LTC4311CSC6-TRPBF [Linear]

Low Voltage I2C/SMBus Accelerator; 低电压I2C / SMBus加速器
LTC4311CSC6-TRPBF
型号: LTC4311CSC6-TRPBF
厂家: Linear    Linear
描述:

Low Voltage I2C/SMBus Accelerator
低电压I2C / SMBus加速器

文件: 总12页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4311  
Low Voltage I C/SMBus  
Accelerator  
2
FEATURES  
DESCRIPTION  
2
2
The LTC®4311 is a dual I C active pull-up designed to  
Improves I C Bus Rise Time Transition  
Ensures Data Integrity with Multiple Devices on the  
enhance data transmission speed and reliability for bus  
loadingconditionswellbeyondthe400pFI Cspecification  
limit. The LTC4311 operates at supply voltages from 1.6V  
to 5.5V and is also compatible with SMBus.  
2
2
I C Bus.  
Wide Supply Voltage Range: 1.6V to 5.5V  
Improves Low State Noise Margin  
Up to 400kHz Operation  
The LTC4311 allows multiple device connections or a lon-  
ger, more capacitive interconnect, without compromising  
slew rates or bus performance, by using two slew limited  
pull-up currents.  
Auto Detect Low Power Standby Mode  
Low (<5μA) Supply Current Shutdown  
Does Not Load Bus When Disabled or Powered Down  
Strong Slew Limited Pull-up Current  
8kV Human Body Model ꢀSD Ruggedness  
Duringpositivebustransitions,theLTC4311providesslew  
limited pull-up currents to quickly slew the I C or SMBus  
2
2mm × 2mm DFN and SC70 Packages  
linestothebuspull-upvoltage.Duringnegativetransitions  
or steady DC levels, the currents are disabled to improve  
negative slew rate, and improve low state noise margins.  
An auto detect standby mode reduces supply current if  
both SCL and SDA are high. When disabled, the LTC4311  
goes into low (<5μA) current shutdown.  
APPLICATIONS  
Notebook and Palmtop Computers  
Portable Instruments  
Battery Chargers  
Industrial Controls  
The LTC4311 is available in the 2mm × 2mm × 0.75mm  
DFN, and SC70 packages.  
TV/Video Products  
ACPI SMBus Interface  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All  
other trademarks are the property of their respective owners. Protected by U.S. Patents  
including 6356140 and 6650174.  
TYPICAL APPLICATION  
Comparison of I2C Waveforms for  
the LTC4311 vs Resistor Pull-Up  
V
V
CC  
CC  
LTC4311  
2.5V  
2.5V  
V
CC  
BUS1  
C1  
0.01μF  
ꢀNABLꢀ  
GND  
10k  
10k  
BUS2  
2
LTC4311  
1V/DIV  
I C  
SCL  
SDA  
CLK  
IN  
DATA  
IN  
CLK  
IN  
DATA  
IN  
R
= 15.8k  
PULL-UP  
CLK  
OUT  
DATA  
OUT  
CLK  
OUT  
DATA  
OUT  
4311 TA01b  
V
C
I C  
= 5V  
1μs/DIV  
CC  
LD  
= 200pF  
DꢀVICꢀ 1  
DꢀVICꢀ N  
f 2 = 100kHz  
4311 TA01a  
4311fa  
1
LTC4311  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1, 2)  
Storage Temperature Range (DFN) ........65°C to 125°C  
Storage Temperature Range (SC70).......65°C to 125°C  
Lead Temperature (Soldering 10, sec)  
V
to GND .................................................... 0.3 to 6V  
CC  
BUS1, BUS2, ꢀNABLꢀ Inputs......................... 0.3 to 6V  
Operating Temperature  
SC70 ............................................................ 300°C  
LTC4311C ................................................ 0°C to 70°C  
LTC4311I..............................................40°C to 85°C  
PIN CONFIGURATION  
TOP VIꢀW  
TOP VIꢀW  
6
5
4
GND  
ꢀNABLꢀ  
NC  
1
2
3
V
1
2
3
6
5
4
BUS1  
GND  
CC  
7
BUS2  
BUS1  
GND  
V
CC  
ꢀNABLꢀ  
BUS2  
SC70 PACKAGꢀ  
6-LꢀAD PLASTIC SC70  
DFN PACKAGꢀ  
6-LꢀAD (2mm s 2mm) PLASTIC DFN  
T
= 125°C, θ = 150° C/W  
JA  
JMAX  
T
= 125°C, θ = 102°C/W  
JMAX  
JA  
ꢀXPOSꢀD PAD (PIN 7) PCB CONNꢀCTION TO GND IS OPTIONAL (Note 3)  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC4311CDC#TRMPBF  
LTC4311IDC#TRMPBF  
LTC4311CSC6#TRMPBF  
LTC4311ISC6#TRMPBF  
TAPE AND REEL  
PART MARKING*  
LCNG  
LCNG  
LCNF  
LCNF  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC4311CDC#TRPBF  
LTC4311IDC#TRPBF  
LTC4311CSC6#TRPBF  
LTC4311ISC6#TRPBF  
0°C to 70°C  
40°C to 85°C  
0°C to 70°C  
6-Lead (2mm × 2mm) Plastic DFN  
6-Lead (2mm × 2mm) Plastic DFN  
6-Lead (2mm × 2mm) Plastic SC70  
6-Lead (2mm × 2mm) Plastic SC70  
40°C to 85°C  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
4311fa  
2
LTC4311  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 3.3V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
300  
45  
UNITS  
V
V
CC  
Positive Supply Voltage  
Supply Current  
1.6  
I
I
I
I
V
CC  
V
CC  
V
CC  
= 5.5V, NABLꢀ = 5.5V, V  
= 5.5V, NABLꢀ = 5.5V, V  
= V  
= V  
= 0V  
200  
26  
μA  
CC  
BUS1  
BUS1  
BUS2  
Supply Current, Standby Mode  
Supply Current, Disabled  
Transient Boosted Pull-up Current  
= 5.5V  
μA  
CC_STANDBY  
CC_DISABLꢀD  
PULLUPAC  
BUS2  
= 5.5V, NABLꢀ = 0V, V  
= V  
= 5.5V  
BUS2  
5
μA  
BUS1  
Positive Transition on Bus, Slew Rate = 0.5V/μs  
2.5  
5
mA  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 1.8V, BUS > V  
THR  
I
I
BUS1,BUS2, Input Leakage Current  
ꢀNABLꢀ Input Leakage Current  
Bus Input Threshold Voltage  
= 0V, V  
= 0V, V  
= 1.8V  
= 2.5V  
= V  
= 5.5V  
5
10  
μA  
μA  
V
BUS(IN)  
BUS1  
BUS2  
= 5.5V  
ꢀNABLꢀ(IN)  
ꢀNABLꢀ  
V
THR  
0.45  
0.65  
0.68  
0.4  
0.55  
0.75  
0.78  
1
0.65  
0.85  
0.88  
1.5  
V
= 2.7V to 5.5V  
= 1.6V, 5.5V  
V
V
ꢀNABLꢀ Threshold Voltage  
V
THR_ꢀNABLꢀ  
SR  
THRꢀSH  
Slew Rate Detector Threshold  
BUS > V , V = 1.8V, 5.5V  
0.2  
0.5  
V/μs  
ns  
kHz  
THR CC  
2
t
r
Fast Mode I C Bus Rise Time  
Bus Capacitance = 400pF, V = 3V (Note 4)  
300  
CC  
f
Bus Maximum Operating Frequency  
(Note 5)  
400  
MAX  
2
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. ꢀxposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: The rise time of an I C bus line is calculated from V  
to  
IL(MAX)  
V
or 0.9V to 2.1V (with V = 3V). This parameter is guaranteed by  
design and not tested. With a minimum boosted pull-up current of 2.5mA:  
Rise Time = (2.1V – 0.9V) • 400pF/2.5mA = 0.19μs.  
IH(MIN)  
CC  
Note 2: All currents into pins are positive. All voltages are referenced to  
Note 5: Determined by design, not tested in production.  
GND unless otherwise specified.  
Note 3: Thermal characteristics are determined with exposed pad soldered  
to GND plane. If the exposed pad is left open, thermal characteristics can  
be drastically different.  
4311fa  
3
LTC4311  
TYPICAL PERFORMANCE CHARACTERISTICS  
(TA = 25°C, unless otherwise indicated)  
Boost Pull-Up Current vs Bus  
Boost Pull-Up Current vs  
Capacitance  
Temperature  
40  
60  
R
= 2kΩ  
V
CC  
= 5.5V  
R
C
= 4.7kΩ  
= 1nF  
p
P
BUS  
35  
30  
50  
V
CC  
= 5.5V  
40  
30  
25  
20  
15  
10  
5
V
V
= 3.3V  
= 2.5V  
CC  
CC  
V
= 3.3V  
CC  
20  
10  
0
V
V
= 2.5V  
= 1.8V  
CC  
CC  
V
= 1.8V  
CC  
0
–20  
0
40  
60  
80 100  
–40  
20  
0
1000  
2000  
3000  
4000  
5000  
CAPACITANCꢀ (pF)  
TꢀMPꢀRATURꢀ (°C)  
4311 G02  
4311 G01  
Rise Time vs Capacitance  
Supply Current vs Temperature  
210  
300  
250  
V
CC  
= 1.8V  
V
CC  
= 2.5V  
V
CC  
= 5.5V  
200  
190  
V
CC  
= 3.3V  
BUS1 = BUS2 = 0V  
200  
150  
V
V
= 3.3V  
= 2.5V  
CC  
CC  
180  
170  
160  
150  
140  
V
CC  
= 5.5V  
100  
50  
0
R
= 2kΩ  
P
Measured from 0.3•V to 0.7•V  
V
= 1.8V  
0
CC  
CC  
CC  
130  
–20  
40  
60  
80 100  
–40  
20  
0
1000  
2000  
3000  
4000  
5000  
TꢀMPꢀRATURꢀ (°C)  
CAPACITANCꢀ (pF)  
4311 G03  
4311 G04  
Bus Input Threshold Voltage vs  
Supply Voltage  
Standby Current vs Temperature  
30  
28  
0.8  
0.75  
0.7  
26  
24  
22  
20  
18  
V
V
= 5.5V  
= 3.3V  
CC  
CC  
0.65  
0.6  
0.55  
0.5  
0.45  
0.4  
V
= 2.5V  
40  
CC  
V
= 1.8V  
0
CC  
16  
2
3
5
1
6
80  
100  
4
–40 –20  
20  
60  
SUPPLY VOLTAGꢀ (V)  
TꢀMPꢀRATURꢀ (°C)  
4311 G05  
4311 G06  
4311fa  
4
LTC4311  
PIN FUNCTIONS  
BUS1: Active Pull-up for Bus. Connect to either clock line  
or data line for 2-wire bus.  
EXPOSED PAD (DFN Package Only): ꢀxposed Pad may  
be left open or connected to device ground.  
BUS2: Active Pull-up for Bus. Connect to either clock line  
or data line for 2-wire bus.  
GND: Device Ground. Connect this pin to a ground plane  
for best results.  
ENABLE: Device ꢀnable Input. This is a 1V nominal digital  
threshold input pin. For normal operation drive ꢀNABLꢀ  
to a voltage greater than 1.5V. Driving ꢀNABLꢀ below the  
0.4V threshold puts the device in a low (<5μA) current  
shutdown mode and puts the BUS pins in a high imped-  
V : Supply Voltage Input. Connect this pin to bus supply  
CC  
and place a bypass capacitor of at least 0.01μF close to  
V
CC  
for best results.  
ance state. If unused, connect to V .  
CC  
BLOCK DIAGRAM  
5mA  
BUS1  
V
CC  
SLꢀW RATꢀ  
DꢀTꢀCTOR  
5mA  
BUS2  
SLꢀW RATꢀ  
DꢀTꢀCTOR  
+
V
V
THR  
THR  
CONTROL  
LOGIC AND  
INTꢀRNAL SLꢀW  
COMPARATOR  
+
+
V
V
– 0.4  
– 0.4  
CC  
+
CC  
+
GND  
ꢀNABLꢀ  
1V  
4311 BD  
4311fa  
5
LTC4311  
OPERATION  
I C and SMBus Overview  
2
are optimized for low voltage operation, while still meet-  
2
ing standard thresholds for compliant I C and SMBus  
2
The I C communication protocol employs open-drain  
systems.  
pull-down drivers with resistive or current source pull-  
ups. This protocol allows multiple devices to drive and  
monitor the bus without bus contention. The simplicity  
of resistive or fixed current source pull-ups is offset by  
the slow rise times resulting when bus capacitance is  
high. Rise times can be improved by using lower pull-up  
resistor values or higher fixed current source values, but  
the additional current increases the low state bus voltage,  
decreasing noise margins. Slow rise times can seriously  
impact data reliability, enforcing a maximum practical bus  
The slew limited pull-up current is only turned on if the  
bus line voltage is greater than the supply dependent  
comparator threshold voltage and the positive slew rate  
of the bus line is greater than the typical 0.2V/μs threshold  
of the slew rate detector. The pull-up current remains on  
until the voltage on the bus line is within 0.4V of V or  
CC  
the slew rate drops below 0.2V/μs.  
The pull-up current is slew limited to maintain signal  
integrity for busses that have very little capacitive load.  
In a lightly loaded system a strong pull-up could result in  
fast edge rates that cause reflections on the bus. These  
reflections can be detected by devices on the bus as extra  
clock edges, could result in erroneous data, or cause a  
stuck bus. An internal slew limit comparator limits the rate  
the pull-up current can slew the bus lines to 100V/μs.  
2
speed well below the established I C or SMBus maximum  
transmission rate.  
The LTC4311 overcomes these limitations by providing a  
boostedpull-upcurrentonlyduringpositivebustransitions  
toquicklyslewlargebuscapacitances.Therefore,risetime  
is dramatically improved, especially with maximum or out  
2
of specification I C or SMBus loading conditions.  
Auto Detect Standby Mode and Shutdown Mode  
The LTC4311 has separate but identical circuitry for each  
BUS output pin. The circuitry consists of a positive edge  
slew rate detector and a voltage comparator. The voltage  
comparator has a supply dependent threshold. At supply  
When BUS1 and BUS2 are both high the LTC4311 reduces  
the standby supply current. Internal comparators detect  
when the bus pins are within 400mV of V , and reduce  
CC  
the supply current to 26μA. When the ꢀNABLꢀ pin is  
grounded, the LTC4311 enters a low (<5μA) supply cur-  
rent shutdown mode. Both bus pins are high impedance  
in shutdown, regardless of the bus pin voltage.  
voltages below 2.7V the comparator threshold is 0.3V ,  
CC  
and at higher voltages the comparator threshold is a  
constant 0.8V. This allows the rise time accelerator to be  
used in non-compliant systems where the bus thresholds  
4311fa  
6
LTC4311  
APPLICATIONS INFORMATION  
Selecting the values of R and R  
Low State Noise Margin  
S
P
The typical configuration for the data bus for a 2-wire bus  
is shown in Figure 1. The parameters R and R should be  
A low value of V , the low state logic level, is desired  
OL  
for good noise margin. V is calculated as follows:  
P
S
OL  
chosencarefully.Adescriptionoftheprocessforchoosing  
the values of R and R follows.  
RL VCC  
VOL =  
P
S
RL +RP  
(1)  
An external pull-up resistor R is required in each bus  
P
line to supply a steady state pull-up current if the bus is  
at logic zero. This pull-up current is used for slewing the  
bus line during the initial portion of the positive transition  
in order to activate the LTC4311 pull-up current.  
R is the series sum of R and R , the on resistance of  
the open-drain driver.  
L
S
ON  
Increasing the value of R decreases the value of V .  
P
OL  
Increasing R increases the value of V .  
L
OL  
Using an external pull-up resistor R to supply steady  
P
Initial Slew Rate  
state pull-up current provides the freedom to adjust rise  
time versus fall time as well as defining the low state  
The initial slew rate, SR, of the bus is determined by:  
logic-level (V ).  
OL  
VCC – VOL  
SR =  
For I/O stage protection from ꢀSD and high voltage spikes  
RP CBUS  
on the bus, a series resistor R (Figure 1) is sometimes  
S
(2)  
added to the open drain driver of the bus agents.  
SR must be greater than SR  
, the LTC4311 slew rate  
THRꢀSH  
detector threshold (0.5V/μs max), in order to activate the  
pull-up current.  
V
CC  
LTC4311  
DYNAMIC  
CURRꢀNT  
PULL-UP  
R
P
S
2
I C Rise and Fall Time  
Bus  
2
Rise time of an I C line is derived using equation 3.  
C
BUS  
R
tr = Rp CBUS  
DATA  
IN  
V
IHMIN – VCC Rp IPULLUPAC  
ln  
DATA  
OUT  
R
V
– VCC Rp IPULLUPAC ⎪  
ON  
ILMAX  
(3)  
4311 F01  
2
Fall time of an I C line is derived using equation 4.  
Figure 1. Typical 2-Wire Bus Configuration  
V
VCC  
IHMIN (RP +RL )RL  
Both the values of R and R must be chosen carefully  
tf = RT CBUS ln  
P
S
V
ILMAX  
to meet the low state noise margin and all bus timing  
requirements.  
(RP +RL )RL  
VCC  
(4)  
A discussion of the electrical parameters affected by the  
values of R and R , as well as the general procedure for  
S
P
where R is the parallel equivalent of R and R .  
T
P
L
selecting the values of R and R follows.  
S
P
4311fa  
7
LTC4311  
APPLICATIONS INFORMATION  
2
For an I C system with fixed input levels, V  
= 1.5V  
A general procedure for selecting R and R is as fol-  
P L  
ILMAX  
2
and V  
= 3V. For I C systems with V related input  
lows:  
IHMIN  
CC  
levels, V  
= 0.3V and V  
= 0.7V .  
ILMAX  
CC  
IHMIN  
CC  
1. R is first selected based on the I/O protection  
L
2
C
BUS  
is the total capacitance of the I C line.  
requirement. Generally, an R of 100Ω is sufficient for  
S
high voltage spikes and ꢀSD protection. R  
is  
ON  
SMBus Rise and Fall Time  
determined by the size of the open-drain driver, a large  
driver will have a lower R .  
ON  
Rise time of a SMBus line is derived using equations 5,  
6 and 7.  
2. The value of R is determined based on the V and  
P
OL  
minimumslewraterequirements.TheV willdetermine  
OL  
tr = t1+ t2  
(5)  
the smallest resistance value that can be used in a  
system, and the minimum slew requirement will bound  
the resistance on the upper end. Generally the largest  
value of resistance that meets the minimum slew rate  
with some margin will be selected.  
t is the time from when the bus crosses the lower slew  
1
ratemeasurementpoint,untilthebusreachesV andthe  
THR  
accelerators fire. The time from when the accelerators fire  
until the bus reaches the upper slew rate measure point is  
given by t . ꢀquations for t and t are given here:  
2
1
2
2
3. For I C systems incorporating the LTC4311, the rise  
VTHR – VCC  
ILMAX – 0.15V – VCC  
times are met under most loading conditions, due to  
the strong accelerator current. The pull-down drivers  
are typically low impedance, and therefore fall times  
are not generally an issue. Rise and fall time  
requirements must be verified using equations 3 and  
t1 = –RP CBUS ln  
V
(6)  
If (V  
– 0.15V) > V , then t = 0  
THR 1  
ILMAX  
2
4 (for an I C system) or equations 5 to 8 (for an SMBus  
t2 = –RP CBUS  
system). The value chosen for R must ensure that  
P
both the rise and fall time specifications are met  
V
+ 0.15V – VCC RP IPULLUPAC  
VTHR – VCC RP IPULLUPAC  
IHMIN  
ln  
simultaneously.  
2
(7)  
I C Design Example  
Fall time of an SMBus line is derived using equation 8:  
Given the following conditions and requirements:  
tf = RT CBUS  
VCC = 3.3V NOMINAL  
VOL = 0.4V MAXIMUM  
CBUS = 600pF  
V
+ 0.15V  
IHMIN  
(RP +RL )RL  
(RP +RL )RL  
VCC  
ILMAX – 0.15V  
VCC  
ln  
V
V
ILMAX = 0.99V,VIHMIN = 2.31V  
tr = 0.3µs MAXIMUM,tf = 0.3µs MAXIMUM  
If an R of 100Ω is used and the max R of the driver is  
(9)  
(8)  
S
ON  
For an SMBus system, V  
= 0.8V and V  
= 2.1V.  
200Ω, then R = 200Ω + 100Ω = 300Ω. Use equation 1  
ILMAX  
IHMIN  
L
to find the required R to meet V .  
P
OL  
C
is the total bus capacitance of the SMBus line.  
BUS  
300Ω•(3.3V 0.4V)  
RP =  
0.4V  
RP = 2.175k  
(10)  
4311fa  
8
LTC4311  
APPLICATIONS INFORMATION  
This is the lowest resistor value that may be chosen and  
SMBus Design Example  
still meet V . Next calculate the largest value of R that  
OL  
P
Given the following conditions and requirements for a low  
power SMBus system:  
will satisfy SR, the minimum slew rate requirement. Us-  
ing V = 0.4V and SR = 0.5V/μs calculate the value of  
OL  
R with equation 2.  
P
VCC = 3.3V NOMINAL  
VOL = 0.4V MAXIMUM  
CBUS = 400pF  
3.3V 0.4V  
600pF0.5V / µs  
RP = 9.667k  
RP =  
VILMAX = 0.8V,VIHMIN = 2.1V  
(11)  
tr =1µs MAXIMUM,tf = 0.3µs MAXIMUM  
(15)  
ThisisapproximatelythelargestvalueofR thatwillsatisfy  
If an R of 100Ω is used and the max R of the driver is  
P
S
ON  
the minimum slew rate requirement. Since R is larger  
200Ω, then R = 200Ω + 100Ω = 300Ω. Use equation 1  
P
L
than 2.175k the V will be below 0.4V, and the slew rate  
to find the required R to meet V .  
OL  
P
300Ω•(3.3V 0.4V)  
0.4V  
OL  
will actually be faster than calculated. Choosing R = 10k,  
P
V
OL  
and SR are recalculated.  
RP =  
300Ω•3.3V  
300Ω+10kΩ  
3.3V – 96mV  
RP = 2.175k  
VOL =  
SR=  
=96mV  
(16)  
(17)  
(18)  
Calculate Maximum R from equation 2.  
P
=0.534V / µs  
10kΩ•600pF  
3.3V 0.4V  
RP =  
(12)  
400pF0.5V / µs  
The rise and fall times need to be verified using equations  
3 and 4.  
RP = 14.5k  
tr = –10kΩ600pF•  
Choose R = 13k and recalculate V and SR.  
P
OL  
2.31V – 3.3V 10kΩ 2.5mA  
0.99V – 3.3V 10kΩ 2.5mA  
300Ω3.3V  
300Ω+13kΩ  
3.3V – 74mV  
In  
= 0.297µs  
VOL =  
= 74mV  
(13)  
SR =  
= 0.62V / µs  
tf = 291Ω600pF•  
13kΩ400pF  
2.31  
3.3V  
0.99V  
(10kΩ+ 300Ω)300Ω  
(10kΩ+ 300Ω)300Ω  
The rise and fall times need to be verified using equations  
5 to 8.  
In  
= 0.158µs  
t1 = –13kΩ400pF•  
3.3V  
0.9V–3.3V  
0.8V–0.15V–3.3V  
(14)  
ln  
= 0.515µs  
(19)  
2
Boththeriseandfalltimesmeetthe0.3μsI Crequirement  
and the V is satisfied, while meeting the minimum slew  
OL  
rate requirement, so R is chosen to be 10k.  
P
If t is not met, R should be decreased and if t is not met  
r
P
f
then R should be increased.  
P
4311fa  
9
LTC4311  
APPLICATIONS INFORMATION  
high) at the end of the last bit sent and the slave device  
pulling the SDA line low before the rising edge of the ACK  
clock pulse.  
t2 = –13kΩ400pF•  
2.1V + 0.15V – 3.3V 13kΩ2.5mA  
0.9V – 3.3V 13kΩ2.5mA  
In  
= 0.205µs  
The LTC4311 5mA pull-up current is activated when the  
host releases the SDA line, allowing the voltage to rise  
(20)  
above the LTC4311’s comparator threshold (V ). If  
THR  
tr = t1 + t2 = 0.515µs+ 0.205µs= 0.72µs  
tf = 293Ω400pF•  
a slave device has a high value of R , a longer time is  
S
required for the slave device to pull SDA low before the  
rising edge of the ACK clock pulse. To ensure sufficient  
data setup time for ACK, slave devices with high values  
(21)  
of R should pull the SDA low earlier.  
S
2.1V + 0.15V  
3.3V  
0.8V – 0.15V  
(13kΩ+ 300Ω)300Ω  
(13kΩ+ 300Ω)300Ω  
An alternative is the slave device can hold the SCL line low  
until the SDA line reaches a stable state. Then, SCL can  
be released to generate the ACK clock pulse.  
In  
3.3V  
= 0.156µs  
Multiple LTC4311s in Parallel  
(22)  
In very heavily loaded systems, stronger pull up current  
may be desired. Two LTC4311’s may be used in parallel  
to increase the total pull up current to meet rise time  
requirements.  
The rise time meets the 1μs SMBus requirement and the  
fall time meets the 0.3μs requirement. The V is satisfied  
OL  
whilemeetingtheminimumslewraterequirements, soR  
P
is chosen to be 13kΩ. If the rise time was not met due to  
a large t , equation 6 can be used to calculate a maximum  
1
Notes on Using the LTC4311 in LTC1694 Applications  
value of R that will meet the rise time requirements.  
P
AlthoughtheLTC1694andLTC4311arefunctionallysimilar  
2
accelerators for I C, SMBus, and other comparable open  
ACK Data Setup Time  
drain/collectorbusapplications,theLTC4311offersalower  
power, higher performance solution in a smaller package  
as compared to the LTC1694. These and other differences  
are listed in Table 1 and must be accounted for if using  
the LTC4311 in LTC1694 applications.  
Care must be taken in selecting the value of R (in series  
S
with the pull-down driver) to ensure that the data setup  
time requirement for ACK (acknowledge) is fulfilled. An  
acknowledge is the host releasing the SDA line (pulling  
Table 1. Differences Between LTC1694 and LTC4311  
SPECIFICATION  
LTC1694  
N/A  
LTC4311  
1V  
COMMENTS  
ꢀnable Pin (typ)  
Allows the LTC4311 to be Disabled, Consuming Less than 5μA  
Lower Operating Supply Voltage for Low Voltage Systems  
Lower Standby Current to Conserve Power  
V
CC  
2.7V – 6V  
60μA  
1.6V – 5.5V  
26μA  
I
(typ), BUS1, BUS2 High  
CC  
V
(typ)  
0.65V  
Dependent on V  
5mA  
Tighter, Higher Noise Margins and Improved Rise Times  
Stronger Slew-Limited Source Current for Slewing Higher Bus Capacitances  
THRꢀS  
CC  
I
f
(typ)  
2.2mA  
100kHz  
PULL-UP  
MAX  
2
400kHz  
Higher Operating Frequency for I C’s Fast Mode Bus Specification  
4311fa  
10  
LTC4311  
PACKAGE DESCRIPTION  
DC Package  
6-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1703)  
R = 0.115  
TYP  
0.56 0.05  
(2 SIDES)  
0.38 0.05  
4
6
0.675 0.05  
2.50 0.05  
1.15 0.05  
0.61 0.05  
(2 SIDES)  
2.00 0.10  
(4 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
PACKAGE  
OUTLINE  
CHAMFER OF  
EXPOSED PAD  
(DC6) DFN 1103  
3
1
0.25 0.05  
0.25 0.05  
0.50 BSC  
0.50 BSC  
0.75 0.05  
0.200 REF  
1.37 0.05  
(2 SIDES)  
1.42 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE  
M0-229 VARIATION OF (WCCD-2)  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
SC6 Package  
6-Lead Plastic SC70  
(Reference LTC DWG # 05-08-1638 Rev B)  
0.47  
MAX  
0.65  
REF  
1.80 – 2.20  
(NOTE 4)  
1.00 REF  
INDEX AREA  
(NOTE 6)  
1.15 – 1.35  
1.80 – 2.40  
2.8 BSC 1.8 REF  
(NOTE 4)  
PIN 1  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.15 – 0.30  
6 PLCS (NOTE 3)  
0.65 BSC  
0.10 – 0.40  
0.80 – 1.00  
0.00 – 0.10  
REF  
1.00 MAX  
GAUGE PLANE  
0.15 BSC  
0.26 – 0.46  
SC6 SC70 1205 REV B  
0.10 – 0.18  
(NOTE 3)  
NOTE:  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. DETAILS OF THE PIN 1 IDENTIFIER ARE OPTIONAL,  
BUT MUST BE LOCATED WITHIN THE INDEX AREA  
7. EIAJ PACKAGE REFERENCE IS EIAJ SC-70  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
8. JEDEC PACKAGE REFERENCE IS MO-203 VARIATION AB  
4311fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LTC4311  
TYPICAL APPLICATION  
Application Utilizing Low Current Shutdown  
V
V
CC  
CC  
LTC4311  
2.5V  
2.5V  
V
BUS1  
CC  
C1  
0.01μF  
R1  
10k  
R2  
10k  
ꢀNABLꢀ  
GND  
OFF ON  
BUS2  
2
I C  
SCL  
SDA  
CLK  
IN  
DATA  
IN  
CLK  
IN  
DATA  
IN  
CLK  
OUT  
DATA  
OUT  
CLK  
OUT  
DATA  
OUT  
DꢀVICꢀ 1  
DꢀVICꢀ N  
4311 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1380/LTC1393  
Single-ꢀnded 8-Channel/Differential 4-Channel Analog Low R : 35Ω Single-ꢀnded/70Ω Differential, ꢀxpandable to 32 Single or  
ON  
MUX with SMBus Interface  
16 Differential Channels  
LTC1427-50  
LTC1623  
Micropower, 10-Bit Current Output DAC with SMBus  
Interface  
Precision 50μA +/– 2.5% Tolerance Over Temperature, 4 Selectable SMBus  
Addresses, DAC Powers Up at Zero or Midscale  
Dual High Side Switch Controller with  
SMBus Interface  
8 Selectable Addresses/16 Channel Capability  
LTC1663  
SMBus Interface 10-Bit Rail-to-Rail Micropower DAC DNL < 0.75 LSB Max, 5-Lead SOT-23 Package  
2
LTC1694/LTC1694-1 SMBus Accelerator  
Improved SMBus/I C Rise-Time, ꢀnsures Data Integrity with Multiple  
2
SMBus/I C Devices  
LT1786F  
LTC1695  
LTC1840  
SMBus Controlled CCFL Switching Regulator  
1.25A, 200kHz, Floating or Grounded Lamp Configurations  
0.75Ω PMOS 180mA Regulator, 6-Bit DAC  
2
TM  
SMBus/ I C Fan Speed Controller in ThinSOT  
2
Dual I C Fan Speed Controller  
Two 100μA 8-Bit DACs, two Tach Inputs, Four GPIO  
LTC4300A-1/  
LTC4300A-2/  
LTC4300A-3  
Hot Swappable 2-Wire Bus Buffers  
-1: Bus Buffer with RꢀADY, ACC and ꢀNABLꢀ  
-2: Dual Supply Bus Buffer with RꢀADY and ACC  
-3: Dual Supply Bus Buffer with RꢀADY and ꢀNABLꢀ  
LTC4301  
Supply Independent Hot Swappable 2-Wire Bus Buffer Supply Independent  
LTC4301L  
Hot Swappable 2-Wire Bus Buffer with Low Voltage  
Level Translation  
Allows Bus Pull-Up Voltages as Low as 1V on SDAIN and SCLIN  
LTC4302-1/  
LTC4302-2  
Addressable 2-Wire Bus Buffer  
Address ꢀxpansion, GPIO, Software Controlled  
2
LTC4303/4  
LTC4305/6  
LTC4307  
Hot Swappable 2-Wire Bus Buffers with Stuck Bus  
Recovery  
Provides Automatic Clocking to Free Stuck I C Busses  
2 or 4-Channel, 2 Wire Bus Multiplexers with  
Capacitance Buffering  
2 or 4 Selectable Downstream Buses, Stuck Bus Disconnect, Rise Time  
Accelerators, Fault Reporting, +/– 10kV HBM ꢀSD Tolerance  
Low Offset Hot Swappable 2-Wire Bus Buffer with  
Stuck Bus Recovery  
60mV Buffer Offset with 30ms Stuck Bus Timeout  
ThinSOT is a trademark of Linear Technology Corporation  
4311fa  
LT 0408 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC4311IDC-TRMPBF

Low Voltage I2C/SMBus Accelerator
Linear

LTC4311IDC-TRPBF

Low Voltage I2C/SMBus Accelerator
Linear

LTC4311ISC6#TRMPBF

LTC4311 - Low Voltage I2C/SMBus Accelerator; Package: SC70; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4311ISC6-TRMPBF

Low Voltage I2C/SMBus Accelerator
Linear

LTC4311ISC6-TRPBF

Low Voltage I2C/SMBus Accelerator
Linear

LTC4312

2-Wire Bus Buffers with High Noise Margin
Linear

LTC4312CDE#PBF

LTC4312 - Pin-Selectable, 2-Channel, 2-Wire Multiplexer with Bus Buffers; Package: DFN; Pins: 14; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC4312IDE#PBF

LTC4312 - Pin-Selectable, 2-Channel, 2-Wire Multiplexer with Bus Buffers; Package: DFN; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4312IDE#TRPBF

LTC4312 - Pin-Selectable, 2-Channel, 2-Wire Multiplexer with Bus Buffers; Package: DFN; Pins: 14; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4312IMS#PBF

LTC4312 - Pin-Selectable, 2-Channel, 2-Wire Multiplexer with Bus Buffers; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4312IMS#TRPBF

LTC4312 - Pin-Selectable, 2-Channel, 2-Wire Multiplexer with Bus Buffers; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC4312_15

Pin-Selectable, 2-Channel, 2-Wire Multiplexer with Bus Buffers
Linear