LTC4279IS#PBF [Linear]

LTC4279 - Single Port PoE/PoE+/ LTPoE++ PSE Controller; Package: SO; Pins: 16; Temperature Range: -40°C to 85°C;
LTC4279IS#PBF
型号: LTC4279IS#PBF
厂家: Linear    Linear
描述:

LTC4279 - Single Port PoE/PoE+/ LTPoE++ PSE Controller; Package: SO; Pins: 16; Temperature Range: -40°C to 85°C

文件: 总26页 (文件大小:1136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4279  
+
Single Port PoE/PoE /  
++  
LTPoE PSE Controller  
FEATURES  
DESCRIPTION  
The LTC®4279 is an autonomous single port power sourc-  
ing equipment (PSE) controller designed for use in IEEE  
n
Compliant with IEEE 802.3at Type 1 and 2  
Supports LTPoE ® Up to 90W  
++  
n
n
n
n
++  
Supports Dual-Signature PDs  
802.3at Type 1, Type 2 and LTPoE compliant Power  
Fully Autonomous Operation without Microcontroller  
Very Low Power Dissipation  
over Ethernet (PoE) systems. The LTC4279 provides fully  
++  
autonomousIEEE802.3andLTPoE compliantoperation  
– 0.1Ω Sense Resistance  
without a microcontroller. The LTC4279 simplifies PSE  
implementation, requiringonlyasinglesupplyandasmall  
number of passive support components.  
– Low R  
External MOSFET  
DS(ON)  
n
Very High Reliability 4-Point PD Detection  
– 2-Point Forced Voltage and Forced Current  
Robust Short-Circuit Protection  
The LTC4279 delivers lowest-in-industry heat dissipation  
n
n
n
by utilizing a low-R  
external MOSFET and a 0.1Ω  
DS(ON)  
Cable Surge Protected 80ꢀ OUT Pin  
Classification Dependent I  
Thresholds  
sense resistor, eliminating the need for expensive heat  
sinks and increasing efficiency.  
and I Current  
CUT  
LIM  
n
n
n
n
n
n
n
PDdiscoveryusesaproprietarydual-mode4-pointdetec-  
tion mechanism ensuring excellent immunity from false  
PD detection. Midspan PSEs are supported with physical  
layer classification and a 2.5 second backoff timer.  
Supports 2-Pair and 4-Pair Output Power  
UltraPWR Mode Supports Custom PDs Up to 123W  
Pin-Selectable Detection Backoff Timer for Midspans  
Pin Programmable Legacy PD Detection  
Pin Programmable Maximum Power Mode  
Status LED Pin  
LegacyandcustomPDsaresupportedwithpin-selectable  
LEGACY and UltraPWR modes. LEGACY mode detects  
and powers pre-IEEE specification PDs. UltraPWR mode  
aggressively turns on and powers custom PDs requiring  
high inrush and/or operational currents.  
Available in 20-Pin QFN and 16-Pin SO Packages  
APPLICATIONS  
++  
L, LT, LTC, LTM, Linear Technology, the Linear logo and LTPoE are registered trademarks of  
Analog Devices, Inc. All other trademarks are the property of their respective owners.  
n
PoE PSE Endpoints (Switch/Router)  
n
PoE Midspan Power Injectors  
n
Power Forwarders  
n
Femto Cells  
n
Security Systems  
TYPICAL APPLICATION  
MAXIMUM PD INPUT POWER  
Type 1 (13W)  
R
( 1ꢀ)  
PM  
+
2.37k  
0.22µF  
100V  
X7R  
PORT  
S1B  
10Ω  
BULK  
AGND  
Type 2 (25.5W)  
++  
LTPoE 38.7W  
++  
LTPoE 52.7W  
++  
LTPoE 70W  
3.32k  
4.64k  
5.90k  
7.87k  
10.0k  
13.0k  
TVS  
LED  
RESET  
OUT  
LTC4279  
R
GATE  
GATE  
PWRMODE  
1µF  
100V  
X7R  
SENSE  
MID  
LEGACY  
DUALPD  
C
BULK  
0.1Ω  
++  
LTPoE 90W  
R
PM  
VSSK  
V
SMAJ58A  
EE  
UltraPWR – (Up to 123W*)  
4279 TA01  
V
EE  
*Depending on ꢀ  
PSE  
4279fa  
1
For more information www.linear.com/LTC4279  
LTC4279  
ABSOLUTE MAXIMUM RATINGS (Notes 1 and 4)  
Supply ꢀoltages  
SENSE........................................ ꢀ – 20ꢀ to ꢀ + 80ꢀ  
EE  
EE  
AGND – ꢀ ........................................... –0.3ꢀ to 80ꢀ  
Operating Ambient Temperature Range  
EE  
ꢀSSK ................................... ꢀ – 0.3ꢀ to ꢀ + 0.3ꢀ  
LTC4279I .............................................–40°C to 85°C  
Junction Temperature (Note 2) ............................ 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
EE  
EE  
LEGACY, MID, DUALPD, LED,  
RESET, GATE, PWRMODE......... ꢀ – 0.3ꢀ to ꢀ + 80ꢀ  
EE  
EE  
OUT............................................ ꢀ – 80ꢀ to ꢀ + 80ꢀ  
EE  
EE  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
20 19 18 17  
MID  
DNC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
RESET  
DNC  
DNC  
DNC  
DNC  
1
2
3
4
5
6
16 DUALPD  
15 LEGACY  
14 DNC  
DNC  
DUALPD  
LEGACY  
PWRMODE  
DNC  
21  
VSSK  
SENSE  
GATE  
OUT  
V
EE  
V
EE  
13 PWRMODE  
12 DNC  
VSSK  
SENSE  
11 DNC  
V
EE  
7
8
9 10  
AGND  
LED  
S PACKAGE  
16-LEAD PLASTIC SO  
= 125°C, θ = 80°C/W, θ = 30°C/W  
JA JC  
UFD PACKAGE  
20-LEAD (4mm × 5mm) PLASTIC QFN  
= 125°C, θ = 43°C/W, θ = 3.4°C/W  
T
JMAX  
T
JMAX  
JA  
JC  
EXPOSED PAD (PIN 21) IS ꢀ  
EE  
http://www.linear.com/product/LTC4279#orderinfo  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC4279IUFD#PBF  
LTC4279IS#PBF  
TAPE AND REEL  
PART MARKING  
4279  
PACKAGE DESCRIPTION  
20-Lead (4mm × 5mm) Plastic QFN  
16-Lead Plastic SO  
TEMPERATURE RANGE  
LTC4279IUFD#TRPBF  
LTC4279IS#TRPBF  
–40°C to 85°C  
–40°C to 85°C  
LTC4279S  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
4279fa  
2
For more information www.linear.com/LTC4279  
LTC4279  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 3 and 4)  
SYMBOL PARAMETER CONDITIONS  
AGND – ꢀ  
MIN  
TYP  
MAX UNITS  
Main PoE Supply ꢀoltage  
EE  
EE  
l
l
For IEEE Type 1 Compliant Output  
45  
51  
57  
57  
++  
For IEEE Type 2, DUALPD, LTPoE 38.7W and  
++  
LTPoE 52.7W Compliant Output  
++  
++  
l
For LTPoE 70W and LTPoE 90W Compliant  
54.75  
57  
Output  
For UltraPWR Output  
l
l
51  
20  
65  
30  
Undervoltage Lockout  
AGND – ꢀ  
25  
UꢀLO_ꢀEE  
EE  
I
Supply Current  
AGND – ꢀ = 55ꢀ  
–1.7  
mA  
kΩ  
EE  
EE  
EE  
EE  
UꢀLO_ꢀEE  
l
R
Supply Resistance  
EE  
< ꢀ  
12  
EE  
Detection  
l
l
Detection Current – Forced Current  
Detection ꢀoltage – Forced ꢀoltage  
First Point, AGND – ꢀ  
Second Point, AGND – ꢀ  
= 10ꢀ  
220  
143  
240  
160  
260  
180  
µA  
µA  
OUT  
= 3.5ꢀ  
OUT  
AGND – ꢀ , 5µA ≤ I  
≤ 500µA  
OUT  
OUT  
l
l
First Point  
Second Point  
7
3
8
4
9
5
l
l
l
l
l
Detection Current Compliance  
Detection ꢀoltage Compliance  
Detection ꢀoltage Slew Rate  
Min. ꢀalid Signature Resistance  
Max. ꢀalid Signature Resistance  
AGND – ꢀ  
= 0ꢀ  
0.8  
0.9  
12  
mA  
OUT  
AGND – ꢀ , Open Port  
10.4  
OC  
OUT  
AGND – ꢀ , C  
= 0.15µF (Note 6)  
0.01  
18.5  
32  
ꢀ/µs  
kΩ  
kΩ  
OUT PORT  
15.5  
27.5  
17  
29.7  
Classification  
l
l
l
l
Classification ꢀoltage  
AGND – ꢀ , 0mꢀ ≤ ꢀ ≤ 8.8mꢀ  
SENSE  
16  
8.8  
7.5  
8.8  
20.5  
10  
mꢀ  
CLASS  
OUT  
Classification Current Compliance  
Mark State ꢀoltage  
SENSE – ꢀSSK, ꢀ  
= AGND  
9.4  
9.4  
OUT  
MARK  
AGND – ꢀ , 0.1mꢀ ≤ ꢀ  
≤ 0.5mꢀ  
SENSE  
10  
OUT  
Mark State Current Compliance  
Classification Threshold ꢀoltage  
SENSE – ꢀSSK, ꢀ  
= AGND  
10  
mꢀ  
OUT  
SENSE – ꢀSSK  
Class 0 to 1  
Class 1 to 2  
Class 2 to 3  
Class 3 to 4  
l
l
l
l
l
0.5  
1.3  
2.1  
3.1  
4.5  
0.65  
1.45  
2.3  
3.3  
4.8  
0.8  
1.6  
2.5  
3.5  
5.1  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
Class 4 to Overcurrent  
Gate Driver  
l
l
GATE Pin Pull-Down Current  
Port Off, ꢀ  
Port Off, ꢀ  
= ꢀ + 5ꢀ  
0.4  
0.08  
mA  
mA  
GATE  
GATE  
EE  
= ꢀ + 1ꢀ  
0.12  
30  
EE  
GATE Pin Fast Pull-Down Current  
GATE Pin On ꢀoltage  
GATE  
GATE  
= ꢀ + 5ꢀ  
mA  
EE  
l
– ꢀ , I  
= 1µA  
8
14  
EE GATE  
Output Voltage Sense  
Power Good Threshold ꢀoltage  
OUT Pin Pull-Up Resistance to AGND  
l
l
– ꢀ  
2
2.4  
2.8  
OUT  
EE  
0ꢀ ≤ (AGND – ꢀ ) ≤ 5ꢀ  
300  
500  
700  
kΩ  
OUT  
4279fa  
3
For more information www.linear.com/LTC4279  
LTC4279  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 3 and 4)  
SYMBOL PARAMETER  
Current Sense  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
CUT  
Overcurrent Sense  
SENSE – ꢀSSK  
Class 0, Class 3  
Class 1  
l
l
l
l
l
l
l
l
35.6  
10.0  
19.6  
60.8  
89.0  
130  
37.5  
11.2  
20.8  
63.6  
91.9  
135  
39.6  
12.0  
22.0  
67.2  
95.0  
140  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
Class 2  
Class 4  
++  
LTPoE 38.7W  
++  
LTPoE 52.7W, Dual-Signature PD  
++  
LTPoE 70W  
160  
225  
165  
232  
170  
240  
++  
LTPoE 90W  
LIM  
Active Current Limit  
SENSE – ꢀSSK, ꢀ ≤ OUT ≤ ꢀ + 10ꢀ  
EE EE  
l
l
l
l
l
l
l
Class 0 to 3  
Class 4  
40.8  
81.6  
120  
140  
180  
240  
280  
42.5  
85.0  
127  
148  
191  
255  
295  
44.2  
88.4  
135  
160  
200  
270  
310  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
mꢀ  
++  
LTPoE 38.7W  
++  
LTPoE 52.7W, Dual-Signature PD  
++  
LTPoE 70W  
++  
LTPoE 90W  
UltraPWR  
Inrush Active Current Limit  
SENSE – ꢀSSK, ꢀ ≤ OUT ≤ AGND – 29ꢀ,  
Class 0 to 4, LTPoE  
Dual-Signature PD  
UltraPWR  
EE  
++  
l
l
l
40.8  
81.6  
140  
42.5  
85.0  
148  
44.2  
88.4  
160  
mꢀ  
mꢀ  
mꢀ  
l
l
DC Disconnect Sense ꢀoltage  
Short-Circuit Sense  
SENSE – ꢀSSK (Note 10)  
0.5  
30  
0.75  
60  
1
mꢀ  
mꢀ  
MIN  
SENSE – ꢀSSK – ꢀ  
90  
SC  
LIM  
Digital Interface  
Digital Input Low ꢀoltage  
Digital Input High ꢀoltage  
Internal Pull-Down to ꢀ  
l
l
MID, LEGACY, DUALPD, RESET (Note 9)  
MID, LEGACY, DUALPD, RESET (Note 9)  
MID, LEGACY, DUALPD  
RESET  
0.8  
2.1  
10  
–10  
3.6  
µA  
µA  
EE  
ROC  
Internal Pull-Up to ꢀ  
ROC  
Input Open Circuit ꢀoltage  
RESET (Note 9)  
LED Pin  
l
l
Output Low  
LED  
– ꢀ , I  
= 1mA  
0.4  
EE LED  
LED Pin Current Limit  
10  
mA  
PSE Timing Characteristics  
l
l
l
l
l
l
l
t
t
t
t
t
t
t
Detection Time  
Beginning to End of Detection (Note 6)  
380  
12  
410  
15  
440  
18  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
DET  
Class Event Duration, Single Class Event  
Class Event Duration  
(Note 6)  
(Note 6)  
CLE1  
CLE  
9.6  
12  
14.4  
0.1  
10.8  
24  
Class Event Turn-On Duration  
Mark Event Duration  
C
PORT  
= 0.6µF (Note 6)  
CLEON  
ME  
(Note 6, Note 8)  
(Note 6, Note 8)  
6.8  
16  
8.6  
20  
Last Mark Event Duration  
Power-On Delay  
MEL  
PON  
From End of ꢀalid Detect to Application of  
Power to Port (Note 6)  
82  
l
l
Turn-On Rise Time  
Turn-On Ramp Rate  
(AGND – ꢀ ): 10% to 90% of (AGND – ꢀ ),  
15  
24  
µs  
OUT  
EE  
C
PORT  
= 0.15µF (Note 6)  
C
PORT  
= 0.15µF (Note 6)  
10  
ꢀ/µs  
4279fa  
4
For more information www.linear.com/LTC4279  
LTC4279  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 3 and 4)  
SYMBOL PARAMETER CONDITIONS  
= 0.15µF (Note 6)  
MIN  
TYP  
MAX UNITS  
l
l
l
l
t
t
Turn-On Class Transition  
Fault Delay  
C
PORT  
0.1  
ms  
s
TOCL  
ED  
From I  
or I Fault to Next Detect (Note 6)  
1
1.3  
3
CUT  
LIM  
LEGACY Mode Detection Backoff  
Midspan Mode Detection Backoff  
LEGACY Enabled, R  
= 150Ω (Note 6)  
2.7  
2.3  
3.3  
2.7  
s
PORT  
LEGACY Disabled, MID Enabled, R  
15.5kΩ (Note 6)  
=
2.5  
s
PORT  
l
l
l
Power Removal Detection Delay  
From Power Removal after t to Next Detect  
(Note 6)  
1
1.3  
59  
59  
2.5  
66  
66  
s
ms  
ms  
DIS  
t
t
Maximum Current Limit Duration During Port  
Start-Up  
(Note 6)  
52  
52  
START  
Maximum Overcurrent Duration after Port  
Start-Up  
(Note 6)  
(Note 6)  
CUT  
l
l
Maximum Overcurrent Duty Cycle  
5.8  
10  
6.3  
12  
6.7  
14  
%
++  
t
Maximum Current Limit Duration after Port  
Start-Up  
LTPoE PD, Dual-Signature PD or UltraPWR  
ms  
LIM  
Mode Enabled (Note 6)  
l
l
(Legacy or IEEE PD) and UltraPWR Mode  
Disabled (Note 6)  
52  
59  
66  
3.6  
380  
ms  
ms  
t
t
Maintain Power Signature (MPS) Pulse Width  
Sensitivity  
Current Pulse Width to Reset Disconnect Timer  
(Notes 6 and 7)  
1.6  
MPS  
l
l
Maintain Power Signature (MPS) Dropout Time (Notes 5 and 6)  
320  
4.5  
350  
ms  
µs  
DIS  
Minimum Pulse Width for RESET  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: t is the same as t  
Note 6: Guaranteed by design, not subject to test.  
Note 7: The IEEE 802.3at specification allows a PD to present its  
Maintain Power Signature (MPS) on an intermittent basis without being  
defined by IEEE 802.3.  
DIS  
MPDO  
Note 2: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 140°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 3: All currents into device pins are positive; all currents out of device  
pins are negative.  
Note 4: The LTC4279 operates with a negative supply voltage (with  
respect to AGND). To avoid confusion, voltages in this data sheet are  
referred to in terms of absolute magnitude.  
disconnected. In order to stay powered, the PD must present the MPS for  
within any t time window.  
t
MPS  
MPDO  
Note 8: Load characteristics of the LTC4279 during Mark:  
7ꢀ < (AGND – ꢀ ) < 10ꢀ or I < 50µA.  
OUT  
OUT  
Note 9: The LTC4279 Digital Interface operates with respect to ꢀ . All  
EE  
logic levels are measured with respect to ꢀ  
.
EE  
Note 10: See Main PoE Power Supply section for DC disconnect related  
power supply requirements.  
4279fa  
5
For more information www.linear.com/LTC4279  
LTC4279  
TYPICAL PERFORMANCE CHARACTERISTICS  
++  
Type 1 Power On Sequence  
Type 2 Power On Sequence  
LTPoE Power-On Sequence  
FORCED VOLTAGE DETECTION  
FORCED VOLTAGE DETECTION  
FORCED VOLTAGE DETECTION  
++  
LTPoE  
CLASSIFICATION  
TYPE 2  
CLASSIFICATION  
TYPE 1  
CLASSIFICATION  
FORCED CURRENT  
DETECTION  
FORCED CURRENT  
DETECTION  
FORCED CURRENT  
DETECTION  
AGND – OUT  
AGND – OUT  
AGND – OUT  
10V/DIV  
10V/DIV  
10V/DIV  
V
= –55V  
V
= –55V  
V
= –55V  
EE  
EE  
EE  
++  
CLASS 3 PD  
CLASS 4 PD  
LTPoE  
70W PD  
V
V
V
EE  
EE  
EE  
POWER ON  
100ms/DIV  
POWER ON  
100ms/DIV  
POWER ON  
100ms/DIV  
4279 G01  
4279 G02  
4279 G03  
UltraPWR, DUALPD, 802.3  
Current Limits  
++  
LTPoE Current Limits  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
300  
250  
200  
150  
100  
50  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
300  
250  
200  
150  
100  
50  
ULTRAPWR  
90.0W  
70.0W  
52.7W  
38.7W  
DUALPD  
CLASS 4  
CLASS 0 TO 3  
0
0
0
11  
22  
33  
44  
55  
0
11  
22  
V
OUT  
33  
– V (V)  
44  
55  
V
OUT  
– V (V)  
EE  
EE  
4279 G04  
4279 G05  
MOSFET Gate Drive with Fast  
Pull-Down  
Inrush Current Limits  
Classification Current Compliance  
0
–4  
–8  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
300  
250  
200  
150  
100  
50  
10Ω  
FAULT  
APPLIED  
FAULT  
REMOVED  
ULTRAPWR  
DUALPD  
PORT  
CURRENT  
++  
802.3/LTPoE  
10A/DIV  
CURRENT  
LIMIT  
GATE  
VOLTAGE  
10V/DIV  
FAST  
PULL-  
DOWN  
PORT  
VOLTAGE  
20V/DIV  
–12  
–16  
–20  
4279 G08  
50µs/DIV  
0
0
2
4
6
8
10  
0
11  
22  
33  
44  
55  
V
(mV)  
V
OUT  
– V (V)  
EE  
SENSE  
4279 G07  
4279 G06  
4279fa  
6
For more information www.linear.com/LTC4279  
LTC4279  
TYPICAL PERFORMANCE CHARACTERISTICS  
VEE Supply Current vs Voltage  
LED Current vs Voltage  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
16  
12  
8
85°C  
25°C  
–40°C  
4
OUTPUT LOW  
OUT = V  
EE  
0
0
10  
20  
30  
40  
(V)  
50  
60  
70  
0.1  
1
10  
80  
V
V
(V)  
EE  
LED  
4279 G09  
4279 G10  
DUALPD, MID and LEGACY  
Current vs Voltage  
RESET Current vs Voltage  
2
0
16  
14  
12  
10  
8
–2  
–4  
–6  
–8  
6
–10  
–12  
–14  
4
2
0
0.1  
1
10  
80  
0.1  
1
10  
80  
V
(V)  
V
(V)  
PIN  
RESET  
4279 G11  
4279 G13  
TEST TIMING DIAGRAMS  
t
CLASSIFICATION  
FORCED-  
VOLTAGE  
DET  
FORCED-CURRENT  
0V  
V
PORT  
V
OC  
15.5V  
20.5V  
V
CLASS  
t
CLE1  
PD  
CONNECTED  
t
PON  
V
EE  
4279 F01  
Figure 1. Detect, Single Event Class and Turn-On Timing  
4279fa  
7
For more information www.linear.com/LTC4279  
LTC4279  
TEST TIMING DIAGRAMS  
t
CLASSIFICATION  
DET  
FORCED-  
VOLTAGE  
FORCED-CURRENT  
0V  
t
ME  
V
PORT  
t
MEL  
V
OC  
V
MARK  
15.5V  
20.5V  
V
CLASS  
t
CLE  
t
CLE  
PD  
CONNECTED  
t
CLEON  
t
PON  
V
EE  
4279 F02  
Figure 2. Detect, Two Event Class and Turn-On Timing  
t
CLASSIFICATION  
DET  
FORCED-  
VOLTAGE  
FORCED-CURRENT  
0V  
t
ME  
t
ME  
V
PORT  
t
MEL  
V
OC  
V
MARK  
15.5V  
20.5V  
V
CLASS  
t
CLE  
t
t
CLE  
CLE  
PD  
CONNECTED  
t
CLEON  
t
PON  
V
EE  
4279 F03  
Figure 3. Detect, Three Event Class and Turn-On Timing  
V
LIM  
V
CUT  
V
SENSE  
V
MIN  
V
TO V  
EE  
SENSE  
TO V  
EE  
0V  
t
, t  
START CUT  
LED  
LED  
t
t
DIS  
MPS  
4279 F05  
4279 F04  
Figure 4. Current Limit Timing  
Figure 5. DC Disconnect Timing  
4279fa  
8
For more information www.linear.com/LTC4279  
LTC4279  
PIN FUNCTIONS  
RESET: Reset Input, Active Low. When logic low, the  
LTC4279 is held inactive with the port off. When logic  
high, the LTC4279 begins normal operation. RESET can  
be connected to an external capacitor or RC network to  
provide a power turn-on delay. Internal filtering of the  
RESET pin prevents glitches less than 4.5μs wide from  
LED: Port Powered LED. This pin is an open drain output  
that pulls down to V when the port is powered. See the  
EE  
LED Drive section for details on this circuit.  
AGND: Analog Ground. AGND pin should be connected  
to the return for the V supply through a 10Ω resistor.  
EE  
V : Supply Input. Connect to a negative voltage of be-  
resetting the LTC4279. Internally pulled up to V . See  
ConfigurationPinProtectionsectionforproperconnection.  
EE  
ROC  
tween –45V and –57V for Type 1 PSEs, –51V to –57V for  
++  
Type 2 PSEs and LTPoE 38.7W/52.7W PSEs, –54.75V  
MID: Midspan Mode Input. When logic high, midspan  
mode is enabled and the LTC4279 acts as a midspan  
device. When logic low, midspan mode is disabled and  
the LTC4279 acts as an endpoint device. Internally pulled  
++  
to –57V for LTPoE 70W/90W PSEs or –51V to –65V for  
UltraPWR PSEs, relative to AGND.  
VSSK: Kelvin Sense to V . Connect to sense resistor  
EE  
common node. Do not connect directly to V plane. See  
down to V . See Configuration Pin Protection section for  
EE  
EE  
Kelvin Sense section for proper connection.  
proper connection.  
SENSE:CurrentSenseInput.SENSEmonitorstheexternal  
LEGACY: LEGACY Mode Input. When logic high, LEGACY  
modeisenabled.WithLEGACYmodeenabled,validdetec-  
tion results include R too Low, Detect Good, R too  
MOSFETcurrentviaa0.1ΩsenseresistorbetweenSENSE  
and V . Whenever the voltage across the sense resistor  
EE  
SIG  
SIG  
exceeds the overcurrent detection threshold V , the  
High, and C too High as defined in Table 2; all Class 0,  
CUT  
PD  
current limit fault timer counts up. If the voltage across  
1, 2 and 3 PDs presenting a valid detection signature are  
the sense resistor reaches the current limit threshold  
allocated13Wtoensurepre-802.3afPDsreceivesufficient  
V
, the GATE pin voltage is lowered to maintain con-  
++  
power; IEEE PoE PDs and LTPoE PDs are detected and  
LIM  
stant current in the external MOSFET. See Applications  
Information for further details. See Kelvin Sense section  
for proper connection.  
classified as normal. When logic low, LEGACY mode is  
disabled. With LEGACY mode disabled only Detect Good  
is considered a valid detection result. Warning: LEGACY  
modeis,bydefinition,notIEEEcompliant.Internallypulled  
GATE: Gate Drive. GATE should be connected to the gate  
down to V . See Configuration Pin Protection section for  
EE  
of the external MOSFET through the R  
resistor. When  
GATE  
proper connection.  
the MOSFET is turned on, the gate voltage is driven to 12V  
(typ) above V . During a current limit condition, the volt-  
DUALPD:Dual-SignaturePDModeInput.Whenlogichigh,  
DUALPD mode is enabled and the LTC4279 detects, clas-  
sifiesandpowersdual-signaturePDs.Validdual-signature  
PDsarepresentwhentwoType2PDsignaturesaredetected  
andclassifiedinparallel. PWRMODEmustbesetto52.7W  
or greater. When logic low, dual-signature PD support is  
EE  
age at GATE will be reduced to maintain constant current  
through the external MOSFET. If the fault timer expires,  
GATE is pulled down, turning the MOSFET off.  
OUT:OutputVoltageMonitor.OUTshouldbeconnectedto  
the output port. A current limit foldback circuit limits the  
power dissipation in the external MOSFET by reducing the  
current limit threshold when the drain-to-source voltage  
exceeds 10V. A 500k resistor is connected internally from  
OUT to AGND when the port is idle.  
disabled. Internally pulled down to V . See Configuration  
EE  
Pin Protection section for proper connection.  
PWRMODE: Maximum Power Mode. A single resistor  
from the PWRMODE pin to V sets the LTC4279 maxi-  
EE  
mum deliverable power. See Applications Information for  
the resistor value to desired maximum power mappings.  
The resistor tolerance must be 1% or better. The PWR-  
MODE pin can be set to 13W (Type 1), 25.5W (Type 2),  
DNC: Do Not Connect. All pins identified with DNC must  
be left unconnected.  
++  
LTPoE 38.7W,52.7W,70W,90WorUltraPWRmaximum  
power levels.  
4279fa  
9
For more information www.linear.com/LTC4279  
LTC4279  
APPLICATIONS INFORMATION  
OVERVIEW  
and increasing need for more than 25.5W of delivered  
power.TheLTC4279respondstothismarketbyallowinga  
reliable means of providing up to 90W of delivered power  
PoweroverEthernet,orPoE,isastandardprotocolforsend-  
ing DC power over copper Ethernet data wiring. The IEEE  
group that administers the 802.3 Ethernet data standards  
added PoE powering capability in 2003. This original PoE  
spec, known as 802.3af, allowed for 48V DC power at up  
to 13W. This initial specification was widely popular, but  
13W was not adequate for some requirements. In 2009,  
the IEEE released a new standard, known as 802.3at or  
PoE+, increasing the voltage and current requirements to  
provide 25.5W of power.  
++  
++  
to an LTPoE PD. The LTPoE specification provides  
reliable detection and classification extensions to the  
existing IEEE PoE protocols that are backward compat-  
ible and interoperable with existing Type 1 and Type 2  
++  
PDs. Unlike other proprietary PoE solutions, Linear’s  
++  
LTPoE provides mutual identification between the PSE  
++  
and PD. This ensures the LTPoE PD knows it may use  
the requested power at start-up because it has detected  
++  
an LTPoE PSE.  
The IEEE standard also defines PoE terminology. A device  
that provides power to the network is known as a PSE, or  
powersourcingequipment,whileadevicethatdrawspower  
from the network is known as a PD, or powered device.  
PSEs come in two types: Endpoints (typically network  
switches or routers), which provide data and power; and  
Midspans, which provide power but pass through data.  
MidspansaretypicallyusedtoaddPoEcapabilitytoexisting  
non-PoE networks. PDs are typically IP phones, wireless  
access points, security cameras, and similar devices.  
Dual-Signature PD Systems  
There exist proprietary solutions in which the data and  
spare pairs present two separate and individually valid PD  
signatures. Such systems provide roughly 51W at the PD  
interface. Each PD power channel, viewed in isolation, is  
fully compatible with IEEE 802.3at.  
One example of a dual-signature PD system is shown in  
Figure 7. As shown, the PSE controller simultaneously de-  
tects and classifies both PDs. Once successfully identified,  
the lumped PDchannelis providedtwicetheClass4Current  
Inrush, twice the Class 4 Current Cutoff, twice the Class 4  
CurrentLimit,andnormalClass4DCDisconnectallocations.  
++  
LTPoE Evolution  
Even during the process of creating the IEEE PoE+ 25.5W  
specification it became clear that there was a significant  
CAT 5  
20Ω MAX  
ROUNDTRIP  
0.05µF MAX  
PSE  
PD  
RJ45  
4
RJ45  
4
5
5
GND  
SPARE PAIR  
1
1
AGND  
Tx  
Rx  
2
3
2
3
DATA PAIR  
DATA PAIR  
PSE  
0.1µF  
Rx  
Tx  
V
EE  
GATE  
GND  
DC/DC  
6
6
PWRGD  
+
CONVERTER  
PD  
CONTROLLER  
–54V –54V  
–54V  
V
OUT  
7
8
7
IN  
OUT  
8
SPARE PAIR  
4279 F06  
Figure 6. Power over Ethernet System Diagram  
4279fa  
10  
For more information www.linear.com/LTC4279  
LTC4279  
APPLICATIONS INFORMATION  
PSE  
PD  
GND  
RJ45  
RJ45  
1
1
AGND  
2
3
2
3
+
OUT  
GND  
PWRGD  
DC/DC  
CONVERTER  
V
PD  
CONTROLLER  
PSE  
CONTROLLER  
6
6
–V  
–V  
OUT  
IN  
4
4
V
EE  
GATE  
OUT  
5
7
5
7
–54V  
+
OUT  
GND  
PWRGD  
PD  
DC/DC  
CONVERTER  
V
CONTROLLER  
8
8
–V –V  
IN  
OUT  
4279 F07  
Figure 7. Dual-Signature PD Power over Ethernet System Diagram  
LTC4279 Single Port PSE  
sified and powered on by the LTC4279. Current inrush,  
cutoff, and limit are doubled to support dual-signature  
PD topologies.  
The LTC4279 is a fourth-generation single port PSE  
controller. Virtually all necessary circuitry is included to  
implementanIEEE802.3atcompliantPSEdesign,requiring  
only an external power MOSFET and sense resistor; these  
minimizepowerlosscomparedtoalternativedesignswith  
an on-board MOSFET and sense resistor.  
++  
When in LTPoE or Type 2 mode, the LTC4279 is a fully  
IEEE-compliantType2PSEsupportingautonomousdetec-  
tion, classificationandpoweringofType1andType2PDs.  
When in Type 1 mode, the LTC4279 is a fully autonomous  
802.3af Type 1 PSE solution. Two-event classification is  
prohibited and Class 4 PDs are automatically treated as  
Class 0 PDs.  
TheLTC4279supportssevenPDpowerlevels.Themodeis  
setbythePWRMODEresistor,assampledduringresetexit.  
++  
When in LTPoE mode, the LTC4279 extends PoE power  
++ ++  
deliverycapabilitiestooneoffourLTPoE levels.LTPoE  
is a Linear Technology proprietary specification allowing  
UltraPWR mode enables the PSE to power all PDs pre-  
senting a valid detection and classification signature with  
enhancedinrushandoperationalcurrentlimits,regardless  
of classification result. This mode aggressively powers  
nonstandard PDs.  
++  
for the delivery of up to 90W to LTPoE compliant PDs.  
++  
The LTPoE architecture extends the 802.3at physical  
power negotiation to include 38.7W, 52.7W, 70W and  
90W power levels.  
PoE BASICS  
When DUALPD is enabled, the LTC4279 supports dual-  
signature PD topologies. Dual-signature PDs are defined  
as two PDs whose signature appears at the PD Power  
Interface (PI) as the parallel combination of two Type 2  
PDs.Dual-signaturePDsareautonomouslydetected,clas-  
Common Ethernet data connections consist of two or four  
twisted pairs of copper wire (commonly known as CAT-5  
cable), transformer-coupled at each end to avoid ground  
4279fa  
11  
For more information www.linear.com/LTC4279  
LTC4279  
APPLICATIONS INFORMATION  
loops. PoE systems take advantage of this coupling ar-  
rangement by applying voltage between the center-taps  
of the data transformers to transmit power from the PSE  
to the PD without affecting data transmission. Figure 6  
shows a high-level PoE system schematic.  
Table 1 shows the PWRMODE encodings. The PWRMODE  
pin is configured by connecting R between the PWR-  
PM  
MODEpinandV .ThePWRMODEeffectonPSEbehavioris  
EE  
describedintheClassificationandPowerControlsections.  
Table 1. PWRMODE Encodings  
To avoid damaging legacy data equipment that does not  
expect to see DC voltage, the PoE specification defines  
a protocol that determines when the PSE may apply and  
remove power. Valid PDs are required to have a specific  
25k common mode resistance at their input. When such a  
PDisconnectedtothecable,thePSEdetectsthissignature  
resistance and turns on the power. When the PD is later  
disconnected, the PSE senses the open circuit and turns  
power off. The PSE also turns off power in the event of a  
current fault or short-circuit.  
PWRMODE  
R
( 1ꢀ%  
PM  
Type 1 (13W)  
Type 2 (25.5W)  
++  
LTPoE 38.7W  
++  
LTPoE 52.7W  
++  
LTPoE 70W  
2.37k  
3.32k  
4.64k  
5.90k  
7.87k  
10.0k  
13.0k  
++  
LTPoE 90W  
UltraPWR  
The LEGACY pin determines whether pre-IEEE standard  
legacy PDs are powered.  
When a PD is detected, the PSE looks for a classification  
signature that tells the PSE the maximum power the PD  
will draw. The PSE can use this information to reject a  
PD that will draw more power than the PSE has available.  
The MID pin determines whether midspan detection tim-  
ing is enabled. The MID pin should be logic high if the  
standalone application is a midspan.  
OPERATING MODES  
DETECTION  
The LTC4279 is a fully autonomous PSE controller and  
provides a complete PSE solution for detection, classifi-  
cation and powering of PDs in an IEEE 802.3 or LTPoE  
compliant system.  
Detection Overview  
++  
Toavoiddamagingnetworkdevicesthatwerenotdesigned  
to tolerate DC voltage, a PSE must determine whether the  
connected device is a valid PD before applying power. The  
IEEE specification requires that a valid PD have a common  
mode resistance of 25k 5% at any port voltage below  
10V. The PSE must accept resistances that fall between  
19k and 26.5k, and it must reject resistances above 33k  
or below 15k (shaded regions in Figure 8). The PSE may  
choose to accept or reject resistances in the undefined  
areasbetweenthemust-acceptandmust-rejectranges. In  
particular,thePSEmustrejectstandardcomputernetwork  
ports, many of which have 150Ω common mode termina-  
tion resistors that will be damaged if power is applied to  
them (the black region at the left of Figure 8).  
The LTC4279 will power all valid PDs with I  
and I  
LIM  
CUT  
values based on the PWRMODE pin and the PD classifica-  
tion result.  
The LTC4279 will remove power automatically if the port  
generates a current cutoff or limit fault. The LTC4279  
senses removal of a PD and turns off power when the  
PD is disconnected. Internal control circuits comply with  
IEEE timing and electrical parameters.  
Power-On Reset and the Configuration Pins  
The initial LTC4279 configuration depends on the state  
of the MID, LEGACY, DUALPD and PWRMODE pins dur-  
ing reset exit. Reset occurs at power-up or whenever the  
RESETpinispulledlow.Changinganyoftheconfiguration  
pins after power-up will not change the behavior of the  
LTC4279 until a subsequent reset occurs.  
Table 2 shows the possible detection results. If a Detect  
Good result is acquired the LTC4279 will proceed to clas-  
sification.  
4279fa  
12  
For more information www.linear.com/LTC4279  
LTC4279  
APPLICATIONS INFORMATION  
RESISTANCE 0Ω  
10k  
20k  
30k  
sufficient power. When LEGACY is disabled, only PDs  
presenting Detect Good (including compliant IEEE PoE  
150Ω (NIC)  
23.75k  
26.25k  
26.5k  
PD  
++  
and LTPoE PDs) will be considered valid.  
PSE  
15k 19k  
33k  
4279 F08  
Detection of Dual-Signature PDs  
Figure 8. IEEE 802.3at Signature Resistance Ranges  
Table 2. Detection Status  
ProprietaryPDsthatemployadual-signaturePDtopology  
are detected in parallel. Such PDs will present a parallel  
resistance of one half of the Detect Good resistance. This  
MEASURED PD SIGNATURE  
(TYPICAL%  
DETECTION RESULT  
parallel detection resistance is located in the R too Low  
SIG  
Incomplete or Not Yet Tested  
<2.4k  
Detect Status Unknown  
Short-Circuit  
range as shown in Table 2. When DUALPD is enabled,  
dual-signature PDs (R too Low detection results) will  
SIG  
Capacitance > 2.7µF  
C
too High  
too Low  
PD  
proceed to classification regardless of the LEGACY mode.  
2.4k < R < 17k  
R
SIG  
PD  
17k < R < 29k  
Detect Good  
R too High  
SIG  
PD  
CLASSIFICATION  
>29k  
>50k  
Open Circuit  
802.3af Classification  
Voltage > 10V  
Port Voltage Outside Detect Range  
A PD must present a classification signature to the PSE to  
indicate the maximum power it will draw while operating.  
The IEEE specification defines this signature as a constant  
current draw when the PSE port voltage is in the V  
CLASS  
275  
165  
range (between 15.5V and 20.5V), with the current level  
indicating one of 5 possible PD classes. Figure 10 shows  
a typical PD load line, starting with the slope of the 25k  
signature resistor below 10V, then transitioning to the  
classification signature current (in this case, Class 3) in  
FIRST  
DETECTION  
POINT  
25kΩ SLOPE  
SECOND  
DETECTION  
POINT  
VALID PD  
the V  
range. Table 3 shows the possible classifica-  
CLASS  
tion values.  
0V-2V  
OFFSET  
VOLTAGE  
When LEGACY is enabled all Class 0, 1, 2 and 3 PDs are  
allocated 13W to ensure legacy PDs receive sufficient  
power.LegacyPDsmayhaveanIEEE-likedetectionsigna-  
ture and do not support physical classification. Therefore,  
allocating 13W to all Type 1 and legacy PDs ensures full  
legacy PD support.  
4279 F09  
Figure 9. PD Detection  
Detection of Legacy PDs  
Proprietary PDs that predate the original IEEE 802.3af  
standard are commonly referred to today as legacy PDs.  
One type of legacy PD uses a large common mode capaci-  
tance (>10μF) as the detection signature. Note that PDs in  
this range of capacitance are defined as invalid, so a PSE  
that detects legacy PDs is technically noncompliant with  
the IEEE specification. The LTC4279 can be configured to  
detect this type of legacy PD when LEGACY is enabled.  
When LEGACY is enabled, valid detection results include  
Table 3. 802.3af and 802.3at Classification Values  
(LEGACY = Disabled%  
CLASS  
Class 0  
Class 1  
Class 2  
Class 3  
Class 4  
PWRMODE = TYPE 1  
PWRMODE = TYPE 2  
No Class Signature Present; Treat Like Class 3  
3W  
7W  
13W  
C
too High, R too low, Detect Good, and R too  
13W (Demote to Class 0)  
25.5W (Type 2)  
PD  
SIG SIG  
High. PDs presenting Class 0, 1, 2 or 3 are assigned Class  
0 power allocation to ensure pre-802.3af PDs receive  
4279fa  
13  
For more information www.linear.com/LTC4279  
LTC4279  
APPLICATIONS INFORMATION  
ThePSEwillclassifythePDimmediatelyafterasuccessful  
detection cycle. The PSE measures the PD classification  
signaturebyapplying18Vfor12ms(bothvaluestypical)to  
the port via the OUT pin and measuring the resulting cur-  
rent.Ifavalidclassificationresultisobtained,theLTC4279  
A Type 2 PD that is requesting more than 13W will indi-  
cate Class 4 during normal 802.3af classification. If the  
LTC4279 sees Class 4, it forces the port to a specified  
lowervoltage(calledthemarkvoltage,typically9V),pauses  
briefly, and then re-runs classification to verify the Class  
4 reading (Figure 2). The second cycle informs the PD  
that it is connected to a Type 2 PSE capable of supplying  
Type 2 power levels.  
will use the result to set the I  
and I thresholds.  
CUT  
LIM  
The LTC4279 supports 802.3af 1-event classification  
regardless of the PWRMODE setting. A Class 0 to 3 result  
during the first classification event will result in the PD  
receiving the appropriate amount of power as shown in  
Table 3.  
Note that the LTC4279 only runs the second classification  
cycle when it detects a Class 4 device; if the first cycle  
returns Class 0 to 3, the port determines it is connected  
to a Type 1 PD and does not run the second classifica-  
tion cycle.  
When a Class 4 result is obtained the LTC4279 response  
dependsonPWRMODE,asshowninTable3.IfPWRMODE  
is set to Type 1 then the PD will be powered on after re-  
ceiving only a single class event and will be allocated only  
13W. If PWRMODE is set to Type 2 or higher, additional  
class events will be issued as described in the following  
sections.  
Invalid Type 2 Class Combinations  
The 802.3at specification defines a Type 2 PD class  
signature as two consecutive Class 4 results; a Class 4  
followed by a Class 0 to 3 is not a valid signature. If the  
PD presents an invalid Type 2 signature (Class 4 followed  
by Class 0 to 3), the LTC4279 will not provide power and  
will restart the detection process.  
100  
90  
Dual-Signature PD Classification  
80  
Dual-signature PDs are supported by performing a paral-  
lel classification. When a dual-signature PD is present,  
each PD will draw a nominal classification current of up  
to 40mA, for a total possible of 80mA. A dual-signature  
OVER  
70  
60  
50  
40  
30  
20  
10  
0
CURRENT  
PSE LOAD LINE  
48mA  
PD is validated when the LTC4279 observes both an R  
SIG  
too Low detection result and a multiple-event overcurrent  
classification result.  
CLASS 4  
CLASS 3  
33mA  
23mA  
++  
Extended Power LTPoE Classification  
CLASS 2  
TYPICAL  
CLASS 3  
PD LOAD  
LINE  
The 802.3at 2-event physical classification method is  
14.5mA  
6.5mA  
CLASS 1  
CLASS 0  
++  
extended using LTPoE 3-event classification signaling  
methods (Figure 3).  
0
5
10  
15  
20  
25  
++  
LTPoE 3-eventclassificationandpowerlevelsareenabled  
VOLTAGE (V  
)
CLASS  
4279 F10  
by setting PWRMODE to 38.7W or higher.  
Figure 10. PD Classification  
++  
The higher levels of LTPoE delivery impose additional  
++  
layout and component selection constraints. LTPoE  
802.3at 2-Event Classification  
PDs requesting more than the available power limits are  
TheLTC4279supports802.3at2-eventphysicalclassifica-  
tion when PWRMODE is set to Type 2 or higher.  
not powered. For example, if PWRMODE is set to 70W  
++  
and an LTPoE 90W PD is detected and classified, the  
PD will not be powered.  
4279fa  
14  
For more information www.linear.com/LTC4279  
LTC4279  
APPLICATIONS INFORMATION  
Power Allocation  
UltraPWR MODE  
LTC4279allocatespowerbasedonthePWRMODEsetting  
as described in Table 1. The PWRMODE informs the PSE  
howmuchpowerisavailable. BasedonthePDclassresult  
the PD is allocated power if sufficient power is available  
as shown in Figure 11. In some situations the PD will be  
A PSE in UltraPWR mode issues up to three class events  
andpowersallvalidPDswithmaximumdeliverablepower,  
as determined by V . Figure 12 shows PSE source  
PSE  
power (at the PSE RJ45 jack) and PD delivered power (at  
the PD RJ45 jack) vs V . The gray shaded area above  
PSE  
++  
denied power in accordance with the LTPoE protocol.  
60V shows voltages exceeding SELV maximum; systems  
exceeding SELV maximum voltage may incur additional  
regulatory hurdles.  
DEVICE  
STANDARD  
TYPE TYPE 1 TYPE 2 38.7W 52.7W 70W  
TYPE 1 13W 13W 13W 13W 13W  
PSE PWRMODE SETTING  
++  
802.3at  
LTPoE  
90W  
POWER CONTROL  
13W  
802.3at  
The primary function of the LTC4279 is to control the  
delivery of power to the PSE port. It does this by control-  
ling the gate drive voltage of an external power MOSFET  
while monitoring the current via an external sense resis-  
tor and the output voltage at the OUT pin. This circuitry  
TYPE 2 13W 25.5W 25.5W 25.5W 25.5W 25.5W  
38.7W 13W 25.5W 38.7W 38.7W 38.7W 38.7W  
PD  
52.7W 13W 25.5W  
52.7W 52.7W 52.7W  
++  
LTPoE  
70W  
90W  
13W 25.5W  
13W 25.5W  
70W  
70W  
90W  
serves to couple the raw V input supply to the port in  
EE  
a controlled manner that satisfies the PD’s power needs  
Figure 11. PSE PWRMODE vs PD Class Power Allocation  
while minimizing both power dissipation in the MOSFET  
++  
For example, an LTPoE 70W PSE will refuse power to  
and disturbances on the V backplane.  
EE  
++  
an LTPoE 90W PD, but will power IEEE 802.3at PDs  
++  
and LTPoE PDs requesting 70W and under with their  
Inrush Control  
full power allocation. In comparison, an IEEE Type 2 PSE  
Once the decision has been made to turn on a port, the  
LTC4279 ramps up the GATE pin of the external MOSFET in  
acontrolledmanner.Undernormalpower-upcircumstances,  
the MOSFET gate voltage will rise until the port current  
reaches the inrush current limit level, at which point the  
will issue full power allocation to Type 1 and Type 2 PDs;  
++  
all LTPoE PDs will be powered with a demoted alloca-  
tion of 25.5W. An IEEE Type 1 PSE will issue full power  
++  
allocation to IEEE Type 1 PDs; all Type 2 and LTPoE  
PDs will be powered with a demoted allocation of 13W.  
GATE pin will be servoed to maintain the specified I  
INRUSH  
) runs.  
current. During this inrush period, a timer (t  
ABOVE SELV  
START  
180  
When output charging is complete, the port current will fall  
and the GATE pin will be allowed to continue rising to fully  
enhance the MOSFET and minimize its on-resistance. The  
160  
140  
120  
100  
80  
finalV isnominally12V.Ifthet  
timerexpiresandthe  
GS  
START  
PD is over the current limit level, the port will be turned off.  
Per the IEEE specification, the LTC4279 will normally set  
60  
the inrush current limit (I ) to 425mA during inrush at  
LIM  
40  
port turn-on, and then switch to the classified I setting  
PSE SOURCE POWER  
LIM  
PD DELIVERED POWER AT 50m  
PD DELIVERED POWER AT 100m  
20  
0
once inrush has completed.  
52  
54  
56  
58  
60  
62  
64  
66  
When DUALPD is enabled and a dual-signature PD is  
successfully detected and classified, the inrush current  
will be doubled. This allows dual-signature PDs to be  
powered up in parallel.  
V
PSE  
(V)  
4279 F12  
Figure 12. UltraPWR Power vs VPSE  
4279fa  
15  
For more information www.linear.com/LTC4279  
LTC4279  
APPLICATIONS INFORMATION  
When UltraPWR mode is enabled and a legacy, dual-  
The I  
current limiting circuit is always enabled and  
LIM  
++  
signature, LTPoE or IEEE PD is detected and classified,  
actively limits port current. I  
is set to a lower value  
CUT  
I
will be set to 1.5A to provide more substantial inrush  
than I to allow the port to tolerate minor faults without  
current limiting.  
LIM  
LIM  
current for custom PDs.  
A second timer, t , is enabled when a PD is allocated  
LIM  
Current Cutoff and Limit  
more than 25.5W to provide more aggressive MOSFET  
The LTC4279 automatically maintains two current thresh-  
protection and turn off a port before MOSFET damage  
olds (I  
CUT  
and I ), each with a corresponding timer  
can occur. The t  
timer starts when the I  
threshold  
CUT  
LIM  
LIM  
LIM  
(t  
and t ). The I  
and I  
thresholds depend on  
is exceeded. When the t timer reaches 12ms (typical)  
LIM  
CUT  
LIM  
LIM  
several factors: the PD Class, the UltraPWR mode, and  
the DUALPD and LEGACY pin states.  
the port is turned off.  
t
is not enabled when a PD is allocated 25.5W or less.  
LIM  
Table4showstheI andI valuesthatwillbeautomati-  
Instead,t behaviorsaretrackedbythet timer,which  
CUT  
LIM  
LIM  
CUT  
events.  
cally set depending on LEGACY pin, the UltraPWR state  
counts up during both I and I  
LIM  
CUT  
and the negotiated PD class. When UltraPWR is enabled,  
I
is disabled and I  
is 2950mA (typical) regardless  
I
Foldback  
CUT  
LIM  
LIM  
of classification result.  
The LTC4279 features a two-stage foldback circuit that  
reduces the port current if the port voltage falls below the  
normal operating voltage. This helps keep MOSFET power  
dissipation at safe levels.  
Table 4. Typical ICUT and ILIM Values  
CLASS  
ULTRAPWR  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
LEGACY  
Disabled  
Disabled  
Disabled  
Enabled  
I
I
LIM  
CUT  
Class 1  
112mA  
206mA  
375mA  
375mA  
638mA  
425mA  
425mA  
425mA  
425mA  
850mA  
Class 2  
The LTC4279 will support current levels well beyond the  
maximum values in the 802.3at specification. High power  
PSEimplementationsrequirealargerexternalMOSFETand  
possibly additional heat sinking. Due to the high inrush  
current extra care is required during MOSFET selection.  
See the External Component Selection – External MOSFET  
section for more information.  
Class 3, 0  
Class 0, 1, 2, 3  
Class 4  
Don't Care  
Don't Care  
++  
LTPoE 38.7W  
919mA 1275mA  
Dual-Signature PD/  
Don't Care 1350mA 1488mA  
++  
LTPoE 52.7W  
++  
LTPoE 70W  
Disabled  
Disabled  
Enabled  
Don't Care 1650mA 1913mA  
Don't Care 2325mA 2550mA  
Don't Care Disabled 2950mA  
++  
LTPoE 90W  
MOSFET Fault Detection  
All Classes  
The LTC4279 is designed to tolerate significant levels of  
abuse, but in extreme cases it is possible for the external  
MOSFETtobedamaged.AfailedMOSFETmayshortsource  
to drain, which will make the port appear to be on when  
it should be off; this condition may also cause the sense  
resistor to fuse open, turning off the port but causing the  
LTC4279 SENSE pin to rise to an abnormally high volt-  
age. A failed MOSFET may also short from gate to drain,  
causing the LTC4279 GATE pin to rise to an abnormally  
high voltage. The LTC4279 OUT, SENSE and GATE pins  
are designed to tolerate up to 80V faults without damage.  
Per the IEEE specification, the LTC4279 will allow the port  
current to exceed I for a limited period of time before  
CUT  
removing power from the port, whereas it will actively  
control the MOSFET gate drive to keep the port current  
below I . The port does not take any action to limit the  
LIM  
currentwhenonlytheI thresholdisexceeded,butdoes  
CUT  
start the t  
timer. If the current drops below the I  
CUT  
CUT  
timer  
current threshold before its timer expires, the t  
CUT  
counts back down, but at 1/16 the rate that it counts up. If  
thet timerreaches60ms(typical)theportisturnedoff.  
CUT  
Thisallowsthecurrentlimitcircuitrytotolerateintermittent  
overload signals with duty cycles below about 6%; longer  
duty cycle overloads will turn the port off.  
If the LTC4279 sees any of these conditions for more than  
180μs, it resets the entire chip.  
4279fa  
16  
For more information www.linear.com/LTC4279  
LTC4279  
APPLICATIONS INFORMATION  
Disconnect  
External MOSFET  
The LTC4279 monitors the powered port to ensure the  
PD continues to draw the minimum specified current. A  
disconnecttimercountsupwheneverportcurrentisbelow  
7.5mA(typ),indicatingthatthePDhasbeendisconnected.  
CarefulselectionofthepowerMOSFETiscriticaltosystem  
reliability. LTC recommends the NXP PSMN075-100MSE  
for proven reliability in Type 1 and Type 2 PSE applica-  
tions. LTC recommends the NXP PSMN040-100MSE for  
++  
If the t timer expires, the port will be turned off. If the  
dual-signature PD and LTPoE PSE applications. SOA  
DIS  
current returns before the t timer runs out, the timer  
curves are not a reliable specification for MOSFET selec-  
DIS  
resets. As long as the PD exceeds the minimum current  
tion. Contact LTC Applications before using a MOSFET  
level for t  
more often than t , it will remain powered.  
otherthanoneoftheserecommendedparts.R  
(Figure  
MPS  
DIS  
GATE  
13) is an essential part of the current limit control loop.  
The R value may depend upon MOSFET selection. An  
additional RC network across the MOSFET drain and gate  
is required for the UltraPWR MOSFET. See the UltraPWR  
Endpoint PSE application circuit for details.  
GATE  
EXTERNAL COMPONENT SELECTION  
Main PoE Power Supply and Bypassing  
The LTC4279 requires one supply voltage to operate at  
V . V requires a negative voltage relative to AGND  
EE  
EE  
Sense Resistor  
within the range specified in the Electrical Characteristics  
for each PSE Type.  
TheLTC4279isdesignedtousea0.1Ωcurrentsenseresis-  
tor to reduce power dissipation. In order to meet the I  
CUT  
V
is the main isolated PoE supply that provides power  
EE  
and I  
accuracy required by the IEEE specification, the  
LIM  
to the PD. Because it supplies a relatively large amount  
of power and is subject to significant current transients,  
it requires more design care than a simple logic supply.  
senseresistorshouldhave 1%toleranceorbetter, andno  
morethan 200ppm/Ctemperaturecoefficient.Thesense  
resistor must be sized according to power dissipation. See  
the Layout Guidelines section for proper Kelvin sensing.  
For minimum IR loss and best system efficiency, set V  
EE  
near maximum amplitude (57V, or 65V for UltraPWR),  
leaving enough margin to account for transient over- or  
undershoot, temperature drift, and the line regulation  
specifications of the particular power supply used.  
Port Output Capacitor  
The port requires a 0.22μF capacitor across the LTC4279  
OUTpinandAGNDpintokeeptheLTC4279stablewhilein  
currentlimitduringstartuporoverload. Commonceramic  
capacitors often have significant voltage coefficients; this  
means the capacitance is reduced as the applied volt-  
age increases. To minimize this problem, X7R ceramic  
capacitors rated for at least 100V are recommended and  
must be located close to the OUT pin and AGND pin (see  
Layout Guidelines).  
Bypass capacitance between AGND and V is very impor-  
EE  
tant for reliable operation. If a short-circuit occurs at the  
port output, it can take as long as 1μs for the LTC4279 to  
begin regulating the current. During this time the current  
is limited only by the small impedances in the circuit. A  
high current spike typically occurs, causing a voltage  
transient on the V supply and possibly causing the  
EE  
LTC4279 to reset due to a UVLO fault. A 1μF, 100V X7R  
capacitor placed near the AGND and V pins along with  
EE  
Surge Protection  
an electrolytic bulk capacitor of at least 47µF across the  
mainsupplyisrecommendedtominimizespuriousresets.  
Ethernet ports can be subject to significant cable surge  
events.TokeepPoEvoltagesbelowasafelevelandprotect  
the application against damage, protection components  
(Figure13)arerequiredatthemainsupply,attheLTC4279  
supply pins and at the output port.  
To ensure compliance with DC disconnect, V supply  
ripple and noise must be less than 100mV at frequen-  
cies above 150kHz. Note that supply ripple and noise is  
also limited by the IEEE 802.3at standard.  
EE  
P-P  
Bulk transient voltage suppression (TVS  
) and bulk  
BULK  
For UltraPWR applications only, limit dV/dt on the V  
supply to less than 10V/ms when the supply is starting up.  
EE  
capacitance (C  
) are required across the main PoE  
BULK  
4279fa  
17  
For more information www.linear.com/LTC4279  
LTC4279  
APPLICATIONS INFORMATION  
R10  
10Ω  
0805  
C4  
C
BULK  
D1  
SMAJ58A  
1µF  
100V  
X7R  
R
PU  
C6  
V
EE  
0.22µF  
100V  
X7R  
100Ω  
100Ω  
100Ω  
100Ω  
AGND  
RESET  
MID  
RESET  
MID  
TVS  
BULK  
U1  
LTC4279  
DUALPD  
LEGACY  
DUALPD  
LEGACY  
V
VSSK SENSE GATE OUT  
EE  
+
R
GATE  
D3  
OUT TO  
S1B PORT  
R
S1  
V
EE  
4279 F13  
Q1  
Figure 13. LTC4279 Surge Protection  
supply and should be sized to accommodate system level  
surge requirements.  
ance when the port is off. Pull the LED up to a supply with a  
currentlimitingresistor.Selecttheresistorvaluetoprovide  
enough LED current for adequate LED brightness and limit  
thecurrenttobelowtheLTC4279LEDpincurrentlimitover  
the full supply range. The resistor must also have a power  
rating capable of the maximum supply voltage minus the  
LED drop and LED current. If the main PoE power supply  
is driving the LED, the pull-up resistor must connect to  
the LTC4279 AGND pin side of the surge protection 10Ω  
resistor. Refer to the Typical Application figure.  
The LTC4279 (U1) requires a 10Ω, 0805 resistor (R10) in  
seriesfromsupplyAGNDtotheLTC4279AGNDpin.Across  
the LTC4279 AGND pin and V pin are an SMAJ58A, 58V  
EE  
TVS (D1) and a 1µF, 100V bypass capacitor (C4). These  
components must be placed close to the LTC4279 pins.  
Finally, the port requires an S1B clamp diode (D3) from  
OUT to supply AGND. The diode protects the port from  
harmful surges that could cause OUT to go above AGND.  
This diode must have low impedance paths to the port.  
LAYOUT GUIDELINES  
See Layout Guidelines for additional information on parts  
placement.  
Strict adherence to parts placement and board layout is  
critical for optimal current reading accuracy, IEEE compli-  
ance,systemrobustnessandthermaldissipation.Referto  
the DC2541 demo board as a layout reference. Figure 14  
is a cutout portion of the DC2541 that displays the focus  
topics in this section. The components are referenced in  
Figure 13.  
Configuration Pin Protection  
The logic input pins (RESET, MID, LEGACY and DUALPD)  
may be hard tied to the AGND pin or to V . Alternatively,  
EE  
if a pull-up resistor (R ) is implemented from a logic  
PU  
input pin to the LTC4279 supply, connect the resistor to  
the protected side of the 10Ω resistor at the AGND pin. For  
logic input pins configured off board through a connector,  
add a 100Ω resistor in series with the respective pin for  
protection during high voltage transients.  
Kelvin Sense  
Proper connection of the port current Kelvin sense lines is  
importantforcurrentthresholdaccuracyandIEEEcompli-  
ance. Refer to Figure 14 for an example layout of these  
Kelvin sense lines. The LTC4279 VSSK pin connects to a  
LED Drive  
Kelvin sense trace to the sense resistor (V side) pad and  
EE  
ConnectanLEDtotheLTC4279LEDpinforaportonstatus  
indicator. The LED pin open drain pull-down output pulls  
isnotconnecteddirectlytoV copperareas.Similarly,the  
EE  
LTC4279 SENSE pin connects to a Kelvin sense trace that  
downtoV whentheportispoweredonandishighimped-  
leads to the sense resistor (SENSE side) pad and is not  
EE  
4279fa  
18  
For more information www.linear.com/LTC4279  
LTC4279  
APPLICATIONS INFORMATION  
heat out away from the components. This is particularly  
important around the power MOSFET (Q1) during current  
limit conditions.  
connected in the power path between the sense resistor  
and the MOSFET. Figure 14 shows the two Kelvin traces  
from the LTC42479 (U1) to the sense resistor (R ). The  
S1  
LTC4249 V pins and the sense resistor V pad connect  
EE  
EE  
to the V copper areas.  
EE  
R10  
C6  
Parts Placement  
Q1  
The placement of key components around the LTC4279 is  
essentialforapplicationaccuracy,stabilityandrobustness.  
Figure14showstheportOUTcapacitor(C6)andLTC4279  
surge protection components located near the LTC4279.  
C4  
D1  
U1  
Thermal Considerations  
RS1  
The power paths from the main power supply to the port  
output will have high currents pass through at peak port  
power. Use wide traces and copper areas, along multiple  
vias to keep the power path resistance low. Use copper  
areas around power path components to help spread  
4279 F14  
Figure 14. Example LTC4279 Layout  
TYPICAL APPLICATIONS  
IEEE 802.3at, Type 1 or Type 2, Endpoint PSE  
T1  
SML-012P8T  
GREEN  
10Ω  
0805  
+
TR0  
C
75Ω  
12k  
1/2W  
BULK  
TVS  
BULK  
T0C  
TR0  
+
DATA AND  
1µF  
100V  
X7R  
TR1  
V
EE  
75Ω  
POWER OUT  
SMAJ58A  
T1C  
1
TR1  
DATA  
TO  
2
3
4
5
6
7
8
V
EE  
100Ω  
+
PHY  
TR2  
AGND  
RESET  
RESET  
MID  
RJ45  
75Ω  
T2C  
TR2  
DUALPD  
LEGACY  
LTC4279  
LED  
0.22µF  
100V  
X7R  
+
TR3  
PWRMODE  
75Ω  
T3C  
V
VSSK SENSE GATE OUT  
EE  
TR3  
200Ω  
R
PM  
0.01µF  
200V  
×4  
S1B  
0.1Ω  
V
EE  
PSMN075-100MSE  
1000pF  
2kV  
MAXIMUM PD INPUT POWER  
TYPE 1 (13W)  
R
V
RANGE  
T1  
4279 TA02  
PM  
EE  
2.37k  
–45V to –57V  
749023015  
749022017  
TYPE 2 (25.5W)  
3.32k  
–51V to –57V  
4279fa  
19  
For more information www.linear.com/LTC4279  
LTC4279  
TYPICAL APPLICATIONS  
IEEE 802.3at, Type 1 or Type 2, Midspan PSE  
10Ω  
0805  
1µF  
100V  
X7R  
SMAJ58A  
12k  
1/2W  
V
EE  
100Ω  
AGND  
RESET  
RESET  
MID  
SML-012P8T  
GREEN  
TVS  
BULK  
S1B  
LED  
DUALPD  
LTC4279  
0.22µF  
100V  
X7R  
C
BULK  
LEGACY  
PWRMODE  
V
EE  
VSSK SENSE GATE OUT  
200Ω  
0.1Ω  
R
PM  
V
EE  
PSMN075-100MSE  
ETH1-230L  
DATA AND  
POWER OUT  
DATA IN  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
RJ45  
RJ45  
4279 TA03  
75Ω  
75Ω  
75Ω  
75Ω  
0.01µF  
200V  
0.01µF  
200V  
1000pF  
2kV  
1000pF  
2kV  
MAXIMUM PD INPUT POWER  
TYPE 1 (13W)  
R
V
RANGE  
PM  
EE  
2.37k  
–45V to –57V  
TYPE 2 (25.5W)  
3.32k  
–51V to –57V  
4279fa  
20  
For more information www.linear.com/LTC4279  
LTC4279  
TYPICAL APPLICATIONS  
++  
LTPoE or Dual-Signature PD, Midspan or Endpoint, 4-Pair PSE Options  
10Ω  
0805  
1µF  
100V  
X7R  
SMAJ58A  
12k  
1/2W  
C
BULK  
V
EE  
100Ω  
100Ω  
100Ω  
AGND  
RESET  
MID  
RESET  
MID  
SML-012P8T  
TVS  
BULK  
GREEN  
S1B  
LED  
DUALPD  
DUALPD  
LTC4279  
0.22µF  
100V  
X7R  
LEGACY  
PWRMODE  
V
EE  
VSSK SENSE GATE OUT  
200Ω  
R
0.1Ω  
SENSE  
R
PM  
V
EE  
PSMN040-100MSE  
WURTH 749022016  
COILCRAFT ETH1-460L  
+
TR0  
75Ω  
0.01µF, 200V  
0.01µF, 200V  
0.01µF, 200V  
0.01µF, 200V  
T0C  
TR0  
+
DATA AND  
POWER OUT  
TR1  
75Ω  
75Ω  
75Ω  
T1C  
1
TR1  
2
3
4
5
6
7
8
DATA  
SOURCE  
+
TR2  
RJ45  
T2C  
TR2  
+
TR3  
T3C  
TR3  
1000pF  
2kV  
4279 TA04  
MAXIMUM PD INPUT POWER  
++  
V
RANGE  
R
DUALPD PIN  
R
SENSE  
POWER RATING  
1/4W  
EE  
PM  
LTPoE 38.7W  
–51V to –57V  
–51V to –57V  
4.64k  
5.90k  
5.90k  
7.87k  
10.0k  
LOW  
LOW  
HIGH  
LOW  
LOW  
++  
LTPoE 52.7W  
1/2W  
DUALPD (52.7W)  
–51V to –57V  
1/2W  
++  
LTPoE 70W  
–54.75V to –57V  
–54.75V to –57V  
1/2W  
++  
LTPoE 90W  
1W  
DEVICE TYPE  
ENDPOINT SWITCH  
DATA SOURCE  
MID PIN  
LOW  
PHY  
MIDSPAN POWER INJECTOR  
DATA IN RJ45  
HIGH  
4279fa  
21  
For more information www.linear.com/LTC4279  
LTC4279  
TYPICAL APPLICATIONS  
UltraPWR Endpoint PSE  
10Ω  
0805  
1µF  
SMAJ70A  
100V  
12k  
1/2W  
X7R  
C
BULK  
V
EE  
SML-012P8T  
GREEN  
100Ω  
AGND  
RESET  
RESET  
MID  
LED  
S1B  
DUALPD  
LEGACY  
PWRMODE  
LTC4279  
0.22µF  
100V  
X7R  
TVS  
BULK  
V
VSSK SENSE GATE  
OUT  
EE  
R
GATE  
200Ω  
C
GD  
47nF  
100V  
13.0k  
R
GD  
0.1Ω  
2W  
400Ω  
V
EE  
–51V to –65V  
PSMN4R8-100BSE  
7490220123  
TR0+  
T0C  
75Ω  
0.01µF, 200V  
TR0–  
POWER  
and  
DATA OUT  
TR1+  
T1C  
75Ω  
75Ω  
75Ω  
0.01µF, 200V  
1
2
3
4
5
6
7
8
TR1–  
DATA  
TO  
PHY  
TR2+  
T2C  
RJ45  
0.01µF, 200V  
TR2–  
TR3+  
T3C  
0.01µF, 200V  
TR3–  
1000pF  
2kV  
4279 TA05  
4279fa  
22  
For more information www.linear.com/LTC4279  
LTC4279  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC4279#packaging for the most recent package drawings.  
S Package  
16-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.386 – .394  
(9.804 – 10.008)  
.045 .005  
NOTE 3  
.050 BSC  
16  
N
15  
14  
13  
12  
11  
10  
9
N
1
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
2
3
N/2  
N/2  
8
.030 .005  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
6
7
1
4
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
.016 – .050  
(0.406 – 1.270)  
S16 REV G 0212  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
4279fa  
23  
For more information www.linear.com/LTC4279  
LTC4279  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTC4279#packaging for the most recent package drawings.  
UFD Package  
20-Lead Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1711 Rev B)  
0.70 0.05  
2.65 0.05  
3.65 0.05  
4.50 0.05  
3.ꢀ0 0.05  
ꢀ.50 REF  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
2.50 REF  
4.ꢀ0 0.05  
5.50 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN ꢀ NOTCH  
R = 0.20 OR  
C = 0.35  
0.75 0.05  
ꢀ.50 REF  
ꢀ9  
4.00 0.ꢀ0  
(2 SIDES)  
R = 0.05 TYP  
20  
0.40 0.ꢀ0  
PIN ꢀ  
TOP MARK  
(NOTE 6)  
2
5.00 0.ꢀ0  
(2 SIDES)  
2.50 REF  
3.65 0.ꢀ0  
2.65 0.ꢀ0  
(UFD20) QFN 0506 REV B  
0.25 0.05  
0.50 BSC  
0.200 REF  
R = 0.ꢀꢀ5  
TYP  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
ꢀ. DRAWING PROPOSED TO BE MADE A JEDEC PACKAGE OUTLINE MO-220 VARIATION (WXXX-X).  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.ꢀ5mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN ꢀ LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
4279fa  
24  
For more information www.linear.com/LTC4279  
LTC4279  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
08/17 Changed minimum/maximum limits for t  
Corrected transformer P/Ns.  
, t  
and t  
.
ME  
4
CLE1 CLE  
21, 22  
4279fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
25  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC4279  
TYPICAL APPLICATION  
IEEE 802.3at, Type 2, Endpoint PSE  
749022017  
SML-012P8T  
GREEN  
10Ω  
0805  
+
TR0  
C
75Ω  
12k  
1/2W  
BULK  
TVS  
BULK  
T0C  
TR0  
+
TR1  
DATA AND  
1µF  
100V  
X7R  
V
EE  
75Ω  
POWER OUT  
SMAJ58A  
T1C  
1
TR1  
DATA  
TO  
2
3
4
5
6
7
8
V
EE  
100Ω  
+
PHY  
TR2  
AGND  
RESET  
RESET  
MID  
RJ45  
75Ω  
T2C  
TR2  
DUALPD  
LEGACY  
LTC4279  
LED  
+
0.22µF  
100V  
X7R  
TR3  
PWRMODE  
75Ω  
T3C  
V
VSSK SENSE GATE OUT  
EE  
TR3  
200Ω  
0.01µF  
200V  
×4  
3.32k  
V
EE  
S1B  
0.1Ω  
–51V  
to  
1000pF  
2kV  
PSMN075-100MSE  
–57V  
4279 TA06  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT4321  
PoE Ideal Diode Bridge Controller  
Replaces 8 Diodes with 8 N-Channel MOSFETs, Reduces Heat, Maximizes  
Efficiency  
LTC4257-1  
LTC4263  
LTC4265  
IEEE 802.3af PD Interface Controller  
Single IEEE 802.3af PSE Controller  
IEEE 802.3at PD Interface Controller  
100V, 400mA Internal Switch, Dual Current Limit, Programmable Class  
Internal FET Switch  
100V, 1A Internal Switch, 2-Event Classification Recognition  
++  
LTC4266/  
LTC4266A/LTC4266C  
Quad IEEE 802.3at/LTPoE /af PoE PSE Controller With Programmable CUT/LIM, PD Classification, and Port Current and Voltage  
++  
Monitoring. LTPoE Provides up to 90W  
LTC4267-3  
IEEE 802.3af PD Interface with Integrated  
Switching Regulator  
100V, 400mA Internal Switch, Programmable Class, 300kHz Constant  
Frequency PWM  
LTC4269-1  
IEEE 802.3at PD Interface with Integrated  
Switching Regulator  
2-Event Classification, Programmable Classification, Synchronous No-Opto  
Flyback Controller, 50kHz to 250kHz, Aux Support  
LTC4269-2  
IEEE 802.3at PD Interface with Integrated  
Switching Regulator  
2-Event Classification, Programmable Classification, Synchronous Forward  
Controller, 100kHz to 500kHz, Aux Support  
++  
12-port PoE/PoE+/LTPoE PSE Controller  
++  
LTC4270/LTC4271  
Transformer Isolation, Supports IEEE 802.3af, IEEE 802.3at and LTPoE PDs  
++  
LTC4274/LTC4274A/ Single IEEE 802.3at/LTPoE /af PoE PSE  
With Programmable CUT/LIM, PD Classification, and Port Current and Voltage  
Monitoring. LTPoE Provides up to 90W  
++  
LTC4274C  
Controller  
++  
LT4275  
PoE/PoE+/LTPoE PD Interface Controller  
100V, External Low R MOSFET, and 1/2/3-Event Classification  
DS(ON)  
++  
Recognition, Aux Support, LTPoE Provides up to 90W  
++  
LT4276A/LT4276B/  
LT4276C  
LTPoE /PoE+/PoE PD Interface Controller with  
100V, External Low R MOSFET, Forward or Flyback Topology, Aux  
DS(ON)  
++  
Support, LTPoE Provides up to 90W  
Forward/Flyback Controller  
++  
++  
LTC4290/LTC4271  
LT4295  
8-port PoE/PoE+/LTPoE PSE Controller  
Transformer Isolation, Supports IEEE 802.3af, IEEE 802.3at and LTPoE PDs  
IEEE 802.3bt PD with Forward/Flyback Switching  
Regulator Controller  
External Switch, IEEE 802.3bt Support, Configurable Class, Forward or  
No-Opto Flyback Operation, Frequency, PG/SG Delays, Soft-Start, and Aux  
Support as Low as 9V, Including Housekeeping Buck, Slope Compensation  
4279fa  
LT 0817 REV A • PRINTED IN USA  
www.linear.com/LTC4279  
26  
LINEAR TECHNOLOGY CORPORATION 2017  

相关型号:

LTC4279IUFD#PBF

LTC4279 - Single Port PoE/PoE+/ LTPoE++ PSE Controller; Package: QFN; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4280

Hot Swap Controller with I2C Compatible Monitoring
Linear

LTC4280CUFD

Hot Swap Controller with I2C Compatible Monitoring
Linear

LTC4280CUFD#PBF

LTC4280 - Hot Swap Controller with I<sup>2</sup>C Compatible Monitoring; Package: QFN; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4280CUFD#TR

暂无描述
Linear

LTC4280CUFD#TRPBF

LTC4280 - Hot Swap Controller with I<sup>2</sup>C Compatible Monitoring; Package: QFN; Pins: 24; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4280CUFD-PBF

Hot Swap Controller with I2C Compatible Monitoring
Linear

LTC4280CUFD-TR

Hot Swap Controller with I2C Compatible Monitoring
Linear

LTC4280CUFD-TRPBF

Hot Swap Controller with I2C Compatible Monitoring
Linear

LTC4280IUFD

Hot Swap Controller with I2C Compatible Monitoring
Linear

LTC4280IUFD#PBF

LTC4280 - Hot Swap Controller with I<sup>2</sup>C Compatible Monitoring; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4280IUFD#TRPBF

LTC4280 - Hot Swap Controller with I<sup>2</sup>C Compatible Monitoring; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear