36k  
COMP2’s threshold, signaling a “power bad” condition at  
Time Point 10. At this point, RESET is asserted low.  
V
SENSE  
LTC4211**  
GATE  
CC  
FB  
R2  
15k  
4211 F06  
*VALUES ≤150nF SUGGESTED  
**ADDITIONAL DETAILS OMITTED  
FOR CLARITY  
V
SLEW RATE CONTROL  
GATE  
dV  
10μA  
GATE  
dt  
=
(
)
C
GATE  
Figure 6. Using an External Capacitor at GATE for  
GATE Voltage Slew Rate Control  
4211fb  
16  
LTC4211  
OPERATION  
SOFT-START WITH CURRENT LIMITING  
In this fashion, the inrush current is controlled and C  
LOAD  
is charged up slowly during the soft-start cycle.  
During the second timing cycle, the inrush current was  
described by Equation 4. Note that there is a one-to-one  
correspondenceintheinrushcurrenttoC  
current is large enough to cause a voltage drop greater  
than 50mV across the sense resistor, an internal servo  
loop controls the operation of the 10μA current source at  
the GATE pin to regulate the load current to:  
The timing diagram in Figure 7 illustrates the operation  
of the LTC4211 in a normal power-up sequence with lim-  
ited inrush current as described by Equation 6. At Time  
Point5, theGATEpinvoltagebeginstorampandthepower  
.Iftheinrush  
LOAD  
MOSFETstartstochargeC  
.AtTimePoint5A,theinrush  
LOAD  
current causes a 50mV voltage drop across R  
and  
SENSE  
the internal servo loop engages, limiting the inrush cur-  
rent to a fixed level. At Time Point 6, the GATE pin voltage  
50mV  
RSENSE  
(6)  
ILIMIT(SOFTSTART)  
=
continues to ramp as C  
charges until V  
reaches its  
LOAD  
OUT  
final value. The charging current reduces, and the internal  
servo loop disengages. At the end of the soft-start cycle  
(Time Point 7), RESET is high and SLOW COMP is armed.  
For example, the inrush current is limited to 5A when  
SENSE  
R
= 0.01Ω.  
CHECK FOR FILTER LOW (<V  
– 80mV)  
+ 50mV)  
REF  
REF  
CHECK FOR FAULT HIGH (>V  
FAST COMPARATOR ARMED  
SLOW COMPARATOR ARMED  
ON GOES LOW  
CHECK FOR GATE < 0.2V  
2
RESET PULLED LOW DUE TO POWER BAD  
1
3
4 5 5A  
6
7
8
9 10  
V
CC  
ON  
V
REF  
2μA  
2μA  
TIMER  
GATE  
GATE  
V
OUT  
10μA  
200μA  
POWER GOOD  
> V  
POWER BAD  
< V  
V
OUT  
V
V
FB  
FB  
REF  
REF  
LOAD CURRENT IS  
REGULATING AT 50mV/R  
SENSE  
I
LOAD  
RESET  
4211 F07  
PLUG-IN CYCLE  
FIRST TIMING CYCLE  
SOFT-START CYCLE  
SECOND TIMING CYCLE  
Figure 7. Normal Power-Up Sequence (with Current Limiting in Second Timing Cycle)  
4211fb  
17  
LTC4211  
OPERATION  
FREQUENCY COMPENSATION AT SOFT-START  
breaker if the voltage across the SENSE resistor (V  
CC  
V
= V ) is greater than 50mV for 20μs. There may  
SENSE  
CB  
If the external gate capacitance is greater than 600pF, no  
external gate capacitor is required at GATE to stabilize  
the internal current-limiting loop during soft-start. Oth-  
erwise, connect a gate capacitor between the GATE pin  
and ground to increase the total gate capacitance to be  
equal to or above 600pF. The servo loop that controls the  
external MOSFET during current limiting has a unity-gain  
frequency of about 105kHz and phase margin of 80° for  
external MOSFET gate input capacitances to 2.5nF.  
be applications where this comparator’s response time  
is not long enough, for example, because of excessive  
supply voltage noise. To adjust the response time of the  
SLOW COMP, the MS version of the LTC4211 is chosen  
and a capacitor is used at the LTC4211’s FILTER pin (see  
section on Adjusting SLOW Comp’s Response Time). The  
FAST COMP trips the circuit breaker to protect against fast  
load overcurrents if the transient voltage across the sense  
resistor is greater than 150mV for 300ns. The response  
time of the LTC4211’s FAST COMP is fixed.  
USING AN EXTERNAL GATE CAPACITOR  
The timing diagram of Figure 7 illustrates when the  
LTC4211’s electronic circuit breaker is armed. After the  
first timing cycle, the LTC4211’s FAST COMP is armed  
at Time Point 5. Arming FAST COMP at Time Point 5 en-  
sures that the system is protected against a short-circuit  
conditionduringthesecondtimingcycle. AtTimePoint7,  
SLOW COMP is armed when the internal control loop is  
disengaged.  
In addition to reducing the inrush current (Equation 4), an  
external gate capacitor (Figure 6) may also be useful to  
decrease or eliminate current spikes through the MOSFET  
whenpowerisfirstapplied.Atpower-up,theinstantaneous  
input voltage step attempts to pull the MOSFET gate up  
through the MOSFET’s drain-to-gate capacitance. If the  
MOSFET’s C is small, the gate can be pulled up high  
GS  
enough to turn on the MOSFET, thereby allowing a cur-  
rent spike to the output. This event occurs during the time  
that the LTC4211 is coming out of UVLO and getting its  
intelligence to hold the GATE pin low. An external capaci-  
tor attenuates the voltage to which the GATE is pulled up  
and eliminates the current spike. The value required is  
dependent on the MOSFET capacitance specifications. In  
typical applications, this capacitor is not required.  
The timing diagrams in Figures 8 and 9 illustrate the op-  
eration of the LTC4211 when the load current conditions  
exceed the thresholds of the FAST COMP (V  
>
CB(FAST)  
> 50mV), respec-  
150mV) and SLOW COMP (V  
tively.  
CB(SLOW)  
RESETTING THE ELECTRONIC CIRCUIT BREAKER  
Once the LTC4211’s circuit breaker is tripped, FAULT is  
asserted low and the GATE pin is pulled to ground. The  
LTC4211 remains latched OFF in this fault state until the  
external fault is cleared. To clear the internal fault detect  
circuitry and to restart the LTC4211, its ON pin must be  
ELECTRONIC CIRCUIT BREAKER  
TheLTC4211featuresanelectroniccircuitbreakerfunction  
thatprotectsagainstexternally-generatedfaultconditions  
and shorts or excessive load current and can also be con-  
figured to protect against input supply overvoltage. If the  
circuit breaker trips, the GATE pin is immediately pulled to  
ground, the external N-channel MOSFET is quickly turned  
OFF and FAULT is latched low.  
driven low (V < 1.236V) for at least 150μs, after which  
ON  
time FAULT goes high. Toggling the ON pin from low to  
high (V > 1.316V) initiates a restart sequence in the  
ON  
LTC4211. The timing diagram in Figure 10 illustrates a  
start-up sequence where the LTC4211 is powered up into  
a load overcurrent condition. Note that the circuit breaker  
trips at Time Point B and is reset at Time Point 9A.  
The circuit breaker trips whenever the voltage across the  
sense resistor exceeds two different levels, set by the  
LTC4211’s SLOW COMP and FAST COMP thresholds  
(see Block Diagram). The SLOW COMP trips the circuit  
4211fb  
18  
LTC4211  
OPERATION  
FAST COMPARATOR ARMED  
SLOW COMPARATOR ARMED  
CIRCUIT BREAKER TRIPS  
SHORT CIRCUIT  
RESET PULLED LOW DUE TO POWER BAD  
1
2
3
4 5  
6
7 8 A B C  
V
CC  
ON  
TIMER  
GATE  
FPD  
V
OUT  
GATE  
POWER BAD  
< V  
POWER GOOD  
> V  
V
OUT  
V
FB  
REF  
V
FB  
REF  
RESET  
>150mV  
V
CC  
– V  
SENSE  
FAULT  
300ns  
TYP  
4211 F08  
Figure 8. Output Short Circuit Causes Fast Comparator to Trip the Circuit Breaker  
4211fb  
19  
LTC4211  
OPERATION  
FAST COMPARATOR ARMED  
SLOW COMPARATOR ARMED  
CIRCUIT BREAKER TRIPS  
OVER CURRENT  
RESET PULLED LOW DUE TO POWER BAD  
1
2
3
4 5  
6
7
8
A
B C  
V
CC  
ON  
TIMER  
GATE  
V
OUT  
FPD  
GATE  
POWER BAD  
< V  
POWER GOOD  
V
OUT  
V
FB  
REF  
V
> V  
FB  
REF  
RESET  
>50mV  
V
– V  
SENSE  
CC  
V
REF  
FILTER  
10μA  
2μA  
FAULT  
4211 F09  
CIRCUIT BREAKER TRIPS  
Figure 9. Mild Overcurrent Slow Comparator Trips the Circuit Breaker After Filter Programming Period  
4211fb  
20  
LTC4211  
OPERATION  
FAST COMPARATOR ARMED  
SLOW COMPARATOR ARMED  
CIRCUIT BREAKER TRIPS  
CIRCUIT BREAKER RESET  
1
2
3
4 5  
6
7
8
B
9
9A  
1
V
CC  
ON  
ON  
ON  
TIMER  
GATE  
FPD  
GATE  
OUT  
V
FB  
< V  
REF  
V
OUT  
V
RESET  
>50mV  
V
= 50mV  
SENSE  
V
– V  
CC  
SENSE  
FILTER  
FAULT  
REGULATING  
LOAD CURRENT  
t
FAULTSC  
V
REF  
10μA  
2μA  
4211 F10  
t
RESET  
Figure 10. Power-Up in Overcurrent, Slow Comparator Trips the Circuit Breaker  
ADJUSTING SLOW COMP’S RESPONSE TIME  
GATE pin is switched quickly to ground by transistor M3.  
After the circuit breaker is tripped, M5 is turned OFF, M4  
is turned ON and the 10μA pull-down current then holds  
the FILTER pin voltage low.  
The response time of SLOW COMP is adjusted using a  
capacitor connected from the LTC4211’s FILTER pin to  
ground. If this pin is left unused, SLOW COMP’s delay  
defaults to 20μs. During normal operation, the FILTER  
output pin is held low as an internal 10μA pull-down  
current source is connected to this pin by transistor M4.  
This pull-down current source is turned off when an  
overcurrent load condition is detected by SLOW COMP.  
During an overcurrent condition, the internal 2μA pull-  
up current source is connected to the FILTER pin by  
The SLOW COMP response time from an overcurrent fault  
condition to when the circuit breaker trips (GATE OFF) is  
given by Equation 7:  
CFILTER  
2µA  
(7)  
tSLOWCOMP = 1.236V •  
+ 20µs  
Forexample, ifC  
=1000pF, SLOWCOMP’sresponse  
FILTER  
transistor M5, thereby charging C  
. As the charge  
time = 638μs. As a design aid, SLOW COMP’s delay time  
FILTER  
on the capacitor accumulates, the voltage across C  
(t  
) versus C  
SLOW COMP  
for standard values of C  
FILTER FILTER  
FILTER  
increases.OncetheFILTERpinvoltageincreasesto1.236V,  
the electronic circuit breaker trips and the LTC4211’s  
from 100pF to 1000pF is illustrated in Table 2.  
4211fb  
21  
LTC4211  
OPERATION  
Table 2. tSLOWCOMP vs CFILTER  
For proper circuit breaker operation, Kelvin-sense PCB  
connectionsbetweenthesenseresistorandtheLTC4211’s  
CC  
drawing in Figure 11 illustrates the correct way of making  
connections between the LTC4211 and the sense resis-  
tor. PCB layout should be balanced and symmetrical to  
minimize wiring errors. In addition, the PCB layout for the  
sense resistor should include good thermal management  
techniques for optimal sense resistor power dissipation.  
C
t
SLOWCOMP  
FILTER  
V
and SENSE pins are strongly recommended. The  
100pF  
220pF  
330pF  
470pF  
680pF  
820pF  
1000pF  
82μs  
156μs  
224μs  
310μs  
440μs  
527μs  
638μs  
Thepowerratingofthesenseresistorshouldaccommodate  
steady-state fault current levels so that the component is  
not damaged before the circuit breaker trips. Table 4 in  
the Appendix lists sense resistors that can be used with  
the LTC4211’s circuit breaker.  
SENSE RESISTOR CONSIDERATIONS  
The fault current level at which the LTC4211’s internal  
electronic circuit breaker trips is determined by a sense  
resistorconnectedbetweentheLTC4211’sV andSENSE  
CC  
pins and two separate trip points. The first trip point is  
IRC-TT SENSE RESISTOR  
set by the SLOW COMP’s threshold, V  
= 50mV,  
CB(SLOW)  
CURRENT FLOW  
TO LOAD  
LR251201R010F  
OR EQUIVALENT  
0.01, 1%, 1W  
CURRENT FLOW  
TO LOAD  
and occurs should a load current fault condition exist for  
more than 20μs. The current level at which the electronic  
circuit breaker trips is given by Equation 8:  
TRACK WIDTH W:  
0.03" PER AMP  
ON 1 OZ COPPER  
W
VCB(SLOW)  
50mV  
RSENSE  
ITRIP(SLOW)  
=
=
(8)  
4211 F11  
RSENSE  
TO  
CC  
TO  
ThesecondtrippointissetbytheFASTCOMP’sthreshold,  
= 150mV, and occurs during fast load current  
transients that exist for 300ns or longer. The current level  
at which the circuit breaker trips in this case is given by  
Equation 9:  
V
SENSE  
V
CB(FAST)  
Figure 11. Making PCB Connections to the Sense Resistor  
CALCULATING CIRCUIT BREAKER TRIP CURRENT  
For a selected R  
value, the nominal load current that  
SENSE  
VCB(FAST)  
150mV  
RSENSE  
trips the circuit breaker is given by Equation 10:  
VCB(NOM)  
RSENSE(NOM) RSENSE(NOM)  
(9)  
ITRIP(FAST)  
=
=
RSENSE  
50mV  
(10)  
ITRIP(NOM)  
=
=
As a design aid, the currents at which the electronic circuit  
breaker trips for common values for R  
in Table 3.  
are shown  
SENSE  
The minimum load current that trips the circuit breaker is  
given by Equation 11.  
Table 3. ITRIP(SLOW) and ITRIP(FAST) vs RSENSE  
VCB(MIN)  
RSENSE(MAX) RSENSE(MAX)  
40mV  
R
SENSE  
I
I
TRIP(FAST)  
TRIP(SLOW)  
(11)  
ITRIP(MIN)  
where  
=
=
0.005Ω  
0.006Ω  
0.007Ω  
0.008Ω  
0.009Ω  
0.01Ω  
10A  
30A  
8.3A  
7.1A  
6.3A  
5.6A  
5A  
25A  
21A  
19A  
17A  
15A  
RTOL  
100  
RSENSE(MAX) = RSENSE(NOM) s 1+  
4211fb  
22  
LTC4211  
OPERATION  
The maximum load current that trips the circuit breaker  
is given in Equation 12.  
standardMOSFETs.However,theV maximumratingfor  
GS  
logic-level MOSFETs ranges from 8V to 20V depend-  
ing upon the manufacturer and the specific part number.  
VCB(MAX)  
60mV  
RSENSE(MIN) RSENSE(MIN)  
The LTC4211’s GATE overdrive as a function of V is  
CC  
ITRIP(MAX)  
=
=
(12)  
illustrated in the Typical Performance curves. Logic-level  
and sub-logic-level MOSFETs are recommended for low  
supply voltage applications and standard MOSFETs can  
be used for applications where supply voltage is greater  
than 4.75V.  
where  
RTOL  
100  
RSENSE(MIN) =RSENSE(NOM) s 1–  
Note that in some applications, the gate of the external  
MOSFET can discharge faster than the output voltage  
when the circuit breaker is tripped. This causes a nega-  
For example:  
If a sense resistor with 7mΩ 5% R is used for current  
limiting, the nominal trip current I  
Equations 11 and 12, I  
9.02A respectively.  
tive V voltage on the external MOSFET. Usually, the  
GS  
TOL  
TRIP(NOM)  
selected external MOSFET should have a V  
rat-  
GS(MAX)  
= 7.1A. From  
ing that is higher than the operating input supply voltage  
to ensure that the external MOSFET is not destroyed by  
= 5.4A and I  
=
TRIP(MIN)  
TRIP(MAX)  
a negative V voltage. In addition, the V  
rating  
GS  
GS(MAX)  
For proper operation and to avoid the circuit breaker trip-  
ping unnecessarily, the minimum trip current (I  
of the MOSFET must be higher than the gate overdrive  
)
TRIP(MIN)  
voltage. Lower V rating MOSFETs can be used  
GS(MAX)  
mustexceedthecircuit’smaximumoperatingloadcurrent.  
For reliability purposes, the operation at the maximum  
with the LTC4211 if the GATE overdrive is clamped to a  
lower voltage. The circuit in Figure 12 illustrates the use  
of Zener diodes to clamp the LTC4211’s GATE overdrive  
signal if lower voltage MOSFETs are used.  
trip current (I  
) must be evaluated carefully. If  
TRIP(MAX)  
necessary, two resistors with the same R  
can be con-  
value that fits  
TOL  
nected in parallel to yield an R  
the circuit requirements.  
SENSE(NOM)  
R
Q1  
SENSE  
V
V
OUT  
CC  
D1*  
D2*  
POWER MOSFET SELECTION CRITERIA  
To start the power MOSFET selection process, choose the  
maximumdrain-to-sourcevoltage,V ,andthemaxi-  
R
G
200Ω  
GATE  
*USER SELECTED VOLTAGE CLAMP  
DS(MAX)  
of the MOSFET. The V  
4211 F12  
mum drain current, I  
D(MAX)  
DS(MAX)  
rating must exceed the maximum input supply voltage  
(A LOW BIAS CURRENT ZENER DIODE IS RECOMMENDED)  
1N4688 (5V)  
1N4692 (7V): LOGIC-LEVEL MOSFET  
1N4695 (9V)  
1N4702 (15V): STANDARD-LEVEL MOSFET  
(including surges, spikes, ringing, etc.) and the I  
D(MAX)  
rating must exceed the maximum short-circuit current in  
the system during a fault condition. In addition, consider  
three other key parameters: 1) the required gate-source  
Figure 12. Optional Gate Clamp for Lower VGS(MAX) MOSFETs  
(V ) voltage drive, 2) the voltage drop across the drain-  
GS  
to-source on resistance, R  
junction temperature rating of the MOSFET.  
and 3) the maximum  
DS(ON)  
The R  
of the external pass transistor should be low  
DS(ON)  
to make its drain-source voltage (V ) a small percentage  
DS  
RSENSE  
of V . At a V = 2.5V, V + V  
= 0.1V yields 4%  
error at the output voltage. This restricts the choice of  
MOSFETs to very low R . At higher V voltages, the  
Power MOSFETs are classified into three categories:  
CC  
CC  
DS  
standard MOSFETs (R  
logic-level MOSFETs (R  
specified at V = 10V)  
DS(ON)  
DS(ON)  
GS  
specified at V = 5V), and  
DS(ON)  
CC  
GS  
V
DS  
requirement can be relaxed in which case MOSFET  
package dissipation (P and T ) may limit the value of  
sub-logic-levelMOSFETs(R  
specifiedatV =2.5V).  
DS(ON)  
GS  
TheabsolutemaximumratingforV istypically 20Vfor  
D
J
GS  
4211fb  
23  
LTC4211  
OPERATION  
R
. Table 5 lists some power MOSFETs that can be The first example is shown in the schematic on the front  
DS(ON)  
used with the LTC4211.  
page of this data sheet. In this case, the LTC4211 is  
mounted on the PCB and a 20k/10k resistive divider is  
connected to the ON pin. On the edge connector, R1 is  
wired to a short pin. Until the connectors are fully mated,  
the ON pin is held low, keeping the LTC4211 in an OFF  
state.Oncetheconnectorsaremated,theresistivedivider  
For reliable circuit operation, the maximum junction  
temperature (T  
exceed the manufacturer’s recommended value. This  
includes normal mode operation, start-up, current-limit  
and autoretry mode in a fault condition. Under normal  
conditions the junction temperature of a power MOSFET  
is given by Equation 13:  
) for a power MOSFET should not  
J(MAX)  
isconnectedtoV ,V >1.316VandtheLTC4211begins  
CC ON  
a start-up cycle.  
InFigure13,anLTC4211isillustratedinabasicconfigura-  
tion on a PCB daughter card. The ON pin is connected to  
CC  
the card is seated into the backplane. R2 bleeds off any  
potentialstaticchargewhichmightexistonthebackplane,  
the connector or during card installation.  
MOSFET Junction Temperature,  
T
≤ T  
+ θ • P  
(13)  
J(MAX)  
A(MAX)  
JA  
D
V
on the backplane through a 10k pull-up resistor once  
where  
2
P = (I  
) • R  
D
LOAD  
DS(ON)  
θ
= junction-to-ambient thermal resistance  
JA  
A third example is shown in Figure 14 where the LTC4211  
is mounted on the backplane. In this example, a 2N2222  
transistor and a pair of resistors (R4, R5) form the PCB  
connection sense circuit. With the card out of the chassis,  
T
= maximum ambient temperature  
A(MAX)  
If a short circuit happens during start-up, the external  
MOSFET can experience a big single pulse energy. This  
is especially true if the applications only employ a small  
gate capacitor or no gate capacitor at all. Consult the safe  
operating area (SOA) curve of the selected MOSFET to  
Q2’s base is biased to V through R5, biasing Q2 ON  
CC  
and driving the LTC4211’s ON pin low. The base of Q2 is  
also wired to a socket on the backplane connector. When  
a card is firmly seated into the backplane, the base of Q2  
is then grounded through a short pin connection on the  
card. Q2 is biased OFF, the LTC4211’s ON pin is pulled-up  
ensure that the T  
is not exceeded during start-up.  
J(MAX)  
USING STAGGERED PIN CONNECTORS  
to V and a start-up cycle begins.  
CC  
The LTC4211 can be used on either a printed circuit board  
or on the backplane side of the connector, and examples  
for both are shown in Figures 13 and 14. Printed circuit  
board edge connectors with staggered pins are recom-  
mended as the insertion and removal of circuit boards do  
sequence the pin connections. Supply voltage and ground  
connections on the printed circuit board should be wired  
to the edge connector’s long pins or blades. Control and  
statussignals(likeRESET,FAULTandON)passingthrough  
the card’s edge connector should be wired to short length  
pins or blades.  
In the previous three examples, the connection sense was  
hard wired with no processor (low) interrupt capability.  
As illustrated in Figure 15, the addition of an inexpensive  
logic-leveldiscreteMOSFETandacoupleofresistorsoffers  
processor interrupt control to the connection sense. R4  
keeps the gate of M2 at V until the card is firmly mated  
CC  
to the backplane. A logic low for the ON/OFF signal turns  
M2 OFF, allows the ON pin to pull high and turns on the  
LTC4211.  
PCB CONNECTION SENSE  
There are a number of ways to use the LTC4211’s ON pin  
to detect whether the printed circuit board has been fully  
seated in the backplane before the LTC4211 commences  
a start-up cycle.  
4211fb  
24  
LTC4211  
APPLICATIONS INFORMATION  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
V
IN  
5V  
R
SENSE  
Q1  
Si4410DY  
0.007Ω  
V
5V  
5A  
OUT  
LONG  
5V  
V
CC  
R1  
10Ω  
C1  
0.1μF  
Z1*  
R6  
10k  
SHORT  
SHORT  
1
2
8
7
+
RESET  
RESET  
V
CC  
C
OUT  
ON  
SENSE  
LTC4211  
R2  
10k  
R4  
6
5
GATE  
FB  
36k  
LONG  
4
GND  
Z1 = 1SMA10A OR SMAJ10A  
* OPTIONAL  
R5  
TIMER  
15k  
3
4211 F13  
C
10nF  
TIMER  
Figure 13. Hot Swap Controller On Daughter Board (Staggered Pin Connections)  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
R
SENSE  
Q1  
Si4410DY  
0.007Ω  
V
5V  
5A  
OUT  
LONG  
LONG  
V
5V  
IN  
+
C
R
OUT  
X
Z1*  
10Ω  
X
C
0.1μF  
8
7
R1  
36k  
R5  
10k  
R4  
10k  
V
SENSE  
GATE  
CC  
PCB  
2
4
6
ON  
CONNECTION  
SENSE  
R3  
10k  
LTC4211  
RESET  
Q2  
SHORT  
SHORT  
SHORT  
1
5
RESET  
GND  
FB  
R2  
100k  
TIMER  
3
R7  
15k  
4211 F14  
C
TIMER  
10nF  
Z1 = 1SMA10A OR SMAJ10A  
* OPTIONAL  
Figure 14. Hot Swap Controller on Backplane (Staggered Pin Connections)  
A more elaborate connection sense scheme is shown in  
Figure 16. The bases of Q1 and Q2 are wired to short pins  
located on opposite ends of the edge connector because  
the installation/removal of printed circuit cards gener-  
pins of Q1 and Q2 finally mate to the backplane, their  
bases are grounded, biasing the transistors OFF. The  
ON pin voltage is then pulled high by R3 enabling the  
LTC4211 and a power-up cycle begins.  
ally requires rocking the card back and forth. When V  
CC  
A software-initiated power-down cycle can be started by  
momentarilydrivingtransistorM1withalogichighsignal.  
This in turn will drive the LTC4211’s ON pin low. If the ON  
pin is held low for more than 8μs, the LTC4211’s GATE  
pin is switched to ground.  
makes connection, the bases of transistors Q1 and Q2  
are pulled high, biasing them ON. When either one of  
them is ON, the LTC4211’s ON pin is held low, keeping  
the LTC4211 OFF. When both the short base connector  
4211fb  
25  
LTC4211  
APPLICATIONS INFORMATION  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
R
M1  
Si4410DY  
SENSE  
V
5V  
5A  
0.007Ω  
OUT  
LONG  
V
CC  
5V  
+
R
X
C
LOAD  
10Ω  
X
Z1*  
C
100nF  
8
7
6
R5  
36k  
R7  
10k  
V
SENSE  
GATE  
FB  
CC  
5
1
R1  
10k  
R4  
10k  
R6  
15k  
SHORT  
SHORT  
2
μP  
LTC4211  
ON  
LOGIC  
RESET  
RESET  
M2  
ON/OFF  
R2  
10k  
TIMER  
3
GND  
4
C
TIMER  
10nF  
PCB CONNECTION SENSE  
LONG  
GND  
4211 F15  
ZZ1 = 1SMA10A OR SMAJ10A  
M2: 2N7002LT1  
* OPTIONAL  
Figure 15. Connection Sense with ON/OFF Control  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
LAST BLADE OR PIN ON CONNECTOR  
(FEMALE)  
(MALE)  
SHORT  
LONG  
R
M2  
Si4410DY  
SENSE  
PCB CONNECTION SENSE  
V
5V  
5A  
0.007Ω  
OUT  
V
CC  
+
R
X
C
LOAD  
10Ω  
Z1*  
C
X
0.1μF  
R1  
R2  
R3  
10k  
8
7
6
10k 10k  
R4  
36k  
R7  
10k  
V
SENSE  
GATE  
FB  
CC  
5
1
R5  
15k  
2
μP  
LOGIC  
LTC4211  
ON  
R8  
10k  
RESET  
RESET  
Q1  
TIMER  
3
GND  
Q2  
4
SHORT  
ON/RESET  
M1  
C
TIMER  
10nF  
LONG  
GND  
4211 F16  
SHORT  
Z1 = 1SMA10A OR SMAJ10A  
M1: 2N7002LT1  
Q1, Q2: MMBT3904LT1  
* OPTIONAL  
LAST BLADE OR PIN ON CONNECTOR  
Figure 16. Connection Sense for Rocking the Daughter Board Back and Forth  
4211fb  
26  
LTC4211  
APPLICATIONS INFORMATION  
12V Hot Swap Application  
Figure 18. In this case, the autoretry circuitry will attempt  
to restart the LTC4211 with a 50% duty cycle, as shown  
in the timing diagram of Figure 19. To prevent overheat-  
ing the external MOSFET and other components during  
Figure 17 shows a 12V, 3A Hot Swap application circuit.  
The resistor divider R1/R2 programs the undervoltage  
lockout externally and allows the system to start up after  
the autoretry sequence, adding a capacitor (C  
) to the  
AUTO  
V
increases above 9.46V. The resistor divider R3/R4  
CC  
circuit introduces an RC time constant (t ) that adjusts  
OFF  
monitors V  
and signals the RESET pin when V  
OUT  
OUT  
the autoretry duty cycle. Equation 14 gives the autoretry  
goes above 10.54V. Transient voltage suppressor Z1 and  
snubber network (C , R ) are highly recommended to  
duty cycle, modified by this external time constant:  
X
X
protect the 12V applications system from ringing and  
tTIMER  
tOFF + 2 • tTIMER  
(14)  
Autoretry Duty Cycle ≈  
100%  
voltage spikes. R is recommended for V > 10V and it  
G
CC  
can minimize high frequency parasitic oscillations in the  
power MOSFET.  
where t  
= LTC4211 system timing(see TIMER func-  
TIMER  
tion) and t is a time needed to charge capacitor C  
OFF  
AUTO  
from 0V to the ON pin threshold (1.316V).  
AUTORETRY AFTER A FAULT  
InFigure18withR  
=1M,theexternalRCtimeconstant  
TIMER  
AUTO  
To configure the LTC4211 to automatically retry after a  
is set at 1 second, the t  
delay equals 6.2ms and the  
fault condition, the FAULT and ON pins can be connected  
autoretry duty cycle drops from 50% to 2.5%.  
to a pull-up resistor (R ) to the supply, as shown in  
AUTO  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
R
M1  
Si4410DY  
SENSE  
0.012Ω  
V
12V  
3A  
OUT  
LONG  
V
CC  
12V  
+
R
X
C
LOAD  
10Ω  
X
Z1**  
R
G
C
100Ω  
100nF  
8
7
6
R5  
R3  
93.1k  
10k  
V
SENSE  
GATE  
CC  
5
1
FB  
R1  
61.9k  
R4  
12.4k  
SHORT  
2
μP  
LTC4211  
ON  
LOGIC  
R2  
10k  
RESET  
RESET  
TIMER  
3
GND  
4
PCB CONNECTION SENSE  
LONG  
C
TIMER  
8.2nF  
GND  
GND  
4211 F17  
Z1 = 1SMA12A OR SMAJ12A  
** HIGHLY RECOMMENDED  
Figure 17. 12V Hot Swap Application  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
Q1  
Si4410DY  
R
SENSE  
0.007Ω  
V
5V  
5A  
OUT  
LONG  
V
CC  
5V  
R3  
R
R
PULL-UP  
10k  
AUTO  
(SEE NOTE)  
10Ω  
Z1*  
C1  
0.1μF  
R1  
36k  
+
SHORT  
1
2
10  
9
RESET  
C
LOAD  
RESET  
FAULT  
R2  
15k  
ON  
V
CC  
LTC4211MS  
3
4
5
8
7
6
FILTER  
TIMER  
GND  
SENSE  
GATE  
FB  
C
FILTER  
100pF  
NOTE:  
2
Q1 MOUNTED TO 300mm COPPER AREA  
= 1M YIELDS 2.5%  
AUTO  
DUTY CYCLE AND Q1 T  
= 3.2M YIELDS 0.8%  
AUTO  
DUTY CYCLE AND Q1 T  
C
AUTO  
1μF  
C
TIMER  
10nF  
R
= 50°C  
= 37°C  
CASE  
CASE  
LONG  
Z1 = 1SMA10A OR SMAJ10A  
* OPTIONAL  
R
GND  
4211 F18  
Figure 18. LTC4211MS Autoretry Application  
4211fb  
27  
LTC4211  
APPLICATIONS INFORMATION  
FAST COMPARATOR ARMED  
SLOW COMPARATOR ARMED  
1
2
3
4 5  
6
7
8
B
ON/FAULT  
ON/FAULT  
V
CC  
t
RESET  
TIMER  
GATE  
FPD  
GATE  
OUT  
V
< V  
REF  
FB  
V
V
OUT  
RESET  
>50mV  
V
= 50mV  
SENSE  
V
CC  
– V  
SENSE  
REGULATED  
LOAD CURRENT  
V
REF  
10μA  
FILTER  
2μA  
t
t
t
t
t
OFF  
OFF  
1
2
FILTER  
4211 F19  
t
2
DUTY CYCLE =  
(t  
<< t , t AND t  
)
OFF  
FILTER  
1
2
t
+ t + t  
OFF  
1 2  
Figure 19. Autoretry Timing  
To increase the RC delay, the user may either increase  
up with 20ms delay set by R6 and C2. On the falling edge,  
both supplies ramp down together because D1 and D2  
bypass R1 and R6.  
C
or R  
. However, increasing C  
> 2μF will  
AUTO  
AUTO  
AUTO  
actually limit the RC delay due to the reset sink-current  
capability of the FAULT pin. Therefore, in order to increase  
the RC delay, it is more effective to either increase R  
AUTO  
to GND.  
OVERVOLTAGE TRANSIENT PROTECTION  
or to put a bleed resistor in parallel with C  
AUTO  
Good engineering practice calls for bypassing the supply  
railofanyanalogcircuit.Bypasscapacitorsareoftenplaced  
at the supply connection of every active device, in addition  
tooneormorelargevaluebulkbypasscapacitorspersup-  
ply rail. If power is connected abruptly, the large bypass  
capacitors slow the rate of rise of the supply voltage and  
heavily damp any parasitic resonance of lead or PC track  
inductance working against the supply bypass capacitors.  
For example, increasing R  
in Figure 18 from 1M to  
AUTO  
3.2M decreases the duty cycle to 0.8%.  
HOT SWAPPING TWO SUPPLIES  
Using two external pass transistors, the LTC4211 can  
switch two supply voltages. In some cases, it is necessary  
to bring up the dominant supply first during power-up but  
ramp them down together during the power-down phase.  
The circuit in Figure 20 shows how to program two dif-  
ferent delays for the pass transistors. The 5V supply is  
powered up first. R1 and C3 are used to set the rise and  
fall times on the 5V supply. Next, the 3.3V supply ramps  
TheoppositeistrueforLTC4211HotSwapcircuitsmounted  
on plug-in cards. In most cases, there is no supply bypass  
capacitor present on the powered supply voltage side of  
the MOSFET switch. An abrupt connection, produced by  
4211fb  
28  
LTC4211  
APPLICATIONS INFORMATION  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
5V OUT  
3.3V OUT  
(FEMALE)  
(MALE)  
Q2  
1/2 Si4936DY  
V
3.3V  
2A  
OUT1  
LONG  
3.3V  
5V  
R8  
10Ω  
C4  
+
+
D3**  
Z1*  
Z2*  
C
C
LOAD  
LOAD  
R2  
0.015Ω  
5%  
R7  
10Ω  
5%  
Q1  
CURRENT LIMIT: 3.3A  
0.1μF  
1/2 Si4936DY  
V
5V  
2A  
OUT2  
LONG  
R9  
10Ω  
C5  
10k  
D1  
R3  
10Ω  
5%  
1N4148  
D2  
1N4148  
LTC4211  
0.1μF  
SHORT  
SHORT  
1
2
3
4
8
7
6
5
RESET  
RESET  
V
CC  
R6  
1M  
5%  
R1  
10k  
5%  
R4  
2.74k  
1%  
ON  
ON  
SENSE  
R11  
10k  
R10  
10k  
TIMER GATE  
GND FB  
TRIP POINT: 4.06V  
R5  
C1  
10nF  
16V  
C3  
0.047μF  
25V  
C2  
0.022μF  
25V  
1.2k  
1%  
LONG  
4211 F20  
GND  
Z1, Z2: 1SMA10A OR SMAJ10A  
* OPTIONAL  
**D3 IS OPTIONAL AND HELPS DISCHARGE V  
IF V  
SHORTS  
OUT2  
OUT1  
Figure 20. Switching 5V and 3.3V  
insertingtheboardintoabackplaneconnector, resultsina  
fast rising edge applied on the supply line of the LTC4211.  
supply ringing, although a transient voltage suppressor  
mayberequiredforinductiveandhighcurrentapplications.  
NotethatinallLTC42115Vapplicationsschematics,tran-  
sient suppressor and snubber networks have been added  
for protection. The transient suppressor is optional and a  
simple short-circuit test can be performed to determine  
if it is necessary. These protection networks should be  
mounted very close to the LTC4211’s supply input rail  
using short lead lengths to minimize lead inductance.  
This is shown in Figure 21, and a recommended layout  
of the transient protection devices around the LTC4211  
is shown in Figure 22.  
Since there is no bulk capacitance to damp the para-  
sitic track inductance, supply voltage transients excite  
parasitic resonant circuits formed by the power MOSFET  
capacitance and the combined parasitic inductance from  
the wiring harness, the backplane and the circuit board  
traces.  
I
n these applications, there are two methods that should  
be applied together for eliminating these supply voltage  
transients: using transient voltage suppressor to clip the  
transient to a safe level and snubber networks. Snubber  
networksareseriesRCnetworkswhosetimeconstantsare  
experimentallydeterminedbasedontheboard’sparasitic  
resonance circuits. As a starting point, the capacitors in  
these networks are chosen to be 10× to 100× the power  
MOSFET’s COSS under bias. The series resistor is a value  
determined experimentally and ranges from 1Ω to 50Ω,  
depending on the parasitic resonance circuit. For applica-  
tions with supply voltages of 12V or higher the ringing  
andovershootduringhot-swappingorwhentheoutputis  
short-circuited can easily exceed the absolute maximum  
specification of the LTC4211. To reduce the danger, tran-  
sientvoltagesuppressorsandsnubbernetworksarehighly  
recommended.Forapplicationswithlowersupplyvoltages  
such as 5V, usually a snubber is adequate to reduce the  
R
Q1  
Si4410DY  
SENSE  
0.007Ω  
V
OUT  
5V  
5A  
V
IN  
5V  
R1  
36k  
+
8
7
6
V
SENSE  
LTC4211  
TIMER  
GATE  
FB  
CC  
5
R
X
C
OUT  
10Ω  
R2  
15k  
Z1*  
1
2
C
X
0.1μF  
RESET  
ON  
RESET  
ON  
GND  
4
3
C
TIMER  
INPUT  
GND  
OUTPUT  
GND  
Z1 = 1SMA10A OR SMAJ10A  
* OPTIONAL  
4211 F21  
Figure 21. Placing Transient Protection Devices  
Close to the LTC4211’s Input Rail  
4211fb  
29  
LTC4211  
APPLICATIONS INFORMATION  
CURRENT FLOW  
TO LOAD  
CURRENT FLOW  
TO LOAD  
POWER MOSFET  
(SO-8)  
SENSE RESISTOR  
(R  
)
SENSE  
D
D
D
D
G
S
S
S
W
W
C
X
X
Z1*  
R
*
C
*
GX  
GX  
TRANSIENT  
VOLTAGE  
SUPPRESSOR  
SNUBBER  
NETWORK  
VIA TO  
GND PLANE  
R
R4  
15k  
R3  
36k  
NOTES:  
LTC4211**  
DRAWING IS NOT TO SCALE!  
*OPTIONAL COMPONENTS  
**ADDITIONAL DETAILS OMITTED  
FOR CLARITY  
1
C
TIMER  
10nF  
CURRENT FLOW  
FROM LOAD  
W
4211 F22  
Figure 22. Recommended Layout for LTC4211 Protection Devices, RSENSE, Power MOSFET and Feedback Network  
4211fb  
30  
LTC4211  
APPLICATIONS INFORMATION  
SUPPLY OVERVOLTAGE DETECTION/  
PROTECTION USING FILTER PIN  
operation, internal control logic would trip the electronic  
circuit breaker and the GATE would be pulled to ground,  
shuttingOFFtheexternalpasstransistor.Ifalowersupply  
overvoltage threshold is desired, use a Zener diode with  
a smaller breakdown voltage.  
In addition to using external protection devices around the  
LTC4211 for large scale transient protection, low power  
Zener diodes can be used with the LTC4211’s FILTER  
pin to act as a supply overvoltage detection/protection AtimingdiagramforillustratingLTC4211operationundera  
circuit on either the high side (input) or low side (output) high side overvoltage condition is shown in Figure 24. The  
of the external pass transistor. Recall that internal control start-up sequence in this case (between Time Points 1 and  
circuitry keeps the LTC4211 GATE voltage from ramping 2)isidenticaltoanyotherstart-upsequenceundernormal  
up if V  
> 1.156V, or when an external fault condition operating conditions. At Time Point 2A, the input supply  
FILTER  
(V  
> 1.236V) causes FAULT to be asserted low.  
voltage causes the Zener diode to conduct thereby forcing  
> 1.156V. At Time Point 3, FAULT is asserted low  
FILTER  
V
FILTER  
High Side (Input) Overvoltage Protection  
and the TIMER pin voltage ramps down. At Time Point 4,  
the LTC4211 checks if V < 1.156V. FAULT is asserted  
FILTER  
As shown in Figure 23, a low power Zener diode can  
be used to sense an overvoltage condition on the input  
(high) side of the main 5V supply. In this example, a low  
bias current 1N4691 Zener diode is chosen to protect the  
low (but not latched) to indicate a start-up failure. The  
start-up sequence only resumes with the second timing  
cycleatTimePoint5whentheinputovervoltagecondition  
is removed. At this point in time, the GATE pin voltage is  
allowed to ramp up, FAULT is pulled to logic high and the  
circuit breaker is armed. At any time after Time Point 5,  
system. Here, the Zener diode is connected from V to  
CC  
the LTC4211’s FILTER pin (Pin 3 MS). If the input volt-  
age to the system is greater than 6.8V during start-up,  
the voltage on the FILTER pin is pulled higher than its  
1.156V threshold. As a result, the GATE pin is not allowed  
to ramp and the second timing cycle will not commence  
untilthesupplyovervoltageconditionisremoved.Should  
the supply overvoltage condition occur during normal  
should a supply overvoltage condition develop (V  
>
FILTER  
1.236V), the electronic circuit breaker will trip, the GATE  
will be pulled low to turn off the external MOSFET and  
FAULT will be asserted low and latched. This sequence is  
shown in detail at Time Point B.  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
LONG  
5V  
R3  
10Ω  
C1  
R4  
10k  
R
SENSE  
0.007Ω  
Q1  
Si4410DY  
Z1*  
V
5V  
5A  
OUT  
0.1μF  
SHORT  
FAULT  
R1  
R5  
Z2  
LTC4211  
36k  
10k  
+
6.2V  
SHORT  
SHORT  
1
2
3
4
5
10  
9
C
LOAD  
RESET  
RESET FAULT  
R2  
15k  
ON/OFF  
ON  
V
CC  
R6  
10k  
R7  
10k  
8
FILTER SENSE  
TIMER GATE  
7
C
47pF  
C
FILTER  
TIMER  
6
4211 F23  
10nF  
GND  
FB  
LONG  
GND  
Z1 = 1SMA10A OR SMAJ10A  
Z2 = 1N4691  
* OPTIONAL  
Figure 23. LTC4211MS High Side Overvoltage Protection Implementation  
4211fb  
31  
LTC4211  
APPLICATIONS INFORMATION  
IF ANY FAULT HAPPENS  
AFTER THIS POINT, THE  
CIRCUIT BREAKER TRIPS  
AND FAULT LATCHES LOW  
SLOW COMPARATOR ARMED  
IF OVERVOLTAGE GOES  
AWAY, SECOND CYCLE  
CONTINUES  
OVERVOLTAGE CIRCUIT BREAKER  
TRIPS, GATE PULLS DOWN AND  
FAULT LATCHES LOW  
OVERVOLTAGE  
2A  
1
2
3
4
5
6
7
8
A B C  
V
CC  
ON  
TIMER  
GATE  
V
FPD  
OUT  
POWER BAD  
< V  
GATE  
OUT  
V
V
POWER GOOD  
> V  
FB  
REF  
V
FB  
REF  
RESET  
FILTER  
FAULT  
>V  
>V  
– 80mV  
REF  
REF  
4211 F24  
FAULT  
LATCHED LOW  
FAULT IS PULLED LOW (BUT NOT LATCHED)  
DUE TO A START-UP OVERVOLTAGE PROBLEM  
Figure 24. High Side Overvoltage Protection  
Low Side (Output) Overvoltage Protection  
diagram for a low side output overvoltage condition. In  
this example, V starts up in an overvoltage condition  
CC  
A Zener diode can be used in a similar fashion to detect/  
protect the system against a supply overvoltage condition  
on the load (or low) side of the pass transistor. In this  
case, the Zener diode is connected from the load to the  
LTC4211’sFILTERpin,asshowninFigure25.Anadditional  
diode, D1, preventstheFILTERpinfrompullinglowduring  
an output short-circuit. Figure 26 illustrates the timing  
but the LTC4211 can only sense the overvoltage supply  
condition at Time Point 6 when the GATE pin has ramped  
up. At Time Point 6, V  
is greater than 1.236V, the  
FILTER  
circuit breaker is tripped, the GATE pin voltage is pulled  
to ground and FAULT is asserted low and latched.  
4211fb  
32  
LTC4211  
APPLICATIONS INFORMATION  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
D1  
IN4148  
LONG  
5V  
R3  
10k  
R4  
10Ω  
C1  
R
Q1  
Si4410DY  
SENSE  
Z1*  
V
0.007Ω  
OUT  
5V  
0.1μF  
SHORT  
5A  
FAULT  
R1  
R5  
Z2  
LTC4211  
RESET FAULT  
ON  
36k  
+
10k  
6.2V  
SHORT  
SHORT  
C
1
2
3
4
5
10  
9
LOAD  
RESET  
R2  
15k  
ON/OFF  
V
CC  
R6  
10k  
R7  
10k  
8
FILTER SENSE  
TIMER GATE  
7
C
C
TIMER  
10nF  
FILTER  
6
4211 F25  
47pF  
GND  
FB  
LONG  
GND  
Z1 = 1SMA10A OR SMAJ10A  
Z2 = 1N4691  
* OPTIONAL  
Figure 25. LTC4211MS Low Side Overvoltage Protection Implementation  
OVERVOLTAGE SENSED BY FILTER PIN AND CIRCUIT BREAKER TRIPS  
1
2
3 4 5  
6
V
ON  
CC  
TIMER  
GATE  
V
OUT  
FPD  
RESET  
V
REF  
FILTER  
FAULT  
4211 F26  
Figure 26. Low Side Overvoltage Protection  
4211fb  
33  
LTC4211  
APPLICATIONS INFORMATION  
perfoilisapproximately0.54mΩ/square,trackresistances  
add up quickly in high current applications. Thus, to keep  
PCB track resistance and temperature rise to a minimum,  
PCB track width must be appropriately sized. Consult Ap-  
pendix A of LTC Application Note 69 for details on sizing  
and calculating trace resistances as a function of copper  
thickness.  
In either case, the LTC4211 can be configured to au-  
tomatically initiate a start-up sequence. Please refer  
to the section on AutoRetry After a Fault for additional  
information.  
PCB Layout Considerations  
For proper operation of the LTC4211’s circuit breaker  
function, a 4-wire Kelvin connection to the sense resis-  
tors is highly recommended. A recommended PCB layout  
for the sense resistor, the power MOSFET and the GATE  
drive components around the LTC4211 is illustrated in  
Figure 22. In Hot Swap applications where load currents  
can reach 10A or more, narrow PCB tracks exhibit more  
resistance than wider tracks and operate at more elevated  
temperatures. Since the sheet resistance of 1 ounce cop-  
In the majority of applications, it will be necessary to use  
plated-through vias to make circuit connections from  
component layers to power and ground layers internal  
to the PC board. For 1 ounce copper foil plating, a good  
starting point is 1A of DC current per via, making sure the  
via is properly dimensioned so that solder completely fills  
any void. For other plating thicknesses, check with your  
PCB fabrication facility.  
4211fb  
34  
LTC4211  
APPENDIX  
Table 4 lists some current sense resistors that can be used  
withthecircuitbreaker.Table5listssomepowerMOSFETs  
that are available. Table 6 lists the web sites of several  
manufacturers.Sincethisinformationissubjecttochange,  
please verify the part numbers with the manufacturer.  
Table 4. Sense Resistor Selection Guide  
CURRENT LIMIT VALUE  
PART NUMBER  
LR120601R050  
LR120601R025  
LR120601R020  
WSL2512R015F  
LR251201R010F  
WSR2R005F  
DESCRIPTION  
MANUFACTURER  
IRC-TT  
1A  
0.05Ω 0.5W 1% Resistor  
0.025Ω 0.5W 1% Resistor  
0.02Ω 0.5W 1% Resistor  
0.015Ω 1W 1% Resistor  
0.01Ω 1.5W 1% Resistor  
0.005Ω 2W 1% Resistor  
2A  
IRC-TT  
2.5A  
3.3A  
5A  
IRC-TT  
Vishay-Dale  
IRC-TT  
10A  
Vishay-Dale  
Table 5. N-Channel Selection Guide  
CURRENT LEVEL (A)  
PART NUMBER  
DESCRIPTION  
MANUFACTURER  
0 to 2  
MMDF3N02HD  
MMSF5N02HD  
MTB50N06V  
Dual N-Channel SO-8  
DS(ON)  
ON Semiconductor  
R
= 0.1Ω, C = 455pF  
ISS  
2 to 5  
Single N-Channel SO-8  
= 0.025Ω, C = 1130pF  
ON Semiconductor  
ON Semiconductor  
ON Semiconductor  
R
DS(ON)  
ISS  
5 to 10  
10 to 20  
Single N-Channel DD Pak  
= 0.028Ω, C = 1570pF  
R
DS(ON)  
ISS  
MTB75N05HD  
Single N-Channel DD Pak  
= 0.0095Ω, C = 2600pF  
R
DS(ON)  
ISS  
Table 6. Manufacturers’ Web Sites  
MANUFACTURER  
TEMIC Semiconductor  
International Rectifier  
ON Semiconductor  
Harris Semiconductor  
IRC-TT  
WEB SITE  
www.temic.com  
www.irf.com  
www.onsemi.com  
www.semi.harris.com  
www.irctt.com  
Vishay-Dale  
www.vishay.com  
www.vishay.com  
www.diodes.com  
Vishay-Siliconix  
Diodes, Inc.  
4211fb  
35  
LTC4211  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660 Rev F)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
0.52  
(.0205)  
REF  
8
7 6  
5
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
4.90 p 0.152  
(.193 p .006)  
0.889 p 0.127  
(.035 p .005)  
DETAIL “A”  
0.254  
(.010)  
0o – 6o TYP  
GAUGE PLANE  
5.23  
(.206)  
MIN  
1
2
3
4
3.20 – 3.45  
(.126 – .136)  
0.53 p 0.152  
(.021 p .006)  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
DETAIL “A”  
0.18  
(.007)  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
SEATING  
PLANE  
TYP  
0.22 – 0.38  
0.1016 p 0.0508  
RECOMMENDED SOLDER PAD LAYOUT  
(.009 – .015)  
(.004 p .002)  
0.65  
(.0256)  
BSC  
TYP  
NOTE:  
MSOP (MS8) 0307 REV F  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
4211fb  
36  
LTC4211  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661 Rev E)  
0.889 0.127  
(.035 .005)  
5.23  
3.20 – 3.45  
(.206)  
(.126 – .136)  
MIN  
3.00 0.102  
(.118 .004)  
(NOTE 3)  
0.497 0.076  
(.0196 .003)  
REF  
0.50  
(.0197)  
BSC  
0.305 0.038  
(.0120 .0015)  
TYP  
10 9  
8
7 6  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.102  
(.118 .004)  
(NOTE 4)  
4.90 0.152  
(.193 .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
1
2
3
4 5  
0.53 0.152  
(.021 .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.1016 0.0508  
(.004 .002)  
0.50  
(.0197)  
BSC  
MSOP (MS) 0307 REV E  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
4211fb  
37  
LTC4211  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.189 – .197  
(4.801 – 5.004)  
.045 t.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 t.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 t.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
w 45s  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0s– 8s TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
SO8 REV G 0212  
4211fb  
38  
LTC4211  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
03/12 Updated Pin description information  
10, 11  
13  
Updated Figure 2 and supporting text  
Moved Figure 7 and supporting text to page 16 and renumbered to Figure 6  
Updated text under Second Timing (Soft-Start) Cycle  
16  
16  
Replaced C with C  
in Figure 6  
GATE  
16  
GX  
Revised Figure 26 and supporting Low Side (Output) Overvoltage Protection text  
32, 33  
4211fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
39  
LTC4211  
TYPICAL APPLICATION  
LOW COST OVERVOLTAGE PROTECTION  
COMP circuit breaker is available and the current limit  
level is 150mV/R . During the soft-cycle, the inrush  
SENSE  
There is an alternative method to implementing the over-  
voltage protection using a resistor divider at the FILTER  
pin (see Figures 27 and 28). In this implementation, the  
SLOW COMP is NULL in Normal Mode. Only the FAST  
current servo loop is at 50mV/R  
. So, the heavy load  
SENSE  
should only turn on at/after the end of second cycle where  
the RESET pin goes high.  
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
LONG  
5V  
R3  
10Ω  
C1  
R4  
10k  
R
Q1  
Si4410DY  
Z1*  
SENSE  
0.007Ω  
V
5V  
5A  
OUT  
0.1μF  
SHORT  
FAULT  
R1  
R5  
R8  
LTC4211  
36k  
10k  
+
4.3k  
SHORT  
SHORT  
1
2
3
4
5
10  
9
C
LOAD  
RESET  
RESET FAULT  
R2  
15k  
ON/OFF  
ON  
V
CC  
R6  
10k  
R7  
10k  
8
FILTER SENSE  
TIMER GATE  
7
R9  
750Ω  
C
TIMER  
10nF  
6
4211 F27  
GND  
FB  
LONG  
GND  
Z1 = 1SMA10A OR SMAJ10A  
* OPTIONAL  
Figure 27. LTC4211MS High Side Overvoltage Protection Implementation  
(In Normal Mode, SLOW COMP Is Disabled. In Soft-Start Cycle, ISOFTSTART Is Still 50mV/RSENSE  
)
BACKPLANE PCB EDGE  
CONNECTOR CONNECTOR  
(FEMALE)  
(MALE)  
LONG  
5V  
R3  
10k  
R7  
10Ω  
C1  
R
Q1  
Si4410DY  
SENSE  
0.007Ω  
Z1*  
V
5V  
5A  
OUT  
0.1μF  
SHORT  
FAULT  
R1  
R4  
LTC4211  
3.6k  
10k  
+
SHORT  
SHORT  
1
2
3
4
5
10  
9
C
LOAD  
RESET  
RESET FAULT  
R2  
750Ω  
ON/OFF  
ON  
V
CC  
R5  
10k  
R6  
10k  
8
FILTER SENSE  
TIMER GATE  
7
R8  
750Ω  
C
TIMER  
10nF  
6
GND  
FB  
4211 F28  
LONG  
GND  
Z1 = 1SMA10A OR SMAJ10A  
* OPTIONAL  
Figure 28. LTC4211MS Low Side Overvoltage Protection Implementation  
(In Normal Mode, SLOW COMP Is Disabled. In Soft-Start Cycle, ISOFTSTART Is Still 50mV/RSENSE  
)
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1421  
Two Channels, Hot Swap Controller  
Single Channel, Hot Swap Controller  
24-Pin, Operates from 3V to 12V and Supports 12V  
8-Pin, Operates from 2.7V to 12V  
LTC1422  
LT1640AL/LT1640AH Negative Voltage Hot Swap Controller  
8-Pin, Operates from –10V to –80V  
LT1641-1/LT1641-2  
LTC1642  
Positive Voltage Hot Swap Controller  
Single Channel, Hot Swap Controller  
PCI Hot Swap Controller  
8-Pin, Operates from 9V to 80V, Latch-Off/Auto Retry  
16-Pin, Overvoltage Protection to 33V  
LTC1644  
16-Pin, 3.3V, 5V and 12V, 1V Precharge, PCI Reset Logic  
8-Pin, 16-Pin, Operates from 2.7V to 16.5V  
LTC1647  
Dual Channel, Hot Swap Controller  
LTC4230  
Triple Hot Swap Controller with Multifunction Current Control Operates from 1.7V to 16.5V  
4211fb  
LT 0312 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
40  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC4212

Hot Swap Controller with Power-Up Timeout
Linear

LTC4212CMS

Hot Swap Controller with Power-Up Timeout
Linear

LTC4212CMS#PBF

LTC4212 - Hot Swap Controller with Power-Up Timeout; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4212CMS#TR

LTC4212 - Hot Swap Controller with Power-Up Timeout; Package: MSOP; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4212CMS#TRPBF

暂无描述
Linear

LTC4212IMS

Hot Swap Controller with Power-Up Timeout
Linear

LTC4212IMS#TRPBF

LTC4212 - Hot Swap Controller with Power-Up Timeout; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4213

No RSENSE™ Electronic Circuit Breaker
Linear

LTC4213CDDB

No RSENSE™ Electronic Circuit Breaker
Linear

LTC4213CDDB#PBF

LTC4213 - No RSENSE Electronic Circuit Breaker; Package: DFN; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4213CDDB#TR

暂无描述
Linear

LTC4213CDDB#TRM

暂无描述
Linear