LTC4413EDD2 [Linear]

Dual 2.6A, 2.5V to 5.5V Fast Ideal Diodes in 3mm × 3mm DFN; 双2.6A , 2.5V至5.5V的快速采用3mm × 3mm DFN封装理想二极管
LTC4413EDD2
型号: LTC4413EDD2
厂家: Linear    Linear
描述:

Dual 2.6A, 2.5V to 5.5V Fast Ideal Diodes in 3mm × 3mm DFN
双2.6A , 2.5V至5.5V的快速采用3mm × 3mm DFN封装理想二极管

模拟IC 二极管 信号电路 光电二极管
文件: 总16页 (文件大小:190K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4413-1/LTC4413-2  
Dual 2.6A, 2.5V to 5.5V  
Fast Ideal Diodes  
in 3mm × 3mm DFN  
FEATURES  
DESCRIPTION  
The LTC®4413-1 and LTC4413-2 each contain two mono-  
lithic ideal diodes, each capable of supplying up to 2.6A  
from input voltages between 2.5V and 5.5V. The ideal  
diodesusea100mΩP-channelMOSFETtoindependently  
connect INA to OUTA and INB to OUTB. During normal  
forward operation, the voltage drops across each of  
these diodes are regulated to as low as 18mV. Quiescent  
current is less than 80μA for diode currents up to 1A. If  
either of the output voltages exceeds its respective input  
voltage, that MOSFET is turned off and less than 1μA of  
reverse current flows from OUT to IN. Maximum forward  
current in each MOSFET is limited to a constant 2.6A and  
internal thermal limiting circuits protect the part during  
faultconditions.Aninternalovervoltageprotectionsensor  
detects when a voltage exceeds the LTC4413-2 absolute  
maximum voltage tolerance.  
2-Channel Ideal Diode OR’ing or Load Sharing  
Low Loss Replacement for PowerPathTM OR’ing  
Diodes  
Fast Response Replacement for LTC4413  
Low Forward On Resistance (140mΩ Max at 3.6V)  
Low Reverse Leakage Current  
Low Regulated Forward Voltage (18mV Typ)  
Overvoltage Protection Sensor with Drive Output for  
an External P-Channel MOSFET (LTC4413-2 Only)  
2.5V to 5.5V Operating Range  
2.6A Maximum Forward Current  
Internal Current Limit Protection  
Internal Thermal Protection  
Status Output to Indicate if Selected Channel is  
Conducting  
Programmable Channel On/Off  
Low Profile (0.75mm) 10-Lead 3mm × 3mm DFN  
Package  
Twoactive-highcontrolpinsindependentlyturnoffthetwo  
ideal diodes contained within the LTC4413-1/LTC4413-2.  
When the selected channel is reverse biased, or the  
LTC4413-1/LTC4413-2 is put into low power standby, the  
status signal is pulled low by an 11μA open drain.  
APPLICATIONS  
Battery and Wall Adapter Diode OR’ing in Handheld  
Products  
The LTC4413-1/LTC4413-2 are housed in a 10-lead 3mm  
× 3mm DFN package.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
PowerPath is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Backup Battery Diode OR’ing  
Power Switching  
USB Peripherals  
Uninterruptable Supplies  
TYPICAL APPLICATION  
Automatic Switchover from a Battery to a Wall Adapter  
FDR8508  
Power Loss vs Load  
700  
600  
V
CC  
WALL  
ADAPTER  
INPUT  
INA  
OUTA  
500  
470k  
STAT  
10μF  
LTC4413-1  
IDEAL  
0.1μF  
1Ω  
ENBA  
STAT  
400  
LTC4413-2  
GND  
OVI  
300  
1N5817  
ENBB  
INB  
OVP  
OUTB  
OVP  
200  
BAT  
TO LOAD  
+
4.7μF  
IDEAL  
100  
0
441312 TA01a  
0
500  
1000 1500 2000 2500 3000  
STAT IS HIGH WHEN WALL ADAPTER IS  
SUPPLYING LOAD CURRENT  
LOAD (mA)  
441312 TA01b  
OVP IS HIGH WHEN WALL ADAPTER VOLTAGE > 6V  
441312fb  
1
LTC4413-1/LTC4413-2  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
INA, INB, OUTA, OUTB, STAT,  
Storage Temperature Range................... –65°C to 125°C  
Continuous Power Dissipation..........................1500mW  
(Derate 25mW/°C Above 70°C)  
ENBA, ENBB Voltage.................................... –0.3V to 6V  
OVI, OVP Voltage ....................................... –0.3V to 13V  
Operating Temperature Range.................. –40°C to 85°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
INA  
ENBA  
GND  
ENBB  
INB  
1
2
3
4
5
10 OUTA  
INA  
ENBA  
GND  
ENBB  
INB  
1
2
3
4
5
10 OUTA  
9
8
7
6
STAT  
NC  
9
8
7
6
STAT  
OVI  
11  
11  
NC  
OVP  
OUTB  
OUTB  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 125°C, θ = 43°C/W  
T = 125°C, θ = 43°C/W  
JMAX JA  
JMAX  
JA  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC4413EDD1#PBF  
LTC4413EDD2#PBF  
LEAD BASED FINISH  
LTC4413EDD1  
TAPE AND REEL  
PART MARKING  
LCPP  
PACKAGE DESCRIPTION  
10-Lead (3mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC4413EDD1#TRPBF  
LTC4413EDD2#TRPBF  
TAPE AND REEL  
LCPQ  
10-Lead (3mm × 3mm) Plastic DFN  
PACKAGE DESCRIPTION  
–40°C to 85°C  
PART MARKING  
LCPP  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC4413EDD1#TR  
LTC4413EDD2#TR  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
LTC4413EDD2  
LCPQ  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 2, 6)  
SYMBOL  
PARAMETER  
CONDITIONS  
and/or V Must be in This Range for  
OUT  
MIN  
TYP  
MAX  
UNITS  
V , V  
IN OUT  
Operating Supply Range for Channel A or B  
V
2.5  
5.5  
V
IN  
Proper Operation  
UVLO  
UVLO Turn-On Rising Threshold  
UVLO Turn-Off Falling Threshold  
Max (V , V , V  
, V  
)
)
2.45  
V
V
INA INB OUTA OUTB  
Max (V , V , V  
, V  
1.7  
–1  
INA INB OUTA OUTB  
I
I
I
Quiescent Current in Forward Regulation,  
Measured via GND  
V
= 3.6V, I = 100mA, V = 0V,  
40  
2.5  
28  
58  
4.5  
36  
μA  
QF  
INA  
INB  
INA  
INB  
I
= 0mA (Note 3)  
Current Drawn from or Sourced into IN  
V
IN  
= 3.6V, V = 5.5V (Note 6)  
OUT  
μA  
μA  
QRIN  
QRGND  
when V  
is greater than V  
IN  
OUT  
Quiescent Current While in Reverse  
Turn-Off, Measured via GND  
V
V
= V = 0V, V  
STAT  
= V  
= 5.5V,  
INA  
INB  
OUTB  
OUTA  
= 0V  
441312fb  
2
LTC4413-1/LTC4413-2  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 2, 6)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Quiescent Current While in Reverse  
V
= V = 0V, V  
= 3.6V, V = 5.5V  
OUTB  
3.5  
6.5  
μA  
QROUTB  
QOFF  
INA  
INA  
INB  
OUTA  
Turn-Off. Current Drawn from V  
OUTB Supplies Chip Power  
when  
OUTA  
I
Quiescent Current with Both ENBA and  
ENBB High  
V
= V = 3.6V, V  
= V = 1V  
ENBB  
28  
38  
μA  
INB  
ENBA  
V
V
Reverse Turn-Off Voltage (V  
– V )  
V
V
= 3.6V  
= 3.6V  
–5  
10  
24  
mV  
mV  
RTO  
OUT  
IN  
IN  
Forward Voltage Drop (V – V  
)
OUT  
18  
100  
140  
11  
FWD  
IN  
IN  
at I  
= –1mA  
OUT  
R
R
On-Resistance, R  
Regulation  
V
IN  
V
IN  
V
IN  
= 3.6V, I = 100mA to –500mA (Note 5)  
OUT  
140  
200  
mΩ  
mΩ  
μs  
FWD  
ON  
FWD  
(Measured as ΔV/ΔI)  
On-Resistance, R Regulation  
= 3.6V, I = 1A (Note 5)  
ON  
IN  
(Measured as V/I at I = 1A)  
IN  
t
ON  
PowerPath Turn-On Time  
= 3.6V, from ENB Falling to I  
Ramp  
OUT  
Starting  
t
PowerPath Turn-Off Time  
V
= 3.6V, from ENB Rising with I = 100mA  
2
μs  
OFF  
IN  
IN  
Falling to 0mA  
Short-Circuit Response  
I
Current Limit  
V
V
= 3.6V (Note 5)  
1.8  
A
OC  
INA OR B  
I
Quiescent Current While in Overcurrent  
Operation  
= 3.6V, I  
= 1.8A (Note 5)  
OUT  
100  
130  
μA  
QOC  
INA OR B  
STAT Output  
I
I
t
t
STAT Off Current  
Shut Down  
–1  
7
0
1
μA  
μA  
μs  
μs  
SOFF  
SON  
STAT Sink Current  
V
IN  
V
IN  
V
IN  
> V , V < V , T < 135°C, I  
< I  
MAX  
11  
1.8  
0.8  
13  
OUT CTL  
IL  
J
OUT  
STAT Pin Current Turn-On Time  
STAT Pin Current Turn-Off Time  
= 3.6V, from ENB Falling  
= 3.6V, from ENB Rising  
S(ON)  
S(OFF)  
ENB Inputs  
V
V
V
ENB Inputs Rising Threshold Voltage  
ENB Inputs Falling Threshold Voltage  
ENB Input Hysteresis  
V
V
V
V
Rising  
Falling  
540  
460  
90  
600  
mV  
mV  
mV  
μA  
ENBIH  
ENBIL  
ENB  
400  
2
ENB  
= (V  
– V  
)
ENBHYST  
ENB  
ENBHYST  
ENBIH  
ENBIL  
I
ENB Inputs Pull-Down Current  
< V = 3.6V, V  
< V  
3
4
OUT  
IN  
ENB  
IL  
OVI Input (LTC4413-2 Only)  
V
V
V
OVI Input Rising Threshold Voltage  
OVI Input Falling Threshold Voltage  
OVI-OVP Voltage Drop  
V
OVI  
V
OVI  
V
OVI  
V
OVI  
Rising  
Falling  
5.9  
5.6  
100  
80  
6.2  
V
V
OVIH  
OVIL  
OVID  
OVI  
5.4  
= 8V, No Load at OVP  
= 8V  
mV  
μA  
I
OVI Bias Current  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC4413-1/LTC4413-2 are guaranteed to meet performance  
specifications from 0°C to 85°C. Specifications over the –40°C to  
85°C ambient operating temperature range are assured by design,  
characterization and correlation with statistical process controls.  
Note 4: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions.  
Overtemperature protection will become active at a junction temperature  
greater than the maximum operating temperature. Continuous operation  
above the specified maximum operating junction temperature may impair  
device reliability.  
Note 5: Specification is guaranteed by correlation to wafer-level  
measurements.  
Note 3: Quiescent current increases with diode current: refer to plot of  
Note 6: Unless otherwise specified, current into a pin is positive and  
current out of a pin is negative. All voltages referenced to GND.  
I
QF  
vs I  
.
OUT  
441312fb  
3
LTC4413-1/LTC4413-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
IQF vs ILOAD (Log)  
IQF vs ILOAD (Linear)  
IQF vs Temperature  
120  
120  
100  
80  
60  
40  
20  
0
120  
100  
120°C  
120°C  
80°C  
40°C  
0°C  
80°C  
40°C  
0°C  
100  
80  
1A  
80  
60  
500mA  
100mA  
–40°C  
–40°C  
60  
40  
1mA  
40  
20  
0
20  
0
1
10  
100  
LOAD (mA)  
1000  
10000  
0
500 1000 1500 2000 2500 3000  
LOAD (mA)  
–40  
0
40  
TEMPERATURE (°C)  
80  
120  
441312 G01  
441312 G02  
441312 G03  
IQF vs VIN  
IOC vs Temperature  
UVLO Thresholds vs Temperature  
3500  
3000  
2500  
2.20  
2.15  
2.10  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 1A  
QF  
RISING  
2000  
1500  
1000  
500  
0
2.05  
2.00  
1.95  
1.90  
1.85  
I
= 100mA  
QF  
FALLING  
4
4.5  
2
2.5  
3
3.5  
5
5.5  
6
0
40  
120  
0
40  
120  
–40  
80  
–40  
80  
V
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
IN  
441312 G04  
441312 G05  
441312 G06  
UVLO Hystersis vs Temperature  
ENB Thresholds vs Temperature  
ENB Hysteresis vs Temperature  
250  
600  
500  
120  
100  
80  
60  
40  
20  
0
200  
150  
ENBIH  
ENBIL  
400  
300  
100  
50  
0
200  
100  
0
60 80  
20 40  
TEMPERATURE (°C)  
–40 –20  
0
100 120  
40  
TEMPERATURE (°C)  
–40 –20  
0
20  
60 80 100 120  
–40  
0
40  
80  
120  
TEMPERATURE (°C)  
441312 G09  
441312 G07  
441312 G08  
441312fb  
4
LTC4413-1/LTC4413-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
RFWD vs VIN and ILOAD = 500mA  
VFWD and RFWD vs ILOAD (Linear)  
RFWD and VFWD vs ILOAD (Log)  
500  
400  
300  
200  
250  
200  
150  
100  
600  
500  
300  
250  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
120°C  
80°C  
40°C  
0°C  
120°C  
80°C  
40°C  
0°C  
–40°C  
–40°C  
V
400  
300  
200  
150  
FWD  
R
V
FWD  
FWD  
200  
100  
0
100  
50  
0
R
FWD  
100  
0
50  
0
0
1000 1500 2000 2500 3000  
LOAD (mA)  
1
10  
100  
LOAD (mA)  
1000  
10000  
500  
2
4
5
5.5  
2.5  
3
3.5  
4.5  
6
V
(V)  
IN  
441312 G11  
441312 G12  
441312 G10  
ILEAK vs Temperature at  
VREVERSE = 5.5V  
VFWD vs ILOAD (Log)  
RFWD vs Temperature  
1
250  
120  
100  
120°C  
80°C  
40°C  
0°C  
200  
150  
100  
50  
0.1  
100mA  
–40°C  
80  
60  
5.5V  
500mA  
0.01  
1A  
3.6V  
0.001  
40  
20  
0
0.0001  
0
0.00001  
1
10  
100  
1000  
10000  
–40  
0
40  
TEMPERATURE (°C)  
80  
120  
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
441312 G15  
LOAD (mA)  
441312 G13  
441312 G14  
Response to 800mA Load Step  
in <16μs  
ENB Turn-On, 30μs to Turn On  
with 180mA Load  
ILEAK vs VREVERSE  
100  
10  
120°C  
80°C  
40°C  
0°C  
CH1 = IN 100mV/DIV  
CH1 IN 1V/DIV  
CH2 OUT  
1V/DIV  
CH2 OUT  
100mV/DIV  
CH3 ENB  
1V/DIV  
1
–40°C  
0.1  
CH4 I  
OUT  
200mV/DIV  
0.01  
CH4 I  
OUT  
200mV/DIV  
0.001  
0.0001  
0.00001  
441312 G17  
441312 G18  
4μs/DIV  
10μs/DIV  
0
1
2
3
4
5
6
V
(V)  
REVERSE  
441312 G16  
441312fb  
5
LTC4413-1/LTC4413-2  
TYPICAL PERFORMANCE CHARACTERISTICS  
ENB Turn-Off, 2μs to Disconnect  
IN from 180mA Load  
Efficiency vs Load Current  
Power Loss vs Load Current  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
1000  
100  
10  
1
120°C  
80°C  
40°C  
0°C  
CH1 IN 1V/DIV  
CH2 OUT  
1V/DIV  
–40°C  
CH3 ENB  
1V/DIV  
CH4 I  
IN  
100mV/DIV  
120°C  
80°C  
40°C  
0°C  
441312 G19  
4μs/DIV  
–40°C  
0
1
10  
100  
1000  
10000  
1
10  
100  
1000  
10000  
LOAD (mA)  
LOAD (mA)  
441312 G20  
441312 G21  
Overvoltage Hysteresis vs  
Temperature (LTC4413-2 Only)  
OVI Current vs Voltage  
(LTC4413-2 Only)  
Overvoltage Thresholds vs  
Temperature (LTC4413-2 Only)  
140  
120  
6.4  
6.2  
6.0  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 25°C  
A
OVP RISING  
100  
80  
60  
40  
20  
5.8  
5.6  
5.4  
5.2  
5.0  
OVP FALLING  
0
0
8
12  
0
2
4
6
10  
0
40  
120  
–40  
80  
40  
–40  
0
80  
120  
V
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OVI  
441312 G24  
441312 G22  
441312 G23  
OVI-OVP Voltage Drop vs OVI  
Voltage (LTC4413-2 Only)  
IQ OVI vs Temperature  
(LTC4413-2 Only)  
OVI-OVP vs Temperature  
(LTC4413-2 Only)  
6
5
4
3
2
1
0
180  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
T
= 25°C  
A
I
OVI = 13V  
Q
V
= 13V  
OHOVP  
V
= 6.5V  
OHOVP  
I
Q
OVI = 6.5V  
60  
60  
40  
40  
20  
20  
0
0
40  
TEMPERATURE (°C)  
–40  
0
80  
120  
8
12  
0
2
4
6
10  
40 60  
TEMPERATURE (°C)  
–40 –20  
0
20  
80 100 120  
OVI (V)  
441312 G26  
441312 G25  
441312 G27  
441312fb  
6
LTC4413-1/LTC4413-2  
PIN FUNCTIONS  
INA(Pin1):PrimaryIdealDiodeAnodeandPositivePower  
Supply for LTC4413-1/LTC4413-2. Bypass INA with a ce-  
ramic capacitor of at least 1μF. (Series 1Ω snub resistors  
and higher valued capacitances are recommended when  
large inductances are in series with this input.) This pin  
can be grounded when not used. Limit slew rate on this  
pin to less than 2.5V/μs.  
OVP (Pin 7, LTC4413-2 Only): Drive Output for an Exter-  
nal OVP Switch PMOS Transistor (To Inhibit Overvoltage  
Wall Adapter Voltages from Damaging Device.) During  
overvoltage conditions, this output will remain high so  
long as an overvoltage condition persists. This pin must  
be left floating when not in use.  
OVI (Pin 8, LTC4413-2 Only): Sense Input for Overvoltage  
Protection Block. This pin can be left floating or grounded  
when not used.  
ENBA (Pin 2): Enable Low for Diode A. Pull this pin high  
to shut down this power path. Tie to GND to enable.  
Refer to Table 1 for mode control functionality. This pin  
can be left floating, a weak (3.5μA) pull-down internal to  
LTC4413-1/LTC4413-2 is included.  
STAT (Pin 9): Status Condition Indicator. Weak (11μA)  
pull-downcurrentoutput.Whenterminated,highindicates  
diode conducting. Refer to Table 2 for the operation of this  
pin. This pin can also be left floating or grounded.  
GND (Pin 3): Power Ground for the IC.  
ENBB (Pin 4): Enable Low for Diode B. Pull this pin high  
to shut down this power path. Tie to GND to enable.  
Refer to Table 1 for mode control functionality. This pin  
can be left floating, a weak (3.5μA) pull-down internal to  
LTC4413-1/LTC4413-2 is included.  
OUTA (Pin 10): Primary Ideal Diode Cathode and Output  
of the LTC4413-1/LTC4413-2. Bypass OUTA with a high  
(1mΩ min) ESR ceramic capacitor of at least 4.7μF. This  
pin must be left floating when not in use. Limit slew rate  
on this pin to less than 2.5V/μs.  
INB (Pin 5): Secondary Ideal Diode Anode and Positive  
PowerSupplyforLTC4413-1/LTC4413-2.BypassINBwitha  
ceramiccapacitorofatleast1μF.(Series1Ωsnubresistors  
and higher valued capacitances are recommended when  
large inductances are in series with this input.) This pin  
can be grounded when not used. Limit slew rate on this  
pin to less than 2.5V/μs.  
Exposed Pad (Pin 11): Signal Ground. This pin must be  
soldered to PCB ground to provide both electrical contact  
to ground and good thermal contact to PCB.  
OUTB (Pin 6): Secondary Ideal Diode Cathode and Output  
of the LTC4413-1/LTC4413-2. Bypass OUTB with a high  
(1mΩ min) ESR ceramic capacitor of at least 4.7μF. This  
pin must be left floating when not in use. Limit slew rate  
on this pin to less than 2.5V/μs.  
441312fb  
7
LTC4413-1/LTC4413-2  
BLOCK DIAGRAM  
OUTA  
AENA  
INA  
1
10  
+
OVER CURRENT  
+
PA  
OVER TEMP  
UVLO  
ENA  
ENB  
OUTA (MAX)  
OUTB (MAX)  
BENA  
STAT  
+
OVER TEMP  
STB  
V
GATEA  
V
OFF  
+
9
0.5V  
AENA  
ENA  
ENBA  
A
2
+
3μA  
11μA  
GND  
INB  
3
5
OUTB  
6
+
OVER CURRENT  
+
PB  
LTC4413-2 ONLY  
OVERVOLTAGE PROTECTION  
OVI  
+
8
7
V
GATEB  
V
OFF  
+
+
0.5V  
OVP  
BENA  
ENB  
ENBB  
B
4
6V  
+
3μA  
441312 BD  
441312fb  
8
LTC4413-1/LTC4413-2  
OPERATION  
TheLTC4413-1/LTC4413-2aredescribedwiththeaidofthe  
BlockDiagram.Operationbeginswhenthepowersourceat  
maintain the output voltage, V  
, just below the input  
OUTB  
voltage V . If this alternate supply, V , exceeds the  
INB  
INB  
voltage at V , the LTC4413-1/LTC4413-2 selects this  
V
or V rises above the undervoltage lockout (UVLO)  
INB  
INA  
INA  
input voltage as the internal supply (V ). This second  
voltageof2.4VandthecorrespondingcontrolpinENBAor  
ENBB is low. If only the voltage at the V pin is present,  
DD  
ideal diode operates independently of the first ideal diode  
INA  
function.  
the internal power source (V ) is supplied from the V  
DD  
INA  
pin. The amplifier (A) pulls a current proportional to the  
difference between V and V from the gate (V  
When an alternate power source is connected to the load  
)
GATEA  
INA  
OUTA  
at V  
(or V  
), the LTC4413-1/LTC4413-2 sense the  
OUTA  
OUTB  
of the internal PFET (PA), driving this gate voltage below  
increased voltage at V  
voltage V  
, and amplifier A increases the  
OUTA  
V
. This turns on PA. As V pulls up to a forward  
INA  
OUTA  
, reducing the current through PA. When  
GATEA  
voltage drop (V ) of 15mV below V , the LTC4413  
FWD  
INA  
V
is higher than V + V , V  
will be pulled up  
OUTA  
INA  
RTO GATEA  
regulates V  
to maintain the small forward voltage  
GATEA  
to V , turning off PA. The internal power source for the  
DD  
drop. The system is now in forward regulation and the  
load at V is powered from the supply at V . As the  
LTC4413-1/LTC4413-2 (V ) then diverts to draw current  
DD  
OUTA  
INA  
from the V  
pin, only if V  
is larger than V (or  
OUTA INB  
OUTA  
load current varies, V  
is controlled to maintain V  
GATEA  
FWD  
V
). The system is now in the reverse turn-off mode.  
OUTB  
until the load current exceeds the transistor’s (PA) ability  
Power to the load is being delivered from an alternate  
supply, and only a small current (I ) is drawn from or  
to deliver the current as V  
approaches GND. At this  
GATEA  
LEAK  
point, the PFET behaves as a fixed resistor, R , whereby  
ON  
sourced to V to sense the potential at V  
.
INA  
INA  
the forward voltage increases slightly with increased load  
When the selected channel of the LTC4413-1/LTC4413-2  
is in reverse turn-off mode or both channels are disabled,  
current. As the magnitude of I  
increases further, (such  
OUT  
that I  
> I ) the LTC4413-1/LTC4413-2 fixes the load  
LOAD OC  
the STAT pin sinks 11μA of current (I ) if connected.  
current to the constant value I to protect the device.  
SON  
OC  
The characteristics for parameters R , R , V  
and  
FWD ON FWD  
Channel selection is accomplished using the two ENB  
pins, ENBA and ENBB. When the ENBA input is asserted  
I
OC  
are specified with the aid of Figure 1, illustrating the  
LTC4413-1/LTC4413-2 forward voltage drop versus that  
(high), PA has its gate voltage pulled to V , turning off  
DD  
of a Schottky.  
PA. A 3.5μA pull-down current on the ENB pins ensures  
a low level at these inputs if left floating.  
If another supply is provided at V , the LTC4413-1/  
INB  
LTC4413-2 likewise regulate the gate voltage on PB to  
I
OC  
LTC4413-1  
LTC4413-2  
SLOPE: 1/R  
ON  
I
FWD  
1N5817  
SLOPE: 1/R  
FWD  
0
0
V
FWD  
FORWARD VOLTAGE (V)  
441312 TA01b  
Figure 1. The LTC4413 vs the 1N5817  
441312fb  
9
LTC4413-1/LTC4413-2  
OPERATION  
Overcurrent and Short-Circuit Protection  
Overvoltage Protection for more information on using the  
overvoltage protection function within the LTC4413-2.  
Duringanovercurrentcondition,theoutputvoltagedroops  
as the load current exceeds the amount of current that  
the LTC4413-1/LTC4413-2 can supply. At the time when  
an overcurrent condition is first detected, the LTC4413-1/  
LTC4413-2 take some time to detect this condition before  
Channel Selection and Status Output  
Twoactive-highcontrolpinsindependentlyturnoffthetwo  
ideal diodes contained within the LTC4413-1/LTC4413-2,  
controlling the operation mode as described by Table 1.  
When the selected channel is reverse biased, or the  
LTC4413-1/LTC4413-2 is put into low power standby, the  
status signal indicates this condition with a low voltage.  
reducing the current to I . For short durations after the  
OC  
output is shorted, until TOC, the current may exceed I .  
OC  
The magnitude of this peak short-circuit current can be  
large depending on the load current immediately before  
the short circuit occurs. During overcurrent operation, the  
powerconsumptionoftheLTC4413-1/LTC4413-2islarge,  
and is likely to cause an overtemperature condition as the  
internal die temperature exceeds the thermal shutdown  
temperature.  
Table 1: Mode Control  
ENB1  
ENB2 STATE  
Low  
Low  
Diode’OR NB: The Two Outputs are not Connected  
Internal to the Device  
Low  
High  
High  
High  
Low  
High  
Diode A = ENABLED, Diode B = DISABLED  
Diode A = DISABLED, Diode B = ENABLED  
All Off (Low Power Standby)  
Overtemperature Protection  
The overtemperature condition is detected when the  
internal die temperature increases beyond 150°C. An  
overtemperature condition will cause the gate amplifiers  
(A and B) as well as the two P-channel MOSFETs (PA  
and PB) to shut off. When the internal die temperature  
cools to below 140°C, the amplifiers turn on and the  
LTC4413-1/LTC4413-2 reverts to normal operation. Note  
that prolonged operation under overtemperature condi-  
tions degrades reliability.  
The function of the STAT pin depends on the mode that  
has been selected. Table 2 describes the STAT pin output  
current, as a function of the mode selected as well as the  
conduction state of the two diodes.  
Table 2: STAT Output Pin Function  
ENB1  
ENB2 CONDITIONS  
STAT  
Low  
Low  
Diode A Forward Bias,  
Diode B Forward Bias  
I
= 0μA  
SNK  
Diode A Forward Bias,  
Diode B Reverse Bias  
I
I
I
I
I
I
I
I
= 0μA  
SNK  
SNK  
SNK  
SNK  
SNK  
SNK  
SNK  
SNK  
Overvoltage Protection (LTC4413-2 Only)  
Diode A Reverse Bias,  
Diode B Forward Bias  
= 11μA  
= 11μA  
= 0μA  
An overvoltage condition is detected whenever the  
overvoltage input (OVI) pin is pulled above 6V. The con-  
dition persists until the OVI voltage falls below 5.6V. The  
overvoltage protection (OVP) output is low unless an  
overvoltageconditionisdetected. Ifanovervoltagecondi-  
tion is present, the OVP output is pulled up to the voltage  
applied to the OVI input. This output signal can be used to  
enable or disable an external PFET that is placed between  
the input that is the source of the excessive voltage and  
the input to the LTC4413-2, thus eliminating the potential  
damage that may occur to the LTC4413-2 if its input volt-  
age exceeds the absolute maximum voltage of 6V. See  
the Applications Information section Dual Battery Load  
Sharing with Automatic Switchover to a Wall Adapter with  
Diode A Reverse Bias,  
Diode B Reverse Bias  
Low  
High  
High  
High  
Low  
High  
Diode A Forward Bias,  
Diode B Disabled  
Diode A Reverse Bias,  
Diode B Disabled  
= 11μA  
= 0μA  
Diode A Disabled,  
Diode B Forward Bias  
Diode A Disabled,  
Diode B Reverse Bias  
= 11μA  
= 11μA  
Diode A Disabled,  
Diode B Disabled  
441312fb  
10  
LTC4413-1/LTC4413-2  
APPLICATIONS INFORMATION  
Introduction  
the gate voltage of MP2, causing it to conduct. This status  
signal can be used to provide information as to whether  
the wall adapter (or BATB) is supplying the load current.  
If the wall adapter voltage exceeds the OVI trip threshold  
The LTC4413-1/LTC4413-2 are intended for power control  
applications that include low loss diode OR’ing, fully auto-  
matic switchover from a primary to an auxiliary source of  
power, microcontroller controlled switchover from a pri-  
marytoanauxiliarysourceofpower,loadsharingbetween  
two or more batteries, charging of multiple batteries from  
a single charger and high side power switching.  
(V  
) then the wall adapter is disconnected via the  
OVIH  
external PFET, MP1. The OVI voltage can be monitored  
(through a voltage divider if necessary) to determine if  
an overvoltage condition is present.  
Capacitor C2 is required to dynamically pull up on the  
gate of PFET MP1 if a fast edge occurs at the wall adapter  
input during a hot plug. In the event that capacitor C2 (or  
the gate-to-source of MP1) is precharged below the OVI  
rising threshold. When a high voltage spike occurs, the  
OVP output cannot guarantee turning off MP1 before the  
load voltage exceeds the absolute maximum voltage for  
the LTC4413-2. This may occur in the event that the wall  
adapter suddenly steps from 5.5V to a much higher value.  
In this case, a zener diode is recommended to keep the  
output voltage to a safe level.  
Dual Battery Load Sharing With Automatic Switchover  
to a Wall Adapter With Overvoltage Protection  
(LTC4413-2 Only)  
An application circuit for dual battery load sharing with  
automatic switchover of load from batteries to a wall  
adapter is shown in Figure 2. When the wall adapter is not  
present,whicheverbatteryhasthehighervoltageprovides  
theloadcurrentuntilithasdischargedtothevoltageofthe  
other battery. The load is shared between the two batter-  
ies according to the capacity of each battery. The higher  
capacity battery provides proportionally higher current to  
the load. When a wall adapter input is applied, the output  
voltage rises as the body diode in MP2 conducts. When  
the output voltage is larger than the battery voltages, the  
LTC4413 turns off and very little load current is drawn  
from the batteries. At this time, the STAT pin pulls down  
Automatic PowerPath Control  
Figure 3 illustrates an application circuit for microcon-  
troller monitoring and control of two power sources. The  
microcontroller’s analog inputs (perhaps with the aid of  
a resistor voltage divider) monitor each supply input and  
theLTC4413-1status,andthencommandstheLTC4413-1  
through the two ENBA/ENBB control inputs.  
MP1  
MP2  
IRLML6402 IRLML6402  
WALL  
ADAPTER  
INPUT  
R
STAT  
C1  
470k  
0.10μF  
MICROCONTROLLER  
JACK  
R1  
1Ω  
C2  
10nF  
OPTIONAL  
6.2V  
PRIMARY  
POWER  
1
2
10  
9
INA  
OUTA  
STAT  
DFLZ6V2-7  
LOAD  
BATA  
+
INA  
OUTA  
1
2
10  
9
C
SOURCE  
A
TO LOAD  
IDEAL  
10μF  
ENBA  
STAT  
IDEAL  
R
A
1Ω  
LTC4413-1  
ENBA  
STAT  
LTC4413-2  
3
4
R
GND  
STAT  
10nF  
3
4
8
7
470k  
GND  
OVI  
STAT  
OVP  
ENBB  
INB  
AUXILIARY  
POWER  
SOURCE  
ENBB  
INB  
OVP  
OUTB  
5
OUTB  
6
441312 F02  
BATB  
+
C1  
4.7μF  
5
6
C
10μF  
B
IDEAL  
C1: C1206C106K8PAC  
C2: C0403C103K8PAC  
OUT  
C
OUT  
4.7μF  
441312 F03  
IDEAL  
R
B
1Ω  
C
: C1206C475K8PAC  
Figure 2  
Figure 3  
441312fb  
11  
LTC4413-1/LTC4413-2  
APPLICATIONS INFORMATION  
Automatic Switchover from a Battery to an Auxiliary  
the LTC4413-2 reconnects the load to AUX (or BAT).  
Supply, or a Wall Adapter with Overvoltage Protection  
Capacitor C2 is required to dynamically pull up on the  
gate of MP1 if a fast edge occurs at the wall adapter input  
during a hot plug. If the wall adapter voltage is precharged  
when an overvoltage spike occurs, the OVP voltage may  
not discharge capacitor C2 in time to protect the output.  
In this event, a zener diode is recommended to protect  
the output node until MP1 is turned off.  
Figure4illustratesanapplicationcircuitwheretheLTC4413-  
2 is used to automatically switch over between a battery,  
an auxiliary power supply and a wall adapter. When the  
battery is supplying load current, OVP is at GND and STAT  
is high. If a higher supply is applied to AUX, the BAT will  
be disconnected from the load and the load is powered  
from AUX. When a wall adapter is applied, the body diode  
ofMP2forwardbiases. Whentheloadvoltageexceedsthe  
AUX (or BAT) voltage, the LTC4413-2 senses this higher  
voltage and disconnects AUX (or BAT) from the load. At  
the same time it pulls the STAT voltage to GND, thereby  
turningonMP2. Theloadcurrentisnowsuppliedfromthe  
wall adapter. If the wall adapter voltage exceeds the OVI  
rising threshold, the OVP voltage rises and turns off MP1,  
disconnecting the wall adapter from the load. The output  
voltage collapses down to the AUX (or BAT) voltage and  
Multiple Battery Charging  
Figure5illustratesanapplicationcircuitforautomaticdual  
battery charging from a single charger. Whichever battery  
has the lower voltage will receive the larger charging cur-  
rent until both battery voltages are equal, then both are  
charged.Whilebothbatteriesarechargingsimultaneously,  
the higher capacity battery gets proportionally higher cur-  
rent from the charger. For Li-Ion batteries, both batteries  
achieve the float voltage minus the forward regulation  
voltage of 15mV. This concept can apply to more than  
two batteries. The STAT pin provides information as to  
when the battery at OUTA is being charged. For intelligent  
control, the ENBA/ENBB input pins can be used with a  
microcontroller as shown in Figure 3.  
MP1  
MP2  
IRLML6402 IRLML6402  
WALL  
ADAPTER  
INPUT  
C1  
0.10μF  
JACK  
R1  
1Ω  
C2  
10nF  
OPTIONAL  
Automatic Switchover from a Battery to a Wall  
6.2V  
DFLZ6V2-7  
INA  
OUTA  
OVI  
1
3
4
10  
8
BATTERY  
CHARGER  
INPUT  
INA  
OUTA  
10  
TO LOAD  
1
2
+
LOAD  
BAT1  
+
V
IDEAL  
CC  
BAT  
IDEAL  
GND  
ENBA  
LTC4413-2  
470k  
7
9
LTC4413-1  
R
STAT IS HIGH  
WHEN BAT1 IS  
CHARGING  
STAT  
3
4
9
6
ENBB  
OVP  
STAT  
OUTB  
OVP  
560k  
STAT  
GND  
ENBB  
INB  
10nF  
INB  
5
2
6
STAT  
OUTB  
5
AUX  
LOAD  
470k  
IDEAL  
+
C
OUT  
IDEAL  
C1: C1206C106K8PAC  
C2: C0403C103K8PAC  
BAT2  
4.7μF  
ENBA  
441312 F04  
470k  
C
OUT  
: C1206C475K8PAC  
441312 F05  
Figure 4  
Figure 5  
441312fb  
12  
LTC4413-1/LTC4413-2  
APPLICATIONS INFORMATION  
Adapter and Charger with Overvoltage Protection  
the LTC4413-2 and the LTC4059 from potentially hazard-  
ousvoltages. Whenthisoccurs, theloadvoltagecollapses  
until it is below the BAT voltage causing the STAT voltage  
to rise, disabling the battery charger. At the same time,  
the LTC4413-2 automatically reconnects the battery to the  
load. One major benefit of this circuit is that when a wall  
adapter is present, the user may remove the battery and  
replace it without disrupting the load.  
Figure6illustratestheLTC4413-2performingthefunction  
of automatically switching a load over from a battery to a  
wall adapter while controlling an LTC4059 battery charger.  
When no wall adapter is present, the LTC4413-2 connects  
the load at OUTA from the Li-Ion battery at INA. In this  
condition, the STAT voltage is high, thereby disabling  
the battery charger. If a wall adapter of a higher voltage  
than the battery is connected to MP1 (but below the OVI  
threshold), the load voltage rises as the second ideal di-  
ode conducts. As soon as the OUTA voltage exceeds the  
INA voltage, the BAT is disconnected from the load and  
the STAT voltage falls, turning on the LTC4059 battery  
charger and beginning a charge cycle. If a high voltage  
wall adapter is inadvertently attached above the OVI rising  
threshold, the OVP pin voltage rises, disconnecting both  
Capacitor C2 is required to dynamically pull up on the  
gate of MP1 if a fast edge occurs at the wall adapter input  
during a hot plug. If the wall adapter voltage is precharged  
when an overvoltage spike occurs, the OVP voltage may  
not discharge capacitor C2 in time to protect the output.  
In this event, a zener diode is recommended to protect  
the output node until MP1 is turned off.  
Soft-Start Overvoltage Protection  
STAT  
9
STAT  
R
STAT  
560k  
INA  
OUTA  
10  
1
2
TO  
LOAD  
ENB  
BAT  
IDEAL  
LTC4059  
+
ENBA  
LTC4413-2  
ENBB  
V
PROG  
Li-Ion  
100k  
CC  
4
3
MP1  
IRLML6402  
Li/CC GND  
GND  
INB  
OUTB  
5
6
WALL  
ADAPTER  
INPUT  
D1  
OPTIONAL  
DFLZ6V2-7  
C
OUT  
C1  
10μF  
1μF  
IDEAL  
4.7μF  
JACK  
OVP  
OVI  
C2  
10nF  
441312 F06  
Figure 6  
441312fb  
13  
LTC4413-1/LTC4413-2  
APPLICATIONS INFORMATION  
In the event that a low power external PFET is used for  
the external overvoltage protection device, care must be  
taken to limit the power dissipation in the external PFET.  
The operation of this circuit is identical to the “Automatic  
Switchover from a Battery to a Wall Adapter” application  
shown on the first page of this data sheet. Here, however,  
the ideal diode from INA to INB is disabled by pulling up  
on ENBA whenever an overvoltage condition is detected.  
This channel is turned-off using a resistor connected to  
OVP along with a 5.6V zener diode, ensuring the absolute  
maximum voltage at ENBA is not exceeded during an  
overvoltage event. When the overvoltage condition ends,  
the OVP voltage drops slowly, depending on the gate  
charge of the external PFET. This causes the external PFET  
to linger in a high R  
region where it can dissipate  
DS(ON)  
a significant amount of heat depending on the load cur-  
rent. To avoid dissipating heat in the external PFET, this  
application delays turning on the ideal diode from INA to  
OUTA, until the gate voltage of the external PFET drops  
below V  
, where the external PFET should safely be  
ENBIL  
out of the high R  
region. This soft-start scheme can  
DS(ON)  
be used on either channel of the LTC4413-2.  
FDR8508  
WALL  
INA  
OUTA  
STAT  
ADAPTER  
INPUT  
C1  
10μF  
D1  
IDEAL  
OPTIONAL  
C2  
10nF  
V
CC  
R
STAT  
R
ENBA  
470k  
0.1μF  
560k  
STAT  
ENBA  
LTC4413-2  
GND  
D2  
5.6V  
1Ω  
OVI  
ENBB  
INB  
OVP  
OUTB  
OVP  
BAT  
+
TO LOAD  
C
OUT  
IDEAL  
4.7μF  
441312 F07  
C1: C0805C106K8PAC  
C2: C0403C103K8PAC  
OUT  
STAT IS HIGH WHEN WALL ADAPTER IS  
SUPPLYING LOAD CURRENT  
OVP IS HIGH WHEN WALL ADAPTER  
VOLTAGE > 6V  
C
: C1206C475K8PAC  
Figure 7  
441312fb  
14  
LTC4413-1/LTC4413-2  
PACKAGE DESCRIPTION  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
441312fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC4413-1/LTC4413-2  
TYPICAL APPLICATION  
Automatic Switchover from a Battery to a Wall Adapter with Soft-Start Overvoltage Protection  
FDR8508  
WALL  
ADAPTER  
INPUT  
INA  
OUTA  
C1  
10μF  
D1  
OPTIONAL  
IDEAL  
C2  
10nF  
V
CC  
R
STAT  
R
ENBA  
470k  
0.1μF  
560k  
STAT  
ENBA  
STAT  
D2  
5.6V  
1Ω  
LTC4413-2  
GND  
OVI  
ENBB  
INB  
OVP  
OUTB  
OVP  
BAT  
+
TO LOAD  
C
OUT  
IDEAL  
4.7μF  
441312 F07  
C1: C0805C106K8PAC  
C2: C0403C103K8PAC  
OUT  
STAT IS HIGH WHEN WALL ADAPTER IS  
SUPPLYING LOAD CURRENT  
OVP IS HIGH WHEN WALL ADAPTER  
VOLTAGE > 6V  
C
: C1206C475K8PAC  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1558/LTC1559  
Backup Battery Controller with Programmable Output  
Adjustable Backup Voltage from 1.2V NiCd Button Cell, Includes Boost  
Converter  
LTC1998  
LTC4054  
2.5μA, 1% Accurate Programmable Battery Detector  
Adjustable Trip Voltage/Hysteresis, ThinSOTTM  
800mA Standalone Linear Li-Ion Battery Charger with  
Thermal Regulation in ThinSOT  
No External MOSFET, Sense Resistor or Blocking Diode Required,  
Charge Current Monitor for Gas Guaging, C/10 Charge Termination  
LTC4350  
LTC4411  
Hot Swappable Load Share Controller  
Allows N + 1 Redundant Supply, Equally Loads Multiple Power  
Supplies Connected in Parallel  
2.6A Low Loss Ideal Diode in ThinSOT  
No External MOSFET, Automatic Switching Between DC sources,  
Simplified Load Sharing  
LTC4412/LTC4412HV PowerPath Controller in ThinSOT  
More Efficient than Diode OR’ing, Automatic Switching Between DC  
Sources, Simplified Load Sharing, 3V ≤ V ≤ 28V, 3V ≤ V ≤ 36V (HV)  
IN  
IN  
LTC4413  
LTC4414  
Dual 2.6A, 2.5V to 5.5V, Ideal Diodes in 3mm × 3mm DFN Lower Quiescent Current with Slower Response Time  
36V, Low Loss PowerPath Controller for Large PFETs  
Drives Large Q PFETs, Very Low Loss Replacement for Power Supply  
G
O’Ring Diodes, 3.5V to 36V AC/DC Adapter Voltage Range, 8-Lead  
MSOP Package  
ThinSOT is a trademark of Linear Technology Corporation.  
441312fb  
LT 0907 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY