LTC4241IGN#TRPBF [Linear]

LTC4241 - PCI-Bus with 3.3V Auxiliary Hot Swap Controller; Package: SSOP; Pins: 20; Temperature Range: -40°C to 85°C;
LTC4241IGN#TRPBF
型号: LTC4241IGN#TRPBF
厂家: Linear    Linear
描述:

LTC4241 - PCI-Bus with 3.3V Auxiliary Hot Swap Controller; Package: SSOP; Pins: 20; Temperature Range: -40°C to 85°C

PC 输入元件 光电二极管
文件: 总16页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4241  
PCI-Bus with 3.3V Auxiliary  
Hot Swap Controller  
U
FEATURES  
DESCRIPTIO  
The LTC®4241 is a Hot Swap controller that allows a board  
to be safely inserted and removed from a live PCI-bus slot.  
It has a primary controller that controls the four PCI  
suppliesandanindependentauxiliarycontrollertocontrol  
the 3.3V auxiliary supply. External N-channel transistors  
areusedtocontrolthe3.3V,5Vand3.3Vauxiliarysupplies  
whileon-chipswitchescontrolthe12Vand12Vsupplies.  
The3.3V, 5Vand3.3Vauxiliarysuppliescanberampedup  
at an adjustable rate. Electronic circuit breakers protect all  
five supplies against overcurrent faults. The foldback  
current limit feature reduces current spikes and power  
dissipation when shorts occur. The PWRGD output of the  
primary controller indicates when all four PCI supplies are  
withintolerance.TheFAULToutputindicatesanovercurrent  
condition for any of the five supplies.  
Allows Safe Board Insertion and Removal from a  
Live PCI Slot  
Controls 3.3V, 5V, –12V, 12V and 3.3V Auxiliary  
Supplies  
Independent 3.3V Auxiliary Supply Hot SwapTM  
Controller  
Adjustable Foldback Current Limit with Circuit  
Breaker  
Adjustable Supply Voltage Power-Up Rate  
High Side Drive for External N-Channel FETs  
–12V and 12V On-Chip Switches  
Fault and Power Good Outputs  
U
APPLICATIO S  
PCI-Based Servers  
Computer Systems  
The LTC4241 is available in the 20-pin narrow SSOP  
package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Hot Swap is a trademark of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
GND  
R1  
0.007  
Q1  
IRF7413  
5V  
5A  
R4  
10Ω  
R2  
0.005Ω  
Q2  
IRF7413  
3.3V  
7.6A  
R5  
10Ω  
R3  
0.07Ω  
Q3  
Si2306DS  
3.3V  
AUX  
500mA  
SYSTEM  
POWER  
SUPPLY  
C3  
10nF  
R7  
100Ω  
R6  
10Ω  
C1  
0.047µF  
11  
10  
9
13  
14  
15  
3
17  
16  
18  
AUXIN AUXSENSE AUXGATE 3V 3V  
IN  
GATE 3V  
5V  
IN  
5V  
5V  
SENSE  
OUT  
SENSE  
OUT  
8
1
GND  
12V  
12V  
IN  
2
20  
19  
4
500mA  
V
12V  
EEIN  
OUT  
12  
5
–12V  
100mA  
AUXON  
ON  
LTC4241  
V
EEOUT  
R8 10k  
R9 10k  
6
7
BACKPLANE  
PCI  
FAULT  
TIMER  
CONNECTOR  
POWER  
C2  
0.1µF  
SYSTEM  
CONTROLLER  
PWRGD  
LOGIC  
RESET  
RESET  
4241 F01  
Figure 1. Hot Swappable PCI and 3.3V Auxiliary Supplies  
sn4241 4241f  
1
LTC4241  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
Supply Voltages  
12VIN ................................................................... 14V  
V
EEIN .................................................................. –14V  
LTC4241CGN  
LTC4241IGN  
TOP VIEW  
AUXIN ................................................................... 7V  
Input Voltage  
12V  
V
1
2
3
4
5
6
7
8
9
12V  
V
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IN  
OUT  
EEIN  
EEOUT  
ON .........................................................0.3V to 14V  
AUXON ..................................................0.3V to 14V  
Output Voltages  
3V  
OUT  
5V  
OUT  
IN  
TIMER  
5V  
5V  
ON  
FAULT  
SENSE  
(FAULT, PWRGD) ..................................0.3V to 14V  
Analog Voltages  
GATE  
3V  
PWRGD  
GND  
SENSE  
TIMER, 3VIN, 3VSENSE, GATE,  
3V  
IN  
5VSENSE, 5VIN ............................. –0.3V to (12VIN + 0.3V)  
3VOUT, 5VOUT ........................................0.3V to 14V  
AUXSENSE ..........................0.3V to (AUXIN + 0.3V)  
VEEOUT ................................................ –14V to + 0.3V  
12VOUT ..................................................0.3V to 14V  
AUXGATE ......................... Internally Limited (Note 3)  
Operating Temperature Range  
AUXGATE  
AUXON  
AUXIN  
AUXSENSE 10  
GN PACKAGE  
20-LEAD NARROW PLASTIC SSOP  
TJMAX = 150°C, θJA = 135°C/W  
LTC4241CGN........................................... 0°C to 70°C  
LTC4241IGN........................................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering,10sec).................... 300°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
DC ELECTRICAL CHARACTERISTICS  
VAUXIN = 3.3V. (Note 2)  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V12VIN = 12V, VVEEIN = –12V, V3VIN = 3.3V, V5VIN = 5V,  
SYMBOL  
PARAMETER  
CONDITIONS  
ON = V  
MIN  
TYP  
MAX UNITS  
I
V
V
Supply Current  
Supply Current  
2.5  
0.5  
8
mA  
mA  
DD  
12VIN  
AUXIN  
12VIN  
AUXON = V  
1.5  
AUXIN  
V
Undervoltage Lockout,  
Low-to-High Transition  
12V  
6.5  
2.25  
3.65  
2.35  
9
10.8  
2.75  
4.15  
2.85  
V
V
V
V
LKO  
IN  
3V  
5V  
2.50  
3.90  
2.60  
IN  
IN  
AUXIN  
V
V
V
Undervoltage Lockout Hysteresis  
Current Limit Sense Voltage  
3V , 5V  
AUXIN  
20  
120  
mV  
mV  
LKH  
IN  
IN  
V
V
= 0V  
> 4V  
5.5  
40  
9
55  
14.5  
70  
mV  
mV  
SENSE5(TH)  
SENSE3(TH)  
5VOUT  
5VOUT  
Threshold (V  
– V  
)
5VIN  
5VSENSE  
Current Limit Sense Voltage  
Threshold (V – V  
V
V
= 0V  
> 2V  
5.5  
40  
9
55  
14.5  
70  
mV  
mV  
3VOUT  
3VOUT  
)
3VIN  
3VSENSE  
t
I
Circuit Breaker Trip Filter Time  
(V  
(V  
– V ) = Step 0 to 100mV  
5VSENSE  
17  
8
µs  
µs  
CB  
5VIN  
– V  
) = Step 0 to 100mV  
AUXSENSE  
AUXIN  
GATE Pin Output Current  
ON High, FAULT High, V  
ON Low, FAULT High, V  
ON High, FAULT Low, V  
= GND  
= 5V  
–20  
5
–60  
200  
25  
–100  
35  
µA  
µA  
mA  
GATE  
GATE  
GATE  
= 5V  
GATE  
sn4241 4241f  
2
LTC4241  
DC ELECTRICAL CHARACTERISTICS  
VAUXIN = 3.3V. (Note 2)  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V12VIN = 12V, VVEEIN = –12V, V3VIN = 3.3V, V5VIN = 5V,  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
V  
External Gate Voltage  
Internal Switch Voltage Drop  
(V  
– V  
)
GATE  
100  
200  
mV  
GATE  
12VIN  
V
(V  
(V  
– V ), I = 500mA  
12VOUT 12VOUT  
200  
120  
600  
250  
mV  
mV  
DROP  
12VIN  
EEOUT  
– V  
), I  
= 100mA  
VEEIN VEEIN  
I
I
Current Limit  
Current Limit  
12V = 12V, 12V  
= 0V, TIMER = GND  
= 11V, TIMER = GND  
–50  
–300 –575  
mA  
mA  
CL(12)  
IN  
OUT  
OUT  
12V = 12V, 12V  
–525 –850 –1500  
IN  
V
V
= –12V, V  
= –12V, V  
= 0V, TIMER = GND  
= –11V, TIMER = GND  
50  
250  
200  
450  
425  
750  
mA  
mA  
CL(VEE)  
EEIN  
EEIN  
EEOUT  
EEOUT  
T
Thermal Shutdown Temperature  
Power Good Threshold Voltage  
150  
°C  
TS  
V
V
V
V
V
Rising  
Falling  
Rising  
Rising  
10.8  
11.1  
11.4  
V
V
V
V
PG(TH)  
12VOUT  
VEEOUT  
3VOUT  
5VOUT  
–10.2 –10.5 –10.8  
2.8  
4.5  
2.9  
4.65  
3.0  
4.78  
V
Power Good Hysteresis  
3V  
5V  
20  
30  
50  
mV  
mV  
mV  
PGH  
OUT  
OUT  
OUT EEOUT  
12V , V  
V
V
V
Input Low Voltage  
ON, AUXON  
ON, AUXON  
0.8  
0.4  
V
V
V
IL  
Input High Voltage  
Output Low Voltage  
AUXON Pin Input Current  
2
IH  
OL  
FAULT, PWRGD , I = 3mA  
OL  
I
AUXON = GND  
±0.08  
±0.08  
±10  
±10  
µA  
µA  
IN  
AUXON = V  
AUXIN  
ON Pin Input Current  
ON = GND  
±0.08  
±0.08  
±10  
±10  
µA  
µA  
ON = V  
12VIN  
5V  
3V  
Input Current  
Input Current  
5V  
3V  
= 5V  
50  
50  
100  
100  
900  
550  
500  
350  
µA  
µA  
µA  
µA  
µA  
µA  
SENSE  
SENSE  
SENSE  
= 3V  
SENSE  
5V Input Current  
IN  
5V = 5V  
IN  
580  
310  
260  
150  
3V Input Current  
IN  
3V = 3V  
IN  
5V  
OUT  
3V  
OUT  
Input Current  
Input Current  
5V  
OUT  
3V  
OUT  
= 5V, ON = V  
= 3V, ON = V  
12VIN  
12VIN  
R
DIS  
5V  
3V  
Discharge Impedance  
Discharge Impedance  
OUT  
ON = GND  
ON = GND  
ON = GND  
ON = GND  
60  
50  
450  
1600  
OUT  
OUT  
12V  
Discharge Impedance  
Discharge Impedance  
V
EEOUT  
I
TIMER Pin Current  
Timer On, V  
Timer Off, V  
= GND,  
= 5V,  
–15  
0.5  
–22  
45  
–27  
1.3  
µA  
TIMER  
TIMER  
TIMER  
mA  
V
V
TIMER Threshold Voltage  
TIMER  
AUXCB  
(V  
12VIN  
– V  
)
0.9  
50  
V
TIMER  
Circuit Breaker Trip Voltage  
(V – V  
)
AUXSENSE  
40  
–6  
60  
mV  
AUXIN  
I
AUXGATE Gate Output Current  
AUXON High, FAULT High, V  
AUXON Low, FAULT High, V  
AUXON High, FAULT Low, V  
= GND  
= 5V  
= 10V  
–10  
200  
50  
–14  
µA  
µA  
mA  
AUXGATE  
AUXGATE  
AUXGATE  
AUXGATE  
V  
AUXGATE  
External AUXGATE Gate Voltage  
(V  
AUXGATE  
– V  
), V = 3.3V  
AUXIN AUXIN  
5
8
11  
V
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2 : All currents into device pins are positive; all currents out of device  
pins are negative. All voltages are referenced to ground unless otherwise  
specified.  
Note 3 : An internal zener on the AUXGATE pin clamps the charge pump  
voltage to a typical maximum operating voltage of 12V. External overdrive  
of the AUXGATE pin beyond the internal zener voltage may damage the  
device.  
sn4241 4241f  
3
LTC4241  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
3.3V and 5V Current  
Foldback Profile  
–12V Current Foldback Profile  
12V Current Foldback Profile  
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
12  
10  
8
1100  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
12V = 12V  
IN  
V
= –12V  
EEIN  
3V  
OUT  
5V  
OUT  
6
4
3V = 3.3V  
IN  
2
5V = 5V  
IN  
SENSE  
R
= 0.005  
0
0
1
2
3
4
5
6
7
8
9
10 11 12  
0.5  
1.5  
2.5  
3.5  
4.5  
5.5  
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 –10 –1112  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
4241 • G02  
4241 • G01  
4241 • G03  
12VIN Current Limit  
vs Temperature  
5VIN Current Limit Voltage  
vs Temperature  
3VIN Current Limit Voltage  
vs Temperature  
70  
60  
50  
40  
30  
20  
10  
0
1200  
1000  
800  
600  
400  
200  
0
70  
60  
50  
40  
30  
20  
10  
0
3V  
= 3.3V  
5V  
= 5V  
OUT  
OUT  
12V  
= 11V  
OUT  
12V  
= 0V  
5V  
= 0V  
OUT  
3V  
= 0V  
OUT  
OUT  
–75 –50 –25  
75 100 125 150  
–75 –50 –25  
75 100 125 150  
–75 –50 –25  
75 100 125 150  
TEMPERATURE (°C)  
0
25 50  
0
25 50  
0
25 50  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4241 • G05  
4241 • G06  
4241 • G04  
(VAUXIN – VAUXSENSE  
)
VEEIN Current Limit  
vs Temperature  
Circuit Breaker Trip Voltage  
vs Temperature  
GATE, AUXGATE Output Source  
Current vs Temperature  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
90  
80  
70  
60  
50  
40  
30  
20  
10  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
600  
500  
400  
300  
200  
100  
0
V
= –11V  
EEOUT  
GATE  
AUXGATE  
V
= 0V  
EEOUT  
9.0  
8.5  
–75 –50 –25  
75 100 125 150  
TEMPERATURE (°C)  
–75 –50 –25  
75 100 125 150  
–75 –50 –25  
75 100 125 150  
0
25 50  
0
25 50  
TEMPERATURE (°C)  
0
25 50  
TEMPERATURE (°C)  
4241 • G08  
4241 • G09  
4241 • G07  
sn4241 4241f  
4
LTC4241  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(VAUXGATE – VAUXIN  
vs Temperature  
)
GATE, AUXGATE Output Sink  
Current vs Temperature  
GATE, AUXGATE Fast Pull-Down  
Current vs Temperature  
8.20  
8.15  
8.10  
8.05  
8.00  
7.95  
7.90  
7.85  
7.80  
7.75  
350  
300  
250  
200  
150  
100  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
AUXIN = 3.3V  
GATE  
AUXGATE  
AUXGATE  
GATE  
–75 –50 –25  
75 100 125 150  
–75 –50 –25  
75 100 125 150  
TEMPERATURE (°C)  
–75 –50 –25  
75 100 125 150  
TEMPERATURE (°C)  
0
25 50  
0
25 50  
0
25 50  
TEMPERATURE (°C)  
4241 • G12  
4241 • G10  
4241 • G11  
VEE Internal Switch Voltage Drop  
vs Temperature  
12V Internal Switch Voltage Drop  
vs Temperature  
AUXGATE Voltage vs Temperature  
325  
300  
275  
250  
225  
200  
175  
150  
125  
100  
11.75  
11.60  
11.45  
11.30  
11.15  
11.00  
10.85  
10.70  
200  
180  
160  
140  
120  
100  
80  
I
= 500mA  
I
= 100mA  
VEEIN  
12VOUT  
60  
40  
–75 –50 –25  
75 100 125 150  
0
TEMPERATURE (°C)  
–75 –50 –25  
75 100 125 150  
TEMPERATURE (°C)  
25 50  
–75 –50 –25  
75 100 125 150  
0
TEMPERATURE (°C)  
0
25 50  
25 50  
4241 • G14  
4241 • G13  
4241 • G15  
Power Good Threshold Voltage  
Power Good Threshold Voltage  
Power Good Threshold Voltage  
vs Temperature (12VOUT  
)
vs Temperature (5VOUT  
)
vs Temperature (3VOUT  
)
11.20  
11.15  
11.10  
11.05  
11.00  
10.95  
10.90  
4.68  
4.67  
4.66  
4.65  
4.64  
4.63  
4.62  
4.61  
4.60  
2.915  
2.910  
2.905  
2.900  
2.895  
2.890  
2.885  
2.880  
2.875  
–75 –50 –25  
75 100 125 150  
0
25 50  
–75 –50 –25  
75 100 125 150  
0
25 50  
–75 –50 –25  
75 100 125 150  
0
25 50  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4241 • G16  
4241 • G17  
4241 • G18  
sn4241 4241f  
5
LTC4241  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Power Good Threshold Voltage  
Timer Threshold Voltage  
vs Temperature  
Timer Current vs Temperature  
vs Temperature (VEEOUT  
)
–10.60  
–10.55  
–10.50  
–10.45  
–10.40  
–10.35  
–10.30  
0.950  
0.925  
0.900  
0.875  
0.850  
0.825  
0.800  
0.775  
0.750  
23.00  
22.75  
22.50  
22.25  
22.00  
21.75  
21.50  
21.25  
21.00  
V
– V  
TIMER  
12VIN  
–75 –50 –25  
75 100 125 150  
–75 –50 –25  
75 100 125 150  
0
TEMPERATURE (°C)  
–75 –50 –25  
75 100 125 150  
TEMPERATURE (°C)  
0
25 50  
25 50  
0
25 50  
TEMPERATURE (°C)  
4241 • G19  
4241 • G20  
4241 • G21  
12VIN Undervoltage Lockout  
Threshold vs Temperature  
VEEIN, 5VIN, 3VIN, AUXIN Supply  
Current vs Temperature  
12VIN Supply Current  
vs Temperature  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
9.20  
9.15  
9.10  
9.05  
9.00  
8.95  
8.90  
8.85  
8.80  
5V  
IN  
AUXIN  
V
EEIN  
3V  
IN  
–75 –50 –25  
75 100 125 150  
–75 –50 –25  
75 100 125 150  
TEMPERATURE (°C)  
0
25 50  
0
25 50  
–75 –50 –25  
75 100 125 150  
0
25 50  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4241 • G22  
4241 • G23  
4241 • G24  
(V5VIN – V5VSENSE), (VAUXIN  
5VIN Undervoltage Lockout  
Threshold vs Temperature  
3VIN, AUXIN Undervoltage Lockout  
Threshold vs Temperature  
VAUXSENSE) Circuit Breaker Trip  
Filter Time vs Temperature  
18.50  
18.25  
18.00  
17.75  
17.50  
17.25  
17.00  
16.75  
16.50  
8.3  
8.2  
8.1  
8.0  
7.9  
7.8  
7.7  
7.6  
7.5  
3.950  
3.925  
3.900  
3.875  
3.850  
3.825  
3.800  
2.650  
2.625  
2.600  
2.575  
2.550  
2.525  
2.500  
2.475  
2.450  
AUXIN  
V
– V  
AUXIN  
AUXSENSE  
V
– V  
5VIN  
5VSENSE  
3V  
IN  
–75 –50 –25  
75 100 125 150  
0
TEMPERATURE (°C)  
–75 –50 –25  
75 100 125 150  
TEMPERATURE (°C)  
–75 –50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
25 50  
0
25 50  
4241 • G27  
4241 • G25  
4241 • G26  
sn4241 4241f  
6
LTC4241  
U
U
U
PI FU CTIO S  
12VIN (Pin 1): 12V Supply Input. This pin powers the  
primary controller internal circuitry. A 0.5switch is  
connected between 12VIN and 12VOUT with a foldback  
current limit. An undervoltage lockout circuit prevents the  
switches from turning on while the 12VIN pin voltage is  
less than 9V.  
power good threshold voltage, PWRGD will go high after  
a15µsdeglitchingtime.Theswitcheswillnotbeturnedoff  
when PWRGD goes high.  
GND (Pin 8): Chip Ground  
AUXGATE (Pin 9): High Side Gate Drive for the 3.3V  
Auxiliary External N-channel MOSFET. An internal charge  
pump generates at least 8V of gate drive from a 3.3V  
auxiliary supply. A zener clamps AUXGATE approximately  
12V above the supply voltage at AUXIN. The rise time at  
AUXGATE is set by an external AUXGATE capacitor con-  
nected to ground and an internal 10µA current source  
provided by the charge pump. If the circuit breaker trips or  
the auxiliary supply voltage hits the undervoltage lockout  
threshold, a 50mA current sink rapidly pulls AUXGATE  
low.  
VEEIN (Pin 2): –12V Supply Input. A 1.2switch is  
connected between VEEIN and VEEOUT with a foldback  
current limit.  
3VOUT (Pin 3): 3.3V Output Monitor. Used to monitor the  
3.3V output supply voltage. The PWRGD signal cannot go  
low until the 3VOUT pin exceeds 2.9V.  
TIMER (Pin 4): Current Limit Fault Timer Input. Connect a  
capacitor from TIMER to ground. With the primary con-  
troller turned off (ON = GND) or the internal circuit breaker  
trippedduetoaPCIsupplyfault(FAULT=low), theTIMER  
pin is internally held at ground. When the primary control-  
ler is turned on, a 22µA pull-up current source is con-  
nectedtoTIMER.CurrentlimitfaultsfromthePCIsupplies  
will be ignored until the voltage at the TIMER pin rises to  
within 0.9V of 12VIN.  
AUXSENSE (Pin 10): 3.3V Auxiliary Circuit Breaker Cur-  
rent Sense Input. The load current is monitored by a sense  
resistor connected between AUXIN and AUXSENSE. The  
circuitbreakertripsifthevoltageacrossthesenseresistor  
exceeds50mVandtheAUXGATEpinvoltagewillbeturned  
off.  
ON (Pin 5): On Control Input. A rising edge turns on the  
external N-channel FETs for 3.3V and 5V PCI supplies, the  
internal 12V and –12V switches and a falling edge turns it  
off. If the ON pin is cycled low then high following the trip  
of the circuit breaker due to a PCI supply fault, the circuit  
breaker is reset.  
AUXIN (Pin 11): 3.3V Auxiliary Supply Input. This pin  
powers the auxiliary controller internal circuitry. An  
undervoltage lockout circuit disables the AUXGATE pin  
until the supply voltage at AUXIN is greater than 2.6V.  
AUXGATEisheldatgroundpotentialuntiltheundervoltage  
lockoutdeactivates.Ifno3.3Vauxiliarysupplyisavailable,  
tie AUXIN to ground.  
FAULT (Pin 6): Fault Output. Open drain logic output used  
by both the primary and auxiliary controller to indicate an  
overcurrent fault condition. When any of the PCI and 3.3V  
auxiliary supplies are in current limit fault, the controller  
detecting the fault (primary or auxiliary) will be latched off  
and the FAULT pin will be pulled low. Current limit faults  
from the PCI supplies are ignored while the voltage at the  
TIMER pin is less than (12VIN – 0.9V). The current limit  
fault detected by the primary controller will not cause the  
auxiliary controller to latch off and vice versa.  
AUXON (Pin 12): ON Control Input for Auxiliary Supply. A  
rising edge turns on the external N-channel FET for 3.3V  
auxiliarysupplyandafallingedgeturnsitoff.IftheAUXON  
pin is cycled low then high following the trip of the circuit  
breaker due to a 3.3V auxiliary supply fault, the circuit  
breaker is reset.  
3VIN (Pin 13): 3.3V Supply Sense Input. An undervoltage  
lockout circuit prevents the switches from turning on  
whenthevoltageatthe3VIN pinislessthan2.5V.Ifno3.3V  
input supply is available, tie 3VIN to the 5VIN pin.  
PWRGD (Pin 7): Power Good Output. Open drain logic  
output used by the primary controller to indicate the  
voltage status of the PCI supplies. PWRGD remains low  
while V12VOUT 11.1V, V3VOUT 2.9V, V5VOUT 4.65V,  
3VSENSE (Pin14): 3.3VCurrentLimitSetPin. Withasense  
resistor placed in the supply path between 3VIN and  
3VSENSE, the GATE pin voltage will be adjusted to maintain  
V
VEEOUT –10.5V. Whenoneofthesuppliesfallsbelowits  
sn4241 4241f  
7
LTC4241  
U
U
U
PI FU CTIO S  
a constant voltage across the sense resistor and a  
constant current through the switch. A foldback feature  
makes the current limit decrease as the voltage at the  
3VOUT pinapproachesground.Todisablethecurrentlimit,  
3VSENSE and 3VIN can be shorted together.  
the current limit decrease as the voltage at the 5VOUT pin  
approaches ground. To disable the current limit, 5VSENSE  
and 5VIN can be shorted together.  
5VIN (Pin17):5VSupplySenseInput. Usedtomonitorthe  
5V input supply voltage. An undervoltage lockout circuit  
prevents the switches from turning on when the voltage at  
the 5VIN pin is less than 3.9V.  
GATE (Pin 15): High Side Gate Drive for the 3.3V and 5V  
PCI Supplies External N-channel MOSFETs. Requires an  
external series RC network for the current limit loop  
compensation and setting the minimum ramp-up rate.  
During power-up, the slope of the voltage rise at the GATE  
is set by the internal 60µA pull up current source and the  
external GATE capacitor connected to ground. During  
power-down, the slope of the falling voltage is set by the  
200µA current source connected to ground and the exter-  
nal GATE capacitor.  
5VOUT (Pin 18): 5V Output Monitor. Used to monitor the  
5V output supply voltage. The PWRGD signal cannot go  
low until the 5VOUT pin exceeds 4.65V.  
V
EEOUT (Pin 19): –12V Supply Output. A 1.2switch is  
connected between VEEIN and VEEOUT. VEEOUT must  
fall below –10.5V before the PWRGD signal can go low on  
the LTC4241.  
12VOUT (Pin 20): 12V Supply Output. A 0.5switch is  
connected between 12VIN and 12VOUT. 12VOUT must  
exceed 11.1V before the PWRGD signal can go low on the  
LTC4241  
5VSENSE (Pin 16): 5V Current Limit Set Pin. With a sense  
resistor placed in the supply path between 5VIN and  
5VSENSE, the GATE pin voltage will be adjusted to maintain  
a constant voltage across the sense resistor and a con-  
stantcurrentthroughtheswitch.Afoldbackfeaturemakes  
sn4241 4241f  
8
LTC4241  
W
BLOCK DIAGRA  
5V  
5V  
GATE  
15  
3V  
3V  
3V  
5V  
OUT  
IN  
SENSE  
SENSE  
14  
IN  
OUT  
3
17  
16  
13  
18  
+
12V  
IN  
+
5V  
3V  
OUT  
OUT  
60µA  
+
+
A2  
55mV  
A1  
55mV  
Q8  
Q7  
+
+
200µA  
Q5  
3.9V  
UVL  
2.5V  
UVL  
5
7
ON  
C
P1  
+
PWRGD  
Q3  
Q4  
REF  
PRIMARY CONTROL LOGIC  
CP2  
6
FAULT  
+
REF  
9V  
UVL  
REF  
12V  
IN  
Q9  
Q10  
Q2  
Q1  
22µA  
CP4  
CP3  
+
+
Q6  
PCI-BUS HOT SWAP  
CONTROLLER  
REF  
1
20  
12V  
4
2
19  
8
12V  
IN  
TIMER  
V
V
EEOUT  
GND  
OUT  
EEIN  
Q12  
CHARGE  
PUMP  
11  
AUXIN  
+
50mV  
10µA  
AUXILIARY  
CONTROL  
LOGIC  
+
8µs  
FILTER  
A3  
AUXGATE  
9
Q11  
AUXSENSE  
AUXON  
10  
12  
Z1  
12V  
Z2  
20V  
2.6V  
UVL  
200µA  
AUXIN  
3.3V AUXILIARY SUPPLY  
HOT SWAP CONTROLLER  
4241 BD  
sn4241 4241f  
9
LTC4241  
W U U  
U
APPLICATIO S I FOR ATIO  
Hot Circuit Insertion  
8. Fault control: the current limit fault detected by either  
the primary or auxiliary controller will not cause the other  
controller to latch off. Both controllers use the FAULT  
output to indicate a fault condition.  
When a circuit board is inserted into a live PCI slot, the  
supply bypass capacitors on the board can draw huge  
transient currents from the PCI power bus as they charge  
up. The transient currents can cause permanent damage  
to the connector pins and glitches the power bus, causing  
other boards in the system to reset.  
9. Space saving 20-pin narrow SSOP package.  
PCI Power Requirements  
PCI systems usually require four power rails: 5V, 3.3V,  
–12V and 12V. Systems implementing the 3.3V signaling  
environmentareusuallyrequiredtoprovideallfourrailsin  
every system.  
TheLTC4241isdesignedtoturnaboard’ssupplyvoltages  
on and off in a controlled manner, allowing the board to be  
safely inserted or removed from a live PCI slot without  
glitching the system power supplies. The chip also pro-  
tects the PCI supplies from shorts and monitors the  
supply voltages.  
A 3.3VauxiliarysupplyisaddedinthePCIsystemtopower  
PCI logic functions that need to remain active when the  
rest of the system is unpowered.  
The LTC4241 is designed for motherboard applications  
and includes an additional independent controller for the  
3.3V auxiliary supply.  
The tolerance of the supplies as measured at the compo-  
nents is summarized in Table 1.  
Table 1. PCI Power Supply Requirements  
CAPACITIVE  
LTC4241 Feature Summary  
1. Allows safe board insertion and removal from a  
motherboard.  
SUPPLY  
TOLERANCE  
LOAD  
<3000µF  
<3000µF  
<500µF  
<120µF  
<500µF  
5V  
5V ± 5%  
3.3V  
12V  
3.3V ± 0.3V  
12V ± 5%  
2. Primary controller to control the four PCI supplies:  
3.3V, 5V, –12V, 12V and an independent auxiliary control-  
ler to control the 3.3V auxiliary supply.  
–12V  
–12V ± 10%  
3.3V ± 0.3V  
3.3V  
AUX  
3. Adjustable foldback current limit for PCI supplies: an  
adjustable analog current limit with a value that depends  
on the output voltage. If the output is shorted to ground,  
the current limit drops to keep power dissipation and  
supply glitches to a minimum.  
Power-Up Sequence for PCI Power Supplies  
The PCI power supplies are controlled by placing external  
N-channel pass transistors in the 3.3V and 5V power  
paths, and internal pass transistors for the 12V and –12V  
power paths (Figure 1).  
4. Electronic circuit breaker for all supplies: if a supply  
remainsincurrentlimitfortoolong,thecircuitbreakerwill  
trip, the supplies will be turned off and the FAULT pin  
pulled low.  
Resistors R1 and R2 provide a current signal for fault  
detection and R7 and C1 provide current control loop  
compensation. Resistors R4 and R5 prevent high fre-  
quency oscillations in Q1 and Q2.  
5. Current limit power-up: the four PCI supplies are  
allowed to power up in current limit. This allows the chip  
to power up boards with a wide range of capacitive loads  
without tripping the circuit breaker. The maximum allow-  
ablepower-uptimeisprogrammableusingtheTIMERpin.  
WhentheONpinispulledhigh, theGATEpinispulledhigh  
by an internal 60µA current source and the pass transis-  
tors are allowed to turn on. The internal 12V and –12V  
switches are also turned on and a 22µA current source is  
connected to the TIMER pin (Figure 2).  
6. On-Chip –12V and 12V power switches  
7. Power good output: monitors the voltage status of the  
four PCI supply voltages. The 3.3V auxiliary supply is not  
monitored.  
sn4241 4241f  
10  
LTC4241  
W U U  
APPLICATIO S I FOR ATIO  
U
ON  
10V/DIV  
ON  
10V/DIV  
TIMER  
10V/DIV  
TIMER  
10V/DIV  
GATE  
10V/DIV  
GATE  
10V/DIV  
12V  
OUT  
5V/DIV  
12V  
OUT  
5V/DIV  
5V  
OUT  
3V  
OUT  
5V/DIV  
5V/DIV  
5V  
OUT  
3V  
OUT  
5V/DIV  
5V/DIV  
V
EEOUT  
5V/DIV  
V
EEOUT  
5V/DIV  
FAULT  
10V/DIV  
FAULT  
10V/DIV  
PWRGD  
10V/DIV  
PWRGD  
10V/DIV  
4241 F03  
4241 F02  
10ms/DIV  
10ms/DIV  
Figure 3. Normal Power-Down Sequence  
Figure 2. Normal Power-Up Sequence  
The current in each pass transistor increases until it  
reaches the current limit for each supply. Each supply is  
allowed to power up at the rate dV/dt = 60µA/C1 or as  
determined by the current limit and the load capacitance  
onthesupplyline, whicheverisslower. Currentlimitfaults  
are ignored while the TIMER pin voltage is ramping up and  
is less than 0.9V below 12VIN. Once all four PCI supply  
voltagesarewithintolerance, thePWRGDpinwillpulllow.  
Timer  
During a power-up sequence for the PCI power supplies,  
a 22µA current source is connected to the TIMER pin and  
current limit faults are ignored until the voltage ramps to  
within 0.9V of 12VIN. This feature allows the chip to power  
up a PCI slot that can accommodate boards with a wide  
range of capacitive loads on the supplies. The power-up  
time for any one of the four outputs will be:  
Power-Down Sequence for PCI Power Supplies  
CLOAD VOUT  
ILIMIT – ILOAD  
tON 2•  
When the ON pin is pulled low, a power-down sequence  
begins for all the PCI power supplies (Figure 3).  
For example, for CLOAD = 2000µF, VOUT = 5V, ILIMIT = 7A,  
ILOAD = 5A, the 5VOUT turn-on time will be ~10ms. By  
substituting the variables in the above equation with the  
appropriate values, the turn-on time for the other three  
outputs can be calculated. The timer period should be set  
longer than the maximum supply turn-on time but short  
enough to not exceed the maximum safe operating area of  
the pass transistor during a short-circuit. The timer period  
is given by:  
Internal switches are connected to each of the output  
supply voltage pins to discharge the load capacitors to  
ground. The TIMER pin is immediately pulled low and the  
internal 12V and –12V switches are turned off. The GATE  
pin is pulled to ground by an internal 200µA current  
source. This turns off the external pass transistors in a  
controlled manner and prevents the load current on the  
3.3V and 5V supplies from going to zero instantaneously  
and glitching the power supply voltages. When any of the  
output voltages dips below its threshold, the PWRGD pin  
pulls high.  
CTIMER •11.1V  
tTIMER  
=
22µA  
sn4241 4241f  
11  
LTC4241  
W U U  
U
APPLICATIO S I FOR ATIO  
For CTIMER = 0.1µF, the timer period will be ~50ms. The  
spikes — for example, from a fan turning on — from  
causing false trips of the circuit breaker. The chip will stay  
in the latched-off state until the ON pin is cycled low then  
high, or the 12VIN supply is cycled.  
TIMER pin is immediately pulled low when ON goes low.  
Thermal Shutdown  
The internal switches for the 12V and –12V supplies are  
protected by an internal current limit and thermal shut-  
down circuit. When the temperature of the chip reaches  
150°C, only the switches controlling the PCI supplies will  
be latched off and the FAULT pin will be pulled low.  
To prevent excessive power dissipation in the pass tran-  
sistors and to prevent voltage spikes on the supplies  
during short-circuit conditions, the current limit on each  
PCI supply, except the 3.3V auxiliary supply, is designed  
tobeafunctionoftheoutputvoltage.Astheoutputvoltage  
drops, the current limit decreases. Unlike a traditional  
circuit breaker function where huge currents can flow  
before the breaker trips, the current foldback feature  
assures that the supply current will be kept at a safe level  
and prevent voltage glitches when powering up into a  
short.  
Short-Circuit Protection for PCI Power Supplies  
During a normal power-up sequence for the PCI power  
supplies, if the TIMER is done ramping and any supply is  
still in current limit, all of the pass transistors will be  
immediately turned off, the TIMER and FAULT pin will be  
pulled low as shown in Figure 4.  
ON  
10V/DIV  
ON  
10V/DIV  
TIMER  
10V/DIV  
TIMER  
10V/DIV  
GATE  
10V/DIV  
GATE  
10V/DIV  
12V  
OUT  
5V/DIV  
12V  
OUT  
5V/DIV  
5V  
OUT  
3V  
OUT  
5V/DIV  
5V/DIV  
5V  
OUT  
3V  
OUT  
5V/DIV  
5V/DIV  
V
V
EEOUT  
EEOUT  
5V/DIV  
5V/DIV  
FAULT  
10V/DIV  
FAULT  
10V/DIV  
PWRGD  
10V/DIV  
PWRGD  
10V/DIV  
4241 F05  
4241 F04  
20ms/DIV  
20ms/DIV  
Figure 4. Power-Up into a Short on 3.3V Output  
Figure 5. Short-Circuit on 5V Followed by Circuit Breaker Reset  
Ifashort-circuitoccursafterthePCIsuppliesarepowered  
up, the shorted supply’s current will drop immediately to  
the limit value (Figure 5).  
The current limit and the foldback current level for the 5V  
and 3.3V outputs are both a function of the external sense  
resistor (R1 for 5VOUT and R2 for 3VOUT, see Figure 1). As  
shown in Figure 1, a sense resistor is connected between  
5VIN and 5VSENSE for the 5V supply. For the 3V supply, a  
If the supply remains in current limit for more than 17µs,  
all of the PCI supplies except the 3.3V auxiliary supply will  
be latched off. The 17µs delay prevents quick current  
sense resistor is connected between 3VIN and 3VSENSE  
.
sn4241 4241f  
12  
LTC4241  
W U U  
APPLICATIO S I FOR ATIO  
U
The current limit and the foldback current level (at the  
power path (Figure 1). The resistor R3 provides load  
current fault detection and R6 prevents high frequency  
oscillation in Q3.  
V
OUT = 0V) are given by:  
ILIMIT = 55mV/RSENSE  
IFOLDBACK = 9mV/RSENSE  
When power is first applied to VAUXIN, the AUXGATE pin  
pulls low. A low-to-high transition at the AUXON pin  
initiates the AUXGATE ramp up (Figure 7). The AUXGATE  
is pulled high by an internal 10µA current source and the  
pass transistor is allowed to turn on. As the auxiliary  
controller does not have the foldback current limit feature  
andtimercontrol,theinrushsupplycurrentduringpower-  
up is limited by ramping the gate of the pass transistor at  
a controlled rate (dV/dt = 10µA/C3) where C3 is the total  
external capacitance between AUXGATE and ground.  
With proper selection of the C3 capacitance value, the  
inrush current (I = CLOAD • dV/dt = 10µA • CLOAD/C3) is  
limitedtoavaluelessthanthecurrentlimitsetbythesense  
resistorR3. Thispreventsthecircuitbreakerfromtripping  
during power-up. CLOAD is the total load capacitance on  
the 3.3V auxiliary supply line. For example, for C3 = 10nF,  
CLOAD = 470µF, R3 = 0.07, ILIMIT = 0.7A, the inrush  
current will be 0.47A < ILIMIT. The ramp-up time for  
3.3VAUX output to reach its final value is equal to  
t = (VAUXIN • C3)/10µA.  
As a design aid, the current limit and foldback level for  
commonly used values for RSENSE are given in Table 2.  
Table 2. ILIMIT and IFOLDBACK vs RSENSE  
R
SENSE  
()  
I
I
FOLDBACK  
LIMIT  
0.005  
0.006  
0.007  
0.008  
0.009  
0.01  
11A  
1.8A  
9.2A  
7.9A  
6.9A  
6.1A  
5.5A  
1.5A  
1.3A  
1.1A  
1.0A  
0.9A  
The current limit for the internal 12V switch is set at  
850mA folding back to 300mA and the –12V switch at  
450mA folding back to 200mA.  
In systems where it is possible to exceed the current limit  
for a short amount of time, it might be necessary to  
prevent the analog current loop from responding quickly  
so the output voltage does not droop. This can be accom-  
plished by adding an RC filter across the sense resistor as  
shown in Figure 6. RF should be 20or less to prevent  
offset errors. A capacitor, CF, of 0.1µF gives a delay of  
about 1.5µs and a 1µF capacitor gives a delay of about  
15µs.  
A high-to-low transition at the AUXON pin initiates a  
AUXGATE ramp-down at a slope of –200µA/C3 as the  
AUXGATEispulledtogroundbyaninternal200µAcurrent  
source. This will allow the load capacitance on the supply  
line to discharge while the AUXGATE pulls low to turn off  
the external N-channel pass transistor.  
R1  
0.007  
Q1  
IRF7413  
1
2
5V  
OUT  
5A  
5V  
IN  
3
4
AUXON  
2V/DIV  
C
F
1µF  
R
R4  
10Ω  
F
20Ω  
R7  
AUXGATE  
5V/DIV  
100Ω  
17  
16  
5V  
SENSE  
15  
GATE 5V  
18  
C1  
0.047µF  
5V  
IN  
OUT  
*ADDITIONAL PINS  
OMITTED FOR  
CLARITY  
LTC4241*  
3.3V  
AUX  
2V/DIV  
Figure 6. Delay in the Current Limit Loop  
4241 F07  
5ms/DIV  
Power-Up/Down Sequence for 3.3V Auxiliary Supply  
Figure 7. Power-Up/Down Sequence for 3.3V Auxiliary Supply  
The 3.3V auxiliary supply is controlled by placing an  
external N-channel pass transistor Q3 in the 3.3VAUX  
sn4241 4241f  
13  
LTC4241  
W U U  
U
APPLICATIO S I FOR ATIO  
Electronic Circuit Breaker for 3.3V Auxiliary Supply  
Supply Bypass Capacitors  
An electronic circuit breaker is used to protect against In motherboard applications, large bypass capacitors are  
excessive load current and short-circuits on the 3.3V recommended at each of the system power supplies to  
auxiliary supply. The load current is monitored by placing minimize supply glitches as a result of board insertion. A  
a sense resistor R3 between AUXIN and AUXSENSE as supply bypass capacitor of 100µF at 12VIN connection is  
shown in Figure 1. The circuit breaker trip threshold is recommended.  
50mV and exhibits a response time of 8µs. Unlike the PCI  
CURRENT FLOW  
FROM SUPPLY  
CURRENT FLOW  
TO LOAD  
supplies which use the current foldback limit with circuit  
breaker during short-circuits, here the circuit breaker will  
trip and immediately pull AUXGATE to ground if the  
voltagebetweenAUXINandAUXSENSEexceeds50mVfor  
morethan8µs.TheexternalN-channeltransistoristurned  
off and FAULT is pulled low. The circuit breaker is reset  
when AUXON is cycled low then high, or the AUXIN supply  
is cycled. If the circuit breaker feature is not required, the  
AUXSENSE pin can be shorted to AUXIN.  
SENSE RESISTOR  
TRACK WIDTH W:  
0.03" PER AMPERE  
W
ON 1 OZ COPPER FOIL  
4241 F08  
5V  
5V  
IN  
SENSE  
Figure 8. Making PCB Connections to  
the Sense Resistor for the 5V Rail  
The trip current of the circuit breaker is set by:  
PCB Layout Considerations for the Sense Resistor  
ITRIP = 50mV/R3  
For proper circuit breaker operation, 4-wire Kelvin-sense  
connectionsbetweenthesenseresistorandtheLTC4241’s  
5VIN and 5VSENSE pins, 3VIN and 3VSENSE pins and AUXIN  
and AUXSENSE pins are strongly recommended. The  
drawing in Figure 8 illustrates the correct way of making  
connections between the LTC4241 and the sense resistor.  
PCB layout should be balanced and symmetrical to mini-  
mize wiring errors. In addition, the PCB layout for the  
sense resistors and the power MOSFETs should include  
good thermal management techniques for optimal sense  
resistor power dissipation.  
As a design aid, the trip current for commonly used values  
for R3 is given in Table 3.  
Table 3. ITRIP vs R3  
R3 ()  
0.05  
0.06  
0.07  
0.08  
0.09  
0.1  
I
TRIP  
1A  
833mA  
714mA  
625mA  
556mA  
500mA  
Power MOSFET and Sense Resistor Selection  
If more than 8µs of response time is needed to reject  
supply current ripple noise, an external resistor, RF, of  
20and capacitor, CF, of 1µF (Figure 6) can be added to  
the AUXSENSE circuit. This will give a delay of 15µs.  
Table 4 lists some available N-channel power MOSFETs .  
Table5listssomecurrentsenseresistorsthatcanbeused  
with the LTC4241’s circuit breakers. Table 6 lists the  
supplier web site addresses for discrete components  
mentioned throughout this datasheet.  
Table 4. N-Channel Power MOSFET Selection Guide  
CURRENT  
RATING  
PART NUMBER  
PACKAGE  
V
DS  
MAX  
V
GS  
MAX  
R
DS(on)  
MANUFACTURER  
8.0A  
3.5A  
10A  
13A  
2.7A  
Si4412ADY  
Si2306DS  
Si4410DY  
IRF7413  
SO-8  
SOT-23  
SO-8  
30V  
±20V  
±20V  
±20V  
±20V  
±20V  
0.024Ω  
0.057Ω  
0.013Ω  
0.011Ω  
0.046Ω  
Vishay-Siliconix  
Vishay-Siliconix  
30V  
30V  
30V  
30V  
Vishay-Siliconix  
SO-8  
International Rectifier  
FDN 359AN  
SOT-23  
Fairchild Semiconductor  
sn4241 4241f  
14  
LTC4241  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 5. Sense Resistor Selection Guide  
CURRENT LIMIT VALUE  
PART NUMBER  
DESCRIPTION  
MANUFACTURER  
0.7A  
1A  
WSL2010R07  
0.07, 0.5W, 1% Resistor  
0.055, 0.5W, 1% Resistor  
Vishay-Dale  
LR120601R055F  
WSL2010R055  
IRC-TT  
Vishay-Dale  
2A  
5A  
LR120601R028F  
WSL2010R028  
0.028, 0.5W, 1% Resistor  
0.011, 0.5W, 1% Resistor  
IRC-TT  
Vishay-Dale  
LR120601R011F  
WSL2010R011  
IRC-TT  
Vishay-Dale  
7.9A  
11A  
WSL2512R007  
WSL2512R005  
0.007, 1W, 1% Resistor  
0.005, 1W, 1% Resistor  
Vishay-Dale  
Vishay-Dale  
Table 6. Manufacturers’ Web Site  
MANUFACTURER  
International Rectifier  
Fairchild Semiconductor  
IRC-TT  
WEB SITE  
www.irf.com  
www.fairchildsemi.com  
www.irctt.com  
Vishay-Dale  
www.vishay.com  
www.vishay.com  
www.diodes.com  
Vishay-Siliconix  
Diodes, Inc.  
U
PACKAGE DESCRIPTIO  
GN Package  
20-Lead Plastic SSOP (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1641)  
.337 – .344*  
(8.560 – 8.737)  
.058  
(1.473)  
REF  
.045 ±.005  
20 19 18 17 16 15 14 13 12 11  
.254 MIN  
.150 – .165  
.229 – .244  
.150 – .157**  
(5.817 – 6.198)  
(3.810 – 3.988)  
.0165 ±.0015  
.0250 TYP  
1
2
3
4
5
6
7
8
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
.015 ± .004  
(0.38 ± 0.10)  
.053 – .068  
(1.351 – 1.727)  
.004 – .0098  
(0.102 – 0.249)  
× 45°  
.007 – .0098  
(0.178 – 0.249)  
0° – 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.008 – .012  
(0.203 – 0.305)  
.0250  
(0.635)  
BSC  
NOTE:  
1. CONTROLLING DIMENSION: INCHES  
INCHES  
(MILLIMETERS)  
2. DIMENSIONS ARE IN  
GN20 (SSOP) 0502  
3. DRAWING NOT TO SCALE  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
sn4241 4241f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LTC4241  
U
TYPICAL APPLICATIO  
GND  
R1  
0.007  
Q1  
IRF7413  
5V  
5A  
1
2
3
4
R4  
10Ω  
R3  
0.07Ω  
Q3  
3.3V  
AUX  
Si4412ADY  
1
2
500mA  
SYSTEM  
POWER  
SUPPLY  
3
4
C3  
10nF  
R7  
100Ω  
R6  
10Ω  
C1  
0.047µF  
11  
10  
9
13  
17  
14  
16  
15  
3
18  
AUXIN AUXSENSE AUXGATE 3V  
GND  
5V  
3V  
5V  
GATE 3V  
5V  
IN  
IN  
SENSE SENSE  
OUT  
OUT  
8
1
12V  
12V  
V
IN  
2
20  
19  
4
500mA  
12V  
EEIN  
OUT  
12  
5
–12V  
100mA  
AUXON  
LTC4241  
ON  
V
EEOUT  
PCI  
R8 10k  
R9 10k  
POWER  
6
7
BACKPLANE  
SYSTEM  
CONTROLLER  
FAULT  
PWRGD  
TIMER  
CONNECTOR  
C2  
0.1µF  
4241 F09  
Figure 9. System Without 3.3V Supply  
RELATED PARTS  
PART NUMBER  
LTC1421  
DESCRIPTION  
COMMENTS  
2-Channel Hot Swap Controller  
Hot Swap Controller in SO-8  
High Voltage Hot Swap Controller  
Fault Protected Hot Swap Controller  
PCI-Bus Hot Swap Controller  
CompactPCI Bus Hot Swap Controller  
2-Channel Hot Swap Controller  
CompactPCI Dual Hot Swap Controller  
Dual Hot Swap Controllers  
Operates from 3V to 12V and Supports –12V  
System Reset Output with Programmable Delay  
Operates from 9V to 80V, SO-8 Package, Latch Off/Auto Retry  
Operates Up to 16.5V, Protected to 33V  
LTC1422  
LT1641-1/LT1641-2  
LTC1642  
LTC1643AL/LTC1643AL-1/LTC1643AH  
3.3V, 5V and ±12V in Narrow 16-Pin SSOP Package  
3.3V, 5V and ±12V, 1V Precharge, Local PCI Logic  
Operates from 1.2V to 12V, Power Sequencing  
3.3V and/or 5V Supplies, 1V Precharge, Local PCI Reset Logic  
Operates from 2.7V to 16.5V  
LTC1644  
LTC1645  
LTC1646  
LTC1647-1/LTC1647-2/LTC1647-3  
LTC4211  
Single Channel, Hot Swap Controller  
2.5V to 16.5V Operation, Multilevel Current Control,  
MSOP Package  
LTC4230  
Triple Channel, Hot Swap Controller  
48V Hot Swap Controller in S0-8  
–48V Hot Swap Controller in S0T-23  
–48V Hot Swap Controller in MSOP  
1.7V to 16.5V Operation, Multilevel Current Control  
Operates from –20V to –80V, Active Current Limiting  
–48V Hot Swap Controller, Active Current Limiting  
Active Current Limiting With Drain Acceleration  
LT4250L/LT4250H  
LTC4251  
LTC4252  
LTC4253  
–48V Hot Swap Controller and Sequencer Active Current Limiting With Drain Acceleration and Three  
Sequenced Power Good Outputs  
LTC4350  
Hot Swappable Load Share Controller  
Output Voltages from 1.5V to 12V  
CompactPCI is a trademark of the PCI Industrial Computer Manufactures Group  
ThinSOT is a trademark of Linear Technology Corporation  
sn4241 4241f  
LT/TP 0303 2K • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2002  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY