LTC4242 [Linear]

Dual Slot Hot Swap Controller for PCI Express; 双插槽热插拔控制器的PCI Express
LTC4242
型号: LTC4242
厂家: Linear    Linear
描述:

Dual Slot Hot Swap Controller for PCI Express
双插槽热插拔控制器的PCI Express

控制器 PC
文件: 总24页 (文件大小:342K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4242  
Dual Slot Hot Swap  
Controller for PCI Express  
U
DESCRIPTIO  
FEATURES  
Allows Live Insertion into PCI Express® Backplane  
The LTC®4242 Hot SwapTM controller allows safe board  
insertion and removal for two independent slots on a PCI  
Expressbackplane.ExternalN-channeltransistorscontrol  
the12Vand3.3Vsupplieswhileintegratedswitchescontrol  
the 3.3V auxiliary supplies. Both 12V and 3.3V supplies  
can be ramped up at an adjustable rate. Dual level circuit  
breakersandfastactivecurrentlimitingprotectallsupplies  
against overcurrent faults.  
Controls Two Independent PCI Express Slots  
Independent Control of Main and Auxiliary Supplies  
20V Rating for 12V Supply Input Pins  
Integrated 0.25Ω AUX Switches  
Limits Fault Current in ≤1µs  
Force On Test Mode  
Adjustable Supply Voltage Power-Up Rate  
High Side Drivers for N-Channel MOSFETs  
A supply filter at the V pin allows the LTC4242 to endure  
CC  
Thermal Shutdown Protection  
supply transients. The EN input detects the presence of a  
card in the PCI Express slot. The FAULT and AUXFAULT  
outputs alert the system of overcurrent conditions on the  
main and auxiliary supplies, respectively. PGOOD and  
AUXPGOOD outputs indicate proper main and auxiliary  
supply outputs.  
Available in 38-Lead QFN and 36-Lead SSOP  
Packages  
U
APPLICATIO S  
PCI Express-Based PC and Servers  
Hot Swap Application for Triple Supply Systems  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
Hot Swap is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
PCI Express Application  
12V  
12V  
OUT  
3.3V  
3.3V  
OUT  
Normal Power-Up Sequence  
12V  
12V  
12V  
12V  
3V  
3V  
3V  
SENSE1  
IN1  
SENSE1  
GATE1  
OUT1  
IN1  
GATE1  
V
3V  
CC  
OUT1  
ENn  
5V/DIV  
AUXOUT1  
3.3V  
OUT  
AUXOUTn  
5V/DIV  
3.3V  
AUXIN1  
BD_PRST1  
AUXON1  
ON1  
FON1  
EN1  
GND  
EN2  
FON2  
FAULT1  
AUXFAULT1  
PGOOD1  
PGOOD2  
AUXFAULT2  
FAULT2  
ON2  
PCIe  
PLUG-IN  
CONNECTOR CARD  
12V  
OUTn  
LTC4242G  
5V/DIV  
PCI EXPRESS  
HOT PLUG  
CONTROLLER  
3V  
5V/DIV  
OUTn  
BD_PRST2  
AUXON2  
AUXOUT2  
3.3V  
OUT  
PGOODn  
5V/DIV  
3V  
OUT2  
AUXIN2  
3.3V  
12V  
12V  
12V  
12V  
3V  
3V  
3V  
SENSE2 GATE2  
IN2  
SENSE2  
GATE2  
OUT2  
IN2  
4242 F04  
10ms/DIV  
3.3V  
3.3V  
12V  
OUT  
12V  
OUT  
4242 TA01a  
PCIe  
PLUG-IN  
CONNECTOR CARD  
4242f  
1
LTC4242  
W W U W  
ABSOLUTE AXI U RATI GS (Note 1)  
12V  
12V  
................................................ –0.3V to 25V  
Supply Voltages  
GATEn  
OUTn  
(Note 3).. 12V  
– 5V to 12V  
+ 0.3V  
V ........................................................... –0.3V to 7V  
GATEn  
GATEn  
CC  
AUXOUTn, 3V  
.............................. –0.3V to 10V  
12V .................................................... –0.3V to 20V  
SENSEn  
INn  
3V  
3V  
.................................................. –0.3V to 14V  
3V ...................................................... –0.3V to 10V  
GATEn  
OUTn  
INn  
(Note 3)....... 3V  
– 5V to 3V  
+ 0.3V  
AUXINn.................................................. –0.3V to 10V  
GATEn  
GATEn  
Operating Temperature Range  
Input Voltages  
LTC4242C ................................................ 0°C to 70°C  
LTC4242I ............................................. –40°C to 85°C  
Storage Temperature Range  
ONn, AUXONn, FONn............................... –0.3V to 7V  
ENn.......................................................... –0.3V to 7V  
Output Voltages  
SSOP ................................................. –65°C to 150°C  
QFN.................................................... –65°C to 125°C  
Lead Temperature (Soldering, 10 sec)  
FAULTn, PGOODn, AUXFAULTn,  
AUXPGOODn ........................................... –0.3V to 7V  
Analog Voltages  
SSOP ................................................................ 300°C  
12V  
.............................................. –0.3V to 20V  
SENSEn  
U
W
U
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
TOP VIEW  
1
2
FAULT1  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
EN1  
FON1  
AUXFAULT1  
PGOOD1  
3
ON1  
38 37 36 35 34 33 32  
4
12V  
IN1  
AUXON1  
AUXON1  
1
2
31 12V  
IN1  
5
12V  
SENSE1  
3V  
30  
29  
28  
12V  
SENSE1  
12V  
GATE1  
12V  
OUT1  
3V  
OUT1  
OUT1  
3V  
3
6
12V  
GATE1  
3V  
GATE1  
GATE1  
3V  
4
7
12V  
OUT1  
SENSE1  
3V  
3V  
SENSE1  
5
27 AUXOUT1  
GND  
IN1  
AUXIN1  
8
AUXOUT1  
GND  
3V  
IN1  
6
26  
25 AUXOUT2  
9
AUXIN1  
39  
V
7
CC  
AUXIN2  
3V  
10  
11  
12  
13  
14  
15  
16  
17  
18  
AUXOUT2  
V
CC  
8
24 12V  
23 12V  
22 12V  
21 12V  
OUT2  
12V  
OUT2  
AUXIN2  
9
IN2  
GATE2  
SENSE2  
12V  
GATE2  
3V  
IN2  
3V  
10  
11  
12  
SENSE2  
12V  
SENSE2  
3V  
SENSE2  
3V  
GATE2  
3V  
IN2  
12V  
IN2  
3V  
GATE2  
20  
AUXPGOOD2  
OUT2  
PGOOD2  
AUXFAULT2  
FAULT2  
EN2  
3V  
OUT2  
13 14 15 16 17 18 19  
AUXON2  
ON2  
FON2  
UHF PACKAGE  
38-LEAD (5mm × 7mm) PLASTIC QFN  
G PACKAGE  
36-LEAD PLASTIC SSOP  
T
JMAX  
= 125°C, θ = 34°C/W  
JA  
T
= 125°C, θ = 95°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 39) IS GND, PCB ELECTRICAL CONNECTION OPTIONAL  
ORDER PART NUMBER  
ORDER PART NUMBER  
UHF PART MARKING*  
LTC4242CG  
LTC4242IG  
LTC4242CUHF  
LTC4242IUHF  
4242  
4242  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
*The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.  
4242f  
2
LTC4242  
ELECTRICAL CHARACTERISTICS The  
(Note 2)  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = V  
= V  
= 3.3V, V  
= 12V, unless otherwise noted.  
A
CC  
AUXINn  
3VINn  
12VINn  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Operating Voltage  
V
2.7  
10.1  
3.0  
6.0  
14.4  
6.0  
V
V
V
V
IN  
CC  
12V  
INn  
3V  
AUXINn  
INn  
3.0  
6.0  
I
DD  
Input Supply Current  
V
= 2V, V  
= 2V  
AUXONn  
ONn  
V
1.6  
0.5  
0.35  
4
1
1
mA  
mA  
mA  
CC  
12V  
INn  
INn  
3V  
V
Supply Undervoltage Lockout  
V
Rising  
INn  
INn  
2.3  
2.45  
9.78  
2.67  
2.67  
2.6  
10.08  
2.77  
2.77  
V
V
V
V
UVL  
CC  
12V Rising  
9.48  
2.57  
2.57  
3V Rising  
AUXINn Rising  
ΔV  
LKO(HYST)  
Supply Undervoltage Lockout Hysteresis  
V
30  
90  
20  
20  
100  
130  
35  
200  
170  
50  
mV  
mV  
mV  
mV  
CC  
12V  
INn  
3V  
AUXINn  
INn  
35  
50  
Current Limit  
ΔV  
SENSE(CB)  
Circuit Breaker Trip Sense Voltage  
12V – 12V  
45  
45  
50  
50  
55  
55  
mV  
mV  
INn  
SENSEn  
SENSEn  
3V – 3V  
INn  
ΔV  
Active Current Limit Sense Voltage  
12V – 12V  
SENSE(ACL)  
75  
75  
100  
100  
125  
125  
mV  
mV  
INn  
SENSEn  
SENSEn  
3V – 3V  
INn  
I
t
Circuit Breaking Current for AUX Supply  
Circuit Breaker Response Time  
385  
10  
550  
20  
715  
40  
mA  
µs  
CBAUX  
CB  
Switch Resistance  
R
Internal Switch Resistance  
(Note 4)  
I = 375mA  
AUX  
R
= (V – V )/I  
AUXOUTn  
0.25  
0.4  
Ω
AUX  
AUXINn  
External Gate Drive  
I
I
I
External N-Channel Gate Pull-Up Current  
External N-Channel Gate Pull-Down Current  
Gate Drive On  
GATE(UP)  
GATE(DN)  
GATE(FPD)  
V
V
= 1V  
–5  
–5  
–9  
–9  
–13  
–13  
µA  
µA  
12VGATEn  
= 1V  
3VGATEn  
Gate Drive Off  
V = 17V, V  
12VGATEn  
V = 8.3V, V  
3VGATEn  
= 12V  
12VOUTn  
3VOUTn  
0.5  
0.5  
1
1
2
2
mA  
mA  
= 3.3V  
External N-Channel Gate Fast Pull-Down  
Current  
Fast Turn Off  
V
V
= 17V, V  
= 12V  
150  
150  
250  
250  
400  
400  
mA  
mA  
12VGATEn  
3VGATEn  
12VOUTn  
3VOUTn  
= 8.3V, V  
= 3.3V  
ΔV  
External N-Channel Gate Drive  
I
= 1µA (Note 3)  
GATE  
GATE  
12V  
– 12V  
4.5  
4.5  
5.5  
5.5  
7.9  
7.9  
V
V
GATEn  
OUTn  
– 3V  
OUTn  
3V  
GATEn  
Input Pins  
V
Power Good Threshold Voltage  
Power Good Hysteresis  
12V  
OUTn  
AUXOUTn Falling (Note 5)  
Falling  
10.08  
2.772  
2.772  
10.38  
2.855  
2.855  
10.68  
2.937  
2.937  
V
V
V
PG(TH)  
OUTn  
3V  
Falling  
V
12V  
OUTn  
20  
5
5
70  
20  
20  
110  
30  
30  
mV  
mV  
mV  
PG(HYST)  
OUTn  
3V  
AUXOUTn (Note 5)  
4242f  
3
LTC4242  
ELECTRICAL CHARACTERISTICS The  
(Note 2)  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V = V  
= V  
= 3.3V, V  
= 12V, unless otherwise noted.  
A
CC  
AUXINn  
3VINn  
12VINn  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
1.173  
30  
TYP  
1.235  
70  
MAX  
1.297  
120  
0.7  
UNITS  
V
V
ONn, AUXONn Pin Threshold Voltage  
ONn, AUXONn Pin Hysteresis  
ONn, AUXONn Pin Reset Threshold Voltage  
ONn, AUXONn Pin Input Current  
ENn Pin Threshold Voltage  
ENn Pin Hysteresis  
Rising Edge  
ON(TH)  
ΔV  
mV  
V
ON(TH)  
ON(RTH)  
ON(IN)  
V
Falling Edge  
0.5  
0.6  
I
V
= V  
= 1.2V  
1
µA  
V
ONn  
AUXONn  
V
ENn Rising  
1.173  
30  
1.235  
70  
1.297  
120  
–13  
2.6  
EN(TH)  
ΔV  
EN(HYST)  
mV  
µA  
V
I
ENn Pull-Up Current  
V
ENn  
= 1V  
–5  
–9  
EN(UP)  
V
FONn Pin Logic Threshold  
0.7  
FON  
I
SENSE Pin Input Current  
SENSE  
12V  
V
V
= 12V  
12VSENSEn  
3VSENSEn  
40  
40  
100  
100  
µA  
µA  
SENSEn  
SENSEn  
3V  
= 3.3V  
I
OUT Pin Input Current  
12V  
Gate Drive On  
OUT  
V
V
= 12V  
12VOUTn  
45  
27  
90  
60  
µA  
µA  
OUTn  
3V  
= 3.3V  
3VOUTn  
OUTn  
R
OUT Pin Discharge Resistance  
12V  
OUTn  
AUXOUTn  
Gate Drive Off  
OUT(DIS)  
V
V
= 6V  
12VOUTn  
350  
165  
375  
700  
330  
750  
1400  
660  
1500  
Ω
Ω
Ω
OUTn  
3V  
= 2V  
3VOUTn  
V
= 2V  
AUXOUTn  
Output Pins  
V
Output Low Voltage  
I
= 3mA  
= 1.5V  
OL  
PIN  
FAULTn, AUXFAULTn, PGOODn,  
AUXPGOODn (Note 5)  
0.14  
–9  
0.4  
V
I
PU  
Pull-Up Current  
FAULTn, AUXFAULTn, PGOODn,  
AUXPGOODn (Note 5)  
V
PIN  
–5  
–13  
µA  
Slew Rate  
SR  
AUXOUTn Slew Rate  
1.25  
1.7  
V/ms  
AUXOUT  
Delays  
t
Input High (ONn) to GATEs High Prop Delay  
7
14  
36  
µs  
µs  
PLH(GATE)  
PLH(UVL)  
t
Input Supply Low (12V , 3V ) to GATEs  
18  
INn  
INn  
Low Prop Delay  
t
t
Out Low (12V  
Prop Delay  
, 3V  
) to PGOOD High  
20  
40  
1
µs  
µs  
PLH(PG)  
OUTn  
OUTn  
Sense Voltage High to GATE Low  
ΔV  
= 200mV, C = 10nF  
GATE  
0.4  
PHL(SENSE)  
SENSE  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: An internal clamp limits the GATE pins to a minimum of 5V above  
. Driving this pin to voltages beyond the clamp may damage the  
device.  
V
OUT  
Note 4: For the QFN package, the AUX FET on resistance is guaranteed by  
Note 2: All current into device pins is positive, all current out of the device  
pins is negative. All voltages are referenced to GND unless otherwise  
specified.  
correlation to wafer level measurements.  
Note 5: Available on QFN package only.  
4242f  
4
LTC4242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
T = 25°C. V = V  
= V  
= 3.3V, V = 12V, unless otherwise noted. (Note 2)  
12VINn  
A
CC  
AUXINn  
3VINn  
V
, 12V and 3V Supply  
12V UV Rising Threshold  
INn  
vs Temperature  
CC  
INn  
INn  
I
vs V  
Current vs Temperature  
DD  
CC  
3.0  
2.5  
1.0  
1.5  
1.0  
1.8  
1.5  
1.2  
0.9  
10.2  
10.0  
9.8  
V
CC  
9.6  
12V  
INn  
0.6  
0.3  
3V  
INn  
9.4  
–50  
–25  
0
25  
50  
75  
100  
100  
100  
5
6
–50  
0
25  
50  
75  
100  
3
7
4
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
(V)  
CC  
4242 G03  
4242 G01  
4242 G02  
3V  
, AUXOUTn Power Good  
3V , AUXINn Rising Threshold  
12V  
Power Good Threshold  
OUTn  
INn  
OUTn  
Threshold vs Temperature  
vs Temperature  
vs Temperature  
10.6  
10.4  
10.2  
10.0  
2.72  
2.70  
2.68  
2.66  
2.92  
2.90  
2.88  
2.86  
9.8  
2.64  
2.84  
–50 –25  
0
25  
50  
75  
100  
–50 –25  
0
25  
50  
75  
100  
–50 –25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4242 G05  
4242 G04  
4242 G06  
OUT Discharge Resistance  
vs Temperature  
ONn, AUXONn, ENn Low-to-High  
Threshold vs Temperature  
ONn, AUXONn, ENn Hysteresis  
vs Temperature  
1.242  
1.240  
1.238  
1.236  
1000  
800  
600  
400  
90  
80  
70  
60  
AUXOUTn  
12V  
OUTn  
1.234  
1.232  
3V  
50  
OUTn  
200  
50  
–50  
0
25  
50  
75  
100  
–25  
–50 –25  
0
25  
75  
100  
–50 –25  
0
25  
50  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4242 G08  
4242 G07  
4242 G09  
4242f  
5
LTC4242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
T = 25°C. V = V  
= V  
= 3.3V, V  
12VINn  
= 12V, unless otherwise noted. (Note 2)  
A
CC  
AUXINn  
3VINn  
FONn Low-to-High Threshold  
FONn High-to- Low Threshold  
vs V  
R
vs Temperature  
vs V  
CC  
ON  
CC  
3
5
4
3
2
1
0
0.35  
0.30  
0.25  
0.20  
2
1
0
0.15  
2
3
4
5
6
7
–50 –25  
0
25  
50  
75  
100  
2
3
4
5
6
7
V
(V)  
TEMPERATURE (°C)  
CC  
V
(V)  
CC  
4242 G11  
4242 G12  
4242 G10  
Current Limit Propagation Delay  
vs Sense Voltage  
Circuit Breaker Trip Sense  
Voltage vs Temperature  
R
ON  
vs AUXINn  
0.35  
100  
10  
1
52  
51  
50  
49  
0.30  
0.25  
0.20  
0.1  
0.15  
0.01  
48  
–50  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
50  
100  
150  
200  
250  
300  
–25  
0
25  
50  
75  
100  
AUXINn (V)  
SENSE VOLTAGE (mV)  
TEMPERATURE (°C)  
4242 G13  
4242 G14  
4242 G14  
Circuit Breaker Trip Filter Time  
vs Temperature  
Aux Circuit Breaker Trip Current  
vs Temperature  
Gate Drive vs I  
GATE  
6
25.0  
22.5  
20.0  
17.5  
650  
600  
550  
500  
5
4
3
2
1
0
15.0  
450  
2
4
6
8
10  
–50 –25  
0
25  
50  
75  
100  
–50 –25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
I
(µA)  
TEMPERATURE (°C)  
GATE  
4242 G18  
4242 G17  
4242 G14  
4242f  
6
LTC4242  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
= 12V, unless otherwise noted. (Note 2)  
12VINn  
T = 25°C. V = V  
= V  
= 3.3V, V  
A
CC  
AUXINn  
3VINn  
Gate Drive vs Temperature  
I
Pull-Up vs Temperature  
GATE  
–15  
–10  
–5  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
0
–50  
–25  
0
25  
50  
75  
100  
–50  
0
25  
50  
75  
100  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4242 G20  
4242 G19  
Gate Fast Pull-Down Current  
vs Temperature  
I
Off Current vs Temperature  
GATE  
1.2  
1.1  
1.0  
0.9  
300  
275  
250  
225  
0.8  
0.7  
200  
–50  
0
25  
50  
74  
100  
–25  
–50 –25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4242 G21  
4242 G22  
4242f  
7
LTC4242  
U
U
U
PI FU CTIO S  
12V  
/12V  
: Gate Drive for 12V Supply External  
3V  
/3V  
:3.3VSupplyCurrentLimitSenseInput.  
GATE1  
GATE2  
SENSE1  
SENSE2  
N-Channel MOSFET. An internal charge pump provides  
Asenseresistorisplacedinthesupplypathbetween3V  
INn  
a 9µA pull-up current to ramp up 12V . During turn  
off, a 1mA pull-down current source discharges 12V  
to ground. 12V  
12V  
currentsourcebetween12V  
An external RC network is required at the pin for optimum  
current limit response.  
and 3V  
to sense 3.3V channel’s load current. The  
GATEn  
SENSEn  
voltage across the sense resistor is monitored for active  
current limit and circuit breaker fault detection. To disable  
the circuit breaker function for the 3.3V channel, connect  
GATEn  
is internally clamped to 5.5V above  
GATEn  
. During an overcurrent fault, a 250mA pull-down  
OUTn  
and12V  
isactivated.  
3V  
to 3V  
.
GATEn  
OUTn  
SENSEn  
INn  
3V /3V : 3.3V Supply Input. An undervoltage lockout  
IN1  
IN2  
circuit disables the 3.3V and 12V supplies when 3V  
INn  
12V  
/12V  
SENSE1  
: 12V Supply Current Limit Sense  
voltage is less than 2.67V.  
SENSE2  
Input.Asenseresistorisplacedinthesupplypathbetween  
3V  
/3V  
: 3.3V Output Connection. Connect this  
OUT1  
OUT2  
12V and 12V to sense the 12V channel’s load  
INn  
SENSEn  
pin to the source of the 3.3V supply external N-channel  
MOSFET for gate drive return. PGOOD1/PGOOD2 cannot  
pull low until this pin goes above 2.855V. A 375Ω active  
current.Thevoltageacrossthesenseresistorismonitored  
for active current limit and circuit breaker fault detection.  
To disable the circuit breaker function for the 12V channel,  
pull-downdischarges3V  
MOSFET is turned off.  
togroundwhentheexternal  
OUTn  
connect 12V  
to 12V  
.
SENSEn  
INn  
12V /12V :12VSupplyInput.Anundervoltagelockout  
IN1  
IN2  
AUXFAULT1/AUXFAULT2: AUX Supply Fault Status Out-  
put.AUXFAULTnisnormallypulledhighbyaninternal9µA  
pull-up. It asserts low if the AUX channel shuts off due  
to an overcurrent fault or due to the device temperature  
rising above 150°C. Indicates switch ON status when  
FONn and ENn are high.  
circuit disables the 12V and 3.3V supplies when 12V  
INn  
voltage is less than 9.78V.  
12V  
/12V  
: 12V Output Connection. Connect this  
OUT1  
OUT2  
pin to the source of the 12V supply external N-channel  
MOSFET for gate drive return. PGOOD1/PGOOD2 cannot  
pull low until this pin goes above 10.38V. A 700Ω active  
AUXON1/AUXON2: AUX Supply On Control Input. A rising  
edge turns on the internal FET, while a falling edge turns it  
off. Pulling this pin below 0.6V for more than 3.5µs clears  
the fault on the AUX channel.  
pull-downdischarges12V  
MOSFET is turned off.  
togroundwhentheexternal  
OUTn  
3V  
/3V  
: Gate Drive for 3.3V Supply External  
GATE2  
GATE1  
N-Channel MOSFET. An internal charge pump provides  
AUXIN1/AUXIN2: AUX Supply Input. An undervoltage  
lockout circuit disables the AUX supply when the voltage  
at AUXINn is less than 2.67V. AUXINn is the input to the  
internal pass FET.  
a 9µA pull-up current to ramp up 3V . During turn  
GATEn  
off, a 1mA pull-down current source discharges 3V  
GATEn  
to ground. 3V  
is internally clamped to 5.5V above  
GATEn  
3V  
. During an overcurrent fault, a 250mA pull-down  
OUTn  
AUXOUT1/AUXOUT2: AUX Supply Output. AUXOUTn  
is the output from the internal pass FET. AUXPGOOD1/  
AUXPGOOD2 cannot pull low until this pin goes above  
2.855V. A 750Ω active pull-down discharges AUXOUTn  
to ground when the internal FET is turned off.  
current source between 3V  
and 3V  
is activated.  
GATEn  
OUTn  
An external RC network is required at the pin for optimum  
current limit response.  
4242f  
8
LTC4242  
U
U
U
PI FU CTIO S  
on the ONn and AUXONn pins. However, UVLO on V  
AUXPGOOD1/AUXPGOOD2 (QFN): AUX Supply Power  
Status Output. This open-drain pin is pulled high by an  
internal 9µA pull-up when AUXOUTn is below power good  
threshold, when ENn is high, during thermal shutdown,  
CC  
would shut off the switches. Caution! There is no current  
limit mechanism in this mode. Connect FONn to ground  
to disable the fault override feature.  
AUXONn is low or when V or AUXINn are in UVLO.  
CC  
GND: Device Ground. Connect to a ground plane.  
EN1/EN2: Card Presence/Slot Insert Detect Input. ENn  
pin must be pulled below 1.235V to enable the system.  
An internal 9µA pull-up current source is present on this  
pin.  
ON1/ON2: Main Supply On Control Input. A rising edge  
turns on the external MOSFETs for the 12V and 3.3V sup-  
plies,whileafallingedgeturnsthemoff.Pullthispinbelow  
0.6V to clear the faults on 12V and 3.3V channels.  
Exposed Pad (QFN): Power Ground. PCB electrical con-  
PGOOD1/PGOOD2:MainSupplyPowerStatusOutput.This  
nection is optional.  
open-drain pin is pulled high by an internal 9µA pull-up  
when 12V  
or 3V  
is below power good threshold,  
FAULT1/FAULT2: Main Supplies Fault Status Output.  
FAULTn is pulled high by an internal 9µA pull-up. When an  
overcurrent fault occurs at either the 12V or 3.3V supply,  
FAULTn is latched low.  
OUTn  
OUTn  
when ENn is high, ONn is low or when V or any of the  
CC  
main supplies are in UVLO.  
V : Device Supply Input. Operates from 2.7V to 6V. An  
CC  
internalundervoltagelockoutcircuitdisablesthepartuntil  
FON1/FON2: Force On Digital Input. For diagnostic pur-  
poses,ahighinputoverridesundervoltageandovercurrent  
faultson12V,3.3VandAUXchannelsandinputcommands  
the voltage at V exceeds 2.45V.  
CC  
4242f  
9
LTC4242  
U
U
W
FU CTIO AL DIAGRA  
CP12V  
CP3V  
CPAUX  
V
CC  
CHARGE  
PUMP  
V
CC  
OSCILLATOR  
12V  
3V  
IN  
GND  
UVLO  
4
V
CC  
IN  
V
CC  
AUXIN  
9µA  
10µA  
FAULTn  
EN  
ENn  
ONn  
+
BOARD PRSNT  
MAIN ON  
1.235V  
ON1  
FON  
ON2  
+
0.6V  
V
CC  
1.235V  
SYSTEM  
CONTROL  
9µA  
FORCE ON  
AUX ON  
FONn  
PGOODn  
AUXONn  
+
0.6V  
1.235V  
3
3
SYSTEM CONTROL  
CP12V  
100mV  
12V  
12V  
INn  
ACL1  
+
+
9µA  
SENSEn  
12V  
GATEn  
50mV  
ECB1  
+
+
12V SUPPLY  
CONTROL  
12V  
OUTn  
GATE  
DRIVER  
5.5V  
PG1  
1.235V  
7.4R  
R
+
12V PWR GOOD  
12V  
OUTn  
1mA  
12V SUPPLY  
CP3V  
100mV  
3V  
3V  
INn  
ACL2  
+
+
9µA  
SENSEn  
3V  
GATEn  
50mV  
ECB2  
+
+
3.3V SUPPLY  
CONTROL  
3V  
OUTn  
GATE  
DRIVER  
5.5V  
PG2  
1.235V  
1.31R  
+
3.3V PWR GOOD  
3V  
OUTn  
1mA  
R
3.3V SUPPLY  
V
CC  
AUXINn  
9µA  
THERMAL  
SHUTDOWN  
AUXFAULTn  
CPAUX  
V
CC  
AUX SUPPLY  
CONTROL  
AUX FET  
9µA  
AUXPGOODn  
AUXOUTn  
AUX SUPPLY  
4242 FD  
4242f  
10  
LTC4242  
U
OPERATIO  
The Functional Diagram displays the main functional ele-  
ments of this device. The LTC4242 is designed to control  
the power for two independent slots on a PCI Express  
backplane, allowing two boards to be safely inserted and  
removed. During normal operation, the charge pump  
sources 9µA to turn on the gate of the external N-chan-  
nel MOSFETs to pass power to the load. The gates of the  
external MOSFETs are clamped about 5.5V above their  
sources. The gates of the AUX FETs rise at a slew rate of  
about 1.25V/ms to control the inrush current.  
an overcurrent conditon on the internal FET or thermal  
shutdown has occurred.  
When the switches are off (both internal and external),  
the OUT pins are discharged to ground through internal  
N-channel transistors.  
The output voltages are monitored using the OUT pins  
and the PG comparators to determine if the voltage  
is valid. The power good conditon is signaled by the  
PGOOD/AUXPGOOD pins using open-drain pull-down  
transistors.  
The electronic circuit breaker (ECB) comparator and ana-  
log current limit (ACL) amplifier monitor the load current  
using the difference between the V and SENSE voltage.  
The Functional Diagram shows the monitoring blocks of  
the LTC4242. The group of comparators in the system  
control includes the UVLO, ON and EN comparators.  
These comparators are used to determine if the external  
conditions are valid prior to turning on the switches. But  
firsttheundervoltagelockoutcircuit(UVLO)mustvalidate  
IN  
The threshold of the ACL is set at 2x the ECB threshold.  
The ACL amplifier limits the current in the load by reduc-  
ing the gate-to-source voltage of the external MOSFETs  
in an active control loop. When an overcurrent condition  
persists for more than 20µs, the MOSFETs are shut off to  
prevent overheating. FAULT is latched low to signal that  
an overcurrent condition has occurred on the external  
MOSFETs controlling the main channels.  
the input supplies and the main supply V and generate  
CC  
the power up initialization to the logic circuits.  
The FON inverter in the system control is used for op-  
erating the LTC4242 in diagnostic mode. In this mode  
of operation, all pass transistors are forced to turn on,  
ignoring the undervoltage, circuit breaker/current limit-  
The AUX FET’s control circuitry has a circuit breaker that  
trips at 550mA after 20µs. It also incorporates an active  
current limit amplifier that would limit the current flow-  
ing in the AUX FET to about 1.65A. A thermal shutdown  
circuit shuts off the AUX FET when the die temperature  
rises above 150°C. AUXFAULT is latched low to signal  
ing status and input commands. However, if V drops  
CC  
below its UVLO voltage, all switches would be shut off,  
regardless of FON.  
U
W U U  
APPLICATIO S I FOR ATIO  
The typical LTC4242 application is in a backplane or moth-  
erboard that controls power to two PCI Express slots. The  
device reports fault and power good status to the system  
hot plug controller (HPC).  
Board Presence Detect  
InPCIExpresssystems, thesystemboardconnectoruses  
two signals, PRSNT1 and PRSNT2, to detect the pres-  
ence of a board and ensure a fully inserted board in the  
connector as shown in Figure 2. PRSNT2 is routed to the  
system HPC. Upon a board insertion into the connector,  
a turn-on command is generated by the HPC to LTC4242  
after a programmed HPC debounce delay, as shown in  
Figure 1. Another method to generate the debounce delay  
is through the delay network shown in Figure 3.  
The basic LTC4242 application circuit is shown in Fig-  
ure 1. Discussion begins with board presence detection  
in a PCI Express system, the normal turn on and off  
sequence, the various fault conditons and recovery from  
fault situations. The force on operation is discussed next  
followed by the considerations for PCB layout. External  
component selection is discussed in detail in the Design  
Example section.  
4242f  
11  
LTC4242  
U
W U U  
APPLICATIO S I FOR ATIO  
SLOT A  
Q1  
R1  
8mΩ  
Si7336ADP  
12V  
5.5A  
12V  
Q2  
R2  
13mΩ  
R5  
10Ω  
Si7336ADP  
3.3V  
3A  
3.3V  
R
3
3
G1  
47Ω  
SMBus  
SMBus  
R
R6  
G2  
C
G1  
18Ω  
10Ω  
15nF  
C
G2  
33  
32  
31  
30  
8
7
6
5
47nF  
R
S
12V  
12V  
12V  
12V  
3V  
3V  
3V  
3V  
GATE1 OUT1  
IN1  
SENSE1  
GATE1  
OUT1  
IN1  
SENSE1  
33Ω  
10  
3.3V  
V
CC  
C1  
1µF  
9
4
29  
2
3.3V  
AUXIN1  
AUXOUT1  
375mA  
PRSNT2  
PRSNT1  
MRL1  
AUXON1  
BD_PRST1  
3
ON1  
FON1  
EN1  
PWREN1  
1
PCIe CONNECTOR ×1  
BD_PRST1  
PWRFLT1  
28  
19  
18  
GND  
EN2  
36  
35  
34  
20  
21  
22  
FAULT1  
AUXFAULT1  
PGOOD1  
FAULT2  
AUXPWRFLT1  
PGOOD1  
FON2  
LTC4242G  
HPC  
PWRFLT2  
AUXFAULT2  
PGOOD2  
AUXPWRFLT2  
PGOOD2  
BD_PRST2  
SLOT B  
PWREN2  
MRL2  
17  
ON2  
PRSNT2  
PRSNT1  
BD_PRST2  
16  
11  
AUXON2  
AUXIN2  
27  
3.3V  
375mA  
3.3V  
AUXOUT2  
12V  
12V  
12V  
12V  
3V  
3V  
3V  
3V  
IN2  
23  
SENSE2  
24  
GATE2  
25  
OUT2  
26  
IN2  
SENSE2  
13  
GATE2  
14  
OUT2  
15  
3
3
SMBus  
SMBus  
12  
R
R
G4  
G3  
47Ω  
18Ω  
C
C
G4  
G3  
R7  
10Ω  
R8  
10Ω  
47nF  
15nF  
3.3V  
3A  
3.3V  
12V  
R4  
13mΩ  
Q4  
Si7336ADP  
12V  
5.5A  
R3  
8mΩ  
Q3  
Si7336ADP  
PCIe CONNECTOR ×1  
4242 F01  
Figure 1. Typical PCI Express Application  
4242f  
12  
LTC4242  
U
W U U  
APPLICATIO S I FOR ATIO  
PCI EXPRESS ADD-IN CARD  
TRACE ON THE ADD-IN CARD  
(ACTUAL TRACE ROUTING IS LEFT  
UP TO THE BOARD DESIGNER)  
GOLD FINGERS  
MATE LAST/BREAK FIRST  
PULL-UP  
SYSTEM  
BOARD  
CONNECTOR  
HOT PLUG  
CONTROL  
LOGIC  
PRSNT1  
PRSNT2  
SYSTEM BOARD  
4242 F02  
Figure 2. Plug-In Card Insertion/Removal  
OUT  
LTC4242  
V
OUT  
9µA  
R
D
47k  
BD_PRSNT  
ENn  
+
LOAD  
C
D
1.235V  
33nF  
GND  
4242 F03  
CONNECTOR PLUG-IN  
CARD  
MOTHERBOARD  
Figure 3. RC Network to Generate Delay During Card Plug-In  
When the board is removed, the power to the slot is dis-  
abled after a delay of:  
When PRSNT2 pulls low after insertion of a board, the  
ENn pin goes low after a delay as determined by the  
values of C and R . For plug-in debounce delay of 1ms  
D
D
0.765CD  
and R of 47k:  
tDELAY2  
=
s = 2.8ms  
D
9
t
DELAY1 (ms)  
43.5  
CD =  
µF = 0.023µF  
Turn-On Sequence  
The PCI Express power supplies are controlled by the  
externalN-channelpasstransistors, Q1throughQ4, inthe  
12V and 3.3V power paths, and internal pass transistors  
Choose C to be 33nF.  
D
4242f  
13  
LTC4242  
U
W U U  
APPLICATIO S I FOR ATIO  
for the 3.3V auxiliary power paths. Sense resistors R1 to  
ENn  
5V/DIV  
R4 provide input for current fault detection. Resistors R  
G1  
AUXOUTn  
5V/DIV  
to R and capacitors C to C compensate the current  
G4  
G1  
G4  
controlloops.CapacitorsC toC alsocontroltheoutput  
G1  
G4  
power-up rate and the inrush current while resistors R5  
to R8 prevent high frequency oscillations in N-channel  
MOSFETs, Q1 to Q4 respectively.  
12V  
OUTn  
5V/DIV  
3V  
5V/DIV  
OUTn  
The following conditions must be satisfied before the  
external and internal switches can be turned on.  
1. The device’s power supply, V , must exceed its  
CC  
PGOODn  
5V/DIV  
undervoltage lockout threshold. To turn on the exter-  
nal/internal switches, the main/auxiliary input supplies  
must exceed their UVLO thresholds.  
4242 F04  
10ms/DIV  
2. The EN pin must be pulled low to begin the start-up  
sequence.  
Figure 4. Normal Power-Up Sequence  
When these initial conditions are satisfied, the ON pins are  
checked.TheLTC4242featuresperslotONpins,theAUXON  
and ON, to allow independent control of the main input  
supplies (12V and 3.3V) and the 3.3V auxiliary supplies. If  
the ON pin is high, the switches turn on. If ON is low, the  
switchesturnonwhentheONpinisbroughthigh.Figure 4  
shows all supplies turning on after EN goes low.  
Turn-Off Sequence  
The switches can be turned off by a variety of conditions.  
1. The ON/AUXON pin going low would turn off the main/  
internal switches.  
2. EN going high turns off all switches.  
3. A variety of fault conditions will turn off the switches.  
These include supply undervoltage and overcurrent  
circuit breaker faults.  
Each of the external switches is turned on by charging  
the GATE with a 9µA current source. The voltage at the  
GATE pins rises with a slope equal to 9µA/C and the  
G
4. When thermal shutdown activates, the internal switch  
is shut off.  
supply inrush current is set at C /C • 9µA, where C is  
L
G
L
the capacitance at the supply output.  
When ON goes low, the main switches are turned off with  
a 1mA current pulling down the gate to ground. When  
the main supplies are shut off, the PGOOD signal pulls  
high and the outputs are discharged to ground through  
internal switches. Similarly, when an auxiliary supply is  
turned off, the AUXPGOOD signal pulls high and its output  
is discharged to ground through internal switches. Figure  
5 shows all supplies being turned off by EN going high.  
The gate of the internal switch is slewed resulting in the  
3.3V  
supply output powering up at an internally set  
AUX  
rate of about 1.25V/ms.  
The circuit breaker (ECB) of the input supplies is armed  
after the input supplies clear UVLO. Once the supplies  
have been turned on and the outputs are within tolerance,  
PGOOD for the main input supplies and AUXPGOOD for  
the auxiliary input supplies (available for the QFN only)  
are pulled low.  
4242f  
14  
LTC4242  
U
W U U  
APPLICATIO S I FOR ATIO  
FAULTn  
5V/DIV  
ENn  
5V/DIV  
AUXOUTn  
5V/DIV  
3V  
OUTn  
5V/DIV  
12V  
OUTn  
5V/DIV  
3V  
GATEn  
5V/DIV  
3V  
OUTn  
5V/DIV  
I
LOAD  
3A/DIV  
PGOODn  
5V/DIV  
4242 F06  
4242 F05  
5µs/DIV  
100ms/DIV  
Figure 6. Overcurrent Fault on 3.3V Output  
Figure 5. Normal Power-Down Sequence  
FAULTn  
5V/DIV  
Thermal Shutdown  
Each of the two internal switches for the 3.3V auxiliary  
suppliesisprotectedbyanindependentthermalshutdown  
circuit. If the temperature of an internal switch reaches  
150°C,theswitchshutsdownimmediatelyandAUXFAULT  
is latched low. All other power switches are not affected.  
The switch is allowed to turn on again by recycling the  
AUXON pin low then high with the temperature falling  
below 120°C.  
3V  
OUTn  
5V/DIV  
3V  
GATEn  
5V/DIV  
I
LOAD  
10A/DIV  
Overcurrent Fault  
The LTC4242 features dual level glitch tolerant protection  
against overcurrent faults for all the supplies. The sense  
resistor (both internal and external) voltage drop is moni-  
tored by an electronic circuit breaker (ECB) comparator  
andanactivecurrentlimit(ACL)amplifier. Intheeventthat  
a supply’s current exceeds the ECB threshold, an internal  
timerisstarted. Ifthesupplyisstillovercurrentafter20µs,  
the ECB trips and the MOSFET turns off immediately, as  
shown in Figure 6.  
4242 F07  
5µs/DIV  
Figure 7. Short-Circuit Fault on 3.3V Output  
During an output short circuit, the surge current must be  
brought to a controlled level within the shortest amount of  
time to protect the system. The LTC4242’s active current  
limitentersahighcurrentprotectionmodethatimmediately  
turns off the output MOSFET by pulling its gate-to-source  
voltage to zero. Current in the output MOSFET drops from  
tens of amps to zero in a few hundred nanoseconds. The  
input voltage drops during the high current and then  
spikes upwards due to lead parasitic inductances as the  
Duringstart-up,asupplyoutputcouldbeshortedtoground  
in the worst case. The inrush current would be limited to  
the ACL threshold, which is 2x the ECB threshold, and the  
part will latch off after 20µs.  
4242f  
15  
LTC4242  
U
W U U  
APPLICATIO S I FOR ATIO  
its UVLO threshold for more than 38µs, all switches are  
turned off. The switches are allowed to turn on when  
AUXFAULTn  
5V/DIV  
AUXOUTn  
5V/DIV  
the supply voltages and V rise above their respective  
CC  
undervoltage thresholds.  
AUXINn  
5V/DIV  
Power Good Fault  
A power good fault occurs when any supply output drops  
below its power good threshold for more than 20µs.  
A power good fault on the main/AUX supplies causes  
the PGOOD/AUXPGOOD to be pulled high. There are a  
variety of conditions which must be satisfied for PGOOD/  
AUXPGOOD to be asserted low:  
I
LOAD  
5A/DIV  
1. The output voltage is above power good threshold  
2. EN pin is low  
4242 F08  
5µs/DIV  
Figure 8. Short-Circuit Fault on 3.3V  
Output  
AUX  
3. The input voltage is above the undervoltage threshold  
4. ON pin is high  
MOSFET shuts off (see Supply Transients). The compen-  
sation network R /C assists the gate voltage recovery.  
The ACL limits the current level to 2x the ECB threshold  
G
G
5. Thermal shutdown not activated  
by regulating the gate voltage.  
Resetting Faults  
For the internal switch, the ACL limits the supply current  
to about 3x the circuit breaker current level of 550mA.  
Toresetanovercurrentfaultonthemainoutputs,bringON  
low or the faulting supply below its undervoltage lockout  
(UVLO) threshold. To reset an overcurrent or thermal  
shutdown fault on the auxiliary output, bring AUXON low  
or the auxiliary suppy below its UVLO threshold. Bringing  
TheECBhasa2slterdelaybeforelatchingofftoprevent  
unnecessary resets of the system due to minor transient  
surges. An overcurrent fault on any of the main outputs  
(12V or 3.3V) latches off both main outputs without af-  
fectingthe3.3Vauxiliaryoutput. Similarly, anovercurrent  
fault on the 3.3V auxiliary output latches off the auxiliary  
output, without affecting the main outputs.  
V
below its UVLO threshold resets all overcurrent and  
CC  
thermal shutdown faults. The part cannot be reset when  
fault overide, FON, is high.  
Auto-Retry After a Fault  
When there is a shorted load with significant supply lead  
inductance, the supply pin voltage could collapse before  
the ACL brings down the gate of the external MOSFET. In  
this case, the undervoltage lockout circuit, with 18µs filter  
time, turns off the pass MOSFETs.  
As shown in Figure 9, the LTC4242 can be configured to  
automatically retry after a fault condition by connecting  
both the FAULT and ON pins together with an RC network.  
The auto-retry circuit will attempt to restart the LTC4242  
after a circuit breaker trip, as shown in the timing diagram  
of Figure 10.  
Undervoltage Fault  
An undervoltage fault occurs when any of the input sup-  
plies, 12V , 3V or AUXIN, falls below its undervoltage  
RAUTO CAUTO • 1.235 V  
(
)
OL  
IN  
IN  
tOFF  
threshold for more than 18µs. This turns off the switches  
immediately. An undervoltage on the 3.3V auxiliary sup-  
ply will not cause the main supplies to shut off and vice  
versa. An undervoltage fault on any of the main supplies  
2.065+RAUTO 9µA  
For the component values shown, t = 3.3ms. Since the  
OFF  
duration of a short is less than 40µs in the worst case, the  
auto-retry duty cycle is 1.3%.  
shuts off both main supply switches. If V falls below  
CC  
4242f  
16  
LTC4242  
U
W U U  
APPLICATIO S I FOR ATIO  
R2  
Q2  
V
CC  
Power Supply  
13mΩ  
Si7336ADP  
3.3V  
TheLTC4242derivesitspowerfromV .Abypasscapacitor  
CC  
of 1µF should be connected between this pin and ground.  
If V is derived from the input supplies of 3V or AUXIN,  
3V  
GATE  
LOAD  
CC  
IN  
3V  
3V  
3V  
SENSE  
IN  
OUT  
EN  
a lowpass filter shown in Figure 11 should be used.  
R
AUTO  
LTC4242*  
200k  
BD_PRST  
This RC network allows the LTC4242 to ride through a  
FAULT  
ON  
3V /AUXIN short-circuit transient without collapsing  
IN  
C
AUTO  
GND  
0.1µF  
below the V UVLO threshold. AUXIN or 3V may have  
CC  
IN  
4242 F09  
narrowbuthighglitchesduetoparasiticinductance.Since  
the absolute maximum rating for V is 7V compared to  
*ADDITIONAL DETAILS OMITTED FOR CLARITY  
CC  
10V for AUXIN and 3V , the R and C1 values should be  
IN  
S
Figure 9. Auto-Retry Application  
chosen to damp the peak voltage seen by V below 7V.  
CC  
3V  
R
S
33  
IN  
1.235V  
0.6V  
AUXIN  
OR  
V
CC  
C1  
1 F  
3V  
IN  
V
OL  
ON/FAULT  
4242 F11  
V
TH  
3V  
GATE  
Figure 11. RC Network for V Filtering  
CC  
3V – 3V  
IN  
Force ON Operation  
SENSE  
V
CB  
4242 F10  
t
When the FON pin is pulled high and EN is low, the  
LTC4242 operates in the diagnostic mode. All the input  
supplies’ power switches are forced to turn on, regardless  
ofundervoltageconditionsontheinputsupplies, statusof  
the ON pins and the fault latch. The contents in the fault  
latch would be preserved during this time and no change  
of state would occur after the part is configured to operate  
in the diagnostic mode. If the output current exceeds the  
ECB threshold, FAULT/AUXFAULT is pulled low immedi-  
OFF  
t
CB  
Figure 10. Auto-Retry Timing  
GATE Pin Voltage  
The minimum gate drive voltage is 4.5V, therefore, logic  
level N-channel MOSFETs should be used for the external  
switches to maintain adequate gate enhancement. The  
GATE pins are clamped at a typical value of 5.5V above  
the respective OUT pins.  
ately, but does not latch. The undervoltage lockout on V  
CC  
turns off all the switches, regardless of the status of FON.  
During thermal shutdown, the internal switch is shut off to  
prevent overheating, even if FON is high. The main power  
switches remain on as FON is high. Care must be taken to  
ensure the outputs are not short circuited since there is  
no current limit mechanism in diagnostic mode.  
Compensating the Active Current Loop  
The active current limit circuit is compensated using the  
resistorR andtheslewratecontrolcapacitorC .Thevalue  
G
G
of C is selected based on the inrush current allowed. The  
G
R valueshouldbeexperimentallydetermined.Asuggested  
G
value range for R is between 10Ω and 100Ω.  
G
4242f  
17  
LTC4242  
U
W U U  
APPLICATIO S I FOR ATIO  
Yet another mode of operation is the Force ON with cur-  
rent limit mode. To enter this mode, pull both FON and  
EN high. In this mode of operation, the ACLs are enabled  
with the 20µs filter time disabled. The fault latch of the  
In Hot Swap applications where load currents can be 10A,  
narrow PCB tracks exhibit more resistance than wider  
tracks and hence, operate at higher temperatures. Since  
the sheet resistance of 1oz copper foil is approximately  
0.5mΩ/square, track resistances and voltage drops add  
up quickly in high current applications. Thus, to keep PCB  
track resistance, voltage drop and temperature rise to a  
minimum, the suggested trace width in these applica-  
tions for 1oz copper foil is 0.03" for each ampere of DC  
current.  
AUXsupplycanbelatchediftheAUX’sI  
isexceeded.  
CBAUX  
AUXFAULT indicates whether the AUX channel FET is on  
or off. To enter normal operation, pull FON and EN low  
and recycle the ON and AUXON pins.  
PCB Layout Considerations  
For proper operation of the LTC4242’s circuit breaker,  
a Kelvin connection to the sense resistors is required.  
The Kelvin sense PCB layout traces should be minimum  
length, closed together, balanced and symmetrical to  
minimize wiring errors. In addition, the PCB layout for the  
sense resistors and the power MOSFETs should include  
good thermal management techniques for optimal device  
power dissipation. A recommended PCB layout for the  
12V sense resistor and the power MOSFET is illustrated  
in Figure 12.  
In the majority of applications, it will be necessary to use  
plated-through vias to make circuitry connections from  
components layers to power and ground layers internal  
to the PCB. For 1oz copper foil plating, a general rule is  
1A of DC current per via making sure the via is properly  
dimensioned so that solder completely fills any void.  
Check with your PCB fabrication facility for via current  
specifications.  
CURRENT FLOW  
CURRENT FLOW  
SENSE  
RESISTOR  
POWER PAK  
SO-8  
TO LOAD  
TO LOAD  
12V  
12V  
OUT1  
12V  
IN1  
W
W
12V  
TRACK WIDTH W:  
0.03" PER AMPERE  
ON 1OZ Cu FOIL C1  
R5  
VIA PATH  
TO GND  
12V  
GATE1  
R
G1  
C
G1  
LTC4242G*  
CURRENT FLOW  
TO SOURCE  
VIA TO  
GND PLANE  
W
GND  
GND  
4242 F12  
*ADDITIONAL DETAILS OMITTED FOR CLARITY, DRAWING NOT TO SCALE!  
Figure 12. Recommended Layout for Power MOSFET, Sense Resistor and GATE Components for the 12V Rail  
4242f  
18  
LTC4242  
U
W U U  
APPLICATIO S I FOR ATIO  
In system board applications, large bypass capacitors  
(≥10µF) are recommended at each of the system input  
supplies to minimize supply glitches as a result of large  
inrush or fault currents.  
So a value of 15nF and 47nF ( 10%) should suffice for  
the 12V and 3.3V supplies respectively. The worst-case  
1
t and inrush currents are tabulated in Table 3.  
Table 3. Worst-Case t and Inrush Current  
1
It is important to put C1, the bypass capacitor for the V  
CC  
VOLTAGE SUPPLY  
t
t
MAX I  
INRUSH  
1(MIN)  
1(MAX)  
pin as close as possible between the V and GND pins.  
CC  
12V  
3.3V  
13ms  
11ms  
40ms  
34ms  
2.4A  
0.4A  
Design Example  
For the internal switch, the slew rate (SR) at the 3.3V  
AUX  
Consider a PCI Express Hot Swap application example  
with the following power supply requirements:  
supply output is limited to 1.7V/ms max. The inrush cur-  
rent can then be calculated according to:  
Table 1. PCI Express Power Supply Requirements  
I
= C  
• SR  
MAX  
(3)  
INRUSH(MAX)  
LOAD  
MAXIMUM SUPPLY  
MAXIMUM LOAD  
CAPACITANCE  
SUPPLY VOLTAGE  
CURRENT  
Theinrushcurrentmustbelowerthan385mA(I  
for proper start-up. Assuming a tolerance of 30% for the  
load capacitance, the value of C  
170µF.  
)
CBAUX(MIN)  
12V  
3.3V  
5.5A  
3.0A  
2000µF  
1000µF  
150µF  
should not exceed  
LOAD  
3.3V  
375mA  
AUX  
1. Select an R  
SENSE  
lower circuit breaker threshold limit, ΔV  
value for each supply. Calculate the  
SENSE  
3. Next is the selection of MOSFETs for the 12V and 3.3V  
maininputsupplies.TheSi7336ADP’sonresistanceisless  
than 4mΩ at V = 4.5V, 25°C and it is a good choice for  
3.3V and 12V main supplies.  
R
value based on the maximum load current and the  
. In  
SENSE(CB)(MIN)  
GS  
a PCI Express connector, five pins are allocated for the  
12V supply, three pins for the 3.3V supply and one pin for  
3.3V . The current rating of a connector pin is 1.1A. If  
Since the maximum load for the 3.3V supply is 3A, the  
MOSFET may dissipate up to 36mW. The Si7336ADP  
has a maximum junction-to-ambient thermal resistance  
of 50°C/W. This gives a junction temperature of 51.8°C  
when operating at a case temperature of 50°C. Accord-  
ing to the Si7336ADP’s Normalized On-Resistance vs  
Junction Temperature curve, the device’s on resistance  
can be expected to increase by about 12% over its room  
AUX  
a 1% tolerance is assumed for the sense resistors, then  
the following values of resistances should suffice:  
Table 2. Sense Resistance Values  
VOLTAGE SUPPLY  
R
(1%)  
I
I
SENSE  
TRIP(MIN)  
5.6A  
TRIP(MAX)  
6.9A  
12V  
8mΩ  
3.3V  
13mΩ  
3.4A  
4.3A  
temperature value. Recalculation for steady-state R  
2. Assumenoloadcurrentatstart-upandtheinrushcurrent  
charges the load capacitance. Compute gate capacitance  
with:  
ON  
and junction temperature yield approximately 4.5mΩ  
and 52°C, respectively. The voltage drop across the 3.3V  
sense resistor and series MOSFET at 3A and at 50°C PCB  
temperature is less than 53mV.  
IGATE(UP) • t1  
CGATE  
=
(2)  
VOUT  
t is the time to charge up the load capacitor.  
The MOSFET dissipates power during inrush charging of  
the output load capacitor. Assuming no load current, the  
MOSFET’s dissipated power equals the final load capaci-  
tor stored energy. Therefore, average MOSFET dissipated  
power is:  
1
With I  
= 13µA and t = 10ms:  
1
GATE(UP)(MAX)  
a. For 12V Supply, C  
= 11nF  
= 39nF  
GATE  
b. For 3.3V Supply, C  
CL VO2UT  
GATE  
(4)  
PON  
=
2 • t1  
4242f  
19  
LTC4242  
U
W U U  
APPLICATIO S I FOR ATIO  
short enough to cause minimal increase in the junction-  
to-ambient temperature of the MOSFETs, in the event of  
powering up into short circuit or short circuiting after  
power up. Therefore, in these events, it can be safely  
assumed that the MOSFETs would have minimal thermal  
stress on them.  
Using P and t to look up the MOSFETs’ single pulse  
ON  
1
θ
from the manufacturer’s Transient Thermal  
JA(MAX)  
Impedance Graph, the worst-case junction-to-ambient  
temperature rise occurs for the 12V MOSFET.  
Table 4. MOSFET Power-Up Temperature Rise Calculation  
VOLTAGE SUPPLY  
P
ON  
θ
ΔT  
JA(MAX)  
IftheLTC4242operatesinthediagnosticmode, usermust  
ensure a safe joule heating limit of the external MOSFET.  
The internal switch will be disabled once the temperature  
reaches 150°C, thereby preventing overheating.  
12V  
3.3V  
11W  
0.5W  
0.75°C/W  
0.6°C/W  
8.3°C  
0.3°C  
There is a 20µs filter time when large current of 2x circuit  
breaker’s threshold can flow in the switches. This time is  
4242f  
20  
LTC4242  
U
TYPICAL APPLICATIO  
4242f  
21  
LTC4242  
U
PACKAGE DESCRIPTIO  
G Package  
36-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
12.50 – 13.10*  
(.492 – .516)  
1.25 0.12  
5.3 – 5.7  
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19  
7.8 – 8.2  
7.40 – 8.20  
(.291 – .323)  
0.42 0.03  
0.65 BSC  
5
7
8
RECOMMENDED SOLDER PAD LAYOUT  
1
2
3
4
6
9 10 11 12 13 14 15 16 17 18  
2.0  
(.079)  
MAX  
5.00 – 5.60**  
(.197 – .221)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
(.0035 – .010)  
0.55 – 0.95  
(.022 – .037)  
0.05  
0.22 – 0.38  
(.009 – .015)  
TYP  
(.002)  
NOTE:  
MIN  
1. CONTROLLING DIMENSION: MILLIMETERS  
G36 SSOP 0204  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
4242f  
22  
LTC4242  
U
PACKAGE DESCRIPTIO  
UHF Package  
38-Lead Plastic QFN (5mm × 7mm)  
(Reference LTC DWG # 05-08-1701)  
0.70 0.05  
5.50 0.05  
(2 SIDES)  
4.10 0.05  
(2 SIDES)  
3.15 0.05  
(2 SIDES)  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50 BSC  
5.15 0.05 (2 SIDES)  
6.10 0.05 (2 SIDES)  
7.50 0.05 (2 SIDES)  
RECOMMENDED SOLDER PAD LAYOUT  
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 × 45° CHAMFER  
3.15 0.10  
(2 SIDES)  
0.75 0.05  
5.00 0.10  
(2 SIDES)  
37 38  
0.00 – 0.05  
0.40 0.10  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
1
2
5.15 0.10  
(2 SIDES)  
7.00 0.10  
(2 SIDES)  
0.40 0.10  
0.200 REF 0.25 0.05  
0.50 BSC  
R = 0.115  
TYP  
(UH) QFN 0205  
0.200 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
0.75 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE  
OUTLINE M0-220 VARIATION WHKD  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4242f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tation that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC4242  
U
TYPICAL APPLICATIO  
Hot Swap Application for Two Advanced Mezzanine Cards (AMC)  
MODULE 1  
PAYLOAD  
POWER  
SOURCE  
0.008Ω  
Si7336ADP  
12V  
5.6A  
MANAGEMENT  
POWER  
0.4Ω  
Si2306DS  
3.3V  
100mA  
SOURCE  
BD_PRSNT1  
PS1  
PS0  
10Ω  
10Ω  
22Ω  
CARRIER AMC  
33nF  
33nF  
CARD  
12V  
12V  
12V  
12V  
3V  
3V  
3V  
3V  
IN1  
SENSE1  
GATE1  
OUT1  
IN1  
SENSE1  
GATE1  
OUT1  
33Ω  
1µF  
V
CC  
AUXFAULT1  
AUXFAULT2  
NC  
AUXIN1  
AUXIN2  
ON1  
PGOOD1  
ON2  
PGOOD2  
FAULT1  
FAULT2  
AUXOUT1  
AUXOUT2  
LTC4242G  
FON1  
FON2  
INTELLIGENT  
PLATFORM  
MANAGEMENT  
CONTROLLER  
AUXON1  
AUXON2  
EN1  
EN2  
BD_PRSNT1  
BD_PRSNT2  
GND  
3V  
3V  
3V  
3V  
12V  
12V  
12V  
SENSE2 GATE2  
12V  
IN2  
SENSE2  
GATE2  
OUT2  
IN2  
OUT2  
22Ω  
33nF  
MODULE 2  
33nF  
10Ω  
10Ω  
PS0  
PS1  
12V  
5.6A  
BD_PRSNT2  
PAYLOAD  
POWER  
SOURCE  
0.008Ω  
Si7336ADP  
MANAGEMENT  
POWER  
3.3V  
100mA  
0.4Ω  
SOURCE  
Si2306DS  
CARRIER AMC  
CARD  
4242 TA03  
RELATED PARTS  
PART NUMBER  
LTC4210  
LTC4213  
LTC4214  
LTC4215  
LTC4216  
LT®4220  
LTC4221  
LTC4241  
DESCRIPTION  
COMMENTS  
6-Lead SOT-23 Package  
Hot Swap Contoller  
No R  
TM Electronic Circuit Breaker  
Three Selectable Circuit Breaker Thresholds  
Controls Supplies from 0V to –16V  
SENSE  
Negative Low Voltage Hot Swap Controller  
2
Hot Swap Controller with I C Compatible Monitoring  
Ultralow Voltage Hot Swap Controller  
Dual Supply Hot Swap Controller  
Dual Hot Swap Controller  
2.9V to 15V, 8-Bit ADC Monitors Current and Voltages  
Load Voltages from 0V to 6V  
2.7V to 16V Operation  
Power Sequencer with Dual Speed, Dual Level Fault Protection  
3.3V Auxiliary Supply  
PCI-Bus Hot Swap Controller  
No R  
is a trademark of Linear Technology Corporation.  
SENSE  
4242f  
LT 1106 • PRINTED IN USA  
24 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY