LTC4440ES6-5#TR [Linear]

LTC4440-5 - High Speed, High Voltage, High Side Gate Driver; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C;
LTC4440ES6-5#TR
型号: LTC4440ES6-5#TR
厂家: Linear    Linear
描述:

LTC4440-5 - High Speed, High Voltage, High Side Gate Driver; Package: SOT; Pins: 6; Temperature Range: -40°C to 85°C

驱动器 栅极 栅极驱动
文件: 总12页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC4440-5  
High Speed, High Voltage,  
High Side Gate Driver  
U
FEATURES  
DESCRIPTIO  
The LTC®4440-5 is a high frequency high side N-channel  
MOSFET gate driver that is designed to operate in applica-  
tions with VIN voltages up to 60V. The LTC4440-5 can also  
withstand and continue to function during 80V VIN tran-  
sients. The powerful driver capability reduces switching  
losses in MOSFETs with high gate capacitances. The  
LTC4440-5’spull-uphasapeakoutputcurrentof1.1Aand  
its pull-down has an output impedance of 1.85.  
Wide Operating VIN Range: Up to 60V  
Rugged Architecture Tolerant of 80V VIN Transients  
Powerful 1.85Driver Pull-Down (with 6V Supply)  
Powerful 1.1A Peak Current Driver Pull-Up  
(with 6V Supply)  
7ns Fall Time Driving 1000pF Load  
10ns Rise Time Driving 1000pF Load  
Drives Standard Threshold MOSFETs  
TTL/CMOS Compatible Inputs with Hysteresis  
The LTC4440-5 features supply independent TTL/CMOS  
compatible input thresholds with 350mV of hysteresis.  
The input logic signal is internally level-shifted to the  
bootstrapped supply, which may function at up to 95V  
above ground.  
Input Thresholds are Independent of Supply  
Undervoltage Lockout  
Low Profile (1mm) SOT-23 (ThinSOTTM) and  
Thermally EnhanUced 8-Pin MSOP Packages  
APPLICATIO S  
The LTC4440-5 is optimized for driving (5V) logic level  
FETs and contains an undervoltage lockout circuit that  
disables the external MOSFET when activated.  
Telecommunications Power Systems  
Distributed Power Architectures  
The LTC4440-5 is available in the low profile (1mm)  
SOT-23 or a thermally enhanced 8-lead MSOP package.  
Server Power Supplies  
High Density Power Modules  
General Purpose Low-Side Driver  
PARAMETER  
LTC4440-5  
60V  
LTC4440  
80V  
, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a  
trademark of Linear Technology Corporation. All other trademarks are the property of their  
respective owners. Protected by U.S. Patents including 6677210.  
Max Operating TS  
Absolute Max TS  
80V  
100V  
MOSFET Gate Drive  
4V to 15V  
3.2V  
8V to 15V  
6.3V  
+
V
V
UV  
UV  
CC  
CC  
3.04V  
6.0V  
U
TYPICAL APPLICATIO  
Synchronous Phase-Modulated Full-Bridge Converter  
LTC4440-5 Driving a 1000pF Capacitive Load  
V
IN  
36V TO 60V  
V
CC  
4V TO 15V  
LTC4440-5  
TG-TS  
2V/DIV  
V
CC  
BOOST  
TG  
INP  
GND  
TS  
INP  
2V/DIV  
LTC4440-5  
V
CC  
BOOST  
TG  
LTC3722-1  
INP  
4440-5 TA02  
50ns/DIV  
GND  
TS  
V
= BOOST-TS = 5V  
CC  
4440 TA01  
44405fa  
1
LTC4440-5  
W W  
U W  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
TS Voltage (100ms)..................................... 5V to 80V  
Peak Output Current < 1µs (TG) ............................... 4A  
Operating Ambient Temperature Range  
(Note 2) .............................................. 40°C to 85°C  
Junction Temperature (Note 3)............................ 125°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
Supply Voltage  
VCC ....................................................... 0.3V to 15V  
BOOST – TS ......................................... 0.3V to 15V  
INP Voltage............................................... 0.3V to 15V  
BOOST Voltage (Continuous) ................... 0.3V to 85V  
BOOST Voltage (100ms) .......................... 0.3V to 95V  
TS Voltage (Continuous) ............................. 5V to 70V  
U
W U  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
TOP VIEW  
INP  
GND  
1
2
3
4
8 TS  
7 TG  
6 BOOST  
5 NC  
V
1
6 BOOST  
5 TG  
CC  
9
V
GND 2  
INP 3  
CC  
GND  
4 TS  
MS8E PACKAGE  
8-LEAD PLASTIC MSOP  
S6 PACKAGE  
6-LEAD PLASTIC SOT-23  
TJMAX = 125°C, θJA = 40°C/W (NOTE 4)  
EXPOSED PAD IS GND (PIN 9), MUST BE SOLDERED TO PCB  
TJMAX = 125°C, θJA = 230°C/W  
MS8E PART MARKING  
LTBRG  
S6 PART MARKING  
LTBRF  
ORDER PART NUMBER  
ORDER PART NUMBER  
LTC4440ES6-5  
LTC4440EMS8E-5  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating  
= 6V, V = GND = 0V, unless otherwise noted.  
temperature range, otherwise specifications are at T = 25°C. V = V  
A
CC  
BOOST  
TS  
SYMBOL PARAMETER  
Main Supply (V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
CC  
I
DC Supply Current  
Normal Operation  
UVLO  
VCC  
INP = 0V  
200  
18  
325  
40  
µA  
µA  
V
CC  
< UVLO Threshold (Falling) – 0.1V  
UVLO  
Undervoltage Lockout Threshold  
V
V
Rising  
Falling  
2.75  
2.60  
3.20  
3.04  
160  
3.65  
3.50  
V
V
mV  
CC  
CC  
Hysteresis  
Bootstrapped Supply (BOOST – TS)  
I
DC Supply Current  
Normal Operation  
BOOST  
INP = 0V  
INP = 6V  
0
310  
µA  
µA  
450  
Input Signal (INP)  
V
V
V
High Input Threshold  
Low Input Threshold  
Input Voltage Hysteresis  
Input Pin Bias Current  
INP Ramping High  
INP Ramping Low  
1.2  
0.8  
1.6  
2
V
V
IH  
IL  
1.25  
1.6  
– V  
0.350  
±0.01  
V
IH  
IL  
I
±2  
µA  
INP  
44405fa  
2
LTC4440-5  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating  
= 6V, V = GND = 0V, unless otherwise noted.  
temperature range, otherwise specifications are at T = 25°C. V = V  
A
CC  
BOOST  
TS  
SYMBOL PARAMETER  
Output Gate Driver (TG)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Output Voltage  
I
I
= –10mA, V = V  
– V  
TG  
0.7  
185  
1.1  
V
mV  
A
OH  
OL  
TG  
TG  
OH  
BOOST  
Low Output Voltage  
= 100mA  
275  
I
Peak Pull-Up Current  
Output Pull-Down Resistance  
0.75  
PU  
R
1.85  
2.75  
DS  
Switching Timing  
t
Output Rise Time  
10% – 90%, C = 1nF  
10  
100  
ns  
ns  
r
L
10% – 90%, C = 10nF  
L
t
Output Fall Time  
10% – 90%, C = 1nF  
7
70  
ns  
ns  
f
L
10% – 90%, C = 10nF  
L
t
t
Output Low-High Propagation Delay  
Output High-Low Propagation Delay  
35  
33  
65  
65  
ns  
ns  
PLH  
PHL  
Note 3: T is calculated from the ambient temperature T and power  
dissipation PD according to the following formula:  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
J
A
T = T + (PD • θ °C/W)  
Note 4: Failure to solder the exposed back side of the MS8E package to  
the PC board will result in a thermal resistance much higher than 40°C/W.  
Note 2: The LTC4440-5 is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
J
A
JA  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V
Supply Quiescent Current  
BOOST-TS Supply Quiescent  
Current vs Voltage  
Output Low Voltage (V  
)
OL  
CC  
vs Voltage  
vs Supply Voltage  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
INP = V  
CC  
INP = GND  
INP = V  
CC  
200  
150  
100  
50  
0
0
0
10  
5
SUPPLY VOLTAGE (V)  
15  
3
4
7
8
9
10 11 12 13 14 15  
0
5
10  
5
6
0
15  
BOOST-TS SUPPLY VOLTAGE (V)  
V
CC  
BOOST-TS SUPPLY VOLTAGE (V)  
4440-5 G01  
4440-5 G03  
4440-5 G02  
44405fa  
3
LTC4440-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output High Voltage (V  
vs Supply Voltage  
)
Input (INP) Thresholds  
vs Supply Voltage  
OH  
2MHz Operation  
16  
14  
12  
10  
8
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
INPUT  
(INP)  
V
IH  
5V/DIV  
I
= 1mA  
V
IL  
TG  
I
= 10mA  
TG  
I
= 100mA  
TG  
OUTPUT  
(TG)  
5V/DIV  
6
4
4440-5 G07  
250ns/DIV  
= BOOST-TS = 12V  
2
V
CC  
0
9
10  
4
5
6
7
8
11 12 13 14 15  
4
5
6
7
8
9
10 11 12 13 14 15  
BOOST-TS SUPPLY VOLTAGE (V)  
V
SUPPLY VOLTAGE (V)  
CC  
4440-5 G04  
4440-5 G05  
BOOST-TS Quiescent Current  
vs Temperature  
V
Supply Current  
V
Undervoltage Lockout  
CC  
CC  
vs Temperature  
Thresholds vs Temperature  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
250  
200  
400  
350  
300  
250  
200  
150  
100  
50  
INP = GND  
RISING  
INP = V  
CC  
150  
FALLING  
100  
50  
0
0
–55 –35 –15  
5
25 45 65 85 105 125  
85  
25 45  
–55 –35 –15  
5
25 45 65  
105 125  
–55 –35 –15  
5
65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4440-5 G08  
4440-5 G09  
4440-5 G10  
Input (INP) Threshold  
vs Temperature  
Input Threshold Hysteresis  
vs Temperature  
Peak Driver (TG) Pull-Up Current  
vs Temperature  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.8  
380  
370  
360  
350  
340  
330  
320  
310  
300  
BOOST-TS = 15V  
BOOST-TS = 12V  
V
IH  
1.6  
1.4  
1.2  
V
IL  
BOOST-TS = 6V  
BOOST-TS = 4V  
1.0  
0.8  
–55 –35 –15  
5
25 45 65 85 105 125  
25 45  
–55 –35 –15  
5
65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4440-5 G13  
4440-5 G12  
4440-5 G11  
44405fa  
4
LTC4440-5  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Driver Pull-Down  
Resistance vs Temperature  
Propagation Delay vs Temperature  
3.0  
2.5  
50  
45  
V
= BOOST = 6V  
CC  
BOOST-TS = 4V  
BOOST-TS = 6V  
2.0  
40  
t
PLH  
1.5  
1.0  
35  
30  
BOOST-TS = 15V  
BOOST-TS = 12V  
t
PHL  
0.5  
0
25  
20  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4440-5 G14  
4440-5 G15  
Driving a 3300pF Capacitive Load  
Driving a 3300pF Capacitive Load  
TG-TS  
5V/DIV  
TG-TS  
2V/DIV  
INP  
2V/DIV  
INP  
2V/DIV  
4440-5 G17  
4440-5 G16  
50ns/DIV  
= BOOST-TS = 12V  
50ns/DIV  
= BOOST-TS = 5V  
V
V
CC  
CC  
U
U
U
PI FU CTIO S  
SOT-23 Package  
VCC (Pin 1): Chip Supply. This pin powers the internal low  
side circuitry. A low ESR ceramic bypass capacitor should  
be tied between this pin and the GND pin (Pin 2).  
TG (Pin 5): High Current Gate Driver Output (Top Gate).  
This pin swings between TS and BOOST.  
BOOST (Pin 6): High Side Bootstrapped Supply. An exter-  
nal capacitor should be tied between this pin and TS  
(Pin 4). Normally, abootstrapdiodeisconnectedbetween  
VCC (Pin 1) and this pin. Voltage swing at this pin is from  
VCC – VD to VIN + VCC – VD, where VD is the forward voltage  
drop of the bootstrap diode.  
GND (Pin 2): Chip Ground.  
INP (Pin 3): Input Signal. TTL/CMOS compatible input  
referenced to GND (Pin 2).  
TS (Pin 4): Top (High Side) source connection or GND if  
used in ground referenced applications.  
44405fa  
5
LTC4440-5  
U
U
U
PI FU CTIO S  
Exposed Pad MS8E Package  
INP (Pin 1): Input Signal. TTL/CMOS compatible input  
BOOST (Pin 6): High Side Bootstrapped Supply. An exter-  
nal capacitor should be tied between this pin and TS  
(Pin 8). Normally, abootstrapdiodeisconnectedbetween  
referenced to GND (Pin 2).  
GND (Pins 2, 4): Chip Ground.  
V
V
CC (Pin 3) and this pin. Voltage swing at this pin is from  
CC – VD to VIN + VCC – VD, where VD is the forward voltage  
V
CC (Pin 3): Chip Supply. This pin powers the internal low  
side circuitry. A low ESR ceramic bypass capacitor should  
be tied between this pin and the GND pin (Pin 2).  
drop of the bootstrap diode.  
TG (Pin 7): High Current Gate Driver Output (Top Gate).  
This pin swings between TS and BOOST.  
NC (Pin 5): No Connect. No connection required. For  
convenience, this pin may be tied to Pin 6 (BOOST) on the  
application board.  
TS (Pin 8): Top (High Side) source connection or GND if  
used in ground referenced applications.  
Exposed Pad (Pin 9): Ground. Must be electrically con-  
nected to Pins 2 and 4 and soldered to PCB ground for  
optimum thermal performance.  
W
BLOCK DIAGRA  
V
IN  
UP TO 60V,  
TRANSIENT  
UP TO 80V  
BOOST  
V
CC  
UNDERVOLTAGE  
LOCKOUT  
TG  
4V TO 15V  
TS  
GND  
BOOST  
INP  
LEVEL SHIFTER  
44405 BD  
GND  
TS  
W U  
W
TI I G DIAGRA  
INPUT RISE/FALL TIME <10ns  
V
IH  
INPUT (INP)  
V
IL  
90%  
10%  
OUTPUT (TG)  
t
t
f
r
t
t
PHL  
PLH  
4440 TD  
44405fa  
6
LTC4440-5  
W U U  
U
APPLICATIO S I FOR ATIO  
V
BOOST  
IN  
Overview  
UP TO 100V  
TheLTC4440-5receivesaground-referenced,lowvoltage  
digital input signal to drive a high side N-channel power  
MOSFET whose drain can float up to 80V above ground,  
eliminating the need for a transformer between the low  
voltage control signal and the high side gate driver. The  
LTC4440-5 normally operates in applications with input  
supply voltages (VIN) up to 60V, but is able to withstand  
and continue to function during 80V, 100ms transients on  
the input supply.  
LTC4440-5  
C
Q1  
N1  
GD  
GS  
TG  
POWER  
MOSFET  
C
LOAD  
INDUCTOR  
4440 F01  
V
TS  
Figure 1. Capacitance Seen by TG During Switching  
discharge the power MOSFET’s gate capacitance during  
high-to-lowsignaltransitions.WhenthepowerMOSFET’s  
gate is pulled low (gate shorted to source through N1) by  
the LTC4440-5, its source (TS) is pulled low by its load  
(e.g., an inductor or resistor). The slew rate of the source/  
gate voltage causes current to flow back to the MOSFET’s  
gate through the gate-to-drain capacitance (CGD). If the  
MOSFET driver does not have sufficient sink current  
capability (low output impedance), the current through  
the power MOSFET’s CGD can momentarily pull the gate  
high, turning the MOSFET back on.  
The powerful output driver of the LTC4440-5 reduces the  
switching losses of the power MOSFET, which increase  
with transition time. The LTC4440-5 is capable of driving  
a 1nF load with 10ns rise and 7ns fall times using a  
bootstrapped supply voltage VBOOST–TS of 6V.  
Input Stage  
TheLTC4440-5employsTTL/CMOScompatibleinputlogic  
level or thresholds that allow a low voltage digital signal to  
drive standard threshold power MOSFETs. The LTC4440-  
5containsaninternalvoltageregulatorthatbiasestheinput  
buffer, allowing the input thresholds (VIH = 1.6V, VIL =  
1.25V)toberelativelyindependentofvariationsinVCC.The  
350mV hysteresis between VIH and VIL eliminates false  
triggering due to noise during switching transitions. How-  
ever, care should be taken to keep this pin from any noise  
pickup, especially in high frequency, high voltage applica-  
tions. The LTC4440-5 input buffer has a high input imped-  
ance and draws negligible input current, simplifying the  
drive circuitry required for the input.  
A similar scenario exists when the LTC4440-5 is used to  
drive a low side MOSFET. When the low side power  
MOSFET’s gate is pulled low by the LTC4440-5, its drain  
voltage is pulled high by its load (e.g., inductor or resis-  
tor). The slew rate of the drain voltage causes current to  
flow back to the MOSFET’s gate through its gate-to-drain  
capacitance. If the MOSFET driver does not have sufficient  
sink current capability (low output impedance), the cur-  
rent through the power MOSFET’s CGD can momentarily  
pull the gate high, turning the MOSFET back on.  
Output Stage  
Rise/Fall Time  
A simplified version of the LTC4440-5’s output stage is  
shown in Figure 1 . The pull-down device is an N-channel  
MOSFET (N1) and the pull-up device is an NPN bipolar  
junctiontransistor(Q1).Theoutputswingsfromthelower  
rail (TS) to within an NPN VBE (~0.7V) of the positive rail  
(BOOST). This large voltage swing is important in driving  
external power MOSFETs, whose RDS(ON) is inversely  
proportional to its gate overdrive voltage (VGS – VTH).  
Since the power MOSFET generally accounts for the  
majority of the power loss in a converter, it is important to  
quickly turn it on or off, thereby minimizing the transition  
time in its linear region. The LTC4440-5 can drive a 1nF  
load with a 10ns rise time and 7ns fall time.  
The LTC4440-5’s rise and fall times are determined by the  
peak current capabilities of Q1 and N1. The predriver that  
drivesQ1andN1usesanonoverlappingtransitionscheme  
to minimize cross-conduction currents. N1 is fully turned  
The LTC4440-5’s peak pull-up (Q1) current is 1.1A while  
the pull-down (N1) resistance is 1.85, with a BOOST-TS  
supply of 6V. The low impedance of N1 is required to  
off before Q1 is turned on and vice versa.  
44405fa  
7
LTC4440-5  
W U U  
U
APPLICATIO S I FOR ATIO  
Power Dissipation  
nodal capacitances and cross-conduction currents in the  
internal gates.  
To ensure proper operation and long-term reliability, the  
LTC4440-5 must not operate beyond its maximum tem-  
perature rating. Package junction temperature can be  
calculated by:  
Undervoltage Lockout (UVLO)  
TheLTC4440-5containsanundervoltagelockoutdetector  
that monitors VCC. When VCC falls below 3.04V, the  
internal buffer is disabled and the output pin TG is pulled  
down to TS.  
TJ = TA + PD (θJA)  
where:  
TJ = Junction Temperature  
TA = Ambient Temperature  
PD = Power Dissipation  
Bypassing and Grounding  
The LTC4440-5 requires proper bypassing on the VCC and  
V
BOOST–TSsuppliesduetoitshighspeedswitching(nano-  
θ
JA = Junction-to-Ambient Thermal Resistance  
seconds) and large AC currents (Amperes). Careless  
component placement and PCB trace routing may cause  
excessive ringing and under/overshoot.  
Power dissipation consists of standby and switching  
power losses:  
PD = PSTDBY + PAC  
where:  
To obtain the optimum performance from the LTC4440-5:  
A. Mount the bypass capacitors as close as possible  
between the VCC and GND pins and the BOOST and TS  
pins. The leads should be shortened as much as pos-  
sible to reduce lead inductance.  
PSTDBY = Standby Power Losses  
PAC = AC Switching Losses  
The LTC4440-5 consumes very little current during  
B. Use a low inductance, low impedance ground plane to  
reduceanygrounddropandstraycapacitance.Remem-  
berthattheLTC4440-5switches>2Apeakcurrentsand  
anysignificantgrounddropwilldegradesignalintegrity.  
standby. The DC power loss at VCC = 6V and VBOOST–TS  
=
6V is only (250µA)(5V) = 1.2mW with INP = 0V.  
AC switching losses are made up of the output capacitive  
load losses and the transition state losses. The capacitive  
load losses are primarily due to the large AC currents  
needed to charge and discharge the load capacitance  
duringswitching. Loadlossesfortheoutputdriverdriving  
a pure capacitive load COUT would be:  
C. Plan the power/ground routing carefully. Know where  
the large load switching current is coming from and  
going to. Maintain separate ground return paths for the  
input pin and the output power stage.  
2
D. Keepthecoppertracebetweenthedriveroutputpinand  
the load short and wide.  
Load Capacitive Power = (COUT)(f)(VBOOST–TS  
)
The power MOSFET’s gate capacitance seen by the driver  
output varies with its VGS voltage level during switching.  
A power MOSFET’s capacitive load power dissipation can  
be calculated using its gate charge, QG. The QG value  
corresponding to the MOSFET’s VGS value (VCC in this  
case) can be readily obtained from the manufacturer’s QG  
vs VGS curves:  
E. When using the MS8E package, be sure to solder the  
exposed pad on the back side of the LTC4440-5 pack-  
age to the board. Correctly soldered to a 2500mm2  
double-sided 1oz copper board, the LTC4440-5 has a  
thermal resistance of approximately 40°C/W. Failure to  
make good thermal contact between the exposed back  
side and the copper board will result in thermal resis-  
tances far greater than 40°C/W.  
Load Capacitive Power (MOS) = (VBOOST–TS)(QG)(f)  
Transition state power losses are due to both AC currents  
required to charge and discharge the driver’s internal  
44405fa  
8
LTC4440-5  
U
TYPICAL APPLICATIO S  
44405fa  
9
LTC4440-5  
U
TYPICAL APPLICATIO S  
E F F I C I E N C Y ( % )  
44405fa  
10  
LTC4440-5  
U
PACKAGE DESCRIPTION  
MS8E Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1662)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
2.794 ± 0.102  
(.110 ± .004)  
0.52  
(.0205)  
REF  
2.06 ± 0.102  
(.081 ± .004)  
1.83 ± 0.102  
(.072 ± .004)  
1
8
7 6  
5
5.23  
(.206)  
MIN  
3.20 – 3.45  
(.126 – .136)  
2.083 ± 0.102  
(.082 ± .004)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
(.0165 ± .0015)  
TYP  
GAUGE  
PLANE  
1
2
3
4
8
0.53 ± 0.152  
(.021 ± .006)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
RECOMMENDED SOLDER PAD LAYOUT  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
NOTE:  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.127 ± 0.076  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
(.005 ± .003)  
0.65  
(.0256)  
BSC  
MSOP (MS8E) 0603  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302 REV B  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
44405fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC4440-5  
U
TYPICAL APPLICATIO  
240W 42V-56V to Unregulated 12V Half-Bridge Converter  
IN  
L1  
0.56µH  
V
IN  
V
E
V
48V  
–V  
IN  
IN  
IN  
2
7
9
V
1µF  
100V  
1µF  
OUT  
L2 0.22µH  
1µF  
1µF  
100V  
11V  
1
V
100V  
100V  
D1  
OUT  
T2  
1500pF  
100V  
V
F
201W  
70(980µH):1  
+
+
C2  
180µF  
16V  
4
3
11  
CS  
V
CC  
3
6
5
1
8
7
A
INP BOOST  
LTC4440-5ES6  
TG  
1µF  
100V  
1µF  
100V  
1µF  
Si7370DP  
Si7370DP  
×2  
Si7852DP  
3
5
×2  
×2  
GND TS  
–V  
OUT  
2
4
0.22µF  
C1  
2.2nF  
250V  
V
V
E
F
–V  
OUT  
D2  
D3  
12V  
4.7k  
1/4W  
4.7k  
1/4W  
1
6
B
L3  
1mH  
+
C3  
68µF  
T1  
5:4:4:2:2  
Si7852DP  
×2  
10k 3k  
10k 3k  
V
12V  
MMBT3904  
11V  
IN  
11  
+
12 14 15  
6
5
2
3
16  
A
6
T3  
+
33.2k  
100Ω  
MMBT3904  
V
CSF  
CSF MF MF2 CSE  
CSE ME ME2 V  
CC  
OUT  
4
1(1.5mH):0.5  
1
15k  
1/4W  
2
1
4
9
120Ω  
LTC3901EGN  
DRVA DRVB  
SYNC  
PV  
CC  
SDRB  
5
1k  
0.1µF  
100Ω  
V
CC  
GND PGND GND2 PGND2  
10 13  
TIMER  
7
22Ω  
3
8
5
1µF  
1µF  
LTC3723EGN-2  
215k  
SDRA  
8
4
10V  
MMBZ5240B  
15  
11  
220pF  
UVLO  
DPRG  
12  
COMP  
330pF  
+
B
CS  
0.22µF  
V
REF  
1
RAMP  
9
C
SPRG GND CS SS FB  
T
4440 TA04  
–V  
OUT  
1µF, 100V TDK C4532X7R2A105M L1: COILCRAFT DO1813P-561HC  
1µF  
8
16  
7
10 14 13  
100pF  
D4  
D5  
C1: MURATA DE2E3KH222MB3B  
C2: SANYO 16SP180M  
C3: AVX TPSE686M020R0150  
D1-D3: BAS21  
L2: SUMIDA CDEP105-0R2NC-50  
L3: COILCRAFT DO1608C-105  
T1: PULSE PA0801.005  
T2: PULSE P8207  
1k  
62k  
1µF  
150pF  
10k  
2N7002  
4.7k  
30.1k  
0.47µF  
330pF  
0.47µF  
470pF  
7.57.5Ω  
D4, D5: MMBD914  
T3: PULSE PA0785  
12V  
MMBZ5242B  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
8V to 48V Supply Range, t = 200µs, t = 28µs  
LT®1161  
Quad Protected High Side MOSFET Driver  
ON  
OFF  
LTC1693 Family High Speed Dual MOSFET Drivers  
LT1952 Single Switch Synchronous Forward Controller  
LT3010/LT3010-5 50mA, 3V to 80V Low Dropout Micropower Regulators  
1.5A Peak Output Current, 4.5V V 13.2V  
25W to 500W DC/DC Controller  
IN  
Low Quiescent Current (30µA), Stable with Small (1µF) Ceramic Capacitor  
LT3430  
High Voltage, 3A, 200kHz Step-Down Switching Regulator Input Voltages Up to 60V, Internal 0.1Power Switch, Current Mode  
Architecture, 16-Pin Exposed Pad TSSOP Package  
LTC3705 Family Isolated Power Supply Chipset  
Primary and Secondary Side Controllers; Simple as Buck Circuit;  
Polyphase® Operation  
LTC3722-1/  
LTC3722-2  
Synchronous Dual Mode Phase Modulated Full-Bridge  
Controllers  
Adaptive Zero Voltage Switching, High Output Power Levels  
(Up to Kilowatts)  
LTC3723-1/  
LTC3723-2  
Synchronous Push-Pull PWM Controllers  
Current Mode or Voltage Mode Push-Pull Controllers  
LT3781/LTC1698 36V to 72V Input Isolated DC/DC Converter Chip Set  
Synchronous Rectification; Overcurrent, Overvoltage, UVLO Protection;  
Power Good Output Signal; Voltage Margining; Compact Solution  
LT3804  
Secondary Side Dual Output Controller with Opto Driver  
Regulates Two Secondary Outputs, Optocoupler Feedback Divider and  
Second Output Synchronous Driver Controller  
LTC3900  
LTC3901  
Synchronous Rectifier Driver for Forward Converters  
Programmable Time Out, Reverse Inductor Current Sense  
Programmable Time Out, Reverse Inductor Current Sense  
Secondary Side Synchronous Driver for Push-Pull and  
Full-Bridge Converters  
LTC4440  
LTC4441  
High Speed, High Voltage, High Side Gate Driver  
High Side Source up to 100V, 8V to 15V Gate Drive Supply,  
Undervoltage Lockout, 6-Lead ThinSOT or 8-Lead Exposed MSOP Package  
6A MOSFET Driver  
Adjustable Gate Drive from 5V to 8V, 5V V 28V  
IN  
PolyPhase is a registered trademark of Linear Technology Corporation.  
44405fa  
LT 1205 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY